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Abstract 

Identifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a 

challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins 

in amounts that support drug discovery programs. We have developed a general strategy to 

address this challenge by combining high-level expression of recombinant VGICs in 

Tetrahymena thermophila with immunization of phylogenetically diverse species and unique 

screening tools that allow deep-mining for antibodies that could potentially bind functionally 

important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-

gated potassium channel widely recognized as a therapeutic target for the treatment of a variety 

of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and 

recover 70 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were 

able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10nM) and 

specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5. 
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Significance Statement  

Despite intense interest from the pharmaceutical industry, progress towards discovery and 

development of functionally blocking antibodies against human voltage-dependent ion channels 

has been limited. Using a general strategy that incorporates production of large amounts of 

correctly folded recombinant protein in the ciliated protozoan, Tetrahymena, with immunization 

of phylogenetically diverse hosts species and deep screening of the immunoglobulin repertoire 

using novel tools, we have solved this problem for Kv1.3, a potassium efflux channel that plays 

an important role in activation of effector memory T-cells involved in type 1 diabetes and other 

autoimmune disorders. With a hit rate of ~14% for functionally blocking antibodies to total 

antibody binders, this approach may be broadly applicable to the discovery of biologics targeting 

voltage-dependent channels involved in human disease. 	
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Introduction  

Despite the importance of voltage-gated ion channels (VGICs) in human health and 

disease, the development of therapeutic compounds that can modulate channel activity has 

proven difficult and been largely restricted to small molecule drugs or peptide toxins that often 

lack selectivity, have limited bioavailability and/or poor pharmacokinetics.  Although monoclonal 

antibodies (mAbs) with their superior therapeutic profiles could potentially address these issues, 

discovery programs focused on identifying such antibodies present challenges of their own.  

First and foremost, robust platforms for the production of recombinant ion channel 

proteins have been lacking. This has limited the amount of material available for animal 

immunizations, as well as the development of antibody screening tools, particularly those that 

allow deep mining of the immunoglobulin repertoire to identify rare mAbs.  Secondly, the high 

degree of sequence conservation amongst ion channel orthologs, together with the 

comparatively small extracellular loops on many of these proteins, make ion channels 

particularly difficult targets for therapeutic antibody development. 

To address the first challenge, we have employed the free-living ciliate, Tetrahymena 

thermophila, to overexpress recombinant human VGICs. Genomics studies in Tetrahymena 

have revealed expanded gene families for each of the principal classes of membrane 

transporters including P-type ATPases, major facilitator superfamily members, ABC 

transporters, and VGICs (1). Indeed, the T. thermophila macronuclear genome sequence 

predicts more than three times the number of genes for VGICs relative to humans (1). 

Presumably, these expanded gene families promote Tetrahymena’s survival in a continually 

changing aquatic environment, and are key to physiological responses associated with mating, 

prey-predator interaction, and food-finding, many of which rely on membrane hyperpolarization 

and depolarization events that alter cell motility through their effects on ciliary beat (2,3). This 

core technology platform has allowed us to express mammalian VGICs at levels considerably 

higher than previously possible in standard mammalian expression systems. This has enabled a 
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general strategy for the production of antibodies against human ion channels involving 1) 

antigen formulations incorporating concentrated and highly purified channel proteins; 2) 

immunization of multiple antibody host species that are phylogenetically diverse; and 3) direct 

screening of B cells and/or large recombinant antibody libraries with proteins oriented on 

particle-based solid supports.  

As demonstrated here, we have successfully applied this strategy towards the discovery 

of modulating antibodies against the human voltage-gated K+ channel, Kv1.3 (hKv1.3), which 

regulates the membrane potential of both excitable and non-excitable cell types and plays a 

well-characterized role in regulating Ca2+ signaling in activated effector-memory T (TEM) cells 

(4,5). Up-regulation of Kv1.3 in auto-reactive TEM cells is associated with sites of inflammation in 

autoimmune disease (5,6), and numerous studies have shown that specific Kv1.3 blockers are 

effective in a number of animal models of inflammation (5,7-13). Therefore, Kv1.3 is regarded 

as an attractive target for therapeutic intervention, particularly for type 1 diabetes, multiple 

sclerosis, psoriasis, and other autoimmune disorders (4,5). 

Here we show that recombinant Kv1.3 expressed in Tetrahymena traffics to the cell 

surface, is correctly folded, adopts a native tetrameric conformation and is readily purified from 

membranes enabling the development of potent immunogens and screening tools. For these 

initial studies, chickens and llamas were chosen as phylogenetically diverse immune hosts 

since both have demonstrated success in producing antibodies against highly conserved 

mammalian proteins (14,15). Using this approach, we identified 70 anti-Kv1.3 mAbs, 10 of 

which block Kv1.3 currents - an approximate 14% hit rate. Select antibodies demonstrate 

considerable potency (<10nM) and selectivity (>166 fold) over related channel family members. 
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RESULTS 

Kv1.3 Tetrahymena expression construct design. To maximize expression of human 

Kv1.3 in Tetrahymena, we introduced a codon-optimized version of the KCNA3 gene driven by 

a T. thermophila cadmium-inducible promoter and linked to a neo2 drug resistance cassette 

(16) into a high-copy ribosomal DNA vector designated pTRAS1 (Figure 1a). Like its parent 

plasmid, pD5H8 (17), pTRAS1 retains the ability to form highly amplified, 21 Kb palindromic 

chromosomes during macronuclear development but contains a wild type rather than 

paromomycin-resistant version of the 21S ribosomal RNA gene thus favoring retention of the 

transgene and its linked drug resistance marker that are typically lost through recombination.  

Expression and membrane localization of Kv1.3 in T. thermophila. Kv1.3 exists as 

homotetramer in human T-cells that can be modified by phosphorylation (18). Consistent with 

this, Western analysis shows that Tetrahymena expressed Kv1.3 resolves as two bands, a 

smaller, 65 kDa band, which is in general agreement with the predicted mass of the Kv1.3 

monomer (66 kDa), and a larger 85 kDa band that disappears following treatment with alkaline 

phosphatase (Figures 1b & c).  

  Evidence that the recombinant channel assembles into a tetramer was based on 

staining of fixed cells with K+ channel peptide toxins. Agitoxin-2 (AgTX-2), Margatoxin (MgTX), 

and Stichodactyla toxin (ShK) are potent Shaker potassium channel blockers derived from the 

venom of scorpions (AgTX-2; MgTX), and the sea anemone, Stichodactyla helianthus, 

respectively (19-21).  These peptide inhibitors bind with high-affinity to the outer vestibule of the 

tetrameric channel, occlude ion conductance through the pore, and have been used extensively 

for probing K+ channel structure (22-27). Fluorescence microscopy showed that both AgTX-2- 

and ShK-TAMRA bind Tetrahymena cells expressing Kv1.3, but not wild-type negative control 

cells (Figure 1d). At higher magnification, toxins were found to localize at the cell periphery or 

perinuclear areas enriched in endoplasmic reticulum (ER), suggesting that Kv1.3 assembles 

into tetramers in the ER before being transported to the cell surface (Figure1d; top right panel). 
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To ensure binding of the labeled toxins was specific for Kv1.3, cells were co-incubated with 10-

fold saturating amounts of competing non-labeled MgTX or Iberiotoxin (IbTX). Iberiotoxin is a 

potent blocker of large conductance Ca2+-activated K+ channels derived from Burthus tamulus 

scorpion venom that does not affect voltage-gated potassium channels such as Kv1.3 (28). 

Figure 1e shows that MgTX but not IbTX competes with both AgTX-2- and ShK-TAMRA binding 

in Kv1.3 expressing cells. These results confirm that Kv1.3 traffics to the Tetrahymena cell 

surface as a correctly assembled tetramer.   

Kv1.3 purification, reconstitution, and characterization. Kv1.3 containing a C-

terminal His tag was extracted from Tetrahymena membranes with the detergent FC12 after 

pre-treatment with digitonin and purified by nickel affinity chromatography. Psora-4, a specific 

small molecule Kv1.3 inhibitor was maintained in extraction and purification buffers to stabilize 

the channel and generally resulted in increased yields. The majority of the purified protein 

resolved as a doublet of ~65 kDa and ~85 kDa on SDS-PAGE, with additional Coomassie 

stainable material being present at higher (>250 kDa) molecular mass (Figure 2a). Both the 

doublet and higher mass species were confirmed to consist of Kv1.3 by anti-Kv1.3 Western 

analysis and mass spectroscopy analysis. Multiple purifications (n=7) resulted in a range of 

recovery of purified protein between 0.5-3 mg/L and an average recovery of 1.3 mg Kv1.3 per 

liter of culture.  Purified Kv1.3 was either reconstituted into phosphatidylcholine-based 

proteoliposomes for long-term storage (Figure 2a) or adhered to magnetic beads via the C-

terminal His tag as described in methods (Figure 2c,d & e).   

Three separate batches of Kv1.3 proteoliposomes were analyzed in independent 

experiments to estimate binding affinity constants using fluorescence polarization (29-31). 

Fluorescein 6-carbonyl (FAM)-labeled ShK (FAM-ShK, 3 nM) was added to increasing amounts 

of Kv1.3-containing proteoliposomes in the absence or presence of a 50-100-fold excess of 

competing MgTx or IbTx. Figure 2b is a representative experiment showing that total FAM-ShK 

binding increased with increasing amounts of protein and that MgTx, but not IbTx, competed 
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with ShK binding (top panel). Specific binding curves (Figure 2b, bottom panel) were used to 

determine an average binding affinity (Kd) of 11.5 nM +/- 3.4 nM (n=3), approximately 200-fold 

lower than the IC50 (52 pM) reported for FAM-ShK using patch clamp electrophysiology (27).  

 Generation of anti-Kv1.3 antibodies. Two chickens were immunized with Kv1.3 

proteoliposomes (with DNA/LPS adjuvant) as described in Methods. One chicken (19724) 

demonstrated a specific titer at week 6 and was chosen for further study. Anti-Kv1.3 antibodies 

were identified in Gel Encapsulated Microenvironment (GEM) assays using splenocytes 

recovered from chicken 19724 and antigen reporters (that is, screening tools) comprised of 

either polystyrene beads coated with Kv1.3 proteoliposomes; Kv1.3 magnetic beads containing 

right side out, oriented Kv1.3 protein (Figure 2c, d & e); or, Kv1.3-expressing Tetrahymena cells. 

Antibodies were recovered from each screen generating 51 sequence unique scFv-Fc clones in 

total (summarized in Table 1). Each antibody bound Kv1.3 by ELISA, however, clone ch_p1E6 

demonstrated significantly less activity compared to other clones and ch_p1F8 also bound the 

non-related ion channel (NRIC) proteoliposomes control (the binding of a subset of these 

antibodies is shown in Figure 3a). MAbs recovered from GEM screens incorporating Kv1.3 

proteoliposomes or magnetic beads were additionally tested for their ability to bind Jurkat cells 

via flow cytometry. Jurkat cells are a human leukemia T-cell line that has been reported to 

express approximately 200 active Kv1.3 ion channels per cell (32). Of 41 antibodies tested, 

Jurkat cell binding was detected with 6 antibodies (ch_p1A11, ch_p1H7, ch_p1D8, ch_p1E6, 

ch_p2A3 and ch_p2G9) comprising a range of median fluorescence intensity of 1157 to 9401 

compared to an average MFI of 198 +/- 41 (n=35) for all other antibodies analyzed.   

To generate antibodies in llamas, four animals were immunized and boosted with 

plasmid DNA encoding Kv1.3 six times and were additionally boosted with Kv1.3 

proteoliposomes twice. Kv1.3-specific immune responses were measured for Kv1.3 

proteoliposomes versus NRIC proteoliposomes. Three out of four llamas showed an immune 

response against Kv1.3 proteoliposomes, but also to irrelevant proteoliposomes. Nevertheless, 
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scFv libraries were constructed for two llamas (Armello and Lisandro) that exhibited the 

strongest responses against Kv1.3 proteoliposomes. Two phage libraries were created for each 

llama, comprising combinations of the immunoglobulin heavy chain repertoire and either the κ 

light chain, or λ light chain repertoires, resulting in library sizes of approximately 3-8 x 108 

clones. Phage panning was performed on Kv1.3 magnetic beads. After two rounds of phage 

selections, an enrichment of 10-fold for library Armello κ, 18-fold for Armello λ, 43-fold for 

Lisandro κ and 100-fold for Lisandro λ over NRIC magnetic beads was achieved. Individual 

soluble scFv fragments in periplasmic fractions were screened on mesoscale for specific 

binding to Kv1.3 proteoliposomes. Only a limited screening of 36 clones per library was 

performed, nevertheless 48 out of the 144 screened clones displayed specific binding. 

Sequencing of the VH and VL regions of these specific clones showed that they could be 

divided into 19 different VH families based on VH CDR3 sequence length and similarity. The 

clones derived from the Armello κ scFv library consisted of 5 VH families, from Armello λ of 3 

VH families, from Lisandro κ of 9 VH families and from Lisandro λ of 3 VH families. Nineteen 

clones representing the best performing clone on mesoscale of each different family were 

selected to be re-cloned as scFv-Fc fusion proteins. After transfection, production in HEK293E 

cells, and protein A purification, a new specificity screen on mesoscale was initiated. For all 

scFv-Fc molecules representing these 19 different VH families, specific binding to Kv1.3 could 

be reconfirmed (the binding of a subset of these antibodies is shown in Figure 3b).  

Identification of functionally inhibiting anti-Kv1.3 antibodies. Purified scFv-Fc anti-

Kv1.3 antibody clones were tested by whole-cell patch-clamp at a single concentration (400 nM) 

for inhibition of human Kv1.3 channels transiently expressed in L929 mouse fibroblast cells. 

Nine chicken mAbs and one llama mAb were identified as inhibiting Kv1.3 activity (Figure 4a & 

b). Each functional antibody was derived from antibody screens incorporating either Kv1.3 

proteoliposomes and/or magnetic beads (Table 1) and blocked between 44-82% of Kv1.3 

currents (Table 2) within 600 seconds of application (Figure 4d). None of the antibodies tested, 
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chicken or llama, under the assay conditions used, displayed agonist activity towards the Kv1.3 

channel. Interestingly, while not all of the functional chicken antibodies bound Jurkat cells as 

detected by flow cytometry, each of those that did were functionally active.  

Based on the relative inhibition of current at 400nM the most potent chicken antibody 

(ch_p1E6) and the llama L1A3 antibody were characterized further. Dose response analysis 

determined IC50 concentrations for ch_p1E6 and L1A3 as 6 and 109nM, respectively (Figure 5a 

& b). Selectivity for each of the antibodies was assessed on related Kv1.x family members 

(Kv1.1, Kv1.2, Kv1.5), hERG (Kv11.1) and Nav1.5. At 1µM neither antibody inhibited activity 

more than 5% for any of the channels tested (Figure 5c & Table 3) indicating that the fold 

selectivity for Kv1.3 is, at minimum, greater than 166-fold for ch_p1E6 and 9-fold for L1A3. 

Epitope binning analysis. Owing to the large recovery of functional antibodies, 

particularly from chickens, we performed an epitope binning analysis to gain an understanding 

of the diversity of epitopes recognized by the anti-Kv1.3 antibodies and to determine if there 

was a correlation between functional activity and epitope bins. Thirty-six chicken mAbs including 

eight of the nine functional antibodies (clone ch_p1E6 was excluded-see below) and the llama 

L1A3 antibody were analyzed by array-based SPR imaging. A heat map of the binning analysis 

indicates that antibodies can be divided into at least 5 epitope bins based on their ability to block 

competing antibody binding to the Kv1.3 antigen (Figure 6a). A network plot (Figure 6b) 

highlights the fact that a majority (56.7%) of the antibodies fall into one bin (Bin 1) that includes 

7 of the 9 functional antibodies tested. Bin 2 contains 23% of the antibodies tested and includes 

1 functional antibody (ch_p1F8), whereas Bins 3 and 4 contain 13.5 and 5.4% of antibodies 

tested, respectively, and do not contain any functional antibodies. Binding to Kv1.3 by clone 

ch_p1D8 was not blocked by any other antibodies tested and therefore was assigned its own 

epitope bin (Bin 5). No obvious correlation was noted between epitope bin assignment and 

antibodies that in addition to functionally inhibiting Kv1.3 activity also bound Jurkat cells. 
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Clone ch_p1E6 binding to Kv1.3 in the SPR format was insufficient to enable analysis - a 

result most likely related to the poor binding of this antibody to purified antigen in ELISAs. 

However, its potency in blocking mammalian expressed Kv1.3 and ability to bind Jurkat cells 

suggests that ch_p1E6 effectively binds native Kv1.3 in mammalian cells at an epitope that is 

partially lost during purification of the channel or its preparation for ELISA and therefore 

represents a separate bin (i.e. Bin 6). 
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DISCUSSION 

A number of groups have successfully generated anti-Kv1.3 immunoglobulins that inhibit 

channel activity, including polyclonal antibodies generated in rabbits (33), heavy chain only VHH 

nanobodies in llamas (US Patent Application 20170137512), and engineered cowbodies that 

incorporate inhibitory Kv1.3 toxins into the ultralong CDR that are characteristic of these 

antibodies (34). However, to our knowledge, this study describes the first set of conventional 

mAbs capable of blocking the activity of human Kv1.3. To achieve this, we applied a general 

strategy designed to mitigate several of the challenges associated with the production of 

functional antibodies against human VGICs. Importantly, we used Tetrahymena thermophila as 

an expression platform to generate sufficient quantities of recombinant Kv1.3 to support the 

development of different types of immunogens and antibody screening tools. While previous 

studies have suggested the utility of this system for the production of recombinant membrane 

proteins in general (1), the present work clearly underscores this for voltage-gated ion channels 

in particular.  While the choice of a K+-selective channel for these initial studies was based 

partially on the fact that the vast majority (308 of 332) of annotated VGIC genes in Tetrahymena 

predict K+-selective channels (1), recent studies have shown this system works equally well for 

the production of a wide range of other human channels. 

 Localization studies with fluorescently tagged peptide toxins suggest that recombinant 

Kv1.3 produced in these cells can assemble into homotetramers and traffic to the membrane 

surface (Figure 1). However, Kv1.3 was found to be essentially insoluble in the absence of 

digitonin, with FC12 being the most efficient detergent tested for ion channel extraction. The 

affinity of Kv1.3 purified under these conditions was approximately 200-fold lower for ShK than 

that reported for Kv1.3 expressed in mammalian cells. The reduced affinity of the purified 

channel is not entirely surprising and may be attributable to a number of factors including subtle 

changes in protein folding, which may, in turn, be due to altered post-translational modifications 

and/or the artificial lipid environment of the purified channel. Nevertheless, the immunogen and 
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antibody screening formulations described here were sufficient to generate and identify 

functionally inhibiting anti-Kv1.3 antibodies thus confirming the utility of Tetrahymena for the 

expression of native or near-native mammalian channel proteins.  

 Both chickens and llamas were used as phylogenetically distinct species for 

immunization. In all 70 anti-Kv1.3 antibodies were identified (51 from chickens and 19 from 

llamas). Of those, 10 were capable of blocking Kv1.3 current - an approximately 14% discovery 

success rate for functional antibodies. Further analysis of a select chicken antibody, ch_p1E6, 

and the functional L1A3 llama antibody, revealed potencies of 6 nM and 109 nM, respectively, 

while neither showed any appreciable activity on related K+ or Nav1.5 channels at a 

concentration of 1 µM thus confirming that conventional mAbs can selectively and potently 

inhibit Kv1.3 function with IC50s in the single-digit nM range. 

A majority (90%) of the blockers were derived from chickens while a single functional 

antibody was isolated from phage libraries constructed from immunized llamas. One reason for 

the higher rate of recovery of functional chicken antibodies may be due to the overall sequence 

divergence between Kv1.3 in humans, chickens and llamas. Human Kv1.3 shares 97.5% and 

97.7% identity with mouse and llama Kv1.3, respectively, but only 83% identity with chicken 

Kv1.3. Moreover, analysis of the three Kv1.3 extracellular cellular domains (ECD) where 

antibodies would be presumed to exert their effect, reveals further divergence with the human 

sequence, with the first extracellular loop showing 85.7%, 80.95%, and 52.5% identity with 

mouse, llama and chicken sequences, respectively (summarized in Table 4).  

A further, and perhaps critical consideration in our overall strategy was to avoid 

hybridoma-based antibody generation and screening methods to mitigate the effects of non-

efficient fusion events and loss of rare B cell clones leading to a decrease in diversity of the 

screenable immune repertoire (35). In the current study, functional antibodies were identified in 

screens of B cells (chicken mAbs) or from phage display libraries (llama mAbs) using either 

Kv1.3 proteoliposomes applied to a solid support (polystyrene beads) or from formulations 
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containing Kv1.3 oriented on magnetic beads directly via an engineered C-terminal tag. Seven 

of nine of the functional chicken mAbs were isolated using Kv1.3 proteoliposomes adhered to 

polystyrene beads suggesting that this formulation was particularly efficient for recovering 

functional mAbs. Interestingly, llama phage display libraries were panned with Kv1.3 magnetic 

beads alone, therefore, the role of phylogenetic diversity notwithstanding, altering the screening 

methodology to incorporate Kv1.3 proteoliposomes could potentially increase the recovery of 

functional antibodies from these phage libraries. Furthermore, given the fact that chicken mAbs 

capable of recognizing the native channel expressed in Jurkat cells also blocked channel 

activity, a direct screen or potentially another round of phage selection on these cells could have 

delivered a higher frequency of functional llama antibodies. 

A binning analysis of the chicken anti-Kv1.3 mAbs identified 5 epitope bins with a 

majority of the antibodies, including 6 of the 8 functional antibodies tested, segregating into one 

bin. Furthermore, the llama L1A3 mAb, used as a reference in the analysis, segregated to the 

same bin suggesting a single Kv1.3 epitope was responsible for generating a majority of the 

functional antibodies in both platforms.  

Significant progress is being made in the clinic targeting Kv1.3 with the highly potent 

venom peptide analog ShK-186 for the treatment of plaque psoriasis (36). In subsequent 

studies it will be of considerable interest to determine if one or more of the inhibitory mAbs 

described here exhibit similar efficacy and additionally display the benefits of long 

immunoglobulin half-life in a clinical setting. We hypothesize that a stable and potent anti-Kv1.3 

mAb may offer significant advantages in enabling a therapeutic intervention that halts the 

autoimmune cascade in a number of serious human diseases including type 1 diabetes and 

multiple sclerosis. 
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METHODS 

Cells and reagents. T. thermophila strains B2086 (mat1-2/mat1-2 [mat1-2; II) and CU428 

(mpr1-1/mpr1-1 [MPR1; mp-s, VII]) were obtained from the Tetrahymena stock center (Cornell 

University). Restriction endonucleases were from New England Biolabs. Anti-FLAG antibody 

was from Thermo Fisher Scientific (#MA1-91878), anti-C-terminal His antibody was from Life 

Technologies (#R93025), anti-Kv1.3 antibody was from Alomone (#AGP-005). Anti-mouse 

HRP-conjugated antibody was from Bio-Rad Laboratories (#1706516) and anti-guinea pig HRP-

conjugated antibody was from Life Technologies (#A18775). Kv1.3 toxins, Margatoxin (MgTX, 

#STM-325), Agitoxin-2-TAMRA (AgTX-2-TAMRA, #RTA-420-T) and Iberiotoxin (IbTX, #STI-

400) were from Alomone.  ShK-TAMRA was from Smartox (#SAT001-00100) and FAM-ShK 

was obtained from Bachem (#H-6088). T. thermophila growth media reagents, protease 

peptone (#9000270), yeast extract (#9000726), glucose (#VWRBK876) were from VWR. FeCl3 

was from ThermoFisher Scientific (#ICN15349980). Psora-4 was from Sigma (#P9872). 

Expression construct design and cloning. A synthetic gene encoding the human KCNA3 

gene (accession number P22001.3) modified with an in-frame C-terminal dual FLAG-10XHis 

(DYKDDDDKHHHHHHHHHH) affinity tag was codon-optimized for expression in Tetrahymena 

and synthesized by GenScript. The synthetic gene was cloned into a somatic expression vector, 

pTIEV5, via PacI and SacI restriction sites engineered into the 5’ and 3’ ends of the synthetic 

gene, respectively. Transcription of the transgene was under the control of the inducible 

Tetrahymena metallothionein-5 (MTT5) gene promoter. The expression construct comprising 

MTT5 promoter, Kv1.3 gene, MTT1 terminator and a neomycin resistance cassette was 

transferred as a single NotI fragment into a high-copy rDNA vector, pTRAS1. 

Generation of Kv1.3 expression strains. The Kv1.3 pTRAS expression vector was introduced 

into conjugating B2086 and CU428 T. thermophila strains by biolistic transformation as 

described previously (37). Briefly, 20 µl of M17 tungsten beads (Bio-Rad Laboratories) were 
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coated with 8 µg of expression vector DNA. Transformations were carried out using a Biolistic 

PDS-1000/He Particle Delivery System (Bio-Rad Laboratories) approximately 10 hours following 

induction of conjugation. Following particle bombardment and recovery in NEFF medium (0.25% 

proteose peptone, 0.25% yeast extract, 0.55% glucose, 33 mM FeCl3) at 30°C for 18 h, cells 

were supplemented with paramomycin (100 µg/ml), aliquoted into 96-well microplates and 

incubated for 3-4 days at 30°C. Wells containing paromomycin-resistant cells were identified 

and transferred to stock tubes. To identify Kv1.3 expressing cell lines, drug-resistant clones 

were grown in 3 ml cultures to a cell density of at least 5 x 105 cells/ml and Kv1.3 expression 

was induced by the addition of 2 µg/ml CdCl2. Cells were harvested at 6 h post-induction and 

stored at -20°C. Cells expressing Kv1.3 were identified by Western blot analysis using anti-

Kv1.3 and/or anti-tag antibodies. To establish clonal cell lines, single cells were isolated from 

Kv1.3-expressing stock tubes into drops of NEFF media containing 100 µg/ml paromomycin. 

Single cell clones were transferred to stock tubes and the best expressing cell lines were 

identified by Western blot analysis. 

Kv1.3 localization. To determine cellular localization, T. thermophila wild-type (CU428) and 

Kv1.3 expressing cells were fixed with 4% paraformaldehyde for 30 min. Tetrahymena cells 

fixed under these conditions become permeable and allow passage of reagents through the 

plasma membrane. Cells were incubated in the presence of either 10 nM ShK-TAMRA or 10 nM 

Agitoxin-2-TAMRA for 30 min. Cells were washed three times in PBS buffer and visualized by 

fluorescence confocal microscopy using an SP5 Leica laser scanning confocal microscope with 

a 63X oil objective lens. To investigate specific-binding of Kv1.3 toxins, cells were co-incubated 

with 10 nM ShK-TAMRA and saturating amounts (100 nM) of either Margatoxin (ShK 

competitor) or Iberiotoxin (non-competing toxin). 

Kv1.3 Purification. Cells expressing Kv1.3 were resuspended in ice-cold 1x PBS buffer and 

disrupted by a single pass through a M-110P Microfluidizer (Microfluidics) at 4,000 Psi. 
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Disrupted cell membranes were collected by centrifugation at 100,000 x g for 1h at 4°C, 

resuspended in ice-cold PBS and stored at -80°C. Crude membrane pellets were resuspended 

in TKG buffer (30 mM Tris HCl pH 7.4, 300 mM KCl, 10% glycerol) containing 1% n-dodecyl-b-

D-maltoside (DDM, Anatrace, #D310), 0.2 µg/ml Psora-4, 0.25% phosphatidylcholine (Sigma-

Aldrich) and protease inhibitors (Roche #11836170001, cOmplete protease inhibitors, EDTA-

free, 1 mini-tablet per 10 ml buffer) and incubated 1 h at 4°C to allow extraction of Tetrahymena 

membrane proteins (Kv1.3 is not extracted under these conditions). Pre-extracted membranes 

were harvested by centrifugation at 100,000 x g for 1h at 4°C and then resuspended in TKG 

buffer containing 0.02% digitonin, 0.2 µg/ml Psora-4, protease inhibitors and incubated for 1h at 

4°C. An equal volume of extraction buffer (TKG containing 2% FOS-choline 12, 10 mM EDTA, 

0.2 µg/ml Psora-4, 0.5% phosphatidylcholine) was added dropwise and the suspension was 

incubated for 1h at 4°C. The suspension was centrifuged (100,000 x g) for 1h at 4°C and a 

cleared lysate collected and supplemented with 6 mM MgCl2 and 50 mM Imidazole. Kv1.3 was 

purified using Ni Sepharose 6 Fast Flow (GE Healthcare) resin. Bound protein was washed first 

in TKG buffer containing 0.1% DDM, 0.2 µg/ml Psora-4, 0.025% phopshatidylcholine and 50 

mM imidazole and then in TKG buffer containing 0.025% DDM, 0.2 µg/ml Psora-4, 0.00625% 

phopshatidylcholine and 200 mM imidazole.  Kv1.3 was eluted in TKG buffer containing 0.025% 

DDM, 0.2 µg/ml Psora-4, 0.00625% phopshatidylcholine and 750 mM imidazole and dialysed in 

the same buffer lacking imidazole. Protein was concentrated in an Amicon stirred cell 

concentrator fitted with an Ultracel® 100 kDa ultrafiltration disk (Millipore, # PLHK02510) under 

a stream of nitrogen.  

Reconstitution of purified Kv1.3 into liposomes. L-a-phosphatidylcholine (Anatrace, 

#131601P) was dried down under nitrogen and resuspended in buffer containing 20 mM Tris-Cl, 

100 mM KCl, pH7.4 to a final concentration of 40 mg/ml. Lipids were rehydrated for 2 h at room 

temperature with 30 second bursts in a sonicating water bath every 10-15 min. Lipids were 
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further sonicated for 5 min, frozen in liquid N2 and thawed in a 30°C water bath. This process 

was repeated 2 times. Liposomes were clarified with an Avanti mini-extruder fitted with a 0.1 

micron filter. Purified protein (0.5-1.0 mg/ml) was added to liposomes at a ratio of 3:1 and 

incubated for 10 min at RT followed by sonication in a water bath for 10 min. The protein-

liposome mix was then added to 150 mg hydrated Bio-Beads SM2 (Bio-Rad Laboratories, #152-

8920) per ml of liposome mix and incubated overnight at 4°C. Proteoliposomes were separated 

from Bio-Beads using a pulled Pasteur pipette, sonicated in a water bath for 5 min, snap frozen 

in liquid N2 and stored at -80°C. 

Fluorescence Polarization Ligand Binding Analysis. Two-fold serial dilutions of Kv1.3 

proteoliposomes were mixed with 3 nM FAM-ShK in duplicate in 20 mM Tris pH 7.4, 2.5 mM 

KCl, 0.1% BSA, in the presence or absence of a 50-100-fold excess of MgTx (ShK competitor) 

or IbTx (irrelevant ligand), for 1 h at room temperature. Assays were carried out in 150 µl 

volumes per well in flat bottom, non-binding surface 96-well black plates (Corning, #3991). 

Fluorescence anisotropy readings were taken using a Tecan Infinite M1000 Pro at an excitation 

wavelength of 470 nm and an emission wavelength of 535 nm. The specific binding (in the 

presence of MgTx) was determined and used to calculate the Kd by nonlinear regression using 

GraphPad Prism (GraphPad Software, La Jolla, CA) to the equation (which assumes protein 

depletion): 

𝐴	 = 𝐴$ + 𝐴& − 𝐴$ ×	
𝐿* + 𝐾, + 𝑅* −	 −𝐿* − 𝐾, − 𝑅* . − 4𝐿*𝑅*

2𝐿*
 

where  

A = anisotropy (measured) 

RT = total protein concentration (known) 

LT = fluorescent ligand concentration (3 nM) 

Af = anisotropy of free ligand (calculated) 
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Ab = anisotropy of bound ligand (calculated) 

Kd = dissociation constant (calculated) 

Kv1.3 Magnetic Beads. Purified Kv1.3 was incubated with a slurry of magnetic His tag 

Dynabeads® (Thermo Fisher Scientific, #10103D) pre-equilibrated in buffer A (30 mM Tris-Cl, 

300 mM KCl, 10% glycerol, 0.025% DDM, 0.00625% phosphatidylcholine, pH 7.4) for 2 h at 

4°C. The Kv1.3 to bead ratio was approximately 1 mg protein to 1 ml slurry. Beads were 

washed with buffer A, mixed with rehydrated lipids (10 mg/ml egg L-a-phosphatidylcholine 

[Anatrace, #131601P], +/- 0.05 mg/ml rhodamine-conjugated 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine [Anatrace, 810150P]) and incubated for 15 minutes at 4°C. The magnetic 

bead lipid mixture was incubated in a sonicating water bath for 10 minutes, then transferred to a 

new glass vial containing 200 mg hydrated Bio-Beads and rotated overnight at 4°C. Magnetic 

beads were separated from Bio-Beads with a pulled Pasteur pipette, washed and resuspended 

in buffer B (20 mM Tris-Cl, 100 mM KCl, pH 7.4). 

Immunizations and antibody screens.  

A. Chicken 

Immunization. Two female 6-wk old White Leghorn chickens were immunized intramuscularly 

initially with 112 µg purified recombinant Kv1.3 reconstituted into proteoliposomes.  Boosts 

continued every other week using 85 µg, 112 µg, 280 µg and 390 µg, with a final IV boost of 

280 µg.  Fifteen micrograms bacterial plasmid DNA and 10 ul of E. coli Lipopolysaccharide 

(LPS, Alexis #581-012-L002) were added as adjuvant to the liposomes in a final volume of 0.5 

ml for the 2nd, 3rd and 4th boosts, and Lipid A was also added at the 4th boost.  The immunization 

protocol was IACUC approved. During the course of the immunizations chickens were 

monitored for signs of discomfort and illness; neither bird showed any sign of either. Titers were 

determined by ELISA: 96-well plates were coated overnight at 4°C with 2 µg/ml Kv1.3 or 
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proteoliposomes containing a non-related ion channel (NRIC), washed 3 times with PBS, and 

blocked with 3% milk in PBS (PBSM) for 1 h.  Dilutions of the sera were added in PBSM and 

incubated for 1 h, then the plate was washed 3 times with PBS, and anti-chicken IgY-HRP 

(Sigma, #A9046) was added in PBSM for 1 h.  The plate was washed 3 times with PBSM, 

developed using TMB (Thermo Fisher Scientific, #2023) for 10 min, quenched with 1 N HCl, and 

read at 450 nm.  Final titer reached 1:250 for bird 19718, and greater than 1:30,000 for bird 

19724. 

Screening splenic B cells for Kv1.3 reactive antibodies. Splenocytes were recovered from bird 

19724 four days after the final antigen IV boost and incorporated into Gel Encapsulated 

Microenvironments (GEMs) according to Izquierdo et al. (38). GEMs were prepared using three 

strategies.  

1. Polystyrene bead reporters: 5 μm polystyrene beads (Thermo Fisher Scientific, #A37306) 

were coated with Kv1.3 or NRIC proteoliposomes at a 5x mass ratio overnight.  NRIC was 

coated onto beads dyed with coumarin to render them blue by fluorescence. Beads were 

washed and blocked with PBSM. The two beads were used in GEMS with chicken splenocytes, 

the blue NRIC bead serving as a specificity control.   

2. Magnetic Dynabead particles: Kv1.3 magnetic beads were prepared as described above. The 

magnetic particles were incorporated into GEMS with chicken splenocytes. 

3. Tetrahymena cells: Tetrahymena expressing Kv.1.3 were fixed with 4% paraformaldehyde, 

washed, and incorporated into GEMS with chicken splenocytes. 

Cloning and Expression of Kv1.3 recombinant antibodies. As described in Izquierdo et al. (38), 

chicken VH and VL gene segments were PCR amplified from individual positive B cells 

identified in the GEM assay, cloned into a scFv-Fc expression vector (human Fc), and 

transiently expressed in Expi293 cells grown in Expi293 Expression Medium using 
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Expifectamine (Thermo Fisher Scientific, #A14524), in 96-well format.  Supernatants were 

tested for binding by ELISA, as described above, using anti-human-Fc-HRP (VWR #RL609-

4303) secondary antibody. Unique clones were re-transfected in a 2 ml culture to confirm 

binding and for further evaluation.  Supernatant antibody concentrations were quantitated by 

sandwich ELISA using anti-human-Fc and a scFv-Fc control. To purify antibodies for 

electrophysiology, 40 ml cultures were used for transfections, and antibody purified using 

Protein G Agarose (Thermo Fisher Scientific, #20399B) according to the manufacturer’s 

protocol.   

Flow cytometry:  Jurkat cells (clone E6, ATCC) were grown in RPMI (Thermo Fisher Scientific, 

#450000-404) supplemented with 10% fetal calf serum (Hyclone, #SH30071.03) and Glutamax 

(Thermo Fisher Scientific, #35050061).  Cells (1.5e5 /well) were incubated at 4°C for 1h with 10 

µg/ml of each antibody diluted in PBS/1% BSA/0.1% sodium azide (FACS buffer), washed 2 

times with FACS buffer, incubated with anti-human IgG-PE (Jackson Immunoresearch, #109-

115-098) at 5 µg/ml at 4°C for 1h, washed 2 times with FACS buffer, resuspended in FACS 

buffer and read on an Attune Cytometer (Thermo Fisher Scientific).   

B. Llama 

Llama immunization and library construction: Llama immunization, peripheral blood lymphocytes 

(PBLs) isolation, RNA extraction and the construction of scFv libraries were performed as 

described previously (39). All llamas used in this study were farmed outdoors in the Ardèche 

region of France according to French animal welfare legislation. Animal handling included 

immunization by intramuscular injection and peripheral blood collection. As a rule, experimental 

use of llamas is limited to a single immunization protocol; following the last blood drawing, 

animals are employed for recreational use. Within the framework of the guidelines four llamas 

were immunized six times biweekly with 2 mg/ml plasmid DNA encoding human Kv1.3 under 
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control of a CMV promoter. A boost with 50 µg Kv1.3 proteoliposomes was given two times 

biweekly. Before the start and a week after completion of the immunizations, serum was 

prepared from 10 ml blood in EDTA tubes. PBLs were isolated from 400 ml blood collected five 

days after the last immunization, and RNA extraction and cDNA amplification was done as 

formerly described (40). Immune responses were measured on pre- and post-immunization 

serum samples by mesoscale against both Kv1.3 and NRIC proteoliposomes, coated at 1 µg/ml. 

Detection of serum titrations was performed using a mouse anti-llama IgG-CH1 (in-house 

antibody) and an anti-mouse sulpho antibody (MSD, #R32AC-5). Subsequently, scFv libraries 

were made for two of the four immunized llamas as previously described (39). In brief, VH, Vκ 

and Vλ libraries were independently constructed into the pSc vector, which was derived from the 

pCB3 phagemid vector. Re-cloning the light chain libraries in the VH library was performed, to 

obtain the combinatorial κ and λ library for each llama. 

Phage selection: Phage production and selection were performed according to standard 

protocols (39,41). Phages expressing scFv fragments were allowed to bind for 2 h at 4°C to 

rotating Kv1.3 or NRIC magnetic beads. Washing steps were performed using PBS containing 

0.05% Tween and elution of phages was done by using 10 mg/ml trypsin (Sigma-Aldrich, 

#T1426). Two rounds of selection were carried out using 10 µg Kv1.3 magnetic beads and 20 µl 

input phages in the first round and respectively 2 µg and 2 µl in the second round to enrich for 

phages expressing scFv fragments binding specifically to Kv1.3. The Kv1.3-binding clones were 

isolated as individual colonies and expression of soluble scFv fragments in the periplasmic 

space was induced using isopropyl β-D-1 thiogalactopyranoside (Thermo Fisher Scientific, 

#R0391). 

Screening binding assays: Individual soluble scFv fragments in periplasmic fractions were 

screened for binding to 1 µg/ml Kv1.3 and NRIC proteoliposomes using mesoscale. The 
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detection was carried out using mouse anti-myc antibody 9E10 (Bethyl Laboratories, #A190-

105P) and an anti-mouse sulpho antibody. The cut-off ratio for binding to Kv1.3 over NRIC 

proteoliposomes was set to 2. The positive clones were sent for sequencing (LGC Genomics) to 

determine the number of families based on VH CDR3 sequence length and similarity (42). VH 

and VL sequences from selected clones were re-cloned in the scFv-Fc backbone where the 

scFv was fused to the hinge-CH2-CH3 domain of a human IgG1. Transfection, production in 

HEK293E cells (ATCC, #CRL-10852) and protein A purification were performed as previously 

described (40). scFv-Fc screening using a 1/10 dilution series starting from 1 µg/ml was carried 

out to confirm binding to Kv1.3. By mesoscale, screening for binding to Kv1.3 and irrelevant 

proteoliposomes, coated at 1 µg/ml was done using an anti-human sulpho detection antibody 

(MSD, #R32AJ-5). As a positive control, a polyclonal anti-Kv1.3-biotin antibody was also 

assessed (Alomone, #APC-101-B).  

Antibody screening and potency (IC50). Antibodies were tested on human Kv1.3 channels 

that were transiently expressed in L929 fibroblast cells (ATCC). Stable expression and sources 

of the mKv1.1, rKv1.2, hKv1.5, hNav1.5 and hKv11.1 (hERG) channels were described 

previously (43,44). Cells were maintained in a culture medium of Dulbecco's modified Eagle's 

medium (DMEM) supplemented with L-glutamine and 10% heat-inactivated fetal calf serum in a 

humidified, 5% CO2 incubator at 37°C. For transient expression, hKv1.3 cells were transfected 

in conjunction with pEGFP, using FuGENE® 6 transfection reagent (Promega, #E2691) in 

OptiMEM reduced serum medium (Life Technologies, #31985088), for identification of 

transfected cells under the epifluorescence microscope after 24 to 72h post-transfection. All 

cells were detached by trypsinization and plated on cover-slips coated with poly-L-lysine for 

whole-cell patch-clamp recording using the EPC-10 HEKA amplifier. All currents were recorded 

in normal Ringer' solution containing (in mM): 160 NaCl, 4.5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES 

(adjusted to pH 7.4 and 290–310 mOsm). Patch pipettes were pulled from soda lime glass 
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(micro-hematocrit tubes, Kimble Chase, Rochester, NY) to resistances of 2-3 MW and filled with 

an internal pipette solution containing (in mM): 145 KF, 2 MgCl2, 10 HEPES, 10 EGTA (pH 7.2, 

290–310 mOsm) for Kv1.1, Kv1.2, Kv1.3 and Kv1.5 recordings; 120 KCl, 10 HEPES, 4 Na2ATP, 

10 EGTA, 5.374 CaCl2, 1.75 MgCl2 (pH 7.2, 290-310 mOsm) for hERG recordings; and 10 NaF, 

110 CsF, 20 CsCl, 2 ethylene glycol tetraacetic acid, 10 HEPES (pH 7.35, 300 mOsm) for 

Nav1.5 recordings. Outward K+ currents were elicited using repeated 200-ms long depolarizing 

pulses to 40 mV with a 30-s interpulse interval for Kv1.3 and a 10-s interpulse interval for Kv1.1, 

Kv1.2 and Kv1.5. hERG currents were recorded with a two-step pulse from -80 mV first to 20 

mV for 3 seconds and then to -50 mV for 2 seconds. Inward Na+ currents were elicited by 50-

ms pulse to 0 mV from -90 mV applied every 10-s. Cell capacitance, a direct measurement of 

cell surface area, and access resistance were continuously monitored during recordings to 

ensure minimal current rundown. Test antibody solutions were freshly made in normal Ringer’s 

solution immediately prior to bath perfusion, which was performed only once currents had 

stabilized from the preceding control condition or testing dose. IC50 values were determined by 

fitting the calculated percentage of current blocked to a Hill equation using the software Origin 

9.0 (OriginLab). Data are presented as means ± standard deviations.  

Epitope binning. A panel of 36 sequence unique anti-Kv1.3 chicken mAbs (scFv-Fc constructs) 

supplied as crude transfectant supernatants, was epitope binned using a “premix” assay format 

by array-based SPR imaging (Array SPRi) as described previously (45). In addition, select 

clones were also supplied in purified form (1D8, 1H7, 2A3, and 2G9) along with a functionally 

inhibiting llama anti-Kv1.3 reference antibody (L1A3) and coupled as a 48-spot array. The 

analysis was performed at 25°C on a Xantec CMD 200 M sensor chip and in a running buffer of 

10 mM Hepes pH7.4, 150 mM NaCl, 3 mM EDTA, 0.05% Tween-20 (HBS-EP+) with 1 g/l BSA 

using premixed samples containing 33 nM Kv1.3 and 480 nM antibody (in binding sites) and 

regenerating each binding cycle with 75 mM phosphoric acid.
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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FIGURE LEGENDS 

Figure 1. Expression of human Kv1.3 in Tetrahymena thermophila. a. Expression 

construct design. KCNA3, the gene encoding human Kv1.3, was modified with a C-terminal 

FLAG/10XHis tag and placed under the control of the MTT5 and MTT1 promoter and terminator, 

respectively. The entire expression cassette was cloned as a NotI fragment into an rDNA vector, 

pTRAS1. The relative positions of chromosome breakage sites (CBS) and ribosomal genes 

(17s, 5.8s, and 26s) are shown. b. Single cell isolates maintain expression of recombinant 

Kv1.3. Anti-Kv1.3 Western analysis of single cells isolated from pooled Tetrahymena 

transformants and tested for their ability to express Kv1.3. Eight of nine single cell isolates 

expressed Kv1.3 at similar levels to the original pool (T1) with one clone (#117) expressing 

higher-levels of Kv1.3. A lysate from wild-type cells (WT) was included as a negative control. c. 

Tetrahymena-expressed Kv1.3 is phosphorylated. Purified Kv1.3 was incubated in the 

absence (-) and presence (+) of calf-intestinal alkaline phosphatase (CIP) and subsequently 

detected by anti-Kv1.3 Western analysis as described above. d. Tetrahymena-expressed 

Kv1.3 binds both Agitoxin-2 (AgTX-2) and ShK. Mock-induced wild-type cells (WT) and 

Kv1.3-expressing Tetrahymena cells were fixed and labeled with either 10 nM Agitoxin-2-

TAMRA (AgTX-2-TAMRA) or ShK-TAMRA and visualized by fluorescence confocal microscopy. 

Inset shows a close-image of a single Tetrahymena cell. White arrows highlight the 

Tetrahymena plasma (surface) membrane. e. Binding of ShK to Tetrahymena Kv1.3 is 

specific. Fixed Tetrahymena cells expressing Kv1.3 were incubated with 10 nM ShK-TAMRA in 

the presence of saturating (10X) amounts of Margatoxin (MgTx) or Iberiotoxin (IbTx) and 

examined by fluorescence confocal microscopy. 

Figure 2. Purification of recombinant Kv1.3. a. SDS-PAGE analysis of purified and 

reconstituted Kv1.3. Kv1.3 was purified as described in Materials, resolved by SDS-PAGE 

before and after reconstitution into liposomes and stained with SimplyBlue™ SafeStain™. b. 
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Ligand Binding Analysis. Kv1.3-containing liposomes were incubated with FAM-ShK (3 nM) in 

the presence or absence of a 50-fold excess of either MgTx or IbTx. Top Panel is a 

representative experiment showing total binding expressed as Anisotropy measured by 

fluorescence polarization. Bottom Panel represents specific binding to FAM-ShK. Kd was 

estimated as 11.5 nM +/- 3.4 nM based on specific binding curves generated in three separate 

experiments c. Fluorescence microscopy analysis of Kv1.3 magnetic beads. Magnetic 

beads containing tethered Kv1.3 reconstituted into a lipid bilayer consisting of rhodamine-

labeled PE and non-labeled PC were examined by fluorescence microscopy. Beads were 

examined under a rhodamine filter to detect labeled PE incorporation (Left Panel) and with a 

FITC-filter following labelling with an anti-Kv1.3 antibody that recognizes an epitope on the first 

extracellular loop and anti-guinea pig conjugated FITC (Middle Panel). Rhodamine and FITC- 

images were merged (Right Panel) to confirm co-localization of Kv1.3 and the lipid bilayer 

(yellow fluorescence). d. Schematic illustration of Kv1.3 magnetic beads. Shown is the 

magnetic bead surface; the lipid bilayer consisting of PC (yellow lipids) and Rhodamine-labeled 

PE (red lipids); the six transmembrane domains of the Kv1.3 monomer (S1-S6); the C-terminal 

engineered FLAG (orange Triangle) and 10XHis (Green Box) tags; a star indicates the position 

of the epitope on the first extracellular loop that is recognized by the Kv1.3 antibody utilized in c 

and d. e. Kv1.3 magnetic beads preferentially pull-down an antibody that recognizes an 

extracellular epitope. Kv1.3 magnetic beads or control beads were incubated with antibodies 

(6.7 nM) that recognize either internal (FLAG and 10XHis) or external (Kv1.3) epitopes. Beads 

were washed and bound IgG eluted directly in SDS-PAGE loading buffer. IgG was detected by 

Western analysis using either anti-mouse-HRP (anti-FLAG and -His) or anti-guinea pig-HRP 

(anti-Kv1.3).  

Figure 3. Identification of anti-Kv1.3 antibodies. a. Chicken anti-Kv1.3 antibodies. ScFv-Fc 

screening was carried out by ELISA using three-fold serial dilutions of antibody against 
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proteoliposomes containing Kv1.3 or an irrelevant human VGIC also expressed in Tetrahymena. 

An isotype control (IC) for generated antibodies was also included. Shown are results for 

antibodies that inhibit Kv1.3 activity. Note the relative lack of reactivity of clone ch_p1E6 against 

Kv1.3 and clone p1F8 reactivity against the irrelevant proteoliposome control. b. Llama anti-

Kv1.3 antibodies. ScFv-Fc screening was carried out using ten-fold serial dilutions of antibody 

on mesoscale against proteoliposomes containing Kv1.3 or an irrelevant human VGIC also 

expressed in Tetrahymena. IC1, isotype control for generated antibodies; IC2, isotype control 

for anti-Kv1.3 polyclonal antibody. Data is shown for 6 out of 19 specific Kv1.3 binding scFv-Fc 

antibodies. 

Figure 4. Identification of anti-Kv1.3 antibodies that functionally inhibit Kv1.3 channel 

activity. Purified scFv-Fc anti-Kv1.3 antibodies from either chickens or llamas were tested at a 

concentration of 400nM via electrophysiology for their ability to block current from human Kv1.3 

expressed in L929 fibroblast cells. Shown are representative traces for each of the antibodies 

that blocked Kv1.3 current. Black lines represent control currents, red lines represent currents 

following addition of antibody. Inhibiting anti-Kv1.3 antibody clones derived from chickens are 

shown in a, the functional llama anti-Kv1.3 antibody is shown in b. An example of an antibody 

that was tested and shown not to modulate Kv1.3 activity is shown in c. d. Time-dependent 

development of current inhibition by monoclonal antibodies targeting Kv1.3. (Left Panel) 

Time-current plots showing current inhibition of three (3) individual cells expressing hKv1.3 

channels by the monoclonal antibody ScFv-Fc L1A3. Antibodies were added after current 

stabilization at 0 second. Currents were elicited by pulsing to +40 mV for 200 ms from a holding 

potential of -80 mV every 30 seconds. (Right Panel) Means ± SD plot of the current inhibition of 

three individual cells in the left panel. Similar time-dependent profiles were observed for each of 

the blocking antibodies. 



	 41	

Figure 5. Anti-Kv1.3 antibody potency analysis. a. Dose response curves. Ten-fold serial 

dilutions of chicken antibody p1E6 (red traces) and llama antibody L1A3 (green traces) were 

used to generate dose-response curves. Black lines represent control currents. b. IC50 

Determinations. IC50s for p1E6 (red curve) and L1A3 (green curve) were determined by fitting 

the calculated percentage of current block to a Hill equation. IC50s for p1E6 and L1A3 were 

estimated as 6 and 109 nM, respectively c. Analysis of p1E6 and L1A3 selectivity. ScFv-Fc 

clones p1E6 and L1A3 were tested for their ability to block the activity of related Kv1.x family 

members (Kv1.1, Kv1.2, Kv1.5), hERG and Nav1.5 at a concentration of 1 µM. Shown are 

representative traces from each experiment. Black lines, control current; Red lines, currents 

following addition of antibody. 

Figure 6. Kv1.3 epitope binning analysis. a. Binning analysis heat map. Shown are 

antibodies colored by bin (1-5) and by functional data. Antibodies that block Kv1.3 current are 

highlighted in blue (Ephys only), those that additionally bind Jurkat cells are highlighted in red 

(Ephys + Jurkat) and those that do neither are highlighted in grey. Relative competition activity 

of each antibody is color coded and indicates strong competition (red boxes), intermediate/weak 

competition (yellow boxes) or no competition (green boxes). Dark red boxes indicate 

competition from the same antibody pair. b. Binning network plot. Antibodies are colored to 

identify those that inhibit channel activity (blue), additionally bind Jurkat cells (red) or do neither 

(grey). Note antibody L1A3 was not tested for its ability to bind Jurkat cells, however, for 

simplicity was denoted as inhibiting ion channel only (blue) in a & b. 
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Table 1. Summary of anti-Kv1.3 antibody identification 

ELISA	positive Functional	
Antibody	Platform Screening	Method (unique	sequences) Antibodies	Identified

Chicken GEM	Assay:	Kv1.3	Proteoliposomes 25 7
GEM	Assay:	Kv1.3	Magnetic	Beads 16 2
GEM	Assay:	Kv1.3	Whole	Cells 10 0

Llama Phage	Display:	Kv1.3	Magnetic	Beads 19 1
Total 70 10  

 

 

Table 2. Summary of anti-Kv1.3 antibody functional activity 

 

 
Percent	Kv1.3	current	blocked	at	400	nM	

scFv-Fc	clone	 Average	block	(%)	 STDEV	(%)	 n	
ch_p1A1	 50.28	 13.02	 8	
ch_p1A11	 56.51	 10.1	 6	
ch_p1F8	 44.34	 12.12	 3	
ch_p1D8	 54.47	 1.52	 3	
ch_p1H4	 45.99	 12.38	 6	
ch_p2A3	 45.02	 3.5	 2	
ch_p2G9	 75.35	 11.65	 11	
ch_p1H7	 47.32	 12.42	 2	
ch_p1E6	 82.28	 10.45	 12	
L1A3	 73.53	 8.71	 3	

 

 

 

Table 3. L1A3 and p1E6 selectivity profile 

 

Channels 
L1A3 p1E6 

% Blocked at 1 µM 
(Mean ± SD) n % Blocked at 1 µM 

(Mean ± SD) n 

Kv1.1 4.18 ± 2.65 2 3.87 ± 2.65 2 
Kv1.2 0.68 ± 0.97 2 0.00 ± 0.00 2 
Kv1.5 0.48 ± 0.69 2 1.28 ± 1.80 2 

Kv11.1 (hERG) 2.11 ± 2.98 2 5.32 ± 0.45 2 
Nav1.5 4.98 ± 3.09 3 0.00 ± 0.00 2 
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Table 4. Kv1.3 ortholog sequence alignment analysis 

 

 
Percent Identity (CLUTSAL Omega) 

Query: H. sapiens  M. Musculus (mouse) G. gallus (chicken) V. pacos (llama) 
P22001.3 NP_032444.2 AAP94028.1 XP_006197566 
full-length 97.51 83.15 97.72 

S1-S2 ECD 85.71 52.5 80.95 
S3-S4 ECD 100 100 100 

S5-S6 ECD/Pore 94.74 94.74 100 
 

  

 




