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BACKGROUND: Although individual cardiac biomarkers are associated 
with heart failure risk and all-cause mortality in HIV-infected individuals, 
their combined use for prediction has not been well studied.

METHODS AND RESULTS: Unsupervised k-means cluster analysis 
was performed blinded to the study outcomes in 332 HIV-infected 
participants on 8 biomarkers: ST2, NT-proBNP (N-terminal pro-B-type 
natriuretic peptide), hsCRP (high-sensitivity C-reactive protein), GDF-
15 (growth differentiation factor 15), cystatin C, IL-6 (interleukin-6), 
D-dimer, and troponin. We evaluated cross-sectional associations of each 
cluster with diastolic dysfunction, pulmonary hypertension (defined as 
echocardiographic pulmonary artery systolic pressure ≥35 mm Hg), and 
longitudinal associations with all-cause mortality. The biomarker-derived 
clusters partitioned subjects into 3 groups. Cluster 3 (n=103) had higher 
levels of CRP, IL-6, and D-dimer (inflammatory phenotype). Cluster 2 
(n=86) displayed elevated levels of ST2, NT-proBNP, and GDF-15 (cardiac 
phenotype). Cluster 1 (n=143) had lower levels of both phenotype-
associated biomarkers. After multivariable adjustment for traditional and 
HIV-related risk factors, cluster 3 was associated with a 51% increased risk 
of diastolic dysfunction (95% confidence interval, 1.12–2.02), and cluster 
2 was associated with a 67% increased risk of pulmonary hypertension 
(95% confidence interval, 1.04–2.68), relative to cluster 1. Over a median 
6.9-year follow-up, 48 deaths occurred. Cluster 3 was independently 
associated with a 3.3-fold higher risk of mortality relative to cluster 1 
(95% confidence interval, 1.3–8.1), and cluster 2 had a 3.1-fold increased 
risk (95% confidence interval, 1.1–8.4), even after controlling for diastolic 
dysfunction, pulmonary hypertension, left ventricular mass, and ejection 
fraction.

CONCLUSIONS: Serum biomarkers can be used to classify HIV-infected 
individuals into separate clusters for differentiating cardiopulmonary 
structural and functional abnormalities and can predict mortality 
independent of these structural and functional measures.
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Highly active antiretroviral therapy has dramati-
cally reduced morbidity and mortality in people 
with HIV infection, and yet HIV disease remains 

associated with early onset of cardiovascular disease 
(CVD). CVD is a leading cause of death among HIV-
infected people, and similar to the uninfected popula-
tion, heart failure (HF) is a growing source of morbidity. 
The reported prevalence of diastolic dysfunction (DD) 
ranges from 26% to 50% in contemporary HIV-infect-
ed cohorts.1 Although symptomatic pulmonary hyper-
tension (PH) is rare in HIV infection, our group and oth-
ers2,3 have reported elevated pulmonary artery systolic 
pressures in HIV-infected people. DD is a risk factor for 
progression to HF and is also a significant cause of PH.4 
Both DD and PH are strongly associated with all-cause 
mortality among individuals without HIV.5,6

We recently reported2 that biomarkers of inflammation, 
thrombosis, apoptosis, and myocardial injury are elevated 
in HIV-infected people relative to uninfected controls. In 
addition, we found that several of these markers were 
individually associated with both cardiac dysfunction and 
all-cause mortality, independent of traditional CVD risk 
factors and HIV-related factors. However, HF is a heteroge-
neous condition, especially in the setting of HIV infection,7 

where the epidemiology has changed over time with the 
use of effective combination antiretroviral therapy, and 
the pathophysiology seems to be multifactorial.

The heterogeneity of the HF syndrome suggests that 
multiple cardiac biomarkers reflecting different patho-
physiologic pathways and consequences may be needed 
to represent the spectrum of the disease.8 How such bio-
markers inter-relate9 and how to integrate them in risk 
prediction and patient management remains unclear. In 
other settings such as cancer and rhinosinusitis, cluster 
analysis has been used to identify disease subtypes and 
to predict treatment outcomes.10,11 Classifying patients 
beyond traditional risk factors using a biomarker-generat-
ed phenotype could improve diagnosis and determination 
of prognosis and could inform therapeutic strategies.12

In this study, we used an unsupervised cluster 
approach (ie, blinded to the outcome variable) to cat-
egorize participants into separate subgroups based 
on the results of multiple serum biomarkers to obtain 
maximum prognostic ability. We hypothesized that in 
combination, a complementary, parsimonious set of 
biomarkers would identify separate clusters of risk for 
DD and PH, while improving mortality risk prediction 
beyond that ascertained by traditional CVD risk factors 
and HIV-related risk factors.

METHODS
Study Population
Individuals with HIV infection were consecutively enrolled 
between September 2004 and March 2011 from the SCOPE 
(Study of the Consequences of the Protease Inhibitor Era), a 
large clinic-based cohort at San Francisco General Hospital. All 
participants of SCOPE were documented to be HIV infected 
by medical records, letter of diagnosis, or HIV-antibody testing. 
The only inclusion criterion for this analysis was HIV infection, 
and there were no exclusion criteria. Individuals were not pre-
selected on the basis of cardiovascular risk factors, symptoms, 
or antiretroviral drug regimens. The present analysis includes 
(1) 71 untreated patients, defined as no antiretroviral therapy 
(ART) in the preceding 6 months; (2) 83 treated patients with 
detectable viremia, as defined as >24 weeks of ART with the 
most recent or previous HIV-RNA level >75 copies/mL; and (3) 
178 treated patients who achieved full viral suppression, as 
defined as >24 weeks of ART with 2 most recent HIV-RNA lev-
els <75 copies/mL. The study was approved by the University of 
California, San Francisco, Committee on Human Research, and 
all study participants provided written informed consent before 
study enrollment. The data, analytic methods, and study mate-
rials will not be made available to other researchers for pur-
poses of reproducing the results or replicating the procedure.

Serum Biomarkers
Biomarkers measured in this study at baseline included ST2 
(fibrosis); GDF-15 (apoptosis); NT-proBNP (N-terminal pro-B-
type natriuretic peptide; myocyte stretch); cTnI (cardiac tro-
ponin I; myocardial injury); hsCRP and IL-6 (interleukin-6; 
inflammation); cystatin C (renal dysfunction); and D-dimer 

WHAT IS NEW?
•	 The analyses in this article build on our earlier 

finding that elevated levels of ST2 and GDF-15 
in HIV-infected people are associated with car-
diac dysfunction and mortality. Despite effective 
antiretroviral therapy, HIV-infected people have 
an increased risk of heart failure. However, heart 
failure is a heterogeneous condition, and the 
pathophysiology in HIV infection appears to be 
multifactorial.

•	 Our current study finds that patients can be parti-
tioned into separate phenotypes of inflammatory 
and cardiac risk, based solely on the measure-
ments of 6 serum biomarkers.

WHAT ARE THE CLINICAL  
IMPLICATIONS?

•	 Patients with a cardiac phenotype appear to have an 
increased risk of both pulmonary hypertension and 
mortality. Patients with an inflammatory phenotype 
have an increased risk of both diastolic dysfunction 
and mortality. Both phenotypes are associated with 
a 3-fold higher risk of all-cause mortality.

•	 These associations are independent of traditional 
cardiovascular disease risk factors, HIV-related fac-
tors, and echocardiographic findings.

•	 Serum biomarker–derived phenotypes can help 
inform the diagnosis and staging of heart failure 
and can improve prediction of mortality in HIV-
infected patients.
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(thrombosis).13–18 GDF-15, cystatin C, and IL-6 were measured 
using a Quantikine Human Immunoassay (R&D Systems, 
Minneapolis, MN). ST2 was measured using the Presage 
Assay (Critical Diagnostics, San Diego, CA). C-Reactive Protein 
(CRP) was measured using the CardioPhase High Sensitivity 
C-Reactive Protein Immunoassay (Siemens Medical Solutions 
Diagnostics, Tarrytown, NY). Troponin was measured using 
the Advia Centaur TnI-Ultra Assay (Siemens Medical Solutions 
Diagnostics). NT-proBNP was measured by the Roche E 
Modular assay (Roche Diagnostics Corporation, Indianapolis, 
IN). D-dimer was measured using the Zymutest D-Dimer ELISA 
(Aniara, West Chester, OH). Details on sensitivity, range, and 
coefficients of variation have been published previously.2

Echocardiography
As described previously,19 a 2-dimensional transthoracic echocar-
diogram was performed on each participant within 6 months of 
enrollment by a sonographer blinded to participant’s HIV status. 
The presence of DD was determined using the guidelines from 
the American Society of Echocardiography.20 Left ventricular (LV) 
end-diastolic and end-systolic volumes and LV ejection fraction 
were assessed using the modified Simpson rule and indexed to 
body surface area. Pulmonary artery systolic pressure was quanti-
fied by using the modified Bernoulli equation to obtain the cal-
culated pressure gradient (based on peak tricuspid regurgitation 
jet velocity) and then added to the mean right atrial pressure, 
which was estimated from the diameter of the inferior vena 
cava, and degree of inspiratory collapse.21 All calculations and 
interpretations were performed off-line by 2 cardiologists who 
were blinded to participants’ HIV infection and clinical status.

Outcomes
All patients were followed longitudinally after enrollment 
as part of the SCOPE study. The main echocardiographic 
outcomes (measured at baseline only) were DD (defined as 
≥grade 1), PH (classified as pulmonary artery systolic pressure 
>35 mm Hg),21 and LV hypertrophy (defined as LV mass ≥110 
or ≥125 g/m2 in females and males, respectively). DD was 
classified as grade 1 (n=128), grade 2 (n=5), grade 3 (n=3), 
grade 5 (n=2), or none (n=166) and was missing in 28 partici-
pants. Systolic dysfunction, defined as a LV ejection fraction of 
<50%, was not considered a primary outcome because of the 
low prevalence in the HIV population22 and in our cohort (14 
out of 332 participants). Pulmonary artery systolic pressure 
measures were available in all but 2 participants. We did not 
assess for presence of atrial fibrillation, but previous studies 
suggest that atrial fibrillation remains uncommon (<3% inci-
dence) in the setting of HIV infection.23 For all-cause mortality, 
participants were followed through January 2015 or until the 
time of death as determined by the National Death Index.

Construction of Clusters
The goal of our clustering procedure was to simplify the data 
from 8 distinct serum biomarkers to partition subjects into a 
small number of groups based on the totality of biomarker 
information. This grouping was based solely on the aggregate 
biomarker data and did not use clinical characteristics or sub-
sequent outcomes. We first examined unadjusted Spearman 
correlations between markers. We used k-means clustering 

(chosen for its relative efficiency) to perform unsupervised 
clustering of biomarkers.24 K-means is considered a flat clus-
tering algorithm because it generates clusters without any 
prespecified ordering or structure, unlike hierarchical cluster-
ing methods. Groups of participants having similar biomarker 
patterns can be identified as clusters.

Because the biomarkers were right-skewed, we log-trans-
formed each marker to normalize its distribution. We also stan-
dardized each biomarker to the same scale (mean=0; SD=1) so 
that biomarkers with larger variances would not have a greater 
influence on cluster assignment. We used k-means cluster-
ing to partition subjects into separate clusters, using the SAS 
FASTCLUS procedure to identify outliers and reduce their effect 
on cluster centers. We identified a parsimonious set of biomark-
ers using the 6 most distinguishing biomarkers to construct clus-
ters. Markers used in cluster construction were those with the 
highest ratio of between- to within-group variance in biomarker 
levels. We used canonical correlation analysis to construct inte-
grated biomarker scores, which represent weighted sums of the 
6 biomarkers (standardized to the same scale). Biomarkers with 
larger coefficients contribute more weight to the score.

In addition to using the k-means algorithm to generate 
clusters, we compared other clustering algorithms includ-
ing hierarchical (using Ward method), Single, Complete, 
Average, McQuitty, Median, and Centroid (Figure I in the 
Data Supplement).25 We also performed internal validation 
to assess the quality and stability of clusters generated using 
k-means and other algorithms (using the clValid package in R; 
Figures II and III in the Data Supplement). Additional details 
and results are summarized in the Data Supplement.

Statistical Analysis
We compared baseline clinical and demographic characteristics 
across clusters using χ2 and Kruskal–Wallis tests for categori-
cal and continuous variables, respectively. Multinomial logistic 
regression was used to identify factors associated with cluster 
membership, using cluster 1 as the reference group. Relative 
risk regression (using a modified Poisson approach) was used 
to examine associations of clusters with DD, PH, and LV hyper-
trophy, and Cox proportional hazards regression was used to 
examine associations with all-cause mortality. We assessed 
the proportional hazards assumption for mortality by testing 
weighted Schoenfeld residuals. Covariates from the baseline 
examination included demographics (age, sex, and race/ethnic-
ity), CVD risk factors (smoking, hypertension, diabetes mellitus, 
body mass index, high-density lipoprotein, low-density lipopro-
tein, and triglycerides), and HIV-related risk factors (CD4 count, 
HIV-RNA, hepatitis C, history of opportunistic infection, and 
highly active antiretroviral therapy [HAART] use). Additionally, 
we included baseline echocardiographic measures as covariates 
in models of mortality. We calculated risk ratios for each out-
come using cluster 1 as the reference category.

We assessed model performance using discrimination, 
calibration, Nagelkerke R2 (for overall performance), and the 
category-less IDI (integrated discrimination improvement, for 
reclassification).26 For survival models, Harrell c was used to 
assess discrimination.27 Results are summarized in the Data 
Supplement (Figure IV in the Data Supplement).

Statistical analyses for comparisons of clinical data and 
associations with outcomes were conducted using SAS ver-
sion 9.4 (SAS Institute, Inc, Cary, NC).
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RESULTS
Construction of Biomarker Clusters
In unadjusted analysis, the serum biomarkers were 
only modestly intercorrelated (all correlation coeffi-
cients <0.4). A heat map and dendrogram showing 
biomarker relationships found separate cardiac and 
inflammatory domains (Figure  1). The strongest cor-
relation was between CRP and IL-6 (r=0.35), and the 
weakest correlations were between troponin and the 
other biomarkers (all r≤0.11). Clusters were derived by 
an unsupervised cluster approach using the 6 most dis-
tinguishing biomarkers (ST2, NT-proBNP, GDF-15, CRP, 
IL-6, and D-dimer), blinded to study outcomes. The 2 
excluded markers (troponin and cystatin C) contrib-
uted little to cluster membership (Figure V in the Data 
Supplement. Cluster membership was similar when all 
8 markers versus the 6 most distinguishing were used.

Increased cardiac markers (ST2, NT-proBNP, and GDF-
15) were most able to distinguish cluster 2 from clus-
ter 1, while increased inflammatory markers (CRP, IL-6, 
and D-dimer) best distinguished cluster 3 from cluster 1 
(Figure V in the Data Supplement; Table 1). In addition, 
both clusters 2 and 3 had worse estimated glomerular 
filtration rate (eGFR) by cystatin C compared with clus-
ter 1, while cluster 2 also had worse eGFR by creatinine 
compared with clusters 1 and 3. Rates of detectable 
troponin were similar across the clusters (27% overall).

Weighted biomarker scores generated using canoni-
cal correlation analysis showed that the first score I was 
driven by inflammatory markers (CRP, IL-6, and D-dimer) 
and the second score C by HF markers (ST2, NT-proBNP, 
and GDF-15). A comparison of scores I and C showed 

good differentiation between the 3 k-means–derived 
clusters (Figure 2): cluster 1 was characterized by low 
levels of all markers, cluster 2 had elevated cardiac 
markers (score C) but not inflammatory markers, and 
cluster 3 had elevated inflammatory markers (score I), 
with some having increases in cardiac markers.

Cohort Characteristics
Demographic and baseline clinical characteristics strati-
fied by biomarker-derived cluster are shown in Table 1. 
The overall median age was 49 years, 19% were female, 
32% were black, 56% were white, and 12% were of 
other race or ethnicity. In multinomial logistic regression 
analysis, factors independently associated with cluster 
2 (cardiac) membership included white race, hyperten-
sion, lower low-density lipoprotein, lower nadir CD4 
count, and hepatitis C virus coinfection (Table 2). Fac-
tors independently associated with cluster 3 (inflam-
matory) membership included older age, female sex, 
higher body mass index, and lower nadir CD4 count.

Associations of Biomarker Clusters With 
Echocardiographic Measures
Associations of biomarker-derived clusters with echocar-
diographic measures are also shown in Table 1. Levels 
of LV ejection fraction were similar across the clusters 
(median 61% overall), and rates of systolic dysfunction 
were somewhat higher in cluster 2 but low overall (5%). 
DD was most prevalent in cluster 3 and intermediate in 
cluster 2. In contrast, PH and LV hypertrophy were most 
prevalent in cluster 2 and intermediate in cluster 3.

Figure 1. Correlations of biomark-
ers among HIV-infected partici-
pants.  
Spearman correlation coefficients are 
shown for intracorrelations of bio-
markers. Heat map with overlaid den-
drogram depicts separation of cardiac 
and inflammatory biomarkers. CysC 
indicates Cystatin C; GDF-15, growth 
differentiation factor-15; IL-6, inter-
leukin-6; and NT-proBNP, N-terminal 
pro-B-type natriuretic peptide.
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Table 1.  Baseline and Demographic Characteristics, Stratified by Biomarker-Derived Phenotype*

Parameter Cluster 1
Cluster 2: Cardiac 

Phenotype
Cluster 3: Inflammatory 

Phenotype P Value

 n=143 n=86 n=103  

Demographic and clinical characteristics

 � Age, y 47 (41–54) 49 (43–54) 50 (43–54) 0.096

 � Female, n (%) 17 (12) 20 (23) 25 (24) 0.022

 � Race/ethnicity, n (%) 

 �   Black 46 (32) 21 (24) 38 (37) 0.21

 �   White 76 (53) 57 (66) 53 (51)  

  �  Other 21 (15) 8 (9) 12 (12)  

  History of CAD, n (%) 0 8 (9) 5 (5) 0.0016

  Current smoking, n (%) 48 (34) 27 (31) 42 (41) 0.18

  Diabetes mellitus, n (%) 8 (6) 11 (13) 8 (8) 0.15

  Hypertension, n (%) 36 (25) 42 (49) 34 (33) 0.0012

  History of HF, n (%) 0 4 (5) 3 (3) 0.046

  Lipid-lowering therapy, n (%) 37 (26) 27 (31) 33 (32) 0.50

  LDL, mg/dL 104 (82–132) 92 (72–115) 95 (74–131) 0.15

  HDL, mg/dL 47 (39–58) 46 (37–54) 48 (38–55) 0.51

  TG, mg/dL 149 (93–249) 178 (106–301) 148 (95–245) 0.41

  T Chol, mg/dL 188 (155–215) 176 (156–204) 182 (150–216) 0.46

  BMI, kg/m2 26 (23–29) 25 (23–29) 25 (23–30) 0.82

  Duration of HIV infection, y 14 (8–18) 14 (10–17) 15 (11–19) 0.13

  HAART use, n (%) 102 (71) 74 (86) 89 (86) 0.0036

  NRTI use, n (%) 112 (78) 78 (91) 90 (87) 0.026

  NNRTI use, n (%) 69 (48) 41 (48) 47 (46) 0.92

  PI use, n (%) 91 (64) 70 (81) 81 (79) 0.0039

  Current abacavir use, n (%) 33 (23) 33 (38) 33 (32) 0.042

  Current tenofovir use, n (%) 63 (44) 37 (44) 57 (55) 0.16

  Current CD4 count, cells/mm3 489 (318–740) 397 (270–732) 450 (260–578) 0.066

  Nadir CD4 count, cells/mm3 200 (66–390) 98 (33–228) 144 (33–260) 0.0003

  Plasma HIV-RNA <75 copies/mL, n (%) 87 (61) 50 (58) 61 (60) 0.68

  Hepatitis C, n (%) 27 (19) 35 (41) 25 (24) 0.0012

Biomarker levels

 � ST2, ng/mL 25 (20–30) 36 (29–45) 32 (24–40) <0.0001

 � NT-proBNP, pg/mL 26 (14–50) 128 (46–293) 37 (22–99) <0.0001

 � GDF-15, pg/mL 649 (458–994) 2415 (1225–5482) 1087 (633–1700) <0.0001

 � hsCRP, mg/L 1.3 (0.5–2.8) 1.9 (0.7–3.6) 7.3 (4.6–12.1) <0.0001

 � IL-6, pg/mL 1.9 (1.0–3.5) 2.3 (1.1–4.6) 6.0 (4.2–10.4) <0.0001

 � D-dimer, ng/mL 188 (120–262) 205 (139–345) 411 (297–654) <0.0001

 � Cystatin C, mg/L 0.7 (0.6–0.8) 0.9 (0.7–1.1) 0.8 (0.7–1.0) <0.0001

 � eGFRcys, mL/min per 1.73 m2 115 (106–124) 98 (66–113) 99 (78–117) <0.0001

 � eGFRcr, mL/min per 1.73 m2 92 (74–103) 82 (64–100) 92 (74–104) 0.038

 � Detectable troponin, n (%) 34 (25) 21 (27) 30 (30) 0.68

Echocardiographic measures

 � EF, % 62 (58–66) 60 (55–65) 61 (56–66) 0.16

 � Systolic dysfunction, n (%) 4 (3) 8 (10) 2 (2) 0.025

 � DD,† n (%)     

(Continued )
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In demographic adjusted analysis, cluster 3 was 
associated with a 59% increased risk (P=0.0018) of 
DD relative to cluster 1 (Table 3). Cluster 2 had a 36% 
increased risk of DD relative to cluster 1, but the asso-
ciation did not reach statistical significance (P=0.064). 
After adjustment for traditional and HIV-related fac-
tors, cluster 3 remained independently associated with 
a 55% increased risk of DD (P=0.0047), whereas the 
association for cluster 2 weakened substantially. Simi-
larly, cluster 3 was associated with a 51% increased 
risk of DD relative to cluster 1 (P=0.0060) in a parsimo-
nious model that retained only statistically significant 
covariates.

Cluster 2 was associated with a 2-fold higher risk of 
PH in demographic adjusted analysis (P=0.0024) relative 
to cluster 1, whereas cluster 3 had a 50% increased risk 
(P=0.082). After adjustment for traditional and HIV-related 

factors, cluster 2 was associated with a 52% increased risk 
of PH (P=0.089). In a parsimonious model that retained 
only statistically significant covariates, cluster 2 was associ-
ated with a 67% increased risk of PH (P=0.034).

Cluster 2 was associated with a 43% increased risk 
of LV hypertrophy in demographic adjusted analysis 
(P=0.064). However, the association weakened after 
multivariable adjustments.

Associations of Biomarker Clusters With 
All-Cause Mortality
We next examined associations of cluster membership 
with all-cause mortality. A total of 48 deaths occurred 
over a median 6.9-year follow-up. Rates of all-cause 
mortality were lowest in cluster 1 and highest in clus-
ters 2 and 3 (Figure 3). In demographic adjusted analy-

Figure 2. Association of integrated 
biomarker scores with cluster member-
ship.  
Scatterplot shows separation of clusters by 
integrated biomarker scores. Standardized 
canonical coefficients were used to calcu-
late integrated biomarker scores as follows: 
Score I=−0.08×ST2–0.40×BNP−0.27×GDF-
15+0.81×CRP+0.61×IL-6+0.71×D-dimer. 
Score C=+0.53×ST2+0.59×BNP+0.80×GDF-
15+0.05×CRP+0.03×IL-6+0.12×D-dimer. 
Each biomarker is log-transformed and 
standardized to a mean of 0 and SD of 
1. BNP indicates N-terminal pro-B-type 
natriuretic peptide; CRP, C-reactive protein; 
GDF-15, growth differentiation factor-15; 
and IL-6, interleukin-6.

  �  DD stage 2+ 2 (2) 4 (5) 4 (4) 0.026

  �  DD stage 1 42 (33) 36 (44) 50 (52)  

  �  No DD 82 (65) 41 (51) 43 (44)  

 � PASP, mm Hg 29 (24–34) 35 (28–39) 31 (25–37) 0.0002

 � Pulmonary hypertension, n (%) 26 (18) 33 (39) 31 (30) 0.0023

 � LV mass index, g/m2 86 (70–124) 101 (79–153) 92 (72–137) 0.045

 � LV hypertrophy, n (%) 31 (24) 32 (41) 31 (32) 0.046

Data are presented as median (IQR) or numbers (%). BMI indicates body mass index; CAD, coronary artery disease; DD, diastolic 
dysfunction; EF, ejection fraction; eGFRcr, estimated glomerular filtration rate by creatinine; eGFRcys, estimated glomerular filtration rate 
by cystatin C; GDF, growth differentiation factor 15; HAART, highly active antiretroviral therapy; HDL, high-density lipoprotein; hsCRP, high 
sensitivity C reactive protein; IL, interleukin; IQR, interquartile range; LDL, low-density lipoprotein; LV, left ventricular; NNRTI, non-nucleoside 
reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PASP, 
pulmonary artery systolic pressure; PI, protease inhibitor; T Chol, total cholesterol; and TG, triglycerides.

*List of biomarkers used to derive phenotypes: ST2, NT-proBNP, GDF-15, hsCRP, IL-6, and D-dimer.
†DD stage 2+ includes 5 participants with stage 2, 3 participants with stage 3, and 2 participants with stage 5.

Table 1.  Baseline and Demographic Characteristics, Stratified by Biomarker-Derived Phenotype*

Parameter Cluster 1
Cluster 2: Cardiac 

Phenotype
Cluster 3: Inflammatory 

Phenotype P Value 

n=143 n=86 n=103
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sis, both clusters 2 and 3 were associated with a 4-fold 
higher risk of mortality (Table 3). After adjustment for 
traditional risk factors, HIV-related factors, and echocar-

diographic measures, clusters 2 and 3 each remained 
independently associated with a 3-fold higher risk of 
mortality, relative to cluster 1 (both P<0.05).

Table 2.  Multinomial Logistic Regression Analysis of Factors Associated 
With Cluster Membership

Parameter 

Cluster 2 vs Cluster 1 Cluster 3 vs Cluster 1

OR (95% CI) OR (95% CI)

Age (per decade) 1.39 (0.96–2.01); P=0.082 1.48 (1.06–2.08); P=0.023

Female vs male 2.34 (0.99–5.49); P=0.052 2.21 (1.04–4.72); P=0.040

Black vs white 0.31 (0.14–0.67); P=0.0030 0.90 (0.48–1.70); P=0.75

Other vs white 0.66 (0.25–1.75); P=0.40 0.95 (0.41–2.18); P=0.90

BMI, kg/m2 0.99 (0.93–1.06); P=0.81 1.06 (1.00–1.11); P=0.039

Hypertension 4.20 (2.11–8.36); P<0.0001 1.15 (0.61–2.17); P=0.67

LDL per 10 mg/dL 0.89 (0.82–0.98); P=0.015 0.94 (0.85–1.04); P=0.24

Nadir CD4 (per doubling) 0.77 (0.65–0.90); P=0.0010 0.81 (0.71–0.94); P=0.0040

HCV infection 3.91 (1.95–7.81); P=0.0001 1.30 (0.67–2.54); P=0.44

BMI indicates body mass index; CI, confidence interval; HCV, hepatitis C virus; LDL, low-density 
lipoprotein; and OR, odds ratio.

Table 3.  Association of Biomarker-Derived Phenotype* With Echo-Derived Outcomes and All-Cause 
Mortality

Outcome  
1.  Demographic 

adjusted
2. Traditional RF and 

HIV-related RF
3. Model 2+Echo 

parameters
4. Parsimonious 

model

Diastolic dysfunction Event rate, n (%) PR (95% CI) PR (95% CI)  PR (95% CI)

 � Cluster 1 44/126 (35) Reference Reference … Reference

 � Cluster 2 40/81 (49) 1.36 (0.98–1.89); 
P=0.064

1.13 (0.80–1.60); 
P=0.48

…
1.25 (0.90–1.74); 

P=0.19

 � Cluster 3 54/97 (56) 1.59 (1.19–2.12); 
P=0.0018

1.55 (1.14–2.10); 
P=0.0047

… 1.51 (1.12–2.02); 
P=0.0060

Pulmonary HTN Event rate, n (%) PR (95% CI) PR (95% CI) … PR (95% CI)

 � Cluster 1 26/143 (18) Reference Reference … Reference

 � Cluster 2 33/85 (39) 2.00 (1.28–3.12); 
P=0.0024

1.52 (0.94–2.47); 
P=0.089

… 1.67 (1.04–2.68); 
P=0.034

 � Cluster 3 31/102 (30) 1.50 (0.95–2.36); 
P=0.082

1.47 (0.91–2.36); 
P=0.11

… 1.48 (0.94–2.33); 
P=0.088

LV hypertrophy Event rate, n (%) PR (95% CI) PR (95% CI) … PR (95% CI)

 � Cluster 1 31/128 (24) Reference Reference … Reference

 � Cluster 2 32/79 (41) 1.43 (0.98–2.09); 
P=0.064

1.32 (0.90–1.93); 
P=0.15

… 1.37 (0.95–1.98); 
P=0.090

 � Cluster 3 31/97 (32) 1.10 (0.75–1.60); 
P=0.63

1.09 (0.74–1.62); 
P=0.65

… 1.12 (0.76–1.65); 
P=0.57

All-cause mortality 5 y event rate (95% CI)† HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

 � Cluster 1 3.5 (1.7–7.0) Reference Reference Reference Reference

 � Cluster 2 14.7 (9.1–23.6) 3.92 (1.66–9.22); 
P=0.0018

3.17 (1.19–8.47); 
P=0.021

3.07 (1.13–8.39); 
P=0.028

2.79 (1.12–6.93); 
P=0.027

 � Cluster 3 16.0 (10.6–24.0) 4.20 (1.87–9.44); 
P=0.0005

3.50 (1.47–8.35); 
P=0.0048

3.29 (1.33–8.12); 
P=0.0097

3.32 (1.41–7.81); 
P=0.0060

Model 1 controls for age, sex, and race/ethnicity. Model 2 controls for model 1+traditional CVD (smoking, BMI, DM, HTN, HDL, TG, and LDL) and HIV-
related risk factors (HAART use, CD4 count, HIV-RNA, HCV, and OI). Model 3 controls for model 2+echo parameters (PASP, LV mass, DD, and EF). Model 4 
controls for age, sex, race, DM, HDL, OI, HCV, HIV-RNA, CD4 count, and PASP. BMI indicates body mass index; CI, confidence interval; CVD, cardiovascular 
disease; DM, diabetes mellitus; GDF-15, growth differentiation factor 15; HCV, hepatitis C virus; HDL, high-density lipoprotein; HR, hazard ratio; hsCRP, 
high sensitivity C-reactive protein; HTN, hypertension; IL-6, interleukin-6; LDL, low-density lipoprotein; LV, left ventricular; NT-proBNP, N-terminal pro-B-type 
natriuretic peptide; OI, opportunistic infection; PASP, pulmonary artery systolic pressure; PR, prevalence ratio; RF, risk factor; and TG, triglycerides.

*List of biomarkers used to derive phenotypes: ST2, NT-proBNP, GDF-15, hsCRP, IL-6, and D-dimer.
†5 y event rates were calculated as number of events/person-years of follow-up×5 y.
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As an alternative, we tested the 2 integrated bio-
marker scores in place of the clusters. When adjusted 
simultaneously, we found that the first score (inflam-
matory) showed a statistically significant association 
only with DD (hazard ratio [HR], 1.10 per 1 SD increase; 
P=0.014). By contrast, the second score (cardiac) had 
statistically significant associations with all outcomes, 
independent of traditional and HIV-related risk factors. 
Specifically, each 1 SD increase in the cardiac score 
was associated with DD (prevalence ratio [PR], 1.10; 
P=0.035), pulmonary hypertension (PH) (PR, 1.19; 
P=0.0009), LV hypertrophy (PR, 1.15; P=0.0016), and 
all-cause mortality (HR, 1.43; P=0.0009).

Because our earlier work found that ST2 was inde-
pendently associated with both mortality and echocar-
diography findings, we performed sensitivity analyses 
to determine whether our cluster variable was indepen-
dent of ST2. When we tested ST2 and the cluster vari-
able simultaneously in multivariable adjusted models, 
we found that ST2 was no longer statistically significant 
for DD, PH, or mortality (data not shown). By contrast, 
cluster 3 remained independently associated with DD 
(PR, 1.4; P=0.029) and mortality (HR, 2.5; P=0.045) and 
cluster 2 remained independently associated with PH 
(PR, 1.7; P=0.032). Additional models found that clus-
ter 3 was independent of GDF-15 and cluster 2 was 
independent of D-dimer for mortality (HR, 2.8; P=0.028 
and HR, 2.6; P=0.040, respectively).

Because a large percentage of our cohort had detect-
able viremia at baseline, we also assessed interactions 
of cluster membership with viremia for each outcome. 
Tests for cluster by HIV-RNA interaction were weak and 
did not reach statistical significance for DD (P=0.63), PH 
(P=0.62), or mortality (P=0.71).

Alternative Cluster Results
We also performed sensitivity analyses in which we var-
ied the number of clusters and compared our method 
(k-means) to an alternative, hierarchical clustering pro-
cedure (Ward method) for prediction of all-cause mor-
tality. Models adjusting for traditional CVD risk factors, 
HIV-related factors, and echocardiographic measures 
are shown in Table  4. When the number of clusters 
was chosen to be 2, we found a statistically signifi-
cant difference between clusters for mortality risk for 
both k-means (HR, 2.78; P=0.0035) and Ward method 
(HR, 2.77; P=0.0015). When the number of clusters 
was chosen to be 3, we found that clusters 2 and 3 
were both associated with increased mortality risk for 
k-means, while only cluster 3 reached statistical sig-
nificance for Ward method (HR, 3.17; P=0.013). When 
the number of clusters was chosen to be 4, we found 
that only cluster 4 had a significantly increased mortal-
ity risk (k-means: HR, 5.38; P=0.0046; Ward: HR, 5.46; 
P=0.027). By contrast, clusters 2 and 3 showed 2-fold 
and 2.5-fold increased mortality risks, respectively, for 
k-means, but neither association reached statistical sig-
nificance (P=0.24 and P=0.13). Similarly, Ward method 
showed that the intermediate clusters did not reach 
statistical significance (HR, 1.6 for cluster 2; P=0.54; 
HR, 2.6 for cluster 3; P=0.24).

DISCUSSION
In this cohort of 332 HIV-infected men and women, 
we found that serum biomarker–derived clusters can 
be used to partition subjects into different phenotypes 
for differentiating cardiopulmonary structural and func-
tional abnormalities and for predicting mortality risk. 
We used 6 distinct biomarkers to classify participants 
into separate clusters, without incorporating any clini-
cal information. Cluster 2 (cardiac phenotype) had an 
increased risk of both PH and mortality, whereas those 
classified into cluster 3 (inflammatory phenotype) had 
an increased risk of both DD and mortality, indepen-
dent of standard CVD risk factors and HIV-related fac-
tors. Both clusters 2 and 3 predicted mortality indepen-
dent of echocardiographic findings (PH and DD).

Clusters 2 and 3 were both characterized by low-
er nadir CD4 cell counts consistent with having more 
advanced HIV disease. In addition, cluster 2 participants 
had a higher prevalence of hypertension, lower low-
density lipoprotein, and hepatitis C virus coinfection, 
whereas cluster 3 participants were characterized by 
older age, female sex, and higher body mass index. Our 
cluster variable was independently associated with DD, 
PH, and all-cause mortality, even when controlling for 
traditional and CVD risk factors.

We previously reported that ST2 and GDF-15 are 
associated with both cardiovascular dysfunction and 

Figure 3. Cumulative mortality by biomarker-derived 
phenotype. 
The following is a list of biomarkers used to derive pheno-
types: ST2, NT-proBNP (N-terminal pro-B-type natriuretic pep-
tide), GDF-15 (growth differentiation factor 15), hsCRP (high 
sensitivity C-reactive protein), IL-6 (interleukin-6), and D-dimer.
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mortality risk, even after controlling for traditional CVD 
risk factors and HIV-related factors.2 In this analysis, we 
found that our cluster categories had strong, indepen-
dent associations with DD, PH, and all-cause mortality. 
Although individual biomarkers also showed statisti-
cally significant associations with cardiac dysfunction 
and mortality, these markers were not simultaneously 
predictive, making it difficult to reconcile the findings 
of multiple markers.

We examined associations of both clusters and inte-
grated biomarker scores with our study outcomes. 
Although the continuous biomarker scores had more 
statistical power than the clusters (which are categori-
cal and therefore discard information), a disadvantage 
is that they are less interpretable and harder to com-
municate clinically. Clusters are a useful first step in 
phenotyping a population. Our goal in this study was 
not to maximize prediction but rather to create clini-
cally meaningful categories that could be used to dif-
ferentiate structural and functional abnormalities. An 
advantage of our cluster-based analysis is that it allows 
partitioning of subjects into discrete categories of risk, 
based solely on biomarker levels. In addition, our analy-
sis identified risk factors for these cardiac and inflam-
matory phenotypes, which are readily available to the 
clinician. Although clusters have value in understand-
ing the heterogeneity in a population, translation to 
the clinical setting can be facilitated using integrated 
biomarker scores. Such scores could be applied to an 
individual patient to quantify their risk, giving a more 
flexible assessment because the degree of HF risk exists 
on a continuum.

To our knowledge, this is the first study to use bio-
marker-based cluster analysis to classify cardiopulmo-

nary abnormalities and to predict mortality in the set-
ting of HIV infection. A recent study of HF patients used 
phenotype data (67 variables including ECG, echocar-
diography, clinical, and laboratory measures) to cluster 
patients into 3 distinct risk categories, and the authors 
found strong associations with clinical outcomes.12 By 
contrast, our study used biomarkers alone to define the 
clusters, so that we could distinguish and evaluate the 
biomarkers’ ability to stratify patients into distinct phe-
notype and risk categories. Although the clusters’ pre-
diction ability would certainly improve if they comprised 
biomarkers combined with clinical risk factors, our goal 
was to evaluate serum biomarkers in isolation to mea-
sure their incremental contribution, as well as to under-
stand the pathophysiologic pathways that mediate risk.

One potential advantage of using biomarkers from 
just one sample type (ie, serum) is that the selected 
panel can be used to develop a multiplex assay, which 
may offer advantages of efficiency over individual ELI-
SAs and could be performed using a single methodolo-
gy.28 Multiplex assays could be used to facilitate clinical 
applicability, providing a simple, clinically relevant mes-
sage to clinicians and patients about the risk of disease. 
Cluster phenotypes could also be derived from larger 
discovery-based platforms. A recent study of a cohort 
with stable coronary heart disease29 derived a 9 protein 
prognostic score from an initial panel of 1130 proteins. 
This score had associations with a composite cardiovas-
cular outcome, which were independent of traditional 
Framingham variables. Additional work is needed to 
study these proteins in the setting of HIV infection.

Our results illustrate the strengths and limitations of 
the use of serum biomarkers for the classification of car-
diac structural abnormalities and prediction of mortality 

Table 4.  Associations of Cluster Membership With All-Cause Mortality, by Procedure and Number of 
Clusters

Clustering 
Procedure

No. of 
Clusters

Cluster 1 
(Reference)

Cluster 2 HR  
(95% CI)

Cluster 3 HR  
(95% CI)

Cluster 4 HR  
(95% CI)

K-means 2 … 2.78 (1.40–5.51); P=0.0035   

  n=187 n=145   

 3 … 2.79 (1.12–6.93); P=0.027 3.32 (1.41–7.81); P=0.0060  

  n=143 n=86 n=103  

 4 … 2.05 (0.62–6.78); P=0.24 2.49 (0.76–8.18); P=0.13 5.38 (1.68–17.24); P=0.0046

  n=93 n=98 n=83 n=58

Ward 
(hierarchical)

2 … 2.77 (1.48–5.21); P=0.0015   

  n=247 n=85   

 3 … 1.22 (0.47–3.19); P=0.69 3.17 (1.27–7.90); P=0.013  

  n=120 n=127 n=85  

 4 … 1.64 (0.33–8.11); P=0.54 2.57 (0.54–12.33); P=0.24 5.46 (1.21–24.57); P=0.027

  n=54 n=120 n=73 n=85

Models are adjusted for demographics, traditional CVD, HIV-related parameters, and echo parameters, as listed in Table 3. CI indicates 
confidence interval; CVD, cardiovascular disease; and HR, hazard ratio.



Scherzer et al; CV Biomarker Clusters in HIV Infection

Circ Heart Fail. 2018;11:e004312. DOI: 10.1161/CIRCHEARTFAILURE.117.004312� April 2018 10

in the setting of HIV infection. Our novel cluster meth-
od allowed us to select a relevant subset of 6 markers 
from 8 candidates, without knowledge of study out-
comes. A strength of this approach is that clusters can 
define useful groups of patients and can mitigate the 
problems of multicollinearity30 that may arise with the 
inclusion of multiple correlated measures in a multivari-
able regression model. A limitation of this approach is 
that the optimal number of clusters and optimal pro-
cedure can be difficult to determine. Although increas-
ing the number of clusters might allow the detection 
of more heterogeneity of HF, this comes at a cost of 
generalizability because of the smaller resulting sample 
sizes. We found that increasing the number of clusters 
resulted in smaller, less informative clusters and did not 
improve model fit materially, whereas using only 2 clus-
ters ignored the distinction between the cardiac and 
inflammatory phenotypes. An advantage of our chosen 
procedure (k-means) is that it does not impose a hierar-
chical structure on the clusters, so that subjects can be 
partitioned based on unspecified, distinct patterns (eg, 
elevated in 1 domain and normal in another).

Although our results have not yet been validated 
in an external cohort, our work serves as a prototype 
for future cardiac biomarker studies. Precedent for this 
approach includes use of gene expression data to iden-
tify cancer subtypes10 and use of prognostic biomark-
ers to identify patients who can benefit from a treat-
ment.11 We envision that clinicians will be able to use 
such a biomarker panel to determine both the stage 
and type of HF risk (cardiac versus inflammatory) of an 
individual HIV-infected patient for HF and early mor-
tality. Although our biomarker clusters were derived 
using cross-sectional data, they may represent a serial 
progression of risk in which inflammation occurs first, 
leading to DD, which in turn leads to cardiac biomarker 
elevation and PH.31,32 In addition, this biomarker panel 
could be repeated to provide updated information on a 
patient’s cardiac health.

Our study includes several limitations. Our 8 biomark-
ers were measured at a single time point, so we cannot 
rule out the possibility that DD and PH were a cause rath-
er than a consequence of biomarker elevations. We did 
not use a high-sensitivity troponin assay, and only one 
third of our participants had detectable troponin levels. 
We did not have adjudicated HF outcomes, and our 
diagnosis of PH by echocardiogram lacks specificity com-
pared with hemodynamic studies and cannot discrimi-
nate between the causes of PH.33 Our analysis found that 
GDF-15 and soluble ST2 clustered with NT-proBNP and 
not with the inflammatory markers. Although both GDF-
15 and soluble ST2 have been strongly associated with 
CVD in multiple studies and have shown usefulness in HF 
staging,34 GDF-15 is also elevated in a variety of malig-
nancies, such as colorectal cancer,35 whereas soluble ST2 
is elevated in allergic and inflammatory disorders.36 How-

ever, our biomarker clusters were associated with PH, DD, 
and mortality even after controlling for immune status 
(CD4 count and HIV-RNA level), suggesting that GDF-15 
and soluble ST2 are useful in staging HF in the setting 
of HIV infection. Although NT-proBNP is considered the 
gold-standard biomarker for HF, it does not capture all 
dimensions of HF. These results suggest that markers that 
identify other aspects of heart function/damage may be 
needed to inform prognosis and diagnosis. Additional 
work is needed to understand the role of potentially car-
diotoxic antiretroviral drugs, such as abacavir, and to vali-
date our findings in other cohorts. Forty percent of our 
participants had detectable viremia; however, we found 
that cluster associations were similar in those with both 
detectable and undetectable viremia. Finally, there may 
have been incomplete or inadequate control for factors 
that may confound or mediate the association of eleva-
tions in cardiac biomarkers with HF and mortality.

CONCLUSIONS
In summary, we have shown that unsupervised cluster 
analysis (ie, uninformed by the outcome variable) of car-
diac biomarkers can identify distinct categories of risk 
and thereby help differentiate cardiopulmonary struc-
tural and functional abnormalities, as well as mortality 
risk. Further studies of HIV-infected people are needed 
to validate these results. A study of low-dose methotrex-
ate is currently being conducted to determine whether 
inflammatory marker reduction can improve endothe-
lial function in HIV-infected adults (NCT01949116). 
Additional studies of other anti-inflammatory therapies 
may also be needed to identify safe and effective meth-
ods of reducing inflammation in HIV-infected people. 
A broader array of candidate biomarkers may improve 
discrimination potential. In the future, the use of car-
diac biomarker panels could help inform the diagnosis 
and staging of HF and may be used to identify patients 
who are at risk of drug toxicity.
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