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ABSTRACT 
Two main topics are explored. The first deals with the in

finities arising from the one loop planar string diagram of the stan
dard dual model. It is shown that for the number of dimensions 
d = 25 or 26, these infinities lead to a renormalization of the slopt 
of the Regge trajectories, in addition to a renormalization of the 
coupling constant. The second topic deals with the propagator for a 
confined particle (monopole) in a field theory. When summed to 
all orders, this propagator is altogether free of singularities in 
the finite momentum plane, and an attempt is made to illustrate this. 
We examine the Bethe-Salpeter equation and show that ladder diagrams 
are not sufficient to obtain this result. However, in a nonrelativis-
tic approximation confinement is obtained and all poles disappear. 

* This work supported by the U. S. Energy Research and Development 
Administration under the auspices of the Department of Physical 
Research. 
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I. INTRODUCTION 
The two major approaches to elementary particle physics in 

recent years have been quantum field theory and S-matrix theory. The 
former tries to derive physically relevant quantities from interactions 
of relativistic quantum fields. The latter insists that only the 
scattering amplitude is physically important. It then tries to 
derive what it can from properties it demands of the S-matrix. Dual 
models started out in the radical wing of the S-matrix camp. The 
original Veneziano formula was proposed as simply an example of a 
scattering amplitude that satisfied certain criteria. At present 
dual models stand almost on the borderline between S-matrix and 
field theories, with many workers trying to obtain the extended struc
tures encountered in dual models from bona fide field theories. In 
this thesis we present two pieces of work. In Part I, a proof is 
given that in the simplest dual model, divergences can be renormalized 
at the one loop level. In Part II, a detailed examination of the 
monopole propagator is given for a theory with confined monopole-
antimonopole pairs. This theory is relevant to dual models In the 
sense that the string of magnetic flux connecting the monopole-anti-
monopole pair is a linear extended structure similar to the dual 
string. 
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II. SLOPE RENQRMALIZATION OF THE ONE T ^ P 
PLANAR STRING DIAGRAM 

Numerous excellent review articles on dual models have ap-
2 pearsd in the literature. We present here only a brief summary of 

some of the major developments in the field as an introduction. 
Veneziano's four point function was soon generalized to n par
ticles by a number of authors. By factorization, this gave the com
plete S-matrix. This S-matlrx has linear Regge trajectories, Regge 
asymptotic behavior, duality, factorization, and the statistical 
model density of states. The particles have zero width, but it was 
hoped that higher order corrections would cure this problem. After 
this an operator formalism was developed in which factorization is 
apparent, and ghosts were proved to decouple. Next it was realized 
that the whole formalism is equivalent to the quantum mechanics of 
massless relativistic strings. ' Interactions are introduced as the 
splitting and joining of strings and the amplitude can be determined 
totally by the topology of the string diagram.7 In particular, the 
amplitude equals the functional average of exp (i x Action) for all 
x(c,z) satisfying the boundary conditions of the string diagram. 
Higher order corrections can then naturally be obtained from string 
diagrams with loops. The planar loop gives the resonances widths, as 
had been hoped, but the nonplanar loop generates the Pomeron trajec
tory, which has twice the intercept and half the slope of the ordin-

8 
ary Regge trajectories. Before going on to a discussion of 
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renormalization, we mention the two major defects of the model that 
we have so far been sweeping under the rug. First, the theory is 
only consistent in an unphysieal number of dimensions, 26 for the 

q 

original model, 10 for another (Neven-Sehwarz' -nodel with a spinning 
string. Secondly, the intercepts are too high, 1 for the ordinary 
Regge trajectories, 2 for the Pomeron trajectory. 

In dual models, infrared divergences appear due to the preserce 
of zero mass particles. For the number of dirsnsions less than 25, 
Neven and Seherk proved that the infinities of the planar loop 
can be absorbed into a renoraalization of the coupling constant. The 
case of dimensions 25 or 26 is treated in the following paper, where 
it is shown that the infinities lead to a renormalization not only 
of the coupling constant, but also of the slope of the Regge trajec
tories. 
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Slope renormalization of the one-loop planar string diagram* 
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It h » been previously shown that for the number of dimensions d < 25, the one-loop planar string diagram is 
simply a multiplicative (coupling constant) rcnormalization of the Born term. It is shown here thai for d - 25 
or 26 the extra divergent term gives, in addition to a further mullipticative renormatization, a renormalization 
of the slope of the Regge trajectories. 

I. INTRODUCTION 

The) N-point Veneziano amplitude is a tree-
diagram approximation to the •trong-interaction 
scattering amplitude. Thus, one it ted to examine 
loop diagrams in the hope of obtaining a more 
realistic amplitude. As In quantum electrody
namics, these diagrams are found to be divergent. 
A renormallzation procedure must then be found 
in which all infinities are absorbed into a redef
inition of the physical parameters of the theory. 
This v i s done for the one-loop planar diagram for 
d<-2& by Neveu and Scherk,1 and the result was 
found to be a simple multiplicative renormaliza
tion of the Born term. In this paper we do this 
for the one-loop planar diagram in the critical 
number cf dimensions. We show that the diver
gent part of the amplitude can at the one-loop 

level be written as 

c,(Bll'm.sli)-rC,''B{2'n

S"j'<:lBt{m*c„t„). 

where c„ c, are constants, s„ are the planar 
subenergies, m is the slope of the Regge tra
jectories, and B„ Is the Veneziano amplitude. 
Thus, at this level, multiplicative and slope re-
normalizatlons are all that are needed to render 
the integral finite. 

I I . METHOD 

In the Intenicting-string picture, the single-
loop planar amplitude for N scalars Is given by 
the following expression, after a Jacobi trans
formation has been made on the usual variables 
of integration1: 

| *dj | " da,, fdcj,-- • _p",d*„.1«-"*"J'»/C.'"J> i sIIs j («pi-Pr-p.WlP„P.». 

ere ' 

exp( ~p,-p.N{p„p,)] - j - ~ sin|(«, - * . l [ j j (1 -«»"«"''-*« ,)» -«""*"'"'"''HI -<T"")-»|""' '", 

and where /(ln«) is a function of In? (no powers), 
tfy«0, ami the factor $-"•""" should read in
stead <?-' for the special case rf*26. The inte
gral diverges near <?«0, that Is, the region where 
the loop shrinks to a point. We note tor later 
use that this point (the loop at« -0) is located 
at i » tn the f plane. To examine the Integral 
in the « >0 region, we expand the expression tn 
large square brackets in a power series in 4* 
and find that for <f<25, only the constant term 
leads to a divergent Integral. This terra was 
shown by Neveu and Scherk' to be simply a multi
plicative renormalization of the Veneziano am
plitude. For d »25, the linear term in <? In the 

13 

power-series expansion also leads to a divergent 
integral. It is this integral that we examine here. 
We change to the more convenient variables of 
Integration it, «tan««l. In the limit f -0 , these 
u variables are related to the string-diagram 
variables p by the usual tree-diagram transfor
mation 

"t"' M K - I O , (2) 

with the cut now at u =i. We then obtain as the 
coefficient of the Infinite q integration 

1614 Reproduced wi th permission 
from Physical Review D, 
Brookhaven National Laboratory 
Upton, New York 11973 
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where the range of integration is restricted only 
by »jr * 0<«if . l < - • - <**, <0 *JJW (which As Just a 
convenient notation for 0*«#.l<.,**<fc*r

<** *nd 
-*<ii r.i<"-*ii 1<0for lome r), 

Even after factoring out the infinite 7 integral, 
we find that the remaining integral (3) diverges. 
This remaining divergence cannot still be due 
to the loop shrinking to a point since the integral 
(3) diverges only for particular configurations of 
the M'S. In fact, the remaining divergence is due 
to configurations of the one-loop diagram that 
correspond to external-line self-energy inser
tions. Suppose we factor out the self-energy part 
in one of these configurations. Then we are left 
with a tree-level diagram with exactly the same 
Incoming states and momenta, or etse the con
tribution Is not divergent. Thus, we expect our 
divergences to be simply an infinite constant 
multiple of B„. 

In order to evaluate the contribution of (3) to 
the amplitude, we must first choose some cutoff 
procedure rendering the integral finite. To this 
end, we temporarily suspend momentum conser
vation by introducing a new incoming* momentum 
A (see Fig. X). We tentatively choose it to enter 
the string diagram at the position of the loop 
(remember that we have taken the limit 9-0 which 
corresponds to the loop shrinking to a point), but 
we shall see that we will have to modify this 

where we have defined * t = 0 to change the d - 2 
product to a covariant d product, ue • i Is the 
point to which the loop has been mapped, and we 
have neglected terms in ft* since they are second 
order in a small quantity. The fact that (uc' + t)~l 

= (r2 + l)"1 appearing in the second term in un
defined is a point we shall deal with later. We 
can write the last factor of the first term in (4) 
as 

slightly. We expect this procedure to eliminate 
our infinities, since now all self-energy inser
tions have incoming and outgoing momenta which 
differ by k. In the limit fc-0, we should then re
cover a constant multiple of B„ as the divergent 
part. Thus, instead of the normal energy-mo
mentum conservation equation, we have 

where * is the new momentum introduced. 
This new momentum introduces an extra term 

to the exponential of the functional integral for 
the S matrix. This leads to the extra term in (1) 

K P [ | j £ *, Pi Nip, , Pe) + i *(PC, Pe> ^ *.*] • 

The second term, which in infinite, is similar 
to an infinite term obtained in the conventional 
path-integral interacting-string formalism.* As 
in the latter case, it can be absorbed into the 
volume element since it has no dependence on 
the integration variables. The first term in {he 
exponent changes (3) to the expression 

+0(A>). (5) 

This expansion is valid in the range of integration 
since the u/s are real and u,»i, so that the argu-
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T 
FIG. 1. W-point function with pew momentum * enter-

to*. 

ment of the logarithm never blows up. Also since 
the logarithm Is always well behaved the con
vergence properties of ail the terms in the series 

are the same. Thus, since we will see that the 
first term in the series behave6 as k~l aa k-0 
(this behavior is expected of an external-line self-
energy insertion), we can neglect the terms of 
order ** and higher in (5). Thus, we have left 
the first two terms in the expansion (5) in addi
tion to the second term in (4). We refer to these 
throughout the rest of this paper as terms I, II, 
and in. We point out that although term I has 
exactly the same form as the original divergent 
expression (3), it is now well behaved due to 
the ,ew energy-momentum conservation equation. 

111. EVALUATION OF THE MPOINT FUNCTION 

Consider term I for the tf-point function for 
a particular choice of a, b*N and u,<0 (just as 
an Illustration). Then we have 

tp.-Pt j[° du. £"du, |°rfu, | " ' < i i v _[""'*(.., I"' <ftt..r" 

* £ "*<far..i f dor.,,"- jf "da,., | <fa, n --- | "'da,., Tf.(a,-a,)-»i 'J 

x [ - C r f a i £ x

d a * " C~*da-1 / ' **••!"' P ^ d a - * I* «*«»•.••• -p ," ,*'o*-i 
t>i J 

In (6a), we have made the substitution a, =«,/",. In (6b), we have done the u4 integration and broken up 
the a» integral as shown. If all the €t were zero, then the quantity in the square brackets would be 
[1/aJ,! +aJ]BKt where B„ is the tf-polnt Veneziano (Koba-Nielsen) formula. In the limit c ( - 0 . the s ec -
one and fifth ak integrals are still finite. Thus, we are permitted to take the limit before doing the or» 
integration, and these two a , integrals contribute just a constant multiple of B„. Notice that this result 
fs independent of the value of J? >0, and we can choose it to be as small as we like. In particular, we can 
let i) - 0 , as long as this limit is taken after the £, - 0 , and we choose to do so for convenience. 

Now let us examine the first a , integration. Since the range o. aie ah integration is infinitesimal, the 
only possible contribution to this term can arise when the integrand blows up for tt *0 . This occurs only 
when alt but one of the u'e are equal. A detailed calculation for several AT confirms this, but we know 
this must be the case in general since this region corresponds to the configuration where the loop is in 
one of the strings and far from the interaction region. Since we already have ab =ub/ut =0, the only pos
sibility for the «'s in which all but one are equal Is ut* 0, i*a. Thus, we can restrict the other a's to 
be less than some number $, where we can clearly choose I J « - { « 1 . In fact, after a little thought, it is 
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clear that, in addition to the above inequality, we can take i as small as we like, by simultaneously making 
f? smaller if necessary. Doing this, we obtain 

'P.-P. fila. jr r f°i.["' d<V' £"*i«.-ifia"i"' J 0" 1""'- '] rf0W { 'da»-i 

* II (a,-^r»<-'< (7a) 

x C"''d»,.l His,-$,)-"••'' (7bi 

•4 " » •'-• J n -V.-i - V 1 »»-J ' '»•• 

« n frj-yi)""'"' n (i-.-r.)-12"•'•*"'. (") 

In (7a) we have excluded those factors with i or 
j equal to a since a, = 1 and all other a,* 0. Equa
tion (7b) is obtained by the substitution ,̂ = a t / a 6 

and (7c) by y{ ~Pi~l, and where we have used the 
altered energy-momentum condition extensively. 
Equation (7d) follows only if the extra pieces 
added (by changing the limits of integration) con
tribute nothing to the integral. TliiB will occur 
only if s „ < - 2 , j*l,. •. , a - l and s „ < - 2 , 
y=a + l o - l , where sal^{pa*Pa,i*"-*Pi1'-

It is quite tempting to identify (7b) immediately 
as a linear combination of derivatives of BH with 
respect top, • p„ l*a,b,N. However, this is 
quite misleading, since the p, • p, are not all in
dependent due to the N relations 

•(£H-°- (8) 

If we were to use these relations to eliminate N 
of the//,•/>„ then the productsp,'p,, l*a,b,N 
would appear elsewhere, and our simple argu
ment would break down. 

In order to see that (7d) does involve the deriva

tive of B„, it will be convenient to change to the 
variables s«B defined above. These have the ad
vantage that they are all independent (we count 
si,«-i* s«« ^ o n e ' e t c - ' . ""like the/>,•/>, which 
are restricted by (8). We must however decide 
where we will put fc in the definition of the sat. 
That is, we could choose 

s.,*iP.*P..,*"-+P,+ W 

or we could put the * in the last expression. We 
note that using the wrong smt in the divergent term 
leads to extra finite terms ir. the final result. 
Since the divergent part of the term we are deal
ing with here is proportional to (1/«,)B„, it arises 
from the configuration where the loop is in string 
a. Thus, the arguments of the B„ should be the 
kinematic variables with p, replaced by p, * k. 
We therefore use the s* , defined so that the k 
appears in that sum of momenta that contains p a. 
Then it is not hard to show (working backwards) 
that 

p^-^^-^-tf'[^o^T,afeg^)4r'- w 
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If one ot the y's is infinite (here y„), then this formula still holds and all factors with that y cancel. Also 
we can write the square bracket in (9) as 

H]; (10) 

Then using (9) and (10), (7d) 

r(y..i-y.)(y.-ii-i)T'. rr [fa.-*)!?.., 
I >i-. - 1 - . J ,£..<XU, -r,.,)(>•«., -is). 

where the above result depends crucially on the relations ya* 0, y,« 1, yc» 
becomes 

' A ' A ^ f * . f "ft."" f rtl.i f * !« • • • f *V. f < * W ' / <**.! 

„ TT r(y,-y,)(v1.,-y,.,)l-»?/-' TT ("<*•-*><*•••-*•,>•!'. 
l(y.-yi.,>(y».,-y,)J 

-'A-4f 6' ( sw* £ - ^ 1 ( n ) 

in the limit < , -0 . Terms proportional to lm? have been dropped, since it is known that they cancel with 
terms in othsr ob integrals (this is due to the fact that tj is an arbitrary division point of an integral). 
Notice that it is unimportant which s , /s we use as the argument of the derivatives of BH in the limit 
c , - 0 . 

By a similar argument, the third and fourth a, integrals each lead to an identical expression to (7d) 
except that et replaces it in the coefficient, and analogous steps lead to an expression similar to (11), If 
ut>0 we get, in addition to (11), one more term identical to (11). Although the calculation is slightly dif
ferent, the result holds over if one of a or 6 equals A\ However, in order to obtain (7d) for all a,&, we 
must have s a S < - 2 for all planar channels. This poses no problem as the s o B are ail independent. Later 
the proof holds also in the physical region by analytic continuation. 

Adding up all the contributions, we obtain for term I 

»ithl «•«*•<> 
K I ( l « b M t f 

where K is a constant, m is the slope, and we have 
used the relations 

(in which we must use the definitions s M * - 1 , 
s.,,^'0). This is the desired result, and thus we 
have a universal re normalization of the slope of 
the Regge trajectories. 

To complete the proof, we must show that terms 
JI and III do not affect our result. Term II is ac
tually a sum of terms with the term I integrand and 
the extra pieces 

«Mnr(«»-o'i. 
T I n hv^TJ 

tff£ r 

' 2 

-$*•&£!• 
Since the extra term is well behaved throughout 
the range of integration and is first order in c ( , 
we neglect all but the divergent part of the inte
gral. If r *a or 6, then this always occurs for 
ur*Q, and we can write 

and the result is a multiple of the divergent part 
forrf<25. For r*a or b1 we write 

Then the w, integration is modifiwl using 

(. tan-U/-,) M)'tma'-° 

Adding all the terms up, we find that term It is 
proportional to 
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Si^K^£^»WMf>^^*3a!'- i?s-' 
As we remarked earlier, term in contains the 

explicit factor (I'+l)"1 which must be removed. 
This can be done by displacing the point of entry 
of the new momentum k to a fixed point in the 
string diagram infinitesimally close to the loop. 
Since we are dealing with the case where the loop 
has shrunk to a point, we can use the tree-dia

gram transformation (2) lo Tind the displacement 
of the point of entry of the loop in the u plane. 
This gives 

which changes term III to read 

1 
H(Aft> ? <• r*-1>-- r ^ ^ f e ) , n„ <«. -«<>-»<•< 

where we have left out the terms with c, in the exponent, since we already have a factor £,. 
Unfortunately, this expression is still divergent. This divergence, already seen in theoldrenormaliza-

tion calculation, occurs when the loop approaches the boundary of the string diagram, or in the region of 
integration where all the w*s are equal. To remedy the situation we introduce another cutoff to eliminate 
this region of integration, and later take the limit as the cutoff goes away. We do this in the following way. 
Since the whole term has a coefficient linear in,£ t the only contributions will come from the region where 
the integral diverges, i.e., the region where all but one (at least) of the u's, say uk, are equal to some 
value uA. Then we have 

So for the case where a*N and k*N or o, we can write term in in the above region as 

2t(AP( 
-,£<. r*. /\M---M<^ r A, rv- p'x., p*w 

-4r f c Jo Jo 1«(«*N 

where i j«e . The uk integral has been restricted 
so that {ut\>£,. Since all the other u's are near 
zero (*«*), this has the effect of eliminating the 
region where all the u *B are equal. The «, integral 
is restricted by K« > 17 (this should read u, < JJ if 
a<k) so that we exclude the region uk"ut. The 
remaining K'S actually have been left unrestricted 
since there will be no contribution anyway unless 
they are all near zero. Finally, uA has been Bet 
equal to «,, which is permissible since all ui% 

i*k are equal. It is clear then from (12) that our 
result is just a constant multiple of BN. The terms 
a*& and k=N or a, although somewhat different, 
are similar and give the same result. Also we can 
easily convince ourselves that changing ue by an 
infinitesimal amount cannot change our result for 
term II (since it is finite). Thus, we conclude that 
both terms D and III simply add to the multiplica
tive renormalization and do not affect the slope 
renormalization. 

We should point out that we have been using the 

fact that the sti are all independent. If the num
ber of particles is greater than 25, the number of 
dimensions, then this is not strictly true. How
ever, we note that throughout the derivation of the 
interacting-string amplitude, no use was made of 
the number of dimensions. Thus, we would have 
written down exactly the same expression no 
matter bow many dimensions we were working in. 
We, therefore, calculate always in more dimen
sions than the number oS particles we are dealing 
with, and are confident that the result will be valid 
in fewer dimensions. 

We have now shown that the single-loop ampli
tude for N scalar particles is a slope renormaliza
tion. By factorization, we trivially obtain the same 
result for J/ excited particles. 

Added note. In a recent paper by Ademollo 
et aU9

 s the same result has been arrived at. Un
like the above authors, the calculation here is 
done in the interacting-string picture. The author 
feels the present work is both shorter and more 
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straightforward. In addition, no explicit use of 
the appearance of a zero-mass scalar particle in 
the Pomeron sector is made here. 
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III. MONOPOLE PROPAGATOR IN A THEORY WITH CONFINEMENT 

A. Theory 
Because quarks have not been seen (OT if they have they must 

still be strongly bound), physicists have been interested in field 
theories with confined particles for some time. If particles 
are permanently confined, then they cannot appear as asymptotic states. 
Therefore, no singularities at energies equal to their mass should 
appear in the S-matrix. One manifestation of this should he in the 
behavior of the propagator for the confined particles. All sin
gularities at energies equal to their mass should vanish. Thus, 
for example, the pole that appears in the propagator in the lowest 
order of perturbation theory must somehow be cancelled by higher order 
corrections. Also because of the confinement, we would expect that 
for large spacelike separations, the propagator should fall off 
very rapidly. 

Here vre shall examine the propagator in a model theory with 
confinement. We consider the theory with an electromagnetic field 
A interacting with a scalar Higgs particle $ and a spin-1 monopole 
<>. The Hamiltonian is 

+ Xl<M4 + *(Y'(-i? - gB) * m ) * , (1) 
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where 
A « A T + I s B = B T + B g 

H « V x X T - V A" E = -V * B T - VA 
o 

r , e**(x')To*(x') 
A o ( x > B '•**' 4 T T | J C - X ' | — 

o 

d-*s 2 

A g = g|d 3x' S(x - j')J(x')Yoi(i(x') 

B e = -ej d V a(x' - x)4>* (x')30<|>{x') 

:c;\ - i I n x X n » i 
a v l ; " 8TTJTT i jx| + IS • 5 " |x| - n • x 

12 Here we have followed the notation of Sehwinger. A and B 
are the vector potentials for the charge and matopole respectively. 
A (B ) contains stringlike singularities, Wrae strings, attached to 
each charge (monopole). We have chosen the monopoles to be feraions 
because we have quarks in the back of our rnind, but the results pre-
sented here should be independent of this choice. Since the (i 
term has the wrong sign for a mass term, the $ field will pick 
up a vacuum expectation value. Ihis leads to confinement of the 
monopoles by the following argument. For finite energy, the 
term |(3 - ieA)$) must vanish far from the monopole. Since 
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<j> has acquired a vacuum expectation value, we must have 

f* 
r ->• «• " I r i *D ^ xu • » ke J * > 

where k is a constant and x is some arbitrary point. However, 
in order for $ to be well-defined, we must demand that it be inde
pendent of the path of integration. Thus the integral in the exponent, 
taken around a closed path, must equal 2TOi/e. To be specific, let 
us choose a singly charged monopole at the origin with its Mrac 
string along the z-axis. Then for a path of integration at very 
large z, circling the z-axis and very far from it, we know the 
integral equals 2iT/e. However, if we translate the coutour to 
large negative z, the integral equals -2ir/e (for our two-sided 
string. In any ease, the answer is different). Thus there is no 
way for <|> to be well-defined and continuous in a finite-energy 
single monopole solution. We conclude that for each monopole there 
must be an ajitimonopole at which the Dirac string ends. Thus 
monopole-antimonopole pairs are confined. 

We would like to shift the field $ by its vacuum expec
tation value and then examine the higher order corrections to the 
monopole propagator. However two technical problems stand in our 
way. First of all, we have the usual problem that arises in all 
field theories with monopoles. Since the theory only makes sense 
if eg * 2nn, a perturbation expansion in both e and g at 
best carries with it the optimistic hope that after summation of 
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the series with small e and g, a valid analytic continuation can 
be made to physical values. 

However, because we initially expand in both small e and g, 
to each order in perturbation theory, amplitudes depend on the direc
tion of the Dirac string. We could hope to overcome this difficulty 
by resumming the series such that, in each step, we add an infinite 
subset of Feynman diagrams (e. g., Bethe-Salpeter ladders) whose 
sum is independent of the direction of the Dirae string. To our 
knowledge, no one (including the present aut'aor) has succeeded in 
finding even a single subset of Feynman diagrams independent of the 

Dirac string. Another possibility is to average over the direction 
13 cf the string (see, for example, Habl ), but there is no real 

reason why this procedure should give correct answers. 
The other technical problem is that after shifting the field 

$, we wind up with a large number of vertices. We might hope that 
we could generate the properties we expect of the monopole propagator 
from a few monopole vertices. However, we recall that the proof of 
confinement depended on the form of the term |(3 - ieA )$| , as 
well as on $ having a vacuum expectation value. This would seem 
to indicate that most (if not all) of the charged particle vertices 
need be included too. 

Because of all the preceding reasons, the prospects for making 
progress with this theory are dim. Therefore, we replace the effect 
of the electromagnetic and charged particle fields by an effective 
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potential for the monopoles. We choose this potential to be linear 
by analogy with the vortex solutions of Nielsen and Olesen (Landau-
Ginzburg type). They exhibited cylind- eally symmetric vortex solu
tions for the Lagrangian of Eq. 1 but without the monopole terms. 
Since the vortices are cylind cally symmetric, their energy is 
proportional to their length. In the theory with monopoles, the 
vortices will be finite, since they will end at the monopoles. 
However, at least for large distances between the monopoles, the 
energy should still be proportional to the length of the vortex. 
Thus we choose an effective potential which is linear. 

Our Lagrangian is now 

% - WxXUf - mMKx) + X2Jd4y J°(x)J°(y)|x - y |5(t x - t y ) 

where 

3° = *(x)v0*(x) . 
Note that this theory is nonlocal and thus nonrenormalizable. However, 
this should not matter, since the confinement in our theory is a large 
distance or infrared effect. Thus a simple cutoff in ail divergent 
integrals should suffice for our purposes. 

Ordinarily, we could look at the large |x| behavior of the 
propagator in any spacelike direction. However, since we now have 
a nonlocal interaction, we must confine ourselves to the t * 0 
direction. Thus in the considerations that follow we shall examine 
the propagator integrated over p . 
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We are now in a position to begin to calculate the monopole 
propagator. However, it clearly is not feasible to add up all the 
higher order diagrams. We must devise some approximation scheme. 
One attractive choice is the set of ladder-like diagrams in Fig. la. 
Throughout this paper we write the nonlocal four-point interaction 
as two two-point interactions connected by a dashed line. By 
crossing symmetry they can be rewritten as in Fig. lb, even though 
we are no longer in a physical region of the S-matrix. This is a 
logical choice because we know that, at least in the nonrelativistic 
case, repeated exchange has been used to create bound states. Thus 
we could reasonably hope that these ladder-like diagrams would be 
sufficient to obtain confinement. We shall see later that, at least 
in the fully relativistic case, this is not the case, and other 
diagrams need to be considered. 

Before beginning the actual calculations, we first exhibit 
in a concise way the approximation we have made. We do this by 
deriving differential equations for the Green's functions. This can 
be done two ways. In the first method, first written down in a 

15 paper by Mandelstam, we apply the operator (ijl - m) on 

G ^ = <0|T(«(x 1)...5'(x nWi n + : L)...\Kx 2 n))|0> 

and use the equations of motion. In the other method, we use the 
fact that the functional integral of a total functional derivative 
equals zero, f) derive a differential equation that the generating 
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functional Z(J) satisfies. 

o . U^^W Jvjfl s + J ) z ( J ) . 
/ s \ n We next operate with [•*-»• 1 to obtain the same equations as in the 

first method. 
The first two equations that we obtain In our present theory 

are given diagrammatically in Fig. 2. Substituting Fig. 2b back 
into a, we get four different equations depending on how we match up 
the particles (note that in Fig. 2b, we can also switch the in 
particles with the out particles). These are given by Fig. J. Note 
that the second term in each of these four equations Involves tad
pole diagram corrections, which simply lead to a mass renonnalization. 
Thus we can safely ignore them. If we also ignore the last term in 
Fig. 3a and d, we obtain the differential equation satisfied by the 
sum of the ladder diagrams. This can be seen by repeatedly sub
stituting in.the whole sum where it appears on the right hand side. 
Therefore, the last term in either Figure 3a or d (plus its itera
tions into the third term), which differ only by the inclusion of 
certain tadpoles, represents all the terms omitted by taking the 
ladder-like diagram approximation. 

As an aside, neglecting the last term in Fig. 3b or c gives 
us another series of diagrams that we can sum — multiple iterations 
of single loops. Using the result A^ of Eq. A6 in the appendix, 
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we have for the sum 

1 1 
p 2 - m 2 + ie n *1 p 2 - m 2 - A, + ie 

2 ? 
1> - vT * ie 

This result, not surprisingly, still has singularities at 
the mass m, and thus this subset of diagrams fails to exhibit 
confinement. 

B. Calculations 

The Bethe-Salpeter equation satisfied by the sum of the 
ladder diagrams il»(p) is 

*(P) = J •__! f^L^l?-?)2-** \ 

p-.m + iE f - m * ie J (2ir)4 \ ((p - p') + e 2 ) 3 / 

* Vfr') T 0 ^ . * , i e • (2) 

The quantity in the brackets in the above equation is the Fourier 
transform of our potential \ |x|6(t). Letting G(p) = (ji - m + ie)x 
" M P X P - - m + ie) , we get 

2 
G(p) = * 

/ (2*>4 \ ((p - P ) 2 • e 2 ) 3 / 

"CP^-r-i r 0 p*-m+ie j* - m + if 
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It is now clear that G(p) must be of the form G(p) = y p + H(p) 
where H(p) now depends only on the 3-veetor p. We then can do the 

i 
p integral to obtain 

H(p) . .y . p - m - | fi&L Ux2 <i-»f-*l3 )« 
4 J (2H)3 \ ( ( ? - p ) + E 2 ) 3 / 

[2(y ' p' + m ) + H(P ) . ( Y - P + m)Y°H(p)Y°(Y-P + m) 
(p^TT? (p' 2 + m2)3/2 

( 3 ) 

We now write H(p) in the form 

H(p) = J^p) + Y 0J 2(P) + Y • P J 3(p) + Y 0Y • P J,(p). { , 

where the J s are numbers, not matrices. We have not included terms 
with Ye because they do not appear in lowest order and they are 
not generated in higher orders. After substitution of Eq. /, into 
"i, we can separately equate the coefficients of the different y's. 
This leads to 

Y?) « 
2 J ( 2 T T ) 3 

m , P 

J2(5) -

[ C P ' 2 - * 2 ) * 

0 

\((P - P ) 2 + e 2 ) 3
y 

(p^m 2) 3' 2 J 
(5a) 

(5b) 
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p J 3 (p) 
2 J Ox? \ ((P - P f ^ 2 ^ y 

A 1 , m(l^p') -m Ji(p')) 
l ' p ' 2

 + m2)* ( p ' 2

 + n

2 p/2 
P 

p J 4 (p) . i f dV [ - 2 (p - p') 2 - 3e2 ) „ 

" * J £ 7 P ( ( 5 - P V - W 
•UP') 

(p 2 • m 2 )* 

(5-

(5d) 

We can at this point set J.(p) = 0, since it does not appear in 

lowest order, and from Eq. 5d each succeeding term is zero. Equation 

5a and c remain. We do not know how to solve them, but in the 

Appendix we place an upper limit on the large r behavior of the 

solution. However, we can show that no solution exists such that 

the singularity of the propagator at the maes of the monopole has 

disappeared. Since we are interested in large space like separations 

at t = 0, we examine 

«5» ie 

• 5 — ^ ? (*f + m) (r nP n + J,(P) + Y • P J,(p)) (p" + m) 
(p 2 - m 2 + ie) 2 o o l 3 

J 2(p) - m J 3(p) + 2 2 (p 2 * m2) • 
v. -* 
(Equation 6 continued on next page) 

( P 2 *ify 27572 
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+ mY~ • p Ja(p) - m J3(p) - | if * x2]?. (6) 

In doing the p integral, we have ignored a term, formally infinite, 
but odd in p . In order for the result in Eq. 6 to be regular at 
-2 2 
p = -m , we must have both 

K (p) - «I(p) * ̂ ( p 2
 + m 2 ) 

and 

(p 2 • a 2 ) 3 / 2 

? ? 7 5 [ J 1 ( P ) - » V 5 ) - = ( 5 2 * B 2 ) ] (p 2 * m'> 

regular. However, this is impossible because their difference is 
singular. Therefore, if a solution exists at all, it contains a sin
gularity at the mass of the monopole. Thus we have failed to exhibit 
confinement. We believe this is due to our inclusion of ladder dia
grams with pair production (Fig. 4b), but not the corresponding crossed 
diagram (Fig. 4c). These diagrams also contribute to the binding 
"forces" on the monopoles and should be important. Unfortunately, we 
know of no way to correctly take them into account. However, in the 
nonrelativistic approximation, there is no pair creation, and the 
types of diagrams represented by both Figs. 4b and c are absent (re
member we have an instantaneous interaction) and only those of Fig. 4a 
remain. Thus we might hope to obtain confiement in this approximation, 
and we examine this possibility next. 
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Non-relativistic approximation 
o 1 

Starting with our Bethe-Salpeter Eq. 2, we can do the p 

integration on the right hand side. Defining 

*(p) - I dp°#(p) 

H a « Y 0(T • P + m) 

Hjj = Tf0(-Y • P + m) 

We have 

_o (P° - H&(P))<KP)(PU - V P ) ) • Y V • Y • P 

J (2»J* \ «p - P ) 2 «• e 2 ) 3 / 
(7) 

We can now treat the 4 x 4 natrii iKp) as a wave function in the 

product space of two spinor particles. We proceed according to the 
17 nethod of Salpeter for treating instantaneous interactions and naie 

the following definitions 

a E (p) + H a(p) 
A = 
" 2E a(p) 

where E (p) = (p + m )* 
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and similarly for par t ic le b . In addition, we define 

* + J P > = A ! ( J W P ) Â  (P). etc. 

Then we arrive at 

F++(P>*++(P) " fyv)Hv) A* (p) 

F+_(p)^+.(p) = A* (p)r(p) A* (p), etc. (8) 

where F++(p) = (p° - Ea(p) + ie) (p° - E^p) + ie) 

f+.(p) = (p° - Efl(p).+ ie) (p° + y p ) - ie), etc. 

and T(p) is the right hand side of Eq. 7. We now divide each 
of Eq. 8 by the appropriate F(p) and integrate over p using 

£ dp° (p° • a * ie)"1 (p° * b ± ie)"1 ' t 2ui (b - a)" 

dp0 (p° + a ± ie)"1 (p° + b ± ie)"1 = 0 

dp°p° (p° - a + ie)"1(p° -b + ie)"1 - -id 

dp0 p° (p° + a - ie)"1 (p° - b • ie)" 1 = ii | ^ | 



-24-

In the last two equations, we have thrown away a term, formally in
finite, but.odd in p°. This leads to 

-(Ea(p) + y p H ^ p ) - A^(p)|7ri(Eb(p) - Ea(p))y0* 2I4(Y • P - m) -

J (2t) 4 \ ((P - P ?* t)f J 

-(Ea(p) + Efa(p))<|)+_(p) « A B(p)Li(E a(p) - E b(p)) Y o • JWi(Y • P - a ) -

J (2T.)3 y « P - P ) 2 + E 2 y / J 

-*++<?) = 1 riA a(p>Y oA^(p) , 

-*_Jp) =7dAa(p)Y0A^5) . 

Since in our case, E - E. * 0, we have 

(Ha(p) - ^(p)»(p) « (A*(p)A*(p) - Aa(p) A*<p)) [2ni(Y • P - a) -

(9) 
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where for convenience we have written the b operators on the left, 
even though they really should appear on the right. Eq. 9 looks dif-

17 ferent than the corresponding equation in Salpeter's article. This 
is due to the fact that our <J>(p) is a wave function for a particle 
and antiparticle, whereas his is for two particles. To remedy this 
we multiply by the charge conjugation operator C on the right to 
obtain 

-(Ha(p> HjCp^Cp) - (A*(p)A* T(P) - A*(p)A* T ( p » 

r f A 
x 2iri(y • p - m)C - / -=-==• * 

I J(2tr) 3 

V ((5 - p ) 2 + E 2 ) 3 y J 

where $ (p) = 4>(p)C. In the nonrelativistic limit the factor 
involving the A's equals one, and all the homogeneous terms in 
$ reduce to the Schroedinger Hamiltonian operator acting on the 
"large" part of the wave function <t|

J,+(p). In coordinate space 
we then have 

H fx)*c(£) = 2iri(-iy • v- - m)63(x)C (11) 

where H e(x) = - gj v 5 + \2\i\ 

For xi'O, the right hand side in Eq. 11 equals zero. The problem 
becomes simply that of finding the large J behavior of the 
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Sehrodinger wave function with energy E = 0. (Boundary conditions 
at the origin, which quantize the allowed energies, do not apply 
here). The angular part of the equation can he separated out in the 
standard way for a central potential. We are then left with the 
radial equation 

(i-^'-^h'"" 0. 

For large r, we can ignore the angular momentum term compared to 
the potential. Rescaling r, we arrive at the Airy differential 
equation. The solution has the asymptotic form 

e x p C - f / a S ^ r 3 7 2 ) 

* r 2 ( 2 m X 2 ) 1 / 1 2 r 3 / 2 

where, as usual, we have discarded the exponentially increasing 
solution. This shows that our wave function, and consequently the 
propagator, falls off much faster than the free propagator. In 
fact, since it falls off faster than e - l n r for any a, allsingu-

19 larities in momentum space must he absent and we have finally 
exhibited confinement. 
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APPENDIX 

As we mentioned earlier, we have not been able to find the 
large x behavior of the solution to the Bethe-Salpeter equation 
for the propagator. However, at least in the case of bosonio monopoles, 
and in the context of the approximation scheme below, we can show 
that any solution must fall off faster than the free propagator. 

The idea is to directly calculate the ladder diagrams by 
iteration in the leading term approximation. Given the amplitude 
for the n rung diagram, it is easy to write down a single integral 
expression for the n + 1 rung diagram, using the fact that it has 

an n rung subdiagram. We start at the single loop level and at 
-2 2 each level keep only the most singular term at p = - m . We can 

hope to derive a simple expression for the amplitude as a function 
of n. The problem with this procedure is that more often than not, 
the integrals simp^, become more and more complicated at higher 
orders and no pattern emerges. We shall see that for bosonic mono-
poles we are lucky and the procedure works. 

The single loop diagram for a bosonic monopole is given by 

__1 f t d4P 
-m2 + icfj {2vf 

' i d Hp 
Jv^-m2 + ie)2 J (2TT)* (p + p f - n2 * ie' 

<AL) 
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The quadratic term in p is due to the derivative coupling. In

troducing Feynman parameters, we have 

[ p ' 2 + 2xxp • v - x j p ^ - » 2 - l>2 • le ' • e 2 ) + e 2 J 4 

J (A3) 
f1 ( l - ^ ) 2 

J Q ^ [ x 2 p 2

+ » ( P ; 2 - » 2 - p 2 • i E ' • e 2 ) • E

2 (2a - 3>fj 

x 2 i r - 2 -a < p 0

2 - m 2 + i F ) i 

TT ( P
2 - a 2 • ie)2J _ ° ° ° (p o

 2 - p 2 - m 2 + ie) 2 

. (AL) 

a=l 
(A5) 

To obtain Eq. A2, we also shifted the p integral. In arriving 
at Eq. (A3), we did the p integral using 

/I d
3x(x * a) m id a + c 

[ l 2 + 2b • x + c - i e ] 4 8 (b 2 - c + i e ) 5 / 2 

in addition'to the x^.x-.x, integrals. To get Eq. (M), we used 
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J/R3 

/ 

dx _ 2(2ex * b) 
/R3 h& 

xix c _ 2(2a * bx) 
SB? A^S 

x2dx = _ (A - b 2)x - 2ab 
/R3 c A^E 

2 2 
where R = a • bx * ex and V = 4ac - b , set ot = 1, and then 
took the limit 6 = 0 . Surprisingly, all divergent terms cancel. 

t In Eq. A5, we have introduced a cutoff in the divergent p integral. 
The integral appearing in Eq. A5 is a mess to do. We must integrate 
separately the regions above and below one. Each of these can be 

/ ' 1 + x^ 
done by a messy substitution (p = y ) and a lot of algebra. 

0 1 + -C 
We thus arrive at the result 

A, = 2i! 1 
^ IT (p 2-m 2+ie ) 2 

x to \ m / " 2(p2+m2) J ' 
Since we are interested only in the large i behavior, we need only 
keep the most singular term at the closest singularity to the 
real axis, which turns out to be at |p| = ±ia. This leads to 
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. _, A 1 m Po 
(g 2+ m

2)*- IS1 ) in i 

IPI 

The singularity at |p| = ± im inside the logarithm is quite weak 
—2 2 —3/2 

compared to that of the (p + m ) factor, and ignoring it should 
not affect the answer much. We do this for simplicity. Thus we 
evaluate the term in the square brackets at |p| = im. In either 
case we get - TT- . Our result is now 

& P0
2 x 

^ ~ ^ ' 2(p2
+ a 2 ) 3 ' 2 (p2 - a 2 • IE) 2 * U ? ) 

Once we have A , we get A. as follows: 

A + 1 - J u & l v + P ' ) 2 f-e,x 2 (p-p') ;3^.U ( A 8 ) n + 1 J [*t ° ° I Up-vY + tWJ n 

Mow suppose A is of the form 

n " ,-2. „2? ,2 2 4 . .2' (p + as , (p - m + 3 e J 
(A9) 

where k is a constant. 
Then we can do the p integral 

• A dPo(p o +P 0 ) 2 Po 2 . - rt X?+f) + & _ irt _ f | _ 
( P ; 2 - p 2 - m 2

+ i e ) 2 2 ( 5 2

+ m

2 ) * ™ « & ? ) * 
-A ° 
where in the last step we have kept only the most singular term 
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at |p| = ±im. Therefore 

n+1 
TtPo2 1 f a3p' f(p-p') 2-3e 2 

tf (p2- m2
+ ie)2 J (p<m 2) r + i V P - P J 2 * ^ 

A^fr +|)mp2
 2 

~* - i p ^ T ? ^ 2 (p2-m^iE)2 ( A 1 0 ) 

where we again have kept only the most singular term, this tine by 

Fourier transforming to position space, taking.the limit [x| •* », 

and then Fourier transforming back. We have been fortunate. The 

result of Eq. (AlO) is again of the form of (A9). Since (Al) is 

also of this form (Eq. A7), all A are of this form. In fact it 

is not hard to see that 

r = | n 

3X 2( n-|)m 
A * = \ ( p 2

+ m 2 ) 3 / 2 V l 

3X2m V - 1 r < a * y > , 
4(P 2

+ m 2 ) 3 / 2 J r ( | ) ** 

- 2 P ° ( 3X2m V « » + J > 
" 3 (p 2 -m 2 +ie) 2 V « P 2 + * 2 > 3 / 7 r<f> 

If we try to sum up the A we have obtained, the series diverges, n 
Instead we Fourier transform to position space, keeping only the 

leading term for large distance (and time t = 0, for simplicity). 
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This leads to 

3 1 

l^ZH-^J^M 
n=l n=l 

T(n+ i) 
r(f) 

i2r^2r(i) V 4 W / /!_ r(in+2) 
n=0 " 

fr@ 
r * °> „ i _ /2m ' e _ m r ( 

' e, V; - ~pn ' 

3/2 ;n 

(All) 

IS where, in the last steps, we have used a theorem of Wright. To the 

result of Eq. (All) we must add the Fourier transform of the free 

propagator (at t = 0) 

J(2*) 4 
d4p e i p' x r * » . ±_-.[K e_mi" 

A „2_ .A. ̂  ' « , V , ^72 (2itr P - m + ie 8TT » TT TJ 

As we can see, the sum equals zero, and the leading terms cancel. 

This would suggest that we should look at nonleading terms. This 

cannot be done in the context of this calculation without the 

algebra becoming unmanageable. Therefore all we can say is that our 

propagator should fall off faster than the free propagator. 
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FIGUHE CAPTIONS 

Fig. 1: Ladder diagrams. 
Fig. 2: Differential equations satisfied by the Green's functions. 
Fig. 3: Substitutions of Figure 2b into 2a 
Fig. 4: Diagrams neglected in various approximations. 
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