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Abstract

The efficacy of antidepressant treatment for depression is controversial due to only modest 

superiority demonstrated over placebo. However, neurobiological heterogeneity within depression 

may limit overall antidepressant efficacy. We sought to identify a neurobiological phenotype 

responsive to antidepressant treatment by testing pretreatment brain activation during response to, 

and regulation of, emotional conflict as a moderator of the clinical benefit of the antidepressant 

sertraline versus placebo. Using neuroimaging data from a large randomized controlled trial, we 

found widespread moderation of clinical benefits by brain activity during regulation of emotional 
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conflict, in which greater down-regulation of conflict-responsive regions predicted better sertraline 

outcomes. Treatment-predictive machine learning utilizing brain metrics outperformed a model 

trained on clinical and demographic variables. Our findings demonstrate antidepressant response is 

predicted by brain activity underlying a key self-regulatory emotional capacity. Leveraging brain-

based measures in psychiatry will forge a path toward better treatment personalization, refined 

mechanistic insights, and improved outcomes.

Trial Registration—Establishing Moderators and Biosignatures of Antidepressant Response for 

Clinical Care for Depression (EMBARC),

Introduction

Major depression is a common, chronic and disabling medical condition1, whose treatment 

mainstay over the past four decades has been monoaminergic antidepressant medications2. 

As a result, roughly one in eight in the US takes an antidepressant3. Nonetheless, large meta-

analyses have found only a small overall advantage of antidepressants over placebo 

(Cohen’s d~0.3) when used in an unselected population of depressed patients, with clinical 

significance only in the most severe patients45–8 – a severity level the vast majority of 

depressed patients never reach1. The small advantage of antidepressants over placebo has led 

to a prevalent view that these drugs are not effective in the treatment of depression4. An 

alternative explanation, however, is that the drugs are effective for at least some individuals, 

but the degree of neurobiological heterogeneity inherent to the diagnosis of depression9 

diminishes overall rates of efficacy. Put differently, it may be that for some patients with a 

particular neurobiological phenotype, antidepressants are clearly superior to placebo, while 

for others there is no differential benefit10. Objective measures that indicate for whom 

clinically significant superiority of antidepressants over placebo will be observed and under 

what conditions are termed moderators10. The identification of moderators is a critical first 

step towards personalized medicine for mental disorders. Here, we sought to address this 

central question about the biology of depression and how it impacts antidepressant 

treatment. Specifically, we tested whether the response to, or regulation of, emotional 

processing – a neural function relevant for depression – could elicit phenotypic brain 

characteristics that differentially predict treatment outcome with an antidepressant versus 

with placebo (i.e. moderate the clinical effect).

The ability to respond to, and regulate, brain responses to conflicting emotional cues is a 

critical component of wellbeing11–13. Emotional conflict engages cognitive and emotion-

related brain circuitry, including the lateral prefrontal cortices, anterior cingulate, insula and 

amygdala14–16. Conflict can be regulated dynamically11,15,16, a process that engages the 

rostral anterior cingulate and dampens activity in the conflict-responsive regions noted 

above15–17. Patients with a range of emotional disorders (e.g. depression, generalized 

anxiety, panic or bipolar disorder) have perturbations in their ability to regulate conflict-

related brain activity18–22, which mirrors the broad disturbance in emotional self-regulatory 

capacities in these disorders. This conflict-regulatory capacity has also been hypothesized to 

be of direct relevance to antidepressant treatment efficacy23. Thus, neuroimaging this 

process may yield observable patterns of brain activity that discriminate likelihood of 

subsequent favorable antidepressant response, thereby yielding both mechanistic insight and 
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predictive biomarkers. Here, we sought to determine whether variation in treatment outcome 

amongst depressed patients reflects individual brain response patterns to emotional conflict, 

and/or in the individual’s ability to regulate conflict-related brain activity. Addressing this 

question has the potential for determining: 1) whether a specific medication-responsive 

phenotype exists in depression, 2) what the neural mechanism driving this phenotype may 

be, and 3) to what degree it represents a disease abnormality or an intact capacity.

Prior antidepressant prediction studies examining cognitive or emotional functioning have 

suggested that better adaptive prefrontal activation and lower amygdala responses to 

emotional cues predict better treatment outcome24–27. We therefore hypothesized that 

response to antidepressant treatment, compared to placebo, will be moderated by an intact 

neural capacity for managing emotional conflict. Unfortunately, all prior studies lacked a 

placebo control arm, which is a critical limitation. Thus, it is unknown whether prior 

findings are specific to medication effects (i.e. may moderate between antidepressants and 

placebo) or are non-specifically predictive across medication and placebo interventions. For 

example, extensive prior work using electroencephalography (EEG) has found that rostral 

anterior cingulate theta power is predictive of antidepressant treatment outcome28. However, 

analysis of data from the Establishing Moderators and Biosignatures of Antidepressant 

Response in Clinic Care (EMBARC) study29, from which we draw our neuroimaging data, 

found that cingulate theta power was equally and non-specifically predictive of outcome 

with either an antidepressant or placebo. Prior work also suggests that treatment predictive 

brain signals often do not differ between patients and healthy controls (i.e. do not 

demonstrate diagnosis-wise differences)24,25,30. As such, we also compared our moderators 

between depressed patients and controls.

To test our hypothesis, we examined functional magnetic resonance imaging (fMRI) data on 

a previously characterized emotional conflict task15,16 as part of EMBARC29. This is the 

largest neuroimaging-coupled placebo-controlled randomized clinical trial (RCT) in 

depression to date, and the only one utilizing fMRI measures. EMBARC randomized 309 

medication-free depressed outpatients to receive either the selective serotonin reuptake 

inhibitor (SSRI) sertraline or placebo for eight weeks (supplementary figure 1). In this 

unique RCT, analysis of pre-treatment neuroimaging data for moderators was done in a full 

intent-to-treat framework across the entire brain. Doing so minimizes potential for bias and 

maximizes the likelihood of replicating effects. Individual-level prediction of treatment 

outcome was furthermore assessed using a cross-validated machine learning analysis, also 

on whole-brain data, in order to test the potential for this brain metric to be developed in the 

future into a potentially useful prognostic tool.

Results

Overall effect of sertraline versus placebo

As expected from prior meta-analyses6,7, a linear mixed model on our primary clinical 

outcome (Hamilton Rating Scale for Depression (HAMD17)) across the entire EMBARC 

sample revealed a small advantage of sertraline (n=122) over placebo (n=129) (linear mixed 

model treatment arm × time effect: F(1,1471)=4.6, p=0.032; Cohen’s d=0.27, 95% 
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confidence intervals = 0.02, 0.52), consistent with expectations from prior meta-analyses45–8 

(figure 1; supplementary figure 2).

Emotional conflict task behavioral effects

We next assessed the reaction times from the emotional conflict task to verify the expected 

patterns of effects. As detailed in prior work15,16, incongruent trials induce a conflict effect 

between the facial affect (the target of detection) and the incongruent overlaid emotional 

word, inducing a slow down in reaction times relative to congruent trials where the facial 

affect and word reflect the same emotion. In this task, emotional conflict can be regulated on 

a trial-to-trial basis when conflict trials are preceded by other conflict trials. That is, while 

emotional conflict results in slowing of reaction times, this effect can be mitigated in 

incongruent trials that follow incongruent trials (iI trials), compared to incongruent trials that 

follow congruent trials (cI trials)15,16. This trial-to-trial adaptive regulation of emotional 

conflict reflects an active process by which the brain increases emotional control in response 

to prior trial conflict, which then benefits regulation of emotional conflict on the subsequent 

trial (captured by the post-incongruent incongruent (iI) minus post-congruent incongruent 

(cI) contrast; see supplementary methods). The task produced the expected overall 

behavioral effects. Conflict resulted in a reaction time slowdown (I-C difference: M 58.3ms, 

SD 40.8; one-sample t-test t=25.6, p<0.001, Cohen’s d = 1.43, 95% confidence intervals = 

1.25, 1.60), and conflict regulation resulted in mitigation of that slowdown (iI-cI difference: 

M=−16.6ms, SD 48.4; t=6.1, p<0.001, Cohen’s d = −0.34, 95% confidence intervals = 

−0.47, −0.22).

Emotional conflict task main effects on brain activation

We began our investigation of the imaging data by examining task-dependent main effects 

across the entire randomized depressed sample to verify the task was inducing the expected 

patterns of brain activity. As expected from prior work16, the main effect of the brain 

response to conflict (voxel level one sample t-test of incongruent minus congruent (I-C) 

contrast values with voxel level false discovery rate (FDR) correction of q < 0.05 within 

whole brain gray matter mask optimized to study sample (see Methods); supplementary 

table 3) was characterized by robust activation of the conflict response network, including 

the dorsomedial and dorsolateral prefrontal cortices, ventrolateral prefrontal cortex, and 

anterior insulae. Deactivation was observed in the ventromedial prefrontal cortex and 

anterior medial prefrontal cortex as well as the posterior cingulate, precuneus, hippocampus, 

and parahippocampal gyri.

We next assessed brain response to the regulation of emotional conflict, which in this task 

occurs via an implicit process when conflict trials are preceded by other conflict 

trials11,13,15,16 and results in a dampening of activation in conflict-responsive regions (noted 

above) and, in healthy individuals, an increase in activation in the rostral cingulate and/or 

ventromedial prefrontal cortex15,16. This conflict regulation-related rostral cingulate 

engagement has been demonstrated to be absent in major depression31, even in the absence 

of a deficit in conflict-regulatory behavior. Consistent with prior work, we observed a robust 

and widespread dampening of activation across the entire conflict response network 

(including the dorsal cingulate, dorsomedial and dorsolateral prefrontal cortex, anterior 
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insulae, and amygdalae; voxel level one sample t-test of contrast values for iI vs. cI trials 

with voxel level FDR correction of q < 0.05 within whole brain mask; supplementary table 

4) when contrasting activation for iI vs cI (iI-cI). Notably, we found no evidence for a 

significant increase in activation in the rostral cingulate or ventromedial prefrontal cortex for 

the contrast of iI vs. cI trials, consistent with prior work noting a deficit in this response in 

major depression31.

Relationships between emotional conflict regulatory behavior and brain activity

Prior work has demonstrated that individual differences in emotional conflict regulatory 

behavior (i.e. the difference in reaction times for iI-cI trials, in which values are typically 

negative due to the mitigation of the conflict effect occurring on iI trials) scale with patterns 

of brain activity during the iI-cI contrast20,31, reflecting a coherent relationship between 

brain and behavior in this context. We therefore attempted to utilize these prior demonstrated 

brain-behavior relationships between individual differences in emotional conflict regulatory 

behavior and concomitant brain activation to better ground any observed moderating effects 

of brain activation on sertraline vs. placebo responses in a maximally informative context. In 

other words, understanding how potential moderating patterns of brain activation relate to 

successful (or unsuccessful) performance of this paradigm provides greater inferential power 

regarding their behavioral significance. Thus, we examined how individual differences in 

emotional conflict regulation behavior (individual subject mean reaction time differences for 

iI-ci trials) related to whole brain activation patterns during the iI-cI contrast across the 

entire randomized depressed sample, controlling for site/scanner effects. Utilizing a voxel 

wise robust linear model to relate individual subject iI-cI reaction time differences to 

individual’s iI-cI brain activation contrast values, controlling for scanners, we observed that 

better emotional conflict regulation (more negative iI-cI mean reaction time differences) was 

positively associated (whole brain voxel level FDR corrected q’s < 0.05 for iI-cI reaction 

time robust linear model coefficient) with a greater dampening (i.e. more negative iI-cI 

contrast values) of activation in regions of the conflict response network, including the 

dorsal cingulate, dorsomedial and dorsolateral prefrontal cortices, and anterior insulae 

(supplementary table 5). In contrast, an anterior region of the ventromedial prefrontal cortex 

showed the opposite effect, such that increasing activation (i.e. less negative and/or more 

positive iI-cI contrast values) was associated with better behavioral regulation of emotional 

conflict (i.e. more negative iI-cI mean reaction time differences). This finding parallels prior 

work demonstrating a unique role of ventral prefrontal activation in mediating successful 

emotional conflict regulation15,16. Thus, more successful emotional conflict regulation 

behavior in major depression is associated with a more pronounced canonical (i.e. healthy) 

emotional conflict regulatory neural phenotype, which is characterized by dampening of the 

conflict response network and engagement of the ventral prefrontal cortex15,16.

Emotional conflict moderators of treatment outcome

We next assessed our two a-priori brain and behavioral measures of interest for capacity to 

moderate antidepressant treatment response: the response to conflict (I-C contrast; figure 2a) 

as well as the trial-to-trial regulation of conflict-related brain activation (iI-cI contrast). The 

most striking results came when examining emotional conflict regulation (iI-cI), and thus are 

presented first. Statistically significant moderation effects (whole brain voxel level FDR 
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corrected q < 0.05 for the treatment arm × time × brain activation linear mixed model 

interaction effect) were observed in canonical conflict-response regions including the 

bilateral dorsolateral prefrontal and frontopolar cortices, dorsal anterior cingulate and insula, 

as well as the hippocampus, visual cortex and cerebellum (figure 2b; supplementary tables 

7–10). To easily convey some of the linear mixed model results, we divided the depressed 

sample using a median split based on iI-cI activation levels for several brain regions (i.e. as 

an illustrative but not a statistically meaningful split). Doing so revealed that a more 

favorable effect of sertraline over placebo on HAMD17 symptom reductions was evident for 

individuals who better dampened activation during conflict regulation in regions such as the 

dorsal anterior cingulate (figure 3a), frontopolar cortex (figure 3b), and anterior insula 

(figure 3c) during emotional conflict regulation (see also supplementary figure 3). Many of 

these significant moderation effects overlapped (particularly in the dorsal cingulate, 

dorsolateral prefrontal cortices, anterior insulae, and frontopolar cortices) with the 

significant task effect for emotional conflict regulation as well as the significant brain-

behavior relationships between emotional conflict regulatory behavior and task-related 

activation (see figure 4 for the conjunction of brain maps and supplementary figure 4 for the 

union of brain maps; all utilized whole brain voxel level FDR-corrected q < 0.05 effect 

maps). Moreover, a comparison of whole-brain moderation effects for brain activity during 

iI and cI conditions separately (i.e. linear mixed model F statistics for the treatment arm × 

time × brain activation interaction for iI and cI activation separately) revealed that the 

majority of iI-cI moderation effects (5,895 of 8,769 voxels) were statistically stronger (i.e. 

had larger F statistics for the treatment arm × time × brain activation effect) for brain activity 

during the iI relative to the cI condition (see Supplementary Figure 5 for a brain image 

comparison of statistical moderation effects), particularly in the anterior insula, dorsal 

cingulate/dorsomedial prefrontal cortices, and dorsolateral prefrontal cortices. Results for all 

clusters are reported in supplementary tables 7–10. Thus, we found strong support for our 

hypothesis that greater reductions in HAMD17 with sertraline versus placebo will be 

moderated by better brain regulation of emotional conflict. Interestingly, the direction of the 

fMRI response in these sertraline-responsive patients was consistent with, and for some 

patients of greater magnitude, as that seen in healthy individuals (figures 3a–c), indicating 

these characteristics likely represent an intact capacity. Unlike brain activity, there was no 

significant moderation effect of iI-cI reaction time differences on HAMD17 symptom 

reductions (treatment arm × time × reaction time linear mixed model effect: F=0.48, 

p=0.49).

Interestingly, we found no evidence that activation in the rostral anterior cingulate during 

conflict regulation moderated treatment outcome (whole brain voxel FDR corrected q’s > 

0.05). However, we found that iI-cI activation in the rostral anterior cingulate predicted 

outcome similarly across both arms (whole brain voxel level FDR corrected q’s < 0.05 for 

time × brain activation effect from linear mixed model on HAMD17 symptom reductions; 

supplementary table 10). In this case, lower regulation-related iI-cI activation was associated 

with larger HAMD17 symptom reductions across both arms (supplementary figure 6).

In our second a-priori brain measure of interest, responses to emotional conflict (I-C 

contrast) also yielded whole-brain significant moderation effects (whole brain voxel level 

FDR corrected q’s < 0.05 for the treatment arm × time × brain activation linear mixed model 
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interaction effect), albeit in vastly fewer regions than the iI-cI contrast, and not in those 

typically associated with response to conflict (supplementary figure 7 and supplementary 

table 11). I-C reaction time differences moderated outcome (treatment arm × time × reaction 

time interaction effect from linear mixed model: F=6.0, p=0.014). However, I-C reaction 

time differences did not yield a significant interaction with time on HAMD17 symptom 

scores within either arm alone (time × reaction time interaction effects from linear mixed 

model within each treatment arm separately: F’s<1.7, p’s >0.19).

Individual level prediction through machine learning analysis

To assess the ability of emotional conflict regulation-related activation to predict treatment 

outcome at the level of individual patients, we used Relevance Vector Machines (RVM) to 

build a regression model for the prediction of pre- minus post-treatment change in HAMD17 

using iI-cI activation (see training and cross-validation approach in supplementary figure 8). 

This was done in a data-driven manner by using a parcellation of the cortex and subcortex, 

and 10×10-fold cross-validation for prediction performance evaluation, separately for each 

treatment arm. An RVM model trained on sertraline outcome yielded significant cross-

validated prediction of observed treatment change scores (correlation between model-

predicted HAMD17 changes and observed HAMD17 changes: r=0.49, p<0.001, permutation 

testing-verified using 1000 permutations p<0.001; figure 4a). When applied to the placebo 

arm, however, the sertraline-trained model did not yield a significant prediction of HAMD17 

change (correlation between model-predicted HAMD17 changes and observed HAMD17 

changes: r=−0.06, p=0.48; figure 5b). Moreover, prediction of sertraline outcome was 

significantly greater than prediction of placebo outcome (Fisher’s z test for difference in 

correlation strengths: z=4.5, p<0.001).

Interestingly, an RVM model trained on iI-cI brain activation data in the placebo arm to 

predict placebo outcome did not yield significant correlations between model-predict 

symptom changes and observed symptom changes in either the placebo or sertraline arms 

(r’s = 0.11, p’s>0.20; supplementary figure 9). Thus, the model developed on sertraline 

outcome reflects a sertraline-specific signal that explains a meaningful percentage of 

variance in treatment effects, separate of treatment effects that include (but are not limited 

to) placebo responses which are inherent to both treatment arms32.

Regional weights driving the sertraline-predicting model are shown in figure 5c, and 

demonstrate a similar spatial pattern to that of the whole-brain moderation analysis in Figure 

1b. Though positive and negative signs on feature weights cannot be easily interpreted as 

reflecting a per unit positive or negative relationship with treatment response, respectively, 

due to the combinatorial nature of the model, the absolute magnitude of the weights gives an 

indication of the degree of “importance” of that feature in predicting the outcome measure. 

Features with larger weights thus contribute more to the model predicted outcome.

The unique value of iI-cI activation in predicting sertraline outcome was likewise seen in 

comparison to the much less accurate prediction of outcome using I-C activation, as also 

expected from the mixed model results above (correlation between symptom change 

predicted by RVM model trained on I-C contrast values and observed symptom changes: 

r=0.003, p=0.98; Fisher’s z test comparing correlation between I-C model-predicted 
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symptom changes and observed symptom changes versus iI-cI model-predicted symptom 

changes and observed symptom changes; z=4.0, p<0.001; Figure 5d,e). Hence, the process 

by which the brain regulates, but not responds to, emotional conflict is what defines the 

drug-sensitive phenotype within the broad clinical diagnosis of depression. This result 

argues, as well, against overfitting having occurred in the iI-cI analysis, as both analyses 

include the same number of brain activity features, yet yielded drastically different results.

Relationship of treatment-predictive emotional conflict regulation signals with clinical 
severity measures and patient-control differences

In order to ascertain whether our findings reflected components of disease severity, we 

correlated conflict regulation-related brain activity in the iI-cI contrast with several measures 

of baseline clinical severity, including our HAMD17 primary measure, the Quick Inventory 

of Depressive Symptoms (QIDS)33, the Spielberger State-Trait Anxiety Inventory (STAI)34, 

as well as the anxious arousal, anhedonic depression and general distress subscales of the 

Mood and Anxiety Symptom Questionnaire (MASQ)35. However, no significant 

relationships survived Type I error correction (all whole brain voxel level FDR-corrected 

robust linear model coefficient q’s > 0.05 relating each symptom scale score to iI-cI contrast 

values, controlling for scanners) for each scale, providing no evidence that our treatment-

moderating brain activation findings are simply a marker of clinical severity. Moreover, the 

sertraline RVM model itself did not show significant relationships with clinical severity, as 

each individual’s model-predicted HAMD17 symptom change was not correlated with 

baseline HAMD17, QIDS, STAI or MASQ subscale scores (r’s<0.10, p’s>0.12).

We also found no significant differences between depressed patients (as a whole) and 

healthy controls in conflict regulation-related brain activation (whole brain threshold free 

cluster enhancement with 5000 permutation tests: p’s > 0.05). Likewise, when applying the 

sertraline predictive RVM model to iI-cI activation data from healthy controls, we did not 

find any significant difference in the degree to which the RVM model pattern was expressed 

(two-sample t-test of iI-cI RVM model predictions for depressed vs. healthy controls: 

t=0.08, p=0.93). Thus, the treatment-predictive emotional conflict regulation phenotype was 

not significantly related to either the diagnosis of depression or its clinical severity.

Finally, using brain activation to characterize the degree to which an individual manifests a 

sertraline-responsive phenotype may not be feasible in practice if lower-cost measures such 

as clinical severity scores, emotional conflict task behavior, demographic variables, or 

historical factors like childhood trauma exposure36 could usefully predict outcome. This did 

not prove to be the case, however, as entering all of these into an RVM analysis did not yield 

significant prediction of HAMD17 symptom changes with sertraline (correlation between 

demographic/clinical severity model-predicted HAMD17 changes and observed HAMD17 

changes: r=0.08, p=0.39). The relationship between demographic/clinical severity model-

predicted symptom changes and observed symptom changes with sertraline was also 

significantly weaker than the relationship between iI-cI brain activation-based RVM model-

predicted symptom changes and observed symptom changes (Fisher’s z test; z=3.4, 

p<0.001).
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Discussion

We identified a medication-responsive neural phenotype within the broader clinical 

diagnosis of depression, which was related to the degree to which the brain could adaptively 

regulate emotional conflict above and beyond the brain’s response to conflict itself. It was 

also a better predictor of treatment outcome than clinical and behavioral metrics alone. 

Moreover, we identified this phenotype in both linear mixed model moderation analyses and 

at the individual patient level using cross-validated sparse machine learning models.

Together, these findings delineate a specific neurobiological profile driving whether a patient 

will respond to an antidepressant differently from placebo, and they contradict assertions 

that antidepressants are universally ineffective. Rather, our findings argue that heterogeneity 

in disease mechanisms inherent in the clinical definition of depression obscures the detection 

of antidepressant efficacy defined by a critical treatment-relevant phenotype, and that 

mechanistically meaningful stratification may be possible in depression by relating 

biological characteristics to placebo-controlled treatment outcome. Indeed, we found no 

evidence that the treatment-predictive phenotype could be identified if simply comparing 

emotional conflict regulation in patients and controls or examining clinical severity 

differences between patients. This is consistent with prior non-placebo-controlled treatment 

predictive efforts in depression, which similarly note no group differences in treatment-

predictive neural signals 24,25,30. As such, despite no evidence for differentiating between 

patients and controls, our findings are of clinical importance as they illustrate how the 

efficacy of an intervention for depression may be strongly influenced by individual 

neurobiological differences between patients.

Although prior findings and theoretical considerations regarding emotional conflict 

regulation (and its behavioral and neural deficits) in depression have focused primarily on 

the rostral/ventral ACC and its lack of activation in response to emotional conflict 

regulation31, the current findings indicate the most treatment-relevant aspects of the ongoing 

neurocircuitry processes mediating regulation of emotional conflict in major depression do 

not necessarily reflect this prior theoretical framework. Moreover, we detected no functional 

brain differences between depressed individuals and healthy comparison subjects during 

emotional conflict regulation, which diverges with prior findings for a rostral/ventral ACC 

activation failure31. However, the healthy comparison group utilized here was much smaller 

in number compared to individuals with major depression, which may have limited power to 

detect such differences, if present. Taken together, the lack of activation differences observed 

here as well as the fact that dampening of the conflict response network during conflict 

regulation was the most relevant to differentiating subsequent antidepressant vs. placebo 

responses (and not increasing activation in the rostral/ventral regions of the ACC and 

prefrontal cortex) suggests that this prior theoretical and neurocircuitry framework regarding 

emotional conflict regulation in major depression may need to be revised to better account 

for the current findings in a much larger sample with a rigorous randomized clinical trial 

methodology. We therefore recommend that the theoretical and neurobiological 

understanding of brain emotional conflict regulation abnormalities in depression continue to 

be probed utilizing large samples with roughly equivalent groups of patients and healthy 

comparison subjects, all acquired on the same scanner setup, and with exploration of how 
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clinical heterogeneity in the patient population may contribute to heterogeneity in neural 

phenotypes.

The impact of our conclusions is further reinforced by the size and methodological rigor of 

EMBARC, which is the only neuroimaging-coupled placebo-controlled antidepressant RCT 

designed for identification of moderators to date, as well as the whole-brain data-driven 

intent-to-treat framework used for all of our analyses. We took this whole-brain approach 

given the uniqueness of EMBARC (thus minimizing the potential of bias in reporting 

restricted results) and because it was unknown whether prior non-placebo-controlled 

treatment prediction findings would be likely moderators or nonspecific predictors across 

both arms. This point is illustrated, for example, by our rostral anterior cingulate findings, as 

noted below. Likewise, we complemented voxel-wise linear mixed model analyses with 

whole-brain cross-validated machine learning analyses to underscore the potential future 

clinical utility of this metric.

The mechanistic insights into this sertraline-responsive depression phenotype tie in more 

broadly to a specific aspect of self-regulatory emotional capacity. Regions such as the 

dorsolateral prefrontal cortex and dorsal anterior cingulate are responsive to both emotional 

and non-emotional conflict 14,15, and similar trial-to-trial regulation of emotional and non-

emotional conflict occurs and involves reduction of activation in dorsal anterior cingulate 

conflict signals 37. Hence, it may be that greater trial-to-trial regulation of any type of 

conflict underpins the sertraline-responsive phenotype. Future work in this area should 

attempt to differentiate whether the treatment-predictive conflict regulatory dampening 

observed here is specific to emotional conflict vs. general conflict processing, which 

unfortunately could not be ascertained with the current design. The specificity of this 

predictive signal to sertraline vs. other antidepressants (or other empirically-supported 

treatments such as psychotherapy or brain stimulation) is also an area of high priority for 

future investigations. Furthermore, the fact that the regulation of emotional conflict much 

more robustly moderated treatment outcome relative to overall response to the conflict itself 

suggests strongly that it is the specific process of adaptive regulation that matters, rather than 

conflict processing per se. As we found no evidence that emotional conflict regulation 

behavior (i.e. reaction times) moderates treatment outcome, this may be due to brain 

activation being a better assay of the relevant mechanisms relative to behavior (consistent 

with similar prior findings, e.g. 27), and the fact that activity across multiple regions together 

contribute to single behavioral measures. These findings also delineate a particular mental 

capacity, and associated brain structures, as targets for development of novel treatments. 

These findings raise the intriguing scenario that converting a sertraline-nonresponsive 

patient into a sertraline-responsive patient may be possible if aspects of the brain’s 

emotional conflict regulation capacity can be improved by new medications, brain 

stimulation, behavioral training, or psychotherapy.

Interestingly, not all aspects of emotional conflict regulation-related activity moderated 

between sertraline and placebo. Activation in the rostral anterior cingulate non-specifically 

predicted outcome independently of treatment, which may relate to the shared placebo 

component of both interventions or natural patterns of recovery over time. This is consistent 

with resting EEG studies, including using EMBARC data, as well as neuroimaging work 
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across a wide range of interventions 28. Moreover, EEG work in non-placebo-controlled 

studies implicated this region in treatment prediction, but subsequent efforts found that it 

similarly predicted outcome with both medication and placebo 32,38. In fact, our non-specific 

predictive effect partially overlapped with the cluster demonstrating non-specific prediction 

in the EEG analyses 32.

In future work, it will be important to replicate the current findings, which is essential to 

maximizing their potential clinical utility for biomarker-informed treatment prediction 

efforts. It is also important to determine the degree to which our findings generalize to other 

antidepressants or other forms of evidence-based treatment such as psychotherapy or brain 

stimulation, as well as to patients with multiple medications (i.e. patients here were 

medication-free). Importantly, as EMBARC recruited individuals without a history of 

antidepressant treatment failures in order to maximize power to detect treatment moderation 

effects, these findings may not necessarily generalize to all individuals with major 

depression, especially those with a prior history of failing one or more adequate 

antidepressant trials. Regarding methodological rigor, additional work should be done to 

assess and optimize test-retest reliability of emotional conflict regulation signals in 

depressed patients, which was outside the scope of this study. Moreover, we propose that 

ultimate widespread clinical application of our moderation signals will require use of EEG 

instead of fMRI – a transition encouraged by similar normative spatial patterns during 

conflict regulation in EEG as seen in fMRI 39–42. Thus, future studies incorporating multi-

modal brain assessments of emotional conflict regulation with additional design components 

facilitating replication of the current findings and identification of sertraline-specific 

predictive effects vs. those specific to other forms of treatment (or those that predict 

outcomes for multiple treatment modalities) will continue to advance this body of 

knowledge to maximally positively impact clinical care. For example, one potential clinical 

application could be in deciding whether to continue further medication trials after initial 

failure, or to switch to treatments with putatively distinct mechanisms of action (e.g. 

repetitive transcranial magnetic stimulation (rTMS), electroconvulsive therapy, or 

psychotherapy). Typically, patients undergo iterative rounds of pharmacological treatment 

prior to advancing to a treatment modality such as rTMS 43,44, leading to substantial 

morbidity and economic cost. More rapidly advancing patients with an antidepressant non-

responsive brain phenotype to even costly interventions, such as rTMS, may thus make both 

clinical and financial sense43,44, while additional medication trials may be better for patients 

with an antidepressant responsive phenotype. It is therefore noteworthy that the large-scale 

studies of rTMS treatment for depression have specifically enrolled medication-resistant 

patients, and showed benefit of real over sham rTMS 45,46. More broadly, however, it may 

also be that a brain-based test that identifies an individual as having a medication-responsive 

brain phenotype may serve to encourage patients to seek medication treatment in the first 

place, and decrease the stigma associated with mental illness47.

In sum, these findings advance a mechanistic brain profile of depression that augurs well for 

the possibility of an effective stratification of an otherwise heterogeneous and solely 

clinically defined population into segments likely or unlikely to respond to a common 

antidepressant treatment. While other measures will no doubt further improve this 

stratification and aid in its broader clinical application, our work argues for a critical 
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transition: from questioning whether antidepressants are effective to focusing on identifying 

the most robust combination of individual predictors that will shift clinical care in psychiatry 

to a neuroscience-informed personalized approach48.

Methods

Participants and treatment

The study methods and participant characteristics are presented here in brief, as well as a 

publication detailing the rationale and design of EMBARC 29. Written informed consent was 

obtained from each participant under institutional review board-approved protocols at each 

of the four clinical sites (University of Texas Southwestern Medical Center, Massachusetts 

General Hospital, Columbia University, and University of Michigan). Data reported here are 

based on EMBARC participants who were randomly assigned to sertraline or placebo during 

stage 1 of the trial (N=309 total). This sample size was based on effect size estimates for 

sertraline treatment from prior studies. Key eligibility for the study included being 18–65 

years old, having major depression as a primary diagnosis by the Structured Clinical 

Interview for DSM-IV Axis I Disorders 49, at least moderate depression severity with a score 

≥14 on the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR) at 

screening and randomization, a major depressive episode beginning before age 30, either a 

chronic recurrent episode (duration ≥ 2 years) or recurrent MDD (at least 2 lifetime 

episodes), and no antidepressant failure during the current episode. Exclusion criteria 

included: current pregnancy, breastfeeding, no use of contraception; lifetime history of 

psychosis or bipolar disorder; substance dependence in the past six months or substance 

abuse in the past two months; unstable psychiatric or general medical conditions requiring 

hospitalization; study medication contraindication; clinically significant laboratory 

abnormalities; history of epilepsy or condition requiring an anticonvulsant; electroconvulsive 

therapy (ECT), vagal nerve stimulation (VNS), transcranial magnetic stimulation (TMS) or 

other somatic treatments in the current episode; medications (including but not limited to 

antipsychotics and mood stabilizers); current psychotherapy; significant suicide risk; or 

failure to respond to any antidepressant at adequate dose and duration in the current episode. 

In addition, 40 medically and psychiatrically healthy individuals were recruited across the 

four sites and assessed in a similar manner as the patients.

Clinical trial

EMBARC used a double-blind design, wherein participants were randomized to an 8-week 

course of sertraline or placebo. Randomization was stratified by site, depression symptoms 

severity, and chronicity using a block randomization procedure. Sertraline dosing began at 

50mg using 50mg capsules and was increased as tolerated if the patient did not respond until 

a maximum of 200mg29. A similar dosing approach was used for placebo capsules. The trial 

was registered on ClinicalTrials.gov as: Establishing Moderators and Biosignatures of 

Antidepressant Response for Clinical Care for Depression (EMBARC), .

Emotional conflict task

This well-characterized paradigm assesses both emotional conflict and emotional conflict 

regulation 15,16. Each trial involved presentation of an emotional face with either a fearful or 
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happy expression, drawn from the set of Ekman & Friesen 50, with an overlaid emotion word 

(“FEAR” or “HAPPY”). Participants were instructed to identify the facial emotion with a 

key press, while trying to ignore the emotion word. The task consisted of 148 trials, with 

stimuli presented for 1000 milliseconds (ms) in a fast event-related design. Interstimulus 

intervals were 3000–5000ms in a pseudo-randomized order counterbalanced for facial 

expression, gender, word, and response button. Stimuli were either congruent (e.g. fearful 

face with “FEAR”) or incongruent (e.g. fearful face with “HAPPY”), and stimuli were 

furthermore balanced to achieve an equal fraction of current and prior trial congruency, 

while ensuring no direct stimulus repetitions. Prior to performance of the task during 

neuroimaging, all participants underwent a practice version to ensure task proficiency was 

reached (minimum 80% accuracy) and the task instructions were understood. The 

neuroimaging task lasted 13 minutes and 14 seconds.

Regulation in the emotional conflict task occurs via an implicit process when conflict trials 

are preceded by other conflict trials 11,13,15,16. That is, while emotional conflict results in 

slowing of reaction times, this effect can be mitigated in incongruent trials that follow 

incongruent trials (iI trials), compared to incongruent trials that follow congruent trials (cI 

trials)15,16. This trial-to-trial adaptive regulation of emotional conflict reflects an active 

process by which the brain increases emotional control in response to prior trial conflict, 

which then benefits regulation of emotional conflict on the subsequent trial (captured by the 

iI-cI contrast). This regulation effect, captured through the same contrast, has also been 

extensively described for non-emotional conflict stimuli 37,51,52. Critically, this contrast 

between post-incongruent incongruent and post-congruent incongruent trial compares brain 

responses to physically identical stimuli (i.e. incongruent trials) that differ only on the 

relative emotional conflict regulatory context in which they come due to prior trial 

congruency, and is furthermore independent of the incongruent versus congruent trial (I-C) 

conflict response contrast. Neuroimaging acquisition parameters are shown in 

Supplementary Table 2.

fMRI preprocessing and first-level modeling

FSL tools were used to preprocess imaging data 53,54. Functional images were first realigned 

to structural images using an affine registration matrix and boundary-based registration 

based upon tissue segmentation as implemented in FSL’s FLIRT, which was concatenated 

with a non-linear normalization of each participant’s T1 image to the Montreal Neurological 

Institute (MNI) 152-person 1 mm3 T1 template using FNIRT from FSL 5.0 to result in a 

single transformation step from individual native functional space to structurally-aligned and 

spatially-normalized template space. Functional images were realigned to the middle volume 

of the run. Nuisance signals corresponding to segmented white matter and CSF were 

regressed out of motion-corrected functional images. A 6 mm full-width half max (FWHM) 

isotropic smoothing kernel was then applied to preprocessed time series images to account 

for individual anatomical variability.

For individual-level analyses for each participant and timepoint, regressors modeling trials 

of interest were convolved with the hemodynamic response function. First-level general 

linear models were estimated in SPM 8 55. Regressors corresponded to zero-duration 
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markers set at the onset of stimuli, which were explicitly categorized by congruency 

(Incongruent or Congruent) and prior trial type (Post-incongruent or Post-congruent) in 

order to model conflict response and regulation effects. This resulted in 4 different trial types 

in total, in addition to nuisance regressors for error trials and post-error trials (when 

applicable) and six motion parameters.

Participant selection and quality control procedures

In order to assure the quality of imaging measures in testing moderation and prediction 

effects, consistent with our prior work in imaging treatment effects56,57, we instituted cutoffs 

for absolute level of motion (root mean square of the absolute level of movement < 4mm 

across the mean of the squared maximum displacements in each of the 6 translational and 

rotational parameters estimated during realignment) during the baseline scans. In addition, in 

order to ensure brain activation measures reflect task-relevant metrics, we also instituted a 

minimum level of behavioral accuracy during completion of the emotional conflict task as 

an additional quality control metric (total accuracy ≥ 80% of trials correct). Functional runs 

at baseline displaying motion higher than our cutoff OR accuracy below the minimum cutoff 

were excluded from group-level analyses.

Sample size selection and power considerations

The EMBARC study was designed to be sufficiently powered to detect an interaction effect 

between treatment arm (sertraline vs. placebo) and a continuous treatment outcome-

predictive marker (brain activation) based upon the following parameters: with a sample size 

of 160 participants in each treatment arm, there is 80% power of a two-sided significance 

test with α=0.05 to detect differences between the correlation coefficients (between the 

marker and the outcome in each treatment group) of a magnitude 0.31. For example, if the 

relationship between the marker (i.e. brain activation) and the outcome (HAMD17) were 

0.31 in the sertraline group and 0 in the placebo group (or 0.41 in the sertraline group and 

0.1 in the placebo group), a sample size of 160 in each treatment arm would be sufficient to 

detect this effect. Given that EMBARC is a hypothesis-generating study and is the largest 

and only placebo-controlled sertraline trial with fMRI measures, there is only indirect 

evidence to support that a difference in correlation coefficients between the predictive 

marker and the outcome in each treatment arm would be expected to be of this or higher 

magnitude. In fact, the magnitude of moderation effect sizes of the sertraline vs. placebo 

effect on a continuous outcome by a continuous measure is largely unknown. However, prior 

studies24–27 examining brain-activation based predictors of treatment response in depression 

(but without a placebo control group, in smaller samples, and/or utilizing a dichotomous 

split of treatment responders and non-responders) have reported effect sizes that are 

moderate-to-large in magnitude, which supports the assumption that the sample sizes 

utilized here are at least sufficient to detect moderation effects of moderate-to-large 

magnitude.

Statistical analyses

All statistical tests undertaken were two-tailed. Where possible (e.g., for clinical moderation 

and treatment arm × time analyses), the normality and homoscedasticity of model residuals 

were plotted and inspected visually for adherence to model assumptions58,59 (linear 
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relationship(s) between predictor(s) and outcomes, model residuals normally distributed 

with equivalent variances across distribution of fitted values, etc.). When this was not 

possible (e.g., for voxel-level moderation analyses), adherence to model assumptions was 

assessed utilizing within-subject extracted average cluster activation values that were 

exported for data visualization purposes. Visual inspection revealed no clear violations of 

model assumptions. Cohen’s d effect size for relevant statistics was calculated according to 

the following methods: a) for two sample mean comparisons, d was calculated as the 

difference in means divided by the pooled standard deviation; b) for one sample t-tests, 

Cohen’s d was calculated as the mean divided by the standard deviation. The confidence 

intervals were calculated as follows: a) for two sample mean comparisons, the 95% 

confidence intervals for Cohen’s d were calculated using the cohen.d.ci function from the 

psych library60 in R; b) for one sample t-tests, the 95% confidence intervals for Cohen’s d 

were calculated according to the following formula: d +/− SE × 1.96 (critical Z value), 

where SE (standard error) = sqrt((1/n)+(d2/2n)).

Assessing the effect of sertraline on depressive symptoms

Using the total sample after quality control procedures for poor quality imaging data, 

repeated measures of HAMD17 total score at baseline, week 1, week 2, week 3, week 4, 

week 6, and week 8 (endpoint) were entered into a longitudinal linear mixed model in IBM 

SPSS version 21.061 along with variables coding for participant, treatment arm, site (four 

centered dummy coded variables, each specifying one of the non-UT Southwestern study 

sites/scanners (Columbia utilized 2 separate scanners) vs. UT Southwestern) and time 

(scaled from 0 to 1) to assess the effect of sertraline vs. placebo on depression symptoms in 

an intent-to-treat framework. Treatment arm was effects coded as −0.5 for placebo and 0.5 

for sertraline. Random effects were specified for the model intercept to account for within-

participant variation in baseline depressive symptom severity. A fixed intercept as well as a 

fixed effect of time, effect of Columbia scanner 1 vs. UT Southwestern site, effect of 

Columbia scanner 2 vs. UT Southwestern site, effect of Massachusetts General Hospital vs. 

UT Southwestern site, effect of University of Michigan vs. UT Southwestern site, interaction 

of time with each of the aforementioned 4 site variables, treatment arm × time, and the 

interaction of treatment arm × time with each of the 4 aforementioned site variables were 

modeled, with the treatment arm × time interaction effect of interest specifying differential 

trajectories in symptom change over time for sertraline vs. placebo while controlling for 

baseline severity (random intercept), non treatment-specific symptom changes (time), 

potential differences in site cohorts, the interactions of site cohorts with non treatment-

specific changes over time, and potential differences in medication effects by site cohort. 

Site variables were centered to yield an interpretable (i.e., grand average) overall treatment 

arm × time effect.

Assessing task effects on brain activity

The entire randomized sample was subjected to a voxelwise one-sample t-test against the 

null hypothesis (activation = 0) for two contrasts of interest: the effect of emotional conflict 

(Incongruent minus Congruent trials) and the effect of emotional conflict regulation (post-

incongruent incongruent trials (iI) vs. post-congruent incongruent trials (cI); iI-cI). We 

constrained all imaging analyses to a search space defined by a whole-brain mask 
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constructed from: a) a 30% probabilistic voxelwise threshold derived from spatially 

normalized, segmented binary gray matter images from an independent sample of healthy 

comparison participants56,57; and b) a conjunction map of adequate signal coverage across 

study scanners constructed by concatenating the binarized individual-level average map of 

all task experimental conditions within participants acquired at each scanner, thresholding at 

a minimum of 50% coverage within each scanner sample, and then conjoining these maps 

across all scanners. Thus, the final search space was a function of both adequate signal 

coverage across all study scanners as well as a probabilistic assignment to the brain’s gray 

matter. At each voxel in this search space, a one-sample t-test was conducted for each 

contrast of interest, and the resultant statistical t-maps were corrected for multiple 

comparisons on the voxel level utilizing a whole-brain (constrained within the search space) 

false discovery rate (FDR) correction with AFNI’s program 3dFDR. Voxels displaying FDR-

corrected Z-values < 1.96 (pFDR < 0.05) were then thresholded and clustered for subsequent 

individual-level extraction and visualization of effects in IBM SPSS version 21.0 61

Assessing brain-behavior relationships for emotional conflict regulation

Individual contrast maps specifying the difference in activation for iI-cI trials were subjected 

to a robust regression62,63 implemented in R64 using the fmri package65. The predictor of 

interest was the mean reaction time difference for each subject for iI minus cI trials from the 

emotional conflict task. Covariates of no interest included four centered dummy variables 

corresponding to scanner (with the scanner at UT Southwestern serving as the non-coded 

reference). Activation at each voxel within a whole brain mask (described above) was 

modeled as a function of an intercept, the grand mean-centered reaction time differences for 

iI minus cI trials, and the four scanner dummy variables. The corresponding model 

coefficients and t statistics were written out in NIFTI format, and a whole brain voxel level 

FDR was utilized to correct for Type I error inflation due to multiple comparisons. Voxels 

displaying FDR-corrected Z-values < 1.96 (pFDR < 0.05) were then thresholded and 

clustered for subsequent individual-level extraction and visualization of effects in IBM SPSS 

version 21.0 61

Assessing baseline brain activation moderation of the sertraline vs. placebo effect

For each contrast of interest (iI-cI and I-C), first-level, spatially-normalized activation 

contrast maps from each individual were loaded into R64 using the fmri package65 (see 

example R syntax available in Supplementary Software). We constrained analyses to a 

search space defined by a whole-brain mask constructed from: a) a 30% probabilistic 

voxelwise threshold derived from spatially normalized, segmented binary gray matter 

images from an independent sample of healthy comparison participants56,57; and b) a 

conjunction map of adequate signal coverage across study scanners constructed by 

concatenating the binarized individual-level average map of all task experimental conditions 

within participants acquired at each scanner, thresholding at a minimum of 50% coverage 

within each scanner sample, and then conjoining these maps across all scanners. Thus, the 

final search space was a function of both adequate signal coverage across all study scanners 

as well as a probabilistic assignment to the brain’s gray matter. At each voxel within this 

search space, the moderating effect of baseline brain activation (mean-centered) was 

examined using a longitudinal linear mixed model implemented in the nlme R package.66 
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Modeled effects included a random and fixed intercept, fixed effects of time, time × 

treatment arm, 4 mean-centered, dummy-coded scanner variables corresponding to: a) 

Columbia University scanner 1 vs. UT Southwestern scanner; b) Columbia University 

scanner 2 vs. UT Southwestern scanner; c) Massachusetts General Hospital scanner vs. UT 

Southwestern scanner; and d) University of Michigan scanner vs. UT Southwestern scanner, 

treatment arm × time × brain activation, and all model variables in interaction with each of 

the 4 site variables. See supplementary table 3 for all variables in the mixed models. The 

effect of interest was the treatment arm × time × brain activation moderation effect from this 

model, controlling for all lower-order and higher-order (i.e. multiplicative) interaction terms 

with each of the scanner variables to fully control for potential effects due to this source of 

heterogeneity. At each voxel, the number of degrees of freedom was individually-defined 

based upon the number of individuals displaying adequate signal coverage at that voxel 

(which tended to be less in areas prone to EPI BOLD signal dropout, particularly for certain 

scanners), with individuals displaying “0” values for activation being removed from the 

analysis. At each voxel, the relevant F tests corresponding to effects of interest were 

transformed to p-values and then z-values to nullify potential statistical variation across 

voxels secondary to varying degrees of freedom and signal coverage. These Z value maps 

for effects of interest were then written out to AFNI .BRIK files using the fmri package, and 

voxel-level FDR-correction within the whole-brain specified search space (see above) was 

conducted using AFNI’s program 3dFDR. Voxels displaying FDR-corrected Z-values < 1.96 

(pFDR < 0.05) were then thresholded and clustered for subsequent individual-level 

extraction and visualization of effects in IBM SPSS version 21.0 61.

Machine learning analyses

Relevance Vector Machines (RVM) were used to build a regression model for the prediction 

of pre- minus post-treatment change in HAMD17 (see example Matlab syntax in 

Supplementary Software). By exploiting an automatic relevance determination prior to 

penalizing unnecessary complexity in the model, RVM is able to automatically determine 

the feature sparsity under a Bayesian evidence framework 67. The effectiveness of the 

popular L1-regularization based sparse learning algorithms 68 depends on the selection of 

regularization hyperparameter to a large extent. Cross-validation on training set has been 

usually used to determine the most appropriate hyperparameter. However, additional 

validation data from the training set are required by cross-validation for hyperparameter 

selection, which is prone to overfitting since fewer training samples can be used for model 

calibration 69. Different from the L1-regularization approaches, all model parameters in 

RVM can be efficiently estimated based on all available training data without the need of 

cross-validation. RVM therefore provides a more accurate estimation of the sparse solution 

compared with other L1-regularization based sparse learning algorithms 70, especially when 

a small training set is available. In the past decades, RVM has demonstrated its strength in 

various fields including EEG classification for brain-computer interface 71 and 

bioinformatics analysis of gene expression data 72,73.

RVM learning was conducted on data from patients who had baseline HAMD17, passed the 

image and task accuracy quality control criteria for the baseline scan, had imaging data at 

baseline, and sufficient whole-brain coverage such that data were available from almost all 
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ROIs for all participants (sertraline N=115, placebo N=122). For participants lacking an 

endpoint HAMD17, multiple imputation by chained equations was conducted in R64 using 

the package mice74. The following observed variables were utilized in order to impute 

endpoint HAMD17 values for missing data via Bayesian regression: baseline HAMD17, 

week 1 HAMD17, week 2 HAMD17, week 3 HAMD17, week 4 HAMD17, week 6 HAMD17, 

baseline Quick Inventory of Depressive Symptoms (QIDS) total score, baseline Mood and 

Symptom Questionnaire subscale scores for Anxious Arousal, Anhedonic Depression, and 

General Distress, Snaith-Hamilton Pleasure Scale (SHAPS) total score, age, years of 

education, gender, and Wechsler Abbreviated Scale of Intelligence (WASI) t-scores for 

Vocabulary and Matrix Reasoning. Extractions were conducted on cortical regions of 

interest (ROIs), defined based on a recently-published cortical parcellation derived from 

applying a combination of local gradient analysis and global signal similarity on an 

independent resting-state fMRI cohort 75. Since functional parcellations typically rely on 

resting-state connectivity patterns, which may or may not adequately describe activity 

patterns in the emotional conflict task, we pooled ROIs from the 200, 400, and 600 region 

parcellations in order to limit parcellation-related specificity. ROIs were mapped to seven 

previously identified functional networks based on the spatial overlap between each ROI and 

each network 75. In addition to these cortical ROIs, subcortical ROIs included striatal76 and 

cerebellar77 parcellations based on the same seven functional networks, amygdala ROIs 78, 

anterior and posterior hippocampal ROIs79 and the thalamus80. We then regressed imaging 

site out of these data using multiple linear regression within the training set at each round of 

the RVM model, and the residualized brain signals were then used for training the model.

A regression model was then built based using RVM learning to predict each individual’s 

pre-minus-post change in HAMD17 scores, wherein the most important ROI features were 

determined under a probabilistic framework by exploiting a separate Gaussian prior with a 

Gaussian likelihood function. All model parameters for controlling the sparsity of regression 

weights were automatically estimated through Bayesian machine learning based on each 

training set. The prediction performance was evaluated by 10×10 cross-validation (see 

supplementary figure 6). Specifically, for 10 repetitions, all participants were randomly 

divided into 10 folds, such that each participant was left out and used as a test set once while 

the remaining nine folds were used as a training set for RVM model learning. Each 

participant was left out exactly once after running each 10-fold cross-validation. By using 

the estimated regression weights of the RVM model, we computed the predicted symptom 

change value for each of the left-out participants by the weighted sum of the all 1235 ROI 

features. After repeating 10-fold cross-validation 10 times, we determined each participant’s 

predicted symptom change by taking the median of the predicted values across each of the 

10 times that participant was left out. Pearson’s correlation coefficient was then computed 

by correlating the predicted symptom changes and the actual symptom changes across all 

participants. The outcome of the RVM was assessed by correlating model-predicted 

HAMD17 change scores with observed/imputed change scores. Significant correlations were 

verified using 1,000 permutations of the RVM modeling conducted by randomly shuffling 

observed/imputed change scores across participants. Specificity of the model prediction was 

tested by applying, at each round of cross-validation, the regression model (with appropriate 

intercepts) to the data from the other treatment arm, which was summarized for each 
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participant by taking the median of the 10 rounds of cross-validation. We conducted similar 

RVM analyses on item-level clinical, historical, demographic and behavioral data to 

determine whether these easier-to-get variables could perform as well as brain activation in 

predicting treatment outcome. Included were the Spielberger State-Trait Anxiety Inventory 
34, the Quick Inventory of Depressive Symptoms 33, the Mood and Anxiety Questionnaire 
35, the Childhood Trauma Questionnaire 36, age, education and I-C and iI-cI reaction time 

and accuracy difference scores.
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Figure 1: 
Response across all patients to sertraline (SER; n=122) versus placebo (PBO; n=129) 

independent of emotional conflict task brain activation. Shown are: (a) predicted HAMD17 

scores from the linear mixed model (treatment arm by time interaction F(1,1471)=4.6, 

p=0.032; Cohen’s d=0.27, 95% confidence intervals = 0.02, 0.52), and (b) remission rates 

(HAMD17 score at study endpoint < 7) (number needed to treat (NNT)=8.4) Note no data 

distributions are present for the bar plots as these are simply point estimates indicating 

percent of sample remitted (HAMD17 < 7) at endpoint. Error bars on line graphs show +/− 1 

standard error of the mean. See Supplementary Figure 2 for a depiction of these data 

utilizing box and whisker plots.
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Figure 2: 
Moderation by emotional conflict regulation-related brain activity between sertraline 

(n=122) versus placebo (n=129). (a) Example congruent and incongruent stimuli. (b) Whole-

brain significant moderation results (color map shows whole brain voxel level false 

discovery rate corrected q < 0.05 effects for the treatment arm × time × brain activation 

interaction effect from the linear mixed model on a template brain surface and in cross-

sectional brain slices of the MNI average anatomical, displayed as FDR z-transformed F 

values, which are thus all positive). Effects by treatment arm for individual peaks are 

reported in supplementary tables 4–6. A=anterior; L=left; I=inferior; P=posterior; R=right; 

S=superior.
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Figure 3: 
Moderation by emotional conflict regulation-related brain activity between sertraline 

(n=122) versus placebo (n=129). (a-c) Shown are: 1) the region of interest whose effects are 

shown (left-hand column). 2) its fMRI signal (iI-cI contrast values) during conflict 

regulation comparing patients below and above the median of fMRI activity in that region, 

as well as healthy individuals for comparison (second column). 3) weekly depression 

severity (predicted HAMD17 scores from the linear mixed models) for patients below and 

above the median of fMRI activity in that region. 4) predicted remission rates (HAMD17 < 7 

at study endpoint) (for patients below and above the median of fMRI activity in that region, 

split by sertraline (SER) and placebo (PBO; third column). Note that this median split is 

utilized to illustrate effects detected by the linear mixed model analyses of brain activation 

as a continuous measure and is not statistically meaningful in itself. 5) pre-minus-post 

predicted symptom change in sliding window 20-patient bin averages illustrates the 

continuous nature of the moderation effect across different degrees of brain activation and 

complement the median split plots (x-axis reflects percentile for the center of the 20-patient 

bin with respect to fMRI signal in the regions noted). Regions shown here are: (a) dorsal 

anterior cingulate (below median group remission NNT=3.4, endpoint symptom difference 

Cohen’s d=0.76), (b) left frontopolar cortex (NNT=3.1, d=0.86), and (c) left anterior insula 

(NNT=5.8, d=0.58). For the box and whisker plots, the center line indicates the median; the 

lower bound of the box indicates the median of the bottom 50% (first quartile), while the top 

bound of the box indicates the median of the top 50% (third quartile); the whiskers indicate 

the lower and upper ends of observed data values within 1.5 times the interquartile range 

below the first quartile (lower whisker) and above the third quartile (upper whisker); dots 

indicate outliers, i.e. observed data points that lie outside the bounds established by 1.5 
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times the interquartile range below the first quartile (dots below the bottom whisker) or 

above the third quartile (dots above the top whisker). For line plots, error bars show +/− 1 

standard error of the mean. See Supplementary Figure 3 for depiction with box and whisker 

plots.
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Figure 4. 
Conjunction of emotional conflict regulation task effect, brain-behavior relationship effect, 

and treatment moderation effect in a) the dorsal cingulate/dorsomedial prefrontal cortex; b) 

the left anterior insula; and c) the right frontopolar cortex. Shown in columns from left to 

right are: 1) the region of interest whose effects are shown (left-hand column); 2) weekly 

depression severity (predicted HAMD17 scores from the mixed models) for patients below 

and above the median of fMRI activity in that region, split by sertraline (SER; n=122) and 

placebo (PBO; n=129). Note that this median split is utilized to illustrate effects detected by 

the linear mixed model analyses of brain activation as a continuous measure and is not 

statistically meaningful in itself (no statistical inference utilized here as to avoid circular 

analyses); 3) continuous relationship between iI-cI fMRI activity (x-axis) in the depicted 

region and iI-cI reaction time behavior differences (y-axis), with a linear trend line, across 

the entire randomized depressed sample to display the positive relationship (no statistical 

test utilized here, as to avoid circular analyses); and 4) mean fMRI activity for iI and cI 

conditions in the depicted region at baseline across the entire randomized sample. For the 

box and whisker plots, the center line indicates the median; the lower bound of the box 

indicates the median of the bottom 50% (first quartile), while the top bound of the box 
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indicates the median of the top 50% (third quartile); the whiskers indicate the lower and 

upper ends of observed data values within 1.5 times the interquartile range below the first 

quartile (lower whisker) and above the third quartile (upper whisker); dots indicate outliers, 

i.e. observed data points that lie outside the bounds established by 1.5 times the interquartile 

range below the first quartile (dots below the bottom whisker) or above the third quartile 

(dots above the top whisker). For line plots, error bars show +/− 1 standard error of the 

mean.
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Figure 5: 
Machine learning selectively predicts response to sertraline (n=122) using conflict 

regulation-related fMRI activity. (a) A machine learing model trained (with 10-fold cross-

validation) on outcome with sertraline using conflict regulation activation (iI-cI) showed a 

strong correlation (r=0.49, p<0.001) between predicted changes in HAMD17 (for 10×10-fold 

cross-validation samples) and observed changes. (b) When applied to patients receiving 

placebo (n=129), the sertraline model failed to predict placebo outcome (r=−0.06, p=0.48), 

illustrating its sertraline-specificity. (c) Non-zero regional weights contributing to the 
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sertraline model. (d) Training a machine learning model on outcome with sertraline (n=122) 

using conflict response activation (I-C) does not yield statistically significant prediction of 

sertraline outcome (r=0.003, p=0.98), and (e) does not yield statistically significant 

prediction (r=−0.12, p=0.19) of placebo outcome (n=129).

Fonzo et al. Page 32

Nat Hum Behav. Author manuscript; available in PMC 2020 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Overall effect of sertraline versus placebo
	Emotional conflict task behavioral effects
	Emotional conflict task main effects on brain activation
	Relationships between emotional conflict regulatory behavior and brain activity
	Emotional conflict moderators of treatment outcome
	Individual level prediction through machine learning analysis
	Relationship of treatment-predictive emotional conflict regulation signals with clinical severity measures and patient-control differences

	Discussion
	Methods
	Participants and treatment
	Clinical trial
	Emotional conflict task
	fMRI preprocessing and first-level modeling
	Participant selection and quality control procedures
	Sample size selection and power considerations
	Statistical analyses
	Assessing the effect of sertraline on depressive symptoms
	Assessing task effects on brain activity
	Assessing brain-behavior relationships for emotional conflict regulation
	Assessing baseline brain activation moderation of the sertraline vs. placebo effect
	Machine learning analyses
	Data Availability Statement
	Code Availability Statement

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4.
	Figure 5:



