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ABSTRACT

Two main topics are explored. The first deals with the in-
finitles arising from the one loop planar string diagram of the stas.-
dard dual model. It is shown that for the number of dimensions
d = 25 or 26, these infinities lead to a rencrmelization of the slope
of the Regge trajectories, in addition to a renormelization of the
coupling constan%. The second toplec deals with the propagatorfor a
confined particle (monopole) in a field theory. When summed to
all orders, this propagetor is altogether free of singuleritiies in
the finite momentum plane, and an attempt is made to illusirate this.
We examine the Bethe-Salpeter equation and show that ladder diagrams
are not sufficlent to obtaln this result. However, in & nonrelativis-

tic approximation confinement is ottained and all poles disappear.
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J. INTRODUCTION

The two major epproaches to elementary particle physies in
recent years have been quantum field theory and S-matrix theory. The
former tries to derive physically relevant quentities from interactions
of relativistic quantum fields. The latter insists that only the
scattering amplitude is physically important. It then tries to
derive what it can from properties it demands of the S-matrix. Dual
models started out in the radical wing of the S-matrix camp. The
original Veneziano I‘ormulal was proposed as simply an example of a
scattering amplitude that satisfied certain criteria. At present
dual models stand almost on the borderline between S-matrix and
field theories, with many workers trying to obtain the extended struc-
tures encountered in dual models {rom bona fide field theorles. 1In
this thesis we present two pieces of work. In Part I, a proof is
given that in the simplest dual model, divergences can be renormelized
at the one loop level., In Part II, a detailed examination of the
monopole propagator is given for a theory with confined monopole~
antimonopole pairs, This theory is relevant to dual models in the
sense that the string of magnetic flux connecting the monopole-anti-
monopole pair is a linear extended structure similar te the dual

string.
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_ II. SLOPE RENORMALIZATION OF THE ONE ~5p
PLANAR STRING DIAGRAM =

Numerous excellent review articles on dual models have ap-
pearsd in the 1:[terature.2 We present here only a brief summary of
some of the major developments in the field as an Introduction.
Veneziano's four point i‘u.nc't.icm1 was socn generalized to n par-
ticles by a number of a\.\'t,hoz‘s.3 By fectorization, this gave the com-
plete S-matrix. This S-matirx has linear Regge trajectories, Regge
asymptotic behavior, duality, factorization, and the statistical
model density of states. The particles have zero width, but it was
hoped that higher, .deer corrections would cure this problem. After
this an operaj,fjil' 'f‘omalism was developed(' in which factorization is
apparent, md ghosts were proved to decouple.5 Next it was realized
that *he whole formalism is equivalent to the quantum mechanies of
massless relativistic strings.5’6 Interactions are introduced as the
splitting and Joining of strings and the emplitude cen be determined
totally by the topology of the string dlegram? In partiéular, the
amplitude equals the functional average of exp (i x Action) for all
x“( 6,1} satisfying the boundary conditions of the siring disgram.
Higher order corrections can then naturally be obtained from string
dlagrams with loops. The planar loop gives the resonances widths, as
had been hoped, but the nonplanar loop generates the Pomeran trajec-

tory, which has twice the Intercept and half the slope of the ordin-

8
ary Regge trajectories. Before going on to a discussion of



renormalization, we mention the two major defects of the model that
we have so far been sweeping under the rug. First, the theory is
only consistent in an unphysical number of dimensions, 26 for the
original model, 10 for another {Neven-Schwarz' nodel9 with a spinning
string. Secondly, the intercepts are too high, 1 for the ordinary
Regge trajectories, 2 for the Pomeron trajectory.

In duel models, infrared divergences appear due to the preserce
of zero mass particles. For the number of dirnsions less than 25,
Neven and Scherklo proved that the infinities of the planar loop
can be absorbed into a renorralization of the coupling constant. The
case of dimensions 25 cr 26 is treated in the following paper, where
it is shown that the infinities lead to a renormslization not only
of the coupling constant, but also of the slope of the Regge trajec~

tories.
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It has been prmwsly Ihown that for the number of dimensions d « 25, the one-loop planar string disgram it

simply & multipli renor of the Born lerm. It is lhmvn here thay l'or d - 25
or 26 the extra divergent term gives, in addition 1o » further iplicative renormali .
of the stope of the Regge trajectories.

1. INTRODUCTION

The N-poiat Veneziano amplitude is a tree-
diagram approximation to the strong-interaction
‘scattering amplitude. Thus, one is led to examine
loop diagrams in the hope of obtaining a more
realistic amplitude. As in quantum electrody-
namics, these diagrams are found to be divergent.
A renormalization procedure must then be found
in which atf infinities are absorbed into a redef-
inition of the physical parameters of the theory.
‘This was done for the one-loop planar diagram for
d<25 by Neveu and Scherk,! and the result was
found to be a simple multiplicative renormaliza-
tion of the Boru term. In this paper we do this
for the one-loop planar diagram in the critical
number of dimensions. We show that the diver-
gent part of the amplitude can at the one-loop

level be written as
88(m, s;,)
tl(Bll‘m' Sy)+ey "_(B'm_u_) =C Bylm+cy, 8,)

where ¢,, ¢, are constants, s,, are the planar
subenergies, m is the siope of the Regge tra-~
jectorisa, and B, is the Veneziano amplitude.
Thus, at this level, multiplicative and slope re-
normalizatiors are all that are needed to render
the integral finite.

Il. METHOD

In the interacting-string picture, the single-
loop planar amplitude for N scalars is given by
the following expression, after a Jacobi trans-
formation has been made on the usuval variables
of integration®;

[fa[" v, [Hao f g qriipung T enol-p,c 0N 0,

where

(1)

expl - 9, £, Mp,,p,) = {-'—‘lmz(% . 11(1 - gine = 0) (1 - ging - S)(1 - q"r']} e

and where f{Ing) is a function of Ing (no powers),
¢,-=0, and the factor g~“**1¥42 ghould read in-
stead @~ for the special case d=26. The Inte-~
gral diverges near ¢=0; that is, the region where
* the loop shrinks to a point. We note for later
use that this point (the loop at ¢=0) is located
_at fw in the ¢ plane. To examine the integral
. in the g =0 region, we expand the expression in
" large square brackets in x power series in &
+ and find that for d4<25, only the constant term
leads to a divergent integral. This term was
shown by Neveu and Scherk! to be simply a multi-
plicative renormalization of the Veneziano am-
plitude. For d 225, the linear tarm in ¢* in the
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power-series expansion also leads to a divergent
integral. It is this integral that we examine here.
We change to the more convenient variables of
integration «, <tani@,. In the limit ¢=0, these

u variables are related to the string-diagram
variables p by the usual tree-diagram transfor-
mation

o= ):ﬂ' In{u - u,), )

with the cut now at w =¢. We then obtain as the

coefficient of the infinite ¢ integration .

1614 Reproduced with permission
from Physical Review D,
Brookhaven Hational Laboratory
Upton, New York 11973




mz(; X p._[ da,f du, f"’ Qg S wr

where the range of integration is restricted only
by sy BO<uU, . <o o< <02y, (Which I8 just a
convenient notation for O<uy_ <+ <, <= and
~®o<y, <<y, <0 for some 7).

Even after factoring out the infinite g integral,
we find that the remaining integra! (3) diverges.
This remaining divergence cannot siill be due
to the loop shrinking to a point since the integral
(3) diverges only for particular configurations of
the u’s. In fact, the remaining divergence is due
to configurations of the one-~loop diagram that
correspond to external-line self-energy inser-
tions. Suppose we factor out the self-energy part
in one of these configurations. Then we ave left
with a tree-level diagram with exactly the same
incoming states and momenta, or eise the con-
tribution is not divergent. Thus, we expec! our
divergences to be simply an infinite constant
multiple of By.

In order to evaluate the contribution of (3) to
the amplitude, we must first choose some cutoff
procedure rendering the integral finite. To this
end, we temporarily suspend momentum conser-
vation by introdi g a new i
& (see Fig. 1}. We tentatively choose it to enter
the string diagram at the position of the loop
{remember that we have taken the limit ¢=0 which
corresponds to the loop shrinking to a point), but
we shall see that we will have to modify this

um

GT

o "x -z
m);“zp. p,_[ n‘u._[ du,"'_[ duy.,

0 ) K-z Uy c
+Zzp..k£ du, [ dug*- I diy., - (u? -01)(“: +1) ,

where we have defined &, =0 to change the d=2
product to a covariant d product, u, 2 is the
point to which the loop has been mapped, and we
have neglected terms in &* since they are second
order in a small quantity. The fact that (2 +1)"
=(+1)" appearing in the second term in un-
defined is a point we shall deal with later. We
can write the last factor of the first term in (4)
as

SLOPE RENORMALIZATION OF THE ONE-LOOP PLANAR...
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+l)(u, +1} & (3)

—

slightly. We expect this procedure to eliminate
our infinfties, since now all self-energy inser-
tions have incoming and outgoing momenta which
differ by &. In the limit k=0, we should then re-
cover a constant multiple of B, as the divergent
part. Thus, instead of the normal energy-mo-
mentum conservation equation, we have

ﬁ P +k=0,
[}

where & is the new momentum introduced.
This new momentum introduces an extra term

;ﬁ K X'0,) .

to the exponential of the functional integral for
the S matrix. This leads to the extra term in (1)

el 3 hat Mo, 0+ 485,100 31 ]

‘The second term, which in infinite, is similar
to an infinite term obtained in the conventional
path-integral interacting-string formalism.? As
in the latter case, it can be absorbed into the
volume element since it has no dependence on
the integration variables. The first term in the
exponent changes {3) to the expression

=

-y 2] PR
(g =) 7> H[—=——=—"‘ '.1‘1) ] ,

( =u,) ',H[(u"-:l

15L<ISK

uy ~w )

4)

)
- zp, kln( "u_rl) )
+O(#), )

This expansion is valid in the range of integration
since the ,'s are real and u,=¢, 80 that the argu-
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are the same. Thus, Bince we will see that the
first term in the series behaves as k™! as k=0

H (this behavior is expected of an external-line self-
— -— energy insertion), we can neglect the terms of
3 H order & and higher in (5). Thus, we have left
- the first two terms in the expansfon (5) in addi-
2 N-1 tion to the second term in (4). We refer to these
— throughout the rest of this paper as terms 1, 1I,
' N angd III. We point out that although term 1 has
exactly the same form as the original divergent
fr . expression (3), it is now well behaved due to
. the .ew energy-momentum consevvation equation.
FJ)G. 1. N-point function with pew momentum A enter-
ing. M. EVALUATION OF THE N-POINT FUNCTION
ment of the logarithm never blows up. Alsc since Consider term I for the N-point function for
the logarithm is always well behaved the con- a particular choice of a, b# N and u,<0 (just as
vergence properties of all the terms in the series an ilustration). Then we have

25,5, [: du, [ du, ['vdu, _[:‘du,-" ,[:Mdu.-; _[::ldum"'

x I .-'d"r-x L * iy 1‘:.‘ duy_; H("l'";) i’ (" :‘l—j(—::)::l—)

=
=2p," p.f g +1I (a.‘u 1’1)(1 -a,F rda,f day-+-

- -1 oy - - ay
< {*aa,., | da..‘---j; “day, {* doyee [Ty, [T -
N ay, >

(6a)
=ap,e ,,( [ Iy - L.-n, ‘[:x_l)da,-(llﬁ%‘;)(l

[rda,f day-+- _ --II dag, " I dd"t-xf day,, " _[" day.,
xg(a.-u,)*t":]. )

In (6a), we have made the substitution @, =x,/u,. In (6b), we have done the 4, integration and broken up
the @, integral as shown. If all the €, were zero, then the quantily in the square brackets would be
{1/a,(1 +a,)) By, where By is the N-point Veneziano (Koba-Nielsen) formula. In the limit ¢, -0, the sec-
one and fifth @, integrals are still finite. Thus, we are permitted to take the limit before doing the a,
fntegration, and these two «, integrals contribute just a constant multiple of B,. Notice that this result
is independent of the value of 7>0, and we can choose it to be as small as we like, In particular, we can
let 70, as long as this limit is taken gffer the €,~D, and we choose to do so for convenience.

Now let us examine the first a, integration. Since the range o ue @, integration is infinitesimal, the
only possible contribution to this term can arise when the integrand blows up for €, =0. This occurs only
when all but one of the «'s are equal. A detailed calculation for several N confirms this, but we know
this must be the case in general since this region corresponds to the configuration where the loop is in
one of the strings and far from the interaction region. Since we already have a, =u,/u,=0, the only pos~
sibility for the w’s in which all but one are equai is &, 0, i#4. Thus, we can restrict the other a's to
be less than some number {, where we can clearly choose 1<<{<1, In fact, after a little thought, it i3
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clear that, in addition to the above inequality, we can take £ as small as we like, by simultaneously making

n smaller if necessary. Doing this, we obtain

e hy _["da, J:da, I:‘uu,-- . f"

L] B,
weon [ [0 [
- %

/o

d
= h | =

a) e

x

Yaay

n=te 0 1 1 - -
LAY S r an [ dree drey dr..,"-f dn-lf doy [ dree
=€ dia Ty P Vo2 1 TosL

In (72) we have excluded those factors with i or
j equal to g since a,=1 and all other a,;=0. Equa-
tion (7b) is obtained by the substitution B, = & /a,
and (7c) by ¥, =B8,"!, and where we have used the
altered energy-momentum condition extensively.
Eqguation (7d) follows only if the extra pieces
added (by changing the limits of integration) con~
tribute nothing to the integral. This will occur
only if 5,,<=~2, f=1,...,a—1and 5;,<~2,
J=a+l,.
It is qulle tempting to identify (7b) immediately
as a linear combination of derivatives of B, with
respect to p,* p;, [*#a,b,N. However, this is
quite misleading, since the p,- p, are not all in-
dependent due to the N relations

If we were to use these relations to eliminate N
of the j, * b, then the products p,*p,, I*a,b,N
would appear elsewhere, and our simple argu-
ment would break down,

In order to see that (7d} does involve the derjva-

(8)

H(n_mm..‘,, H(71 _7‘).,[(7.. =% N% =%y

Yooz = Yeuy

dB}. - fh-=

SN

-1 shere sa!‘(Pn‘Puq“’"‘*’Pu)z-

dyx., II (71 "7|)'.‘ )
>3

* H (7’1'71)-. "

.y

’JII

~2 t ] Sy O ey
da,., f dag,,* f da,_, { dag, " _!‘ da,._,
o .Y

x H (@, =@}
]
td "

(7a)

Licy %) - 3 .
48, I dﬁu:"'_[ ' adﬁb-xl d8,.; ‘{ ’ ldﬁ,,: 2.

B
x [ apy., TL@G-802% ()
o 12}

[ L]

" -/t -/t -qlt 1 ! - -
—ohe J' dnf dy,-'-f d7,. f dr..."'f dr.-,f dr..,.[ 8Ygez"*"
- T .t L) Ypea (S Taez

H ymUererat e (Te)
1% ¥
tdve XN

drye
-3
(=¥~ 0er ), (1d)

O r
-.J

r

tive of By, it will be convenient to change to the
variables s,y defined above. These have the ad-
vantage that they are all independent (we count
S,,8.1® Son @5 one, etc.), unlike the p, - p, which
are resiricted by (8) We must however decide
where we will put & in the definition of the $,,.
That is, we could choose

Sup® (Pat Pacrt - +pyt kY
= (Ppoy+Paugt " +pea)y

or we could put the % in the last expression. We
note that using the wrong 5., in the divergent term
lezds to extra finite terms in the {inal result.
Since the divergent part of the term we are deal-
ing with here is proportional to (1/¢,)By, it arises
from the configuration where the loop is in string
a. Thus, the arguments of the B, should be the
kinematic variables with p, replaced by p,+%.

We therefore use the 5, defined 50 that the &
appears in that sum of momenta that contains p,.
Then it i5 not hard to show {working backwards)
that

(7 %) =% ))“u" ®

4 =Y (7,., ~%})
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.

If one of the ’s is infinile (here 3,), then this formula stil] holds and all factors with that y cancel, Also

we can write the aquare bracket in (8) as

Opey = %)0 — 207 O = 1) 0mes = %) '
[ Yaor = Yamy LL’]‘ 1«141.-0[(7- ')"l-x)(')':q ~n ] ’

(10)

where the above result depends crucially on the relations y,= 0, 7,21, 7.==. Then using {(9) and (10), {7d)

becomes

’A.A_'ﬂ(_':: Ed),.[:d'r‘“.'[.:d"..;',‘;‘d'r."""[;’dn" J:-d’i““'.[:ldr"'

x

% =M =%} (Y = % )Yy = %)%
H, ) = %)% "'715] |-I-!u[(7- =Y Xty —)’,j]

1 " g
“mopfi e T Ted] an

in the limit €, - 0. Terms proportion2l to Inn have been dropped, since it is known that they cancel with
terms in oth:er o, integrals (this is due to the fact that 7 is an arbitrary division point of an integral).
Notice that it is unimportant which s,,’s we use as the argument of the derivatives of By in the limit

€0,

By a similar argumeni, the third and fourth a, integrals each lead to an identical expreasion to {7d)
excepl that ¢, replaces ¢, in the coefficient, and analogous steps lead to an expression similar to (11), If
u, >0 we gel, in addition ta {11), one more term identical to (11). Although the calculation is siightly dif-

ferent. the result holds over if one of @ or & equals N,

must have §,,< ~

However, in order to obtain (7d) for all a, b, we
for all planar channels. This poses no problem as the s, are 21l independent. Later

the proof holds also in the physical region by analytic continuation.

Adding up all the contributions, we obtain for term 1

D Duensiise 3 non 8]

3
-unl«u-«
METEE LS

where « is a constant, n is the slope, and we have
used the relations

20,7 Pr® Sep = Se,pe1 = Sear1int Saos,pe1

(in which we must use the definitions s, -1,
S4u1,4%0). This is the desired result, and thus we
have 2 universal renormalization of the siope of
the Regge trajectories.

To compiete the proof, we must show that terms
1 and III do not affect our resuit. Term 1! is ac-
tually a sum of terms with the term I integrand and
the extra pieces

SR

= 2 Lu®+1 1"

Since the extra term is well behaved throvghout
the range of integration and is firs! order in ¢,
we neglect all bu? the divergent part of the inte.
gral, If r +a or b, then this always occurs for
u, =0, and we can write

~ -ZHrQ\ zkjﬂn(s“h Z Sim BB,(S j} 2"["3"(5'1)* BmBﬂ(Su)?

T

2 u T+ 1 2’

and the result is a multiple of the divergent part
for d<25, For r=a nr b, we write

st

Ln(”"n ‘l
e, +1

Then the u, integration is modified using

tan(1/u,) s-ﬁ) for a;,~0
f “ (—T*u. e

~ 2itan™—

2\2
) for g;j~=,

fi -0
f o 3(7 (z,a,-

¢

Adding all the terms up, we find that term Il is
proportijonal to
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e b

As we remarked earlier, term I7 contains the
explicit factor (i2+ 1) which must be removed.
This can be done by displacing the point of entry
of the new momentum k to a fixed point in the
string diagram infinitesimally close to the loop.
Since we are dealing with the case where the loop

has shrunk to 2 point, we can use the tree-dia-
—

1 l Nr%
)*‘(u,*i?)] Bv==g Bw

Z Pa P»r”’(——*—)z (,—21[(,(—-—1—- %(1-

—
gram transformation {2) lo find the displacement
of the point of entry of the loop in the u plane,
This gives

MEA‘"(Z:-M) ’

which changes term II to read

a -
——-’——) {1y ~u, )20,
Foted iGan

where we have left out the terms with ¢, in the exponent, since we already have a factor ¢,.

Unfortunately, this expression is still divergent, This divergence, already seen in the old renormaliza-
tion cajculation, occurs when the Joop approaches the boundary of the siring diagram, or in the region of
inlegration where all the #'s are equal, To remedy the situation we introduce another cutoff to £liminate
this region of integration, and later take the limit as the cutoff goes away. We do this in the following way.
Since the whole term has a coefficient linear in ¢, the only contributions will come from the region where

the integral diverges, i.e., the region where all but one (at least) of the u's, say u,, are equal to some

value #,. Then we have

1 1
- e,
21-:&, f~uy, fou, ; ‘a'(!-u, S -,

5o for the case where a¢.N and k¢ N or g, we can write term I in the above region as

ey ""-f ""-( iiu_)(::’:il)z f

M ¥, P
du, j: lztu,"' f ‘ ’du,.,j ‘du,,,"'
. s “u

o} A Ty a
* ;d"r‘_f .‘i“m"'l " duy., n {uy =u) 2%, (12)
o Leigar

where n<«<¢. The &, integral has been restricted
50 that [u,{>£. Since 21l the other u’s are near
zero (wu,), this has the effect of eliminating the
region where all the u’s are equal, The &, integral
is restricted by u,> n (this should read u, <n if
a<k) so that we exclude the region u,~u,. The
remaining u’s actually have been left unrestricted
since there will be no contribution anyway unless
they are all near zero, Finally, u, has been set
equal to u,, which i5 permissible since all u,,
ik are equal. It is clear then from (12) that our
result is just a constant multiple of B,. The terms
a=N and k=N or a, although somewhal different,
are similar and give the same result, Also we can
easily convince ourselves that changing «, by an
infinitesimal amount cannot change our result for
term 1 (since it is finite), Thus, we conclude that
both terms U and ITl simply add to the multiplica-
tive renormalization and do not affect the slope
renormalization.

We should point out that we have been using the

-

fact that the s, are all independent. If the num-
ber of particles is greater than 26, the number of
dimensions, then this is not strictly true. How-
ever, we note that throughout the derivation of the
interacting-string amplitude, no use was made of
the number of dimensions. Thus, we would have
writlien down exactly the same expression no
matter how many dimensions we were working in.
We, therefore, calcujate always in more dimen-
sions than the number of particles we are dealing
with, and are confident that the result will be valid
in fewer dimensions.

We have now shown that the single-loop ampli«
tude for N scalar particles is a slope renormaliza-
tion., By factorization, we trivially obtain the same
result for N excited particles.

Added note. Ina recent paper by Ademollo
ef al.,’ the same result has been arrived at, Un-
iike the above authors, the caleulation here is
done in the interacting-string picture, The author
feels the present work is both sherter and more
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straightforward, In addition, no explicit use of

the appearance of a xero-mass scular particle in

the Pomeron sector is made here.
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III. MONOPOLE PROPAGATOR IN A THEORY WITH CDN!"'IN'EMEM‘

A. Theory

Because Quarks have not been seen (or if they have they must
still be strongly bound ), physicists have been interested in field
theories with confined particles for some time., If particles
are permanently confined, then they cannot appesr as asymptotic states.
Therefore, no singularities at energies equal to their mass should
appear in the S-matrix. One manifestation of this should be in the
behavior of the propagator for the confined particles., All sin-
gularities at energies equal to their mass should van:lsh.n Thus,
for exmmple, the pole thet eppears in the propagstor Iin the lowest
order of perturbation theory must somehow be cancelled by higher order
corrections. Also because of the confinement, we would expect that
for large specelike separations, the propagator should fall off
very rapidly.

Here we shall exesmine the propagetor in a model theory with
confinement. We consider the theory with an electromagnetic field
Au interacting with a scaler Higgs particle ¢ and a spin-% monopole

¥. The Hemiltonian is

e o .
M= LE B4 |, - e, 012 41317+ 2 2J0f 2 - wRigl?

s A4 s (AT - gB) ¢+ m) y (1)
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=

T B - -
fi =Vxl-v')(° vxB - A

%, 1 & '

, r g eo'(x Batx")
AO(X) = ‘,'d X m——
gilx ¥z ')

7(0(:) fd * 4nl% - i‘l

i - gjd3x' Bz - 1 Wx v ux')

B oo efa @ - 0" (xagets')

ey L1
alx) = gTET B+5+ % " TE<n-ox/°

Here we have followed the notation of Sclrxw.'u'xger.:"2 Au and Bu

are the vector potentials for the charge and mcnopole respectively.
Au(Bu) contains siringlike singularities, Dirac strings, attached to
each charge {monopole). We have chosen the monopoles to be fermions
because we have quarks in the back of our mind, dbut the resulis pre-
sented here should be independent of this cholce. Since the uz
term has the wrong sign for a mass term, the ¢ field will pick
up & vacuum expectation value. This leads to confinement of the

monopoles by the following argument. For finite energy, the

term [(au - ieAu)cp]z must vanish far from the monopole. Since
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¢ has acquired a vacuum expectation value, we must have

X
- ief ax,
6 ———3 ke xo M

where k 1z a constant and Xy is some arbitrary point. However,
in order for ¢ to be well-defined, we must demand that it de inde-
pendent of the path of integration. Thus the integral in the exponent,
teken around e closed path, must equal 2m/e. To be specific, let
us choose a singly charged monopole ai the origin with its Dirac
string elong the z-axis. Then for a path of integration at very
large z, ecircling the z-axis and very far from it, we lmow the
integral equals 2n/e. However, if we translate the coutour to
lerge negative z, the integral equals -27/e (for our two~-side3
string. In any cese, the answer is different). Thus there is no
way for ¢ to be well-defined and continuous in a finite-energy
single monopole solution. We conclude that for each monopole there
mst be an antimonopole at which the Dirac string ends. Thus
monopole-antimonopole pairs are confined.

We would like to shift the field ¢ by its vacuum expec~
tation value and then exaﬁine the higher order corrections to the
monopole propagator. However two technical problems stand in our
way. First of ell, we have the usual problem that arises in all
field theories with monopoles. Since the theory only makes sense
if eg = 2mn, e perturbation expansion in both e amd g at

best carries with it the optimistic hope that after swmation of
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the series with small e and g, a valid enalytic continuation can
be made to physical values.

However, because we initially expand in both small e and g,
to each order in perturbation theory, amplitudes depend on the direc-
tion of the Dirac string. We could hope to overcome this difficulty
by resumming the series such that, in each step, we 2dd an infinite
subset of Feynman diagrams (e. g., Bethe-Selpeter ladders) whose
sum is independent of the direction of the Dirac string. To our
knowledge, no one {including the present autior) has succeeded in
finding even a single subset of Feynman diagrams independent of the
Dirac string. Another possibility is to average over the direction
c® the striug (see, for example, Ra'bl13 ), but there is no reel
reason why this procedure should give correct answers.

The other technical problem is that after shifting the field
¢, we w’lqd up with a large number of vertices. We might hope that
we could generate the properties we expect of the monopole propagator
from & f'ew monopole vertices. However, we recall that the proof of
confinement depended on the form of the term |(ap - .’i.elt'.l )¢|2, as
well as on ¢ having a vacuum expectation value. This would seem
to indicate that most (if not all) of the charged particle vertices
need be included too.

Because of all the preceding reassons, the prospecis for making
progress with this theory are dim, Therefore, we replace the effect

of the electromagnetic and charged particle fields by an effective
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potential for the monopoles. We choose this potential to be linear
by analogy with the vortex sclutions of Nielsen and Olésenl"’ {Landau~
Ginzburg type). They exhibited cylind. cally symmetric vortex solu-
tions for the lagrangian of Eq. 1 but wlthout the monopcle terms.
Since the vortices are cylind -cally symmetrie, their energy is
proportional to their length. In the theory with monopoles, the
vortices will be finite, since they will end at the monopoles.
However, at least for large distances between the monopoles, the
energy should still be proportional to the length of the vortex.

Thus we choose an effective potentiml which is linesr.

Cur Lagrangian iz now
X« B - mtx) + 2 [ty PSR - FB s - )

where

3 = (xOux)
Note that this theory is nonlocal and thus nonrenormallzsble, However,
thie should not matter, sinee the confinement in our theory 1s a large
distance or infrared effect. Thus a simple cutoff in =il divergent
integrals should suffice for our purposes.

Ordinarily, we could look at the large ]X| behavior of the
propagator in any spacelike directleon. However, since we now have
a nonlocal interaction, we must confine ourselves to the t = O
direction. Thue in the conelderations that follow we shall examine

the propagator integrated over Py:
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We are now in a position to begin to calculate the monopole
propagator. However, it clearly is not feasible to add up all the
higher order diagrems. We must devise some approximation scheme.
One attractive choice is the set of ladder-like diagrams in Fig. la.
Throughout this paper we write the nonlocal four-point interaction
as two two-point Interactions connected by a dashed line. By
crossing symetry they can be rewritten as in Fig. 1b, even though
we are no longer in a physical region of the S-metrix., This is a
logical choice because we know that, at lesst in the nonrelativistic
csse, repeated exchange has been used to create bound states. Thus
we could reasonably hope that these ladder-like diagrams would be
sufficient to obtain confinement. We shall see later that, at least
in the fully relativistic case, this is not the cease, and other
diagrems need to be considered.

Before beginning the actual calculations, we first exhibit
in 8 concise way the epproximation we have made. We do this by
deriving differential equations for the Green's functions. This can
be done two ways. In the first method, first written 2own in s

15

peper by Mandelstam,”” we apply the operator (i3 - m) on

Gy = LOITH(xy ) By Wlx 0 ). oWz DOD
and use the equations of motion. In the other method, we use the

fact that the functional integral of a total functional derivative

equals zero, t> derive a differential eqguation that the generating
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functional 2(J) satisfies.16

0 =-[A9¢3% (1(5(¢)+36) =(%ﬂ EEILCINE
af vy

We next operate with <Eg->n to obtain the seme equations ms in the
first method.

The first two equations that we obtain in our present theory
are given diagrammatically in Fig, 2. Substituting Flg. 2b back
into a, we gat four different equatlons depending on how we match up
the particles (note that in Fig. 2b, we can also switch the in
particles with the out particles). These are given by Fig. 3. Note
that the second term in each of these four equations involves tad-
pole diagram corrections, which simply lead to a mass renormalization.
Thus we can safely ignore them. I we also ignore the last term in
Fig. 3s and d, we obtein the differential equution satisfied by the
sum of the ladder diagrams. This can be seen by repeatedly sub-
stituting in.the whole sum where it appears on the x:ight hend side.
Therefore, the last term in either Figure 3m or d (plus its iters-
tions into the third term), which differ only by the inclnsion of
certain tadpoles, represents all the terms omitted by taking the
ladder-1ike diagram approximation.

As an aside, neglectling the last term in Fig. 3b or ¢ gives
us another series of diagrams thet we can sum -- multiple iterations

of single loops. Using the result Al of Eq. 46 in the appendix,
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we have for the sum

2 1 - 1
p2 - m2 + 1e - Al p2 - mz - A1 + 1c
p2 - m2 + ie

This result, not surprisingly, still has singularities at

the mass m, and thus this subset of diagrams falls to exhibit

confinement.

B. Celculations
The Bethe-Salpeter equation satisfied by the sum of the

ladder diagrams V¥{p) 1s

4 _° 2
‘J’() - 1 . 1 idp(s.n?(}) P)
P Y mcic p-meie | () (5 - p>2+e)3

(2)

x YOW(P‘) Y 3‘:‘%;:‘;;‘ .

The quantity in the brackets in the above equaetion is the Fourier

transform of our potential X |x[8{t). Letting G(p) = (f -~ m + 1e)x
xY(p)P - m + i) , we get
-

W) - F-me _L(.mw;_r;___r( -3 )

(2n) (5 . <)

1 ' 1
x ¥ &p ) — Y .
°f -m+1e P -m+ie ©
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It is now clear that G(p) must be of the form G(p) = YPo * H(P)
where H(pP) now depends only on the 3-vector p. We then can do the

P, integral to obtain

o 2
Hp) = -Y'p-m--— 8“/\2@——1’—?—-—3-)
(21r) ((5-5)+€)

SR R

|2V B em), _HE) (3B HE N vy
(3% + ) (F°+m

(3)

We now write H{DP) in the form

HB) = 3y(B) + ¥ 0,(B) + ¥ = B 35(F) + vy + 5 3,(5). (2)

where the J 's are numbers, not metrices. We heve not included terms
with Y5 because they do not appear in lowest order and they are
not generated in higher orders., After substitution of Eq. 4 into
3, we can separately equate the coefflcients of the different y's.

This leads to

I(P) = -m+ -8mA =% )«
1 " "’LG)’ 2(((p-5)+e)3)

[ s, 5’2(31(5’)-m31(5'))] (58)
(p

x

5. 2P (52 + 22

(5v)

[
o

3,(3)
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3' - -2 2

= .1 d 2(P-p ) -3
D+ _LT ~8rA° 2E. x
2 j(m) ( (F-7)°+ EZ?)

1 (3 (p ) = m 355 ) 5! N
X[’p'z *mz)g"' (§[2+m2)3/2 ] D (5

<

P 3P

5;(5)=1{£L -anxzii_;}i,)z*T_lf_)x
4 2| @y (F -7 )2 +ep
3,(") o
4 3

x : (58)
(32 + i)

m
We can at this point set J4(1'.'>) = 0, s&ince 1t does not appear in
lowest order, and from Eq. 5d each succeeding term is zero. Equation
5a and ¢ remain. We do not know how to solve them, but in the
Appendix we place an upper limit on the large r behavior of the
solution. However, we can show that no solution exists such that
the singularity of the propasgator at the maes of the monopale has
disappeared. Since we are interested in large space like separations

at t = 0, we examine

[dpou(p) - fdp°15-::+1e \’1r°p°+ﬂ(f>))I}_;+ie =

dp, oy = =g
=[———-—;—2—Ti—s-)-2- (F+m) (Y0, + 3(P) + ¥ * P I(BN) (B +m) =

(°

el - - m =2 2
- . -m I (p)+ = (P + )|+
e (| 3(B) - m 2
T IITCA Y b 3 72
(Equetion 6 continued on next page)
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In doing the p° iniegral, we have ignored a term, formelly infinite,
but odd in Pyr In order for the result in Eq. 6 to be regular at

52 = -m2, we must have both

1 - = m ,=2 2
— 3.(P) - m I (p) + == (P +m)]
G2+ a2p? (1 3 5
and

1 = = 1,=2 2
e [Jl(p) cn o) -2 e w )]

regular. However, this is impossible because their difference is
singular. Therefore, if a solution exists &t all, it contains a sin-
gulerity at the mass of the monopole. Thus we have failed to exhibit
confinement. We believe this is due to our Inclusion of ladder dia-
grams with pair production (Fig. 4b), but not the corresponding crossed
disgram (Fig. 4c). These diagrams also contribute to the binding
"forces" on the monopoles and should be important. Unfortunately, we
know of no way to correctly take them Into account. However, in the
nonrelativistic approximation, there is no pair creation, and the

types of diagrams represented by both Figa. 4b and c are absent (re-
member we have an instanténeous interaction) and only those of Fig. 4a
remain. Thus we might hope to obtain confiement in this approximation,

and we examine this possibility next.
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Non-relativistic approximation

1
Starting with our Bethe-Salpeter Eq. 2, we can do the p°

integration on the right hand side. Defining
(.-}
- o,
¢(p) =f dp ¥(p)
-0
Ho = Y(Y*DP+*m)
B = Y(-¥*5+mn)

we have

(0% - 2, (BINPNR° - HB(F)) = YP°+ Y+ 5 +

j'idp Bnkz(P'P) ¢(p)

(2m) p-5 )2”:2)3
(7)
We can now treat the 4 x 4 matrix y(p) as a wave function in the
product space of two spinor particles. We proceed accoz:ding to the

17 for treating instantaneous interactions and make

gethod of Salpeter
the following definitlons
N E(P) + K (P)

4

t 2 (F)

where Ea(ﬁ) = (52 + mZ)Q
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end simi’arly for particle b. In addition, we define

22 (5)u(p) A2 ()

L]

v, (p)

v, (0) = R (BW) A (), ete.

Then we arrive at

#

F, (P, ,(p) = AXE)N(R) AD (F)

[

F, (oW, (p) = 2% (B)N(D) A% (F), ete.

where F, (p) = (p° - E(B) + 1e) (p° - E(F) + 1e)

F,(p) = (7 - EJ(B) + 1e) (0% + B (P) - 1e), ete.

and T(p) is the right hemd side of Eq. 7. We now divide each

of Eq. 8 by the appropriate F(p) and integrate over p° using

f ap® (p° + a 7 ie)” (p':’*bi'is:)':L =4 2m (b-a)t
f ap°® (p° vatig) (P +v e 1)T = 0
-0
-]
P (°-a i)t (PP b+ te)t = m

=00
®

a® PO (p° +a - 1) (P b+ 1) = ﬁ: %

R__‘
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In the last two equations, we have thrown away & term, formally in-

finite, but odd in p°. This leads to

-(Ea(p)F E(B)R_(P) = A‘_‘(ﬁ)[nﬁ(zb(ﬁ) - E(P)y,* 2m(Y * B - m) -

3'
Jfidds (g2 (B3 - %2 (5')J,
f(2")4 ( (5 - F )%+ 9

* A2(5) ,

~(E,() + E(B)W, (B) = Af(f’){ni(Eﬂ(ﬁ) - BBl * 20i(¥ 5 - m)-
1% (g2 ‘-L—Lj’ F e >¢(p>]A (5
J 21y < (F-5 )2
-0,(8) = AXBN AP ,
“_(F) =mAGBNAD) .
Since in our case, Ea - 1-2tJ = 0, we have

(B,(F) - BUBINE) = (ASEMEE) - A%5) AB(E) [zu(v B-a)-

3 -am? { -’ )@(p )]
(2rr) (p P ) + %)
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vhere for convenience we have written the b operators on the left,
even though they really should appear on the right. Eq. 9 looks dif-

17 article. This

ferent than the corresponding equation in Salpeter's
is due to the fact that cur ¢(P) is a wave function for a particle
and antiparticle, whereas his is for two particles. To remedy this
we multiply by the charge conjugation operator € on the right to

obtain

- (B3 BTENE) = (AAHM (B - 22D T(E)) =

e

(2n)

x

x[znx(—? «p-ml -

(p-7)

= =t2 .2 \
x (.anx?gp—‘f—?—z:-le—z—)-; %5 )} (10)
+E

where ¢°(P) = ¢(P)C. In the nonrelstivistic 1imlt the factor
involving the A's equals one, and all the homogeneous terms in
¢ reduce to the Schroedinger Hamiltonimn operator acting on the
"large" pert of the wave function 4, (P). In coordinate space

we then have
B(Z)%(T) = 2ni(-17 - ¥ - m}6>(T)c (1)
where H(E) = - ¥+ 3] .

For X # 0, the right hand side in Eq. 11 equals zero. The problem
becomes simply that of finding the large X behavior of the
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Schrddinger wave function with energy E = 0. (Boundary conditions
at the drigin, which quantize the allowed energies, do not apply
here), The angular part of the equation can be separated out in the
standard way for a central potential. We are then left with the

radial equation

2
(—d-i - om?r - &—;-—:ll) '(rRl(r)) = Q.
ar

T
For large 7T, we can ignore the angular momentum term compared to
the potential. Rescaling r, we arrive at the Airy differential
equation. The solution has the asymptotic form

exp(- /A" +7/2)
1, 2y1/3y Tr=, /7
Ry(r) = =Zai((20X)”°p) T Xz 32

where, as usual, we have discarded the exponentially increasing
solution, This shows that our wave function, and consequently the
propagator, falls off much faster than the free propagator. In
fact, since 1t falls off faster than ™ for axy m, allsingu-
lerities In momentum space must be absent19 and we have finally

exhibited confinement.
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APPENDIX

As we mentioned earlier, we have not been able to find the
large x behavior of the solution to the Bethe-Salpeter equation
for the propagator. However, at least in the case of bosonic monopoles,
and in the context of the approximation scheme below, we can show
that any solution must fall off faster than the free propagator.

The idea is to directly calculate the ladder diagrams by
iteration in the leading term approximation. Gliven the amplitude
for the n rung disgram, it is easy to wrlte down a single integral
expression for the n + 1 rung diagram, using the fact that it has
an n rung subdiagram, Westart st the single loop level and at
each level keep only the most singular term at 52 = -mz. We can
hope to derive a simple expression for the amplitude as a function
of n. The problem with this procedure is that more often than not,
the integrals simp., become more and more compllcated at higher
orders and no pattern emerges. We shell see that for bosonic mono-
poles we are lucky and the procedure works.

The single loop diagram for a bosonic monopole is given by

1 [i atp' [-ze, + P;)Z] .

AT Gz—- w’ + 1e)® [ (20)* (p+ p ) -nf e

='2 2
(= B3y w

(
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The quadratic term in P, i1s due to the derivative coupling. In-
troducing Feynman parameters, we have

2.
3ix 1 ' 2 2 4
- S sy |9P,(P, * B, ) [dxy ... dx,8(1-1 x)x
E v (p° - o + 1e ) Fo'Po * Po 1 4T pe o

ot
. d3p ‘ 92-352
I§2+2x1"1'> - x,(p - m -3+ e +€2)"52J4
, (42)
" 1 2,12y 2 3
3 [alaten 8 2)
167 (p2- m2 + dc') [ o ‘Yo %o ( 3
) (A3)
1 (1-x)
x dxl >3 T3 21_2 ¥ 7l p) ¥%
o [xlp+m(po -m -p +ie *E)*E(ZG'B)]i
1
2 2 3
¥ 1 p, (32 p'z)(p° i
Y I R Te_ s
T (p°-n"+1e))_ °° ° ' (p %- 5" -n° +1e)?
A (a2)
22 1 afﬁ:. (Pf-l+ie)é
=&AL - P
T (p2-m2+ie)2 KLY IS °apgz+(u-'1)(%->2-(%)z~l+ie N
n:

(45)
t
To obtain Eq. A2, we also shifted the P, integral. In erriving

at Eq. (A3), we did the 13' integral using

dax(iz +a) e | a+e

[§2+25-§+c—1e]4 8 (bé-c+1c)a;2

in eddition’'to the X02qX, integrals., To get Eq. (A4), we used
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g _ 22ex +b)
/3 a/R

xdx _ _ 22 +bx)
a3 o

x| (8- %) - 28
Va3 c &R
where R =1a + bx + 012 and V = lac - b2, set @ =1, and then

took the limit € = 0. Surprisingly, all divergent terms cancel.
In Eq. A5, we have introduced a cutoff in the divergent p; integral.
The integral appearing in Eq. A5 1s a mess to do. We musi integrate
separately the regions above and below one. Each of these can be
done by a messy substitution (p; = i——i—i—;) and & lot of algebra.

We thus arrive at the result

2, 2,:2, 2
\ - 22 1 [,m TN A T I S
iz ywa il i = =
i) D R e a5 ST AL I
(B2 -5l P2 +5Pend
x £n - ——— . (46)
o . AP+ ")

Since we are interested only in the large I behavior, we need only
keep the most singular term at the closest singulerity to the

real axls, which turns out to be at |P| = #im. This leads to
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_}_2 1 mp
h T (pemBeic) (ﬁinﬁ)372 15l

The eingularity at [P] = * im inside the logarithm is quite wesk
campared to that of the (52 + m2)-3/2 factor, and ignoring it should
not affect the answer much. We do this for simplicity. Thus we
evaluate the term in the square brackets at [p| = im. 1In either
case we get - ';E . Our result is now

x? 2

o P, 1 (47)
25w Y2 (F - u® e 1y

-

Once we have An, we get An+1 as follows:

AL = ='2 2
A = - .:_',_d_.E.. { + ’)2 (—8l2 (P'P‘)‘3€ A (48)
= [(2")" Fo " Fo " (G- P

Now suppose An is of the form

2
A = -2kp°2\r 3 > 3 (29)
n (p°+n°Y  (p°-m"+de)

where k is a constant.

1
Then we can do the po integral

2
(5 P

A 12 12
dpc"(po+p°) P = 2 i 3 +m2)+p2 — T

e = a -G 2hEake 5 T2
(p,2-5° -if +1¢) 2 (7 ) 2 (F2n)

where in the last stiep we have kept only the most singular term
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at lf:' = +im. Therefore
4. = 2xpd 1 ,63})' (B-p Y- 3
e N S R S A RS I

A2(r + Pzl )
A% 2)TI? (Fnh 1oy

{(a10)

vhere we again have kept only the most singular term, this time by
Fourier transforming to position space, taking:.the limit [X| + =,

and then Fourier transforming back. We have been fortunate. The

result -of Eq. (A10) is egain of the form of (49). Since (A1) is
also of this form (Eg. A7), mll An are of this form. In fact it
is not hard to see that

3

r=-é-n

. _3A2(n-§)m .
n 4(52* mﬁ )372 n-1

= (_ BXZm >n-l T(n+ %-) A
455 u2P72 ng o
2 1
-2 P [ p% \* Mary)
P Patae? \ w0

If we try to sum up the An we have obtained, the series diverges.
Instead we Fourier transform to position space, keeping only the
leading term for large distance (amd time t = 0, for simplicity).
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This leads to

l\/] 8
>
H
+
8
[\/]a
fro
/|\
E

n 2ni
)(_ 3)\2m el (_r:':‘e K
4 Lnrl‘(%-n +%—) 2%y

n=1 n=1
1
N I‘(n; 'j')
T(g)
3/ = 4 3
_iame™ (3% [ =z O Moy _3A2m,L>3/22n
12r3;2l"(é—) 4 \om L 1(3n42) o\
. n=0
Tee, AafmTe (a11)
7 8w T r3 2

where, in the last steps, we have used a theorer of Wright.lg To the

result of Eq. (A11) we must add the Fourier transform of the free

propagator (at t = 0)
dip o1ipex T i /m s
(oY 2P e 1v an V 7}

As we can see, the sum equels zero, and the leading terms cancel.

This would suggest that we should look at nonleading terms. This
camnot be done in the context of this calculation without the
algebre becoming unmanageable. Therefore all we can say is that our

propagator should fall off faster than the free propagator,
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FIGURE CAPTIONS

Fig. 1: Ladder diagrams.
Fig. 2: Differential equations satisfied by the Green's functions.
Fig. 3: Substitutions of Figure 2b into 2s

Fig. 4: Diagrams neglected in various aprroximations.
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Fig. 4
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