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Reasoning directly from cases in a case-based planner
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Department of Computer Science and Engineering
University of Connecticut, U-155
Storrs. CT 06269-3155

robertQuconn.edu *

Abstract

A good deal of the reasoning done in a case-based planning system can be done directly from
(episodic) cases. as opposed to specialized memory structures. In this paper, we examine the
issues involved in such direct reasoning including how this representation can support multiple
uses, and what role execution plays in such a framework. We illustrate our points using COOKIE,
a direct case-based planner in the food preparation domain.

1 Introduction

In this paper, we examine the issues regarding the direct use of cases by a case-based planner. By
direct use, we mean performing the underlving reasoning in a system by manipulating represen-
tations of episodes in memory, rather than an intermediate description or specialized structure.
While these issues are shared by all case-based reasoners, we focus particularly on case-based plan-
ning. We examine case representation, how cases are used for different purposes, and the role of
execution; these examinations are based on work with COOKIE, a case-based system that plans and
monitors execution in the domain of meal planning and preparation.

What is case-based reasoning?

Case-based reasoning is the solving of problems through the reuse of experience—when faced with a
problem situation, the problem solver retrieves a similar situation (with its solution) from memory,
then adapts the previous solution to solve the current problem [Riesbeck and Schank. 1989]. This
can be distinguished (in theory) from rule-based reasoning, since we reason from cases corresponding
to real episodes rather than from rules which are distillations of experience. In fact, this separation
is muddied in practice, as case-based systems include cases that are abstractions based on a number
of real episodes, and rule-based systems include rules that are in fact grounded in a single experience.
Case-based reasoning has been used in a varietv of domains for a varietv of tasks; it has showed the
most promise in situations characterized by uncertaintv, lack of a complete domain theorv, and/or
computational constraints, where more traditional approaches have had little success.

"This research has been supported by Booth Research Center grant BG-6. The author gratefully acknowledges
the assistance of Kate Sanders, Mallory Selfridge, and Karl Wurst.
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Desiderata for a case-based planner

Case-based planning (CBP) is an attempt to solve planning problems by reusing previous episodes.
The planning problem is to find a sequence of primitive actions that leads to some specified results—
goals to be accomplished and constraints to be satisfied. A case-based planner does this by remem-
bering experiences. At essence, a case-based planner follows the principles given by Hammond
(Hammond, 1988|:

If it worked, use it again, and

If it didn’t work, remember not to do it again.
To these, we add a principle of our own:
If my plan fails, I should figure out why.

These principles can be translated into the three basic functions that a case-based planning system
should be able to accomplish.

First, a CBP system should be able to generate plans given it has succeeded in a similar situation.
This process is one of retrieving the similar situation (case), then performing transformations on
the case until it matches the description of the current problem. Once it matches, “use it again”
becomes a simple reapplication of the sequence of steps. For this to be effective, the transformations
applied should be equivalence preserving, at least in regard to the goals and constraints.

Second, a CBP system should be able to recognize that a particular approach failed before, so
should not be used again. Simply not retrieving failures for adaptation is insufficient here—if we
transform a (successful) plan into one that fails, we would like to avoid doing it in the future.

The third principle relates to the second—to avoid failure in the future, we need to understand
why we failed. If we can anticipate failure, then we can either use a different plan or modify our
plan to avoid the problem. The principle as given only works in a negative way, but sometimes
plans have unexpected good results. A more general principle can be based on expectation failures
[Schank, 1982| rather than plan failures:

If something odd happens. figure out why and remember it.

Overview of COOKIE

COOKIE is a case-based system that plans and monitors the preparation of food. Previous work
(notably cHEF [Hammond, 1986] and juLia [Kolodner, 1987]) has demonstrated the benefits of
doing planning research in this domain, which is both rich and unpredictable. cookIE’s input is a
set of goals and constraints: it first produces a plan to satisfy the input, then monitors the execution
of that plan (performing execution-time repairs of the plan, if necessarv), then incorporates the
results of that execution into its memory. Execution is done externally to the svstem by human
cooks using real food; case-memory is comprised of these episodes and other real cookings taken
from transcripts. There is no causal reasoner for analyzing failure. nor is there a simulator that can
be used to execute cookings. Explanations of anomalous behavior are built from the assumptions
used to predict the non-anomalous behavior and from adaptations of other explanations found in
cooking transcripts. COOKIE is designed to reasoning directly from its cases as much as possible,
and relies on few other mechanisms. Specific examples of COOKIE’s behavior relating to this paper’s
topic are given in the next few sections.
The rest of this paper is arranged (in order) around the following questions:

e What is an episodic case representation?
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e« How can an episodic representation scheme support multiple uses in a planner (generation,
projection, recognition, explanation, and failure recovery)?

o What is the role of execution in a direct case-based planner?

Finally, in the conclusions, we discuss possible roles for abstraction in a case-based planner.

2 Case representation

Episodic representation—what it is, what it involves

Informally, an episodic representation is one that allows reconstruction of an episode as a story—
what happened, when the various things happened relative to each other, what the results were,
and so forth. More concretely, an episodic representation is a reasonably complete statement of
the facts that is neither simplified nor abstracted. For any domain, the representation includes all
of the facts about an episode that are likely to be useful in any future reasoning task. In the food
preparation domain, this includes all of the cook-food interactions, as well as seemingly unrelated
cook actions that occur during the cooking. For example, if a cook answers the telephone during
meal preparation and talks for five minutes to “Dialing for Dollars”, that fact is part of the episode,
not just that the cook was out of the kitchen for five minutes.

Reasoning directly from cases

In a case-based reasoning system (or more generally, any reasoning system where the rules are ulti-
mately grounded in episodes), we have two options: reasoning by direct manipulation of episodes,
or reasoning from abstractions and/or simplifications of episodes. There are advantages and disad-
vantages to each approach. On the one hand, an episodic representation is likely to contain a good
deal of irrelevant information for a particular task; if we want to explain burned biscuits, the cook
not monitoring the food for five minutes is enough information, and the facts that it was a phone
call, the exact time, that it was from “Dialing for Dollars” and so forth are unnecessary and could
have been simplified out of the case. On the other hand, a simplification or abstraction may not
have retained the right information. Suppose the above dinner turns out to be poisoned, killing
the cook, and his beneficiary happens to work for the television station broadcasting “Dialing for
Dollars”—the simplification to “the cook not monitoring the food for five minutes” precludes the
obvious explanation of said beneficiary arranging for the phone call so he could poison the meal
while the cook was distracted. The main advantage in reasoning from episodes s that the infor-
mation used can be extracted when the reasoning task and its contezt are established, rather than
at the tume the episode s stored. This does not rule out a memory where episodes are stored at
multiple levels of abstraction, precomputing those that are likely to be useful, but unless we can be
certain of precomputing all useful abstractions, the need for direct reasoning cannot be eliminated.

Representation scheme in COOKIE

The representation language used in COOKIE is a temporal propositional logic. For example, (occur
ev3 (do chefl (stir soup5 saucepan! spoon23)) t1 t2) means that event ev3, chefl stirring soup5 in
saucepanl with spoon23, occurred beginning at time t1 and ending at time t2. Cases describing
cooking episodes are propositional, and contain goals, descriptions of input, output, and (possibly)
intermediate states, actions, a critique, and (if applicable) problems encountered and their associ-
ated repairs. An example, broiled steak with fried onions, is given in Figure 1. Propositions that
are true at the same (specific) times are grouped together here. This is purely a syntactic aid to
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(cooking steak-and-onionsl
(initial (raw steak23)(raw onion24)(cold frypanl) (quantity steak23 1lb)
(thickness steak23 1.5 in) (quantitv onion24 1 medium) (quantity oil25 1 Tb)
(goals (cooked steak23) (cooked onion24) (shape onion24 rings)))
(final (cooked steak23) (cooked onion24) (shape onion24 rings)
(rating steak-and-onionsl success)))
(facts (inst steak23 beefsteak) (inst onion24 onion) (inst 0il25 corn-oil)
(events (occur ev0 (do chefl (slice onion24 thin knife2)) 0 1)
(occur evl (do chefl (heat burner2 high)) 4 8)
(occur ev2 (do chefl (heat broilerl high)) 0 8)
(occur ev3 (do chefl (put 0il25 frypanl)) 4 4)
{occur ev4 (do chefl (put frypanl burner2)) 4 4)
(occur evb (do chefl (put steak23 b-panl)) 1 1)
(occur ev6 (do chefl (put b-panl broilerl)) 1 1)
(occur ev7 (do chefl (flip steak23 b-panl fork8)) 5 5)
(occur ev8 (do chefl (put onion24 frvpanl)) 5 5)
(occur ev9 (do chefl (occasional (stir onion24 frvpanl fork8))) & 8)
{occur ev10 (do chefl (remove vnion24 frypanl)) 8 8)
(occur evll (do chefl (remove steak23 b-panl)) 8 8)))

Figure 1: Broiled steak and onion rings.

the user; internally, a case is a conjunction of propositions with individual temporal characteristics.
This case is a relatively simple one: other cases include (among other things) termination tests for
events, underlving assumptions used in planning the episode, and expectation failures with their
associated real-time repairs.

3 Multiple purposes from a single representation scheme

One benefit claimed for an episodic representation is that it is task-neutral: the same representation
should be useful for a variety of reasoning tasks [McCartney and Sanders, 1990]. In COOKIE, the
episodic representation directly supports plan generation and projection, explanation. and failure
recovery during execution, and interacts with low-level abstractions during plan recognition.

Plan generation and projection

Plan generation (coming up with a sequence of actions to perform a task) and projection (pre-
dicting the effects of a proposed set of actions) in COOKIE are done bv performing transformations
on cooking episodes. The transformed episnde corresponds tn the generated plan (actions and
expectations) and is processed directly by the execution module (see Section 4).

Projection is based on the assumption that the objects in the transformed episode will behave as
their counterparts did in the original episode. so anv observed facts in the original episode become
expected facts (that is, the projections) in the transformed episode. For a given situation, there is
a set of permissible transformations whose application should lead to behavioral equivalence in the
transformed case. Suppose, for example, we want a plan for broiled hamburger and onions, and
can use the following transformations:
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(x—y: if (and (inst x z) (inst v z)(food z)))

(x—v: if (and (inst y ground-beef)
(inst x beefsteak)
(shape y patty)))

These correspond to the assumptions that food is fungible and we can substitute hamburger for
steak if the hamburger is in a patty shape. We generate the new plan by performing the constant-
for-constant substitutions steak23—hamburger26, onion24—onion27, and 0il27—0il25 in steak-and-
onionsl. Executing the new plan involves executing the events of the transformed episode at the
prescribed times, corresponding to this “recipe”:

Slice an onion while heating the broiler for one minute. Put burger under broiler for 4
minutes. When burger has been in for 3 minutes, put frying pan on high heat, adding
1 T oil. Add onions to pan, and flip burger under broiler. Stir onions occasionally for
3 minutes, then remove from pan and remove burger from broiler. Serve together.

We project the facts that the hamburger and onions will be cooked, the onion will be in ring shapes,
and the cooking will be a success.

Plan recognition

Part of case-based planning is the assimilation of experience into a usable memory structure. In
the steak-cooking case, the relationships between the actions and goals are not explicit; ascribing
actions to goals (making the relationships explicit) is the function of plan recognition— given a set
of actions, determine the plan (and goals) that they serve. In COOKIE, this is done to a very limited
degree, as this conflicts with the philosophv of reasoning from complete episodes. We allow the
recognition of low-level action aggregates corresponding to subplans that express action groupings
common to a variety of plans. These are expressed as subplan-schemas (corresponding to MOPs)
which allow us to relate actions and goals within an episode. A subplan schema consists of goals,
steps, and tvpe and temporal constraints on the steps. We have, for example, a subplan schema for
frying things; this schema has the goal of cooking some food item and these steps: preparing the
food, heating a pan, oiling the pan, adding the food to the pan, interacting with the food in the
pan, and removing the food from the pan. When COOKIE processes the steak-and-onions episode,
the actions having to do with the onion and pan are used to recognize an instance of a general
frving by mapping the actions in the episode to corresponding steps in the schema (and the “cooked
onion” goal in the episode to the corresponding schema goal). Once we have recognized the frving
subplan here, we allow these parts to be used as a separate episode (for subsequent reasoning) with
the added assumption that using this episode is based on the assumption that the onion cooking
does not interact with the rest of the cooking (which is recognized as a broiling). Since schemas
are only used for recognition (not generation), we can afford to be fairlv non-restrictive with the
steps—describing them in a general way and allowing most to be uptional. This recognition allows
the frying and broiling to be used either together or separatelv: furthermore it gives us an instance
of two subplans that can be coordinated in a single meal by one cook.

Explanation

Explanation in COOKIE is closely related to projection and generation, as explanations are only
generated when an expected state fails to occur—a generated plan fails or a projection proves false
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on execution. The generated explanations can come from two sources. One is the failure of any
transformation or separability assumptions made. Suppose we generate a plan for cooking onions
based on the onion-frying subplan of steak-and-onions. We explicitly know that this plan is based
on underlying assumptions of ingredient fungibility and subplan independence, so if the plan fails,
we can assign ingredient difference and subplan dependence as candidate explanations. The other
source of explanations is the modification of explanations from other cases (as in swaLE [Kass and
Leake, 1988]), which can be used to choose among or make more specific the candidate explana-
tions. The explanation mechanism (z.e., attributing unexpected behavior to causes) in COOKIE is
quite simple, but it allows explanation in the absence of a detailed causal theory. Although these
explanations do not individually provide the predictive power of a causal explanation, combining
evidence from multiple cases could lead to an effective set of predictive features without the need
of deep understanding.

Failure recovery

Repair in COOKIE is case-based—execution-time repair is based on remembering and adapting
repairs to similar problems problems in previous cases. Such repairs are necessary in planning
unless we have either complete prescience or the luxury of being able to “undo” back to a choice
point when something goes wrong. In COOKIE’s domain, we have neither, and often are faced with
problems. The steak-and-onions case had no repairs, but we can use two other cases to illustrate
how repair works. The first case is fried-burger-and-onions; it is similar to the previous steak-and-
onions, but both the burger and onions are fried in the same pan, the onions being added when the
burger is flipped. Due to high fat content, the pan is not oiled for the burger, and the fat released
in cooking the meat is enough to keep the onions from sticking. The other cooking is one of curried
caulifiower, prepared by stir-frying the cauliffiower in 1 T oil, then adding the curry spices for the
last couple of minutes of cooking. When it was prepared, the addition of the spices soaked up all
of the oil in the pan, causing everything to stick. This was repaired by adding 1 T oil and mixing.

Suppose we have frying onions as a goal; furthermore, we generate this recipe from the onion-
frying subplan in fried-burger-and-onions— as in the other burger-and-onions, we separate this
meal into a frying of a hamburger and a frying of onions (based on a non-interfering subgoals) with
a number of shared steps that could be separated. The generated recipe is to slice onions, heat
pan, add onions. stir, remove. When executed, however, the stir fails as the onions stick to the pan.
We use the cauliflower case to repair the plan by adding oil, and note two possible explanations
for the failure; some subgoal interaction in the original cooking (which is true here), and variation
among onions. It doesn’t matter that we cannot tell which is which; whenever we fry onions in the
absence of meat, we will be prepared to add oil.

4  The role of execution in a CIB3 planner

The purpose of planning is to produce instructions to be executed by some actor. The instructions
are a sequence of primitive actions, including information about timing and how progress should
be monitored. The information used in this process bv a case-based planner is experiential; we get
plans for new situations based on what we did in other situations. The subsequent execution of
that plan adds an experience to our knowledge base, as well as providing information for evaluating
and improving our ability to plan. In cookIE, the plans given to the execution monitor are
episodic representations of “doing it again”; the execution monitor controls execution, monitors
expectations, and provides feedback useful in subsequent planning. In this context, plan generation
and execution can be considered as mappings: from an episode to expected behavior for generation,
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and from expected behavior to a real episode for execution.

From episode to expected behavior

Plans are generated in a direct case-based planner by adapting episodes— transformations are
performed on episodes until they match the goals and constraints specified. Basic assumptions
in case-based reasoning are that performing the same actions on the same objects would produce
identical results, and there exist transformations that are equivalence preserving in terms of those
results—if we perform such transformations on these actions, objects, and results, then perform
the actions on the objects, we get these results. The adapted episodes can be seen as “expected
episodes”, and describe the expected behavior of reproducing the described episode.

From expected behavior to episode

Knowing the expected behavior simplifies execution monitoring to a great degree. The actions and
conditions in the expected behavior become observed actions and conditions in the episode when
execution is done, as long as all expectations are met. If expectations are not met, the anomalies
become part of the new episode, and the planner may be invoked to repair the plan. The role of
the execution monitor, then, is to cause actions to be initiated at the expected times (if possible),
monitor all of the conditions given in the episode, and signal expectation failures back to the
planner for possible repair. Expectation failures are labeled as such in the new episode, which will
also include any response to that failure.

Execution in COOKIE

Execution monitoring in COOKIE is provided by DEFARGE!, a dedicated execution monitor that
provides the mechanisms for executing plans, adds episodes to COOKIE’s knowledge base, interacts
with the real-time repair capabilities of COOKIE, and provides feedback to be used in further plan-
ning. DEFARGE provides the mapping from expected to real episodes; it causes plans to be executed
by side-effect. Its input is the episodic representation of the plan—an adaptation of a real episode.
It converts the propositions in the episode into a set of external actions to be directed; starting
events, terminating events, and testing conditions, which are assigned expected times based on the
times in the episode. In execution. DEFARGE gives instructions and receives information from the
external cook. As events terminate and condition tests are reported, the appropriate propositions
(with the actual time information) are added to the episode description. If a test results in an
anomaly (any expectation failure), the information is forwarded to the planner which can prescribe
repairs to be executed and associated with the anomaly.

Since DEFARGE can extract the appropriate tests and expectation from what it is given by
the generator, the amount of reasoning done by the monitor is limited. This is by design—the
role of the monitor is to extract the necessarv information from the plan, interact with the user
and planner, do the necessary accounting (keeping track of time. propagating constraints), and
convert the execution trace to a usable episode. The relative simplicity is enabled by the detailed
information in the episodic representation of the generated plan.

'Named for the notorious Mme. Defarge, who monitored quite a few executions [Dickens, 1859].
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5 Conclusions

\We do not claim that direct use is the only way to use experiential knowledge; it is, however,
one that can be used with minimal domain knowledge and computational overhead. It provides a
computational framework for reasoning in domains where we don’t have detailed, well structured
information and causal models. There is strong evidence that human memory is at least partially
organized around episodes, and that experience can be used in the future in ways unimagined at
the time.

We have only discussed one role for abstraction—in plan recognition we use subplan schemas
to ascribe actions to particular goals and to separate out parts of episodes for later use. Most
CBR systems, by contrast, have abstraction hierarchies as a central feature of the work. In HYPO,
for example, legal cases are viewed at a number of different levels of abstraction [Ashley, 1988|.
In CHEF (as in most CBR systems), allowable transformations are implicit in the abstraction
hierarchy for objects (allowing transformation between objects that share an ancestor in the isa
hierarchy). We do not dispute the usefulness of such abstractions; we simply claim that they are
inadequate. Unless we have precomputed all useful abstractions, direct case manipulation is still
necessary. Similarly, unless we can somehow encode transformations as a hierarchy that reflects
the context-sensitivity of their applicability, we will need to deal with explicit transformation sets.
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