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Abstract

Different activities utilize water resources at different rates, rely on different water sources,
and thus have a different “footprint” in regard to their water demand. However, the wa-
ter footprint of these activities differs depending on the region and the time when the
activity occurs. In popular literature, the footprint metric has seen some success in the
ability to represent the large magnitude of human resource consumption, to more relat-
able per-capita quantities. However, these depictions are often based on global surveys
that mask regional variability in water use. This thesis presents a framework for agri-
cultural water footprint assessment, implemented using free and open source software.
It explores the variability of the water footprint of select agricultural activities in the
State of California from 2008 through 2015. The results describe a diverse landscape
of water use variability driven primarily by crop choice. The study reveals that crop
specific water footprints can have significant, inter-annual variability, independent of
climatic conditions. Supported by water distribution infrastructure, agricultural activi-
ties can be found across the state. Water footprint assessments can be used by growers
and resource managers, who wish to maximize utility per unit of water allocated, plan-
ners who wish to understand national risks and strengths, or the informed citizen who
wishes to evaluate the sustainability of their consumptive activities.
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Chapter 1

Introduction

1.1 Overview

Since 2014, the World Economic Forum has identified water crises in the top-five global
risks to society in terms of impact, based on a broad survey of risk perception among
participants in business, academia, international organizations, and government (World
Economic Forum, 2018). Where food and freshwater are scarce, they often become cen-
tral to social stability. Because fluid nature, freshwater systems often cross political
boundaries, allocation of this scarce resource has been a source of numerous conflicts
throughout history (Gleick, 1993).

At the margin, our thirst for this resource becomes flexible and yields goods, ser-
vices, and other productive activities (Zetland, 2014). When these activities take place
at times and scales far removed from their input resources, it can be useful to quantita-
tively evaluate the inputs, outputs, and environmental impacts of a product or activity,
over its entire life cycle. Life-cycle assessment (LCA) can refer to both the standard-
ized method of evaluating these impacts, or the result of the method (Guinée and Hei-
jungs, 2017; ISO/TC 207/SC 5, 2006). Related to LCA are a family of “footprints”, sus-
tainability indicators that relate economic activities to physical quantities of resources
consumed (see Chapter 2 for more details). Carbon footprints are a popular concept,
that describe quantities of greenhouse gas emissions (e.g. tonnes of CO2 equivalent) re-
quired to enable a consumptive activity (Minx et al., 2009). Ecological footprints relate
consumptive activities to the biosphere’s regenerative capacity, which can be expressed
in terms of the annual productive capacity of a unit of land area (e.g. arable land, forest,
or fishing grounds) (Wackernagel et al., 1999). Most industrial activities, are unable to be
entirely supported by the natural resources of adjacent lands, and the remainder of the
ecological footprint is met through appropriations from other regions. Global ecological
footprint assessments have calculated that the rate of current human resource consump-
tion exceeds the rate of natural production by over 1.5 times (Ewing et al., 2010). This
description does not forecast when the rate of overshoot will deplete global stocks, but
it does serve a benchmark for evaluating the sustainability of human activities.

Water footprints (WF) were inspired by ecological footprints and describe the quan-
tities of water (e.g. gallons of water) required to enable different consumptive activities
(Hoekstra, 2017; Hoekstra et al., 2011). Water footprints are closely related to the vir-
tual water concept, which describes the presence of virtual volumes of water traded
between nations in the form of water embodied in goods or services (Allan, 2003; Allan,
1997). Alan described the option of importing virtual water as a means for water scarce
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nations in the Middle East to alleviate pressure on domestic water resources. The wa-
ter footprint concept extends this metaphor with an allusion to ecological footprints, by
describing the volumes of water required to enable different consumptive activities, or
societies as a whole (A.K. Chapagain and A.Y. Hoekstra, 2004).

In popular literature, the footprint metric has seen some success in the ability to re-
late the large magnitude of human resource consumption, to more relatable per-capita
quantities (Kim, 2015a; Kim, 2015b). It has also earned criticism outside of the water
resources field from the aesthetic perspective of over-burdening the footprint metaphor
and from the practical perspective of having questionable utility for policy support
(Safire, 2008; Wichelns, 2004). More generally, the family of life-cycle sustainability in-
dicators are derivative metrics, which accumulate uncertainty from the numerous ob-
servations and estimations that are incorporated into the final assessment (Heijungs, R.
and Huijbregts, M.A.J., 2004; Lloyd and Ries, 2007). Recent efforts aimed at establish-
ing, standards for data quality indicators (DQI) and other scoring criteria are driven in
part by a desire to properly account for sources of uncertainty in life-cycle assessments
(Cooper and Kahn, 2012; Edelen and Ingwersen, 2016). Similar desires have been ex-
pressed towards water footprint assessments. As described by Hoekstra (2017): “The
field has to mature still in terms of calibrating model results against field data, adding
uncertainties to estimates and inter-model comparisons as done in the field of climate
studies”. Additionally, researchers now rely on computational methods to synthesize
the large quantity of environmental data and observations that are characteristic of stud-
ies conducted at large temporal or regional scales. It is still uncommon for data and com-
putational methods to be published along with the completed studies, which obstructs
the reproducibility of many hydrologic studies (Hutton et al., 2016). These later reasons
motivated the form of this study—an elementary water footprint analysis decomposed
into a reproducible framework.

As a case study in resource sustainability, the State of California presents a unique
combination of agricultural and economic activities, resource constraints, and environ-
mental monitoring efforts. Among the United States, California has the greatest popu-
lation, greatest total farm sales (cash receipts), and if considered separately, would rank
as the fifth largest economy in the world, by gross domestic product (Press, 2018). Nine
out of California’s one hundred million acres contain irrigated agriculture; which re-
quires 30 million acre feet of irrigation in an average year, accounting for 80% of the
state’s water use (California Department of Water Resources, 2014; Joel Kimmelshue,
Mica Heilmann, and Land IQ, 2017). This freshwater requirement is met in part from
a vast network of water storage and conveyance infrastructure, which transfer water
from the northern third of California, where 2/3 of the precipitation and runoff occurs,
to the southern two-thirds, where 3/4 of the anthropogenic water demands are located
(Dettinger et al., 2011).

Management of California’s freshwater resources are constrained by dynamic avail-
ability on one side and strong, persistent demands on the other. Seasonal variations in
precipitation affect the availability of freshwater resources in California The state has re-
cently endured a 5-year drought from 2011-2016, marked by a period from 2012 to 2014
that had the worst drought severity in the past millennium 1 (Griffin and Anchukaitis,
2014). On the other side, California’s water resources underpin its standing as one of

1As defined by cumulative precipitation defect and cumulative Palmer Drought Severity Index (PDSI),
see Griffin and Anchukaitis, Geophys. Res. Lett. (2014)
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the most productive agricultural exporters in the world and as an important compo-
nent of the nation’s food security. In 2015, California produced more than 99 percent
of the United States’ almonds, pistachios, walnuts, grapes, peaches, and pomegranates
(California Department of Food and Agriculture, 2017b). In the same year, international
exports accounted for approximately 26 percent of the state’s agricultural production
by volume, adding up to 44 percent of the total agricultural sales by value. California is
the sole national exporter of many valuable commodities, including almonds, walnuts,
and pistachios, which all lie in the top five of the state’s agricultural exports by value
(California Department of Food and Agriculture, 2017a).

Unpredictable seasonal availability and uncertain international appetite makes it
difficult to predict the nature of future constraints and pressures on California’s water
resources. There is no guarantee that future climatic, economic, or resource environ-
ments will accommodate all of the things that societies value: healthy produce, deli-
cious animal foods, verdant natural vistas, thriving native wildlife, and the autonomy
that comes from regional food security.

The current attention placed in life-cycle sustainability indicators demonstrates an
awareness of the desire to maintain environmental, social, and economic systems with-
out limiting the ability of future generations to meet their needs (World Commission on
Environment and Development, 1987; Finkbeiner et al., 2010). When coupled with sce-
nario analysis, these indicators can support strategic decisions to ensure the security of
natural resource supplies. Water footprint assessments have been used to quantify the
impact of lifestyles on California’s water resources (Fulton, Cooley, and Gleick, 2012)
and have been proposed as policy support tools (Fulton, Cooley, and Gleick, 2014). Ad-
ditionally, these assessments have been used to describe the effect of California water
resource challenges on international trade networks (Marston and Konar, 2017). While
water footprint assessments align with the resource sustainability challenges of Cali-
fornia, water scarcity is a problem shared by many nations globally (United Nations
World Water Assessment Programme, 2015). Therefore, reproducible sustainability as-
sessments are useful in their ability to be applied and compared between different en-
vironmental and economic systems.
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1.2 Research Objective

The primary goal of this thesis is to conduct a reproducible water footprint assess-
ment of field and row crop agricultural production in the State of California. This
study was motivated in part by popular “gallon-per-almond” depictions of water use
in the press, which prompted attention toward the hidden water demands of modern
lifestyles. While a useful communication tool, these metrics had limited utility as a
decision-support tool, as uncertainty in the underlying measurements was not always
explicitly conveyed in the final derived metric. This limitation is shared by many hy-
drologic studies of water use in California, where magnitudes of uncertainty make it
difficult to assess whether mitigation strategies are having their intended effect of im-
proving the state’s water security. One way to improve this knowledge defect is to
increase the exposure and scrutiny of hydrologic analyses, by ensuring that studies are
able to be reproduced and improved upon by as many individuals as possible.

This thesis describes a water footprint assessment implemented using completely
Free, Libre and Open Source Software (FLOSS), expressed as a series of documents us-
ing the literate programming paradigm (Knuth, 1984). The objectives that guided this
research were as follows:

• To examine how the WF of crops varies across the recent record of environmental
observations

• To create a tool that can simulate how the WF metric is sensitive to different data
sources, including different climate and land use scenarios

• To create a reproducible hydrologic analysis implemented in an accessible form
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Chapter 2

Methods

2.1 Overview

This study will begin with an overview of the water footprint method and definitions
of terminology and concepts which support the method. The core of this study is a
water balance model that calculates crop water requirements on a gridded basis using
crop coefficients. Next, an application of this model will be described as implemented
to calculate water footprints in a case study of select California agricultural activities.

Define  
Water Footprint 

Calculate 
Crop Water Use 

Define 
Data Sources 

Model 
Implementation 

­ Process boundary 

­ Analysis units 

­ Choice of water

use model 

­ Define

assumptions 

­ Water balance

model (Kc) 

­ California case

study 

­ 30­m resolution

gridded model 

­ R as scripting

language 

FIGURE 2.1: Overview of the topics covered in this study.
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2.2 Terminology

This study examines the direct water footprint of plant cultivation in California in the
water years 2008 to 2015. The direct water footprint refers to the water consumed dur-
ing the irrigation periods within each water year. The Assessment Manual distinguishes
between the WF of different processes along the supply chain of a product. For produce,
one can imagine water use by the grower, the food processor, the retailer, and the ulti-
mate customer, who may use additional volumes of water in the course of food prepa-
ration. ISO 14046:2014 suggests consolidating environmental impacts based on the con-
trol of unit processes or equity share. This study treats food cultivation as a “facility”
boundary, in the life-cycle of a food product. This study does not consider these end-use
impact WFs of food production, nor does it consider the volumes of water “consumed”
by assimilating pollutants into freshwater bodies during food production (termed, the
grey WF).

“Water consumption” merits additional clarification. Here, “consumption” is de-
fined as the volumes of water transpired by cultivated plants, within a given water
year. The Assessment Manual defines “blue water” consumption as the “loss of water
from the available ground-surface water body in a catchment area”, and “green water”
consumption as “rainwater insofar as it does not become run-off” (Equation 2.1). In
this study, counties and other hydrologic regions are considered, instead of catchment
boundaries. It is assumed that a parcel of water, once transpired, is no longer available
for use within a given region of interest.

WFproc = WFproc,green + WFproc,blue(((
((((+WFproc,grey (2.1)

In accordance with the Assessment Manual, production water footprints in this
study are expressed per unit of product—as in, volumes of water per unit mass of har-
vested crop, with base dimensions [L3M−1]. Units used in this study include US cus-
tomary units (gal/lbm) and SI units (m3/tonne). Through dimensional analysis, the WF
can also be represented in terms of another product unit, such as food calories (gal/kcal)
or dollars.

2.3 Calculation of the Water Footprint

In accordance with the Assessment Manual, the blue and green components of the water
footprint are calculated as the blue and green components of crop water use, divided by
crop yield (WF, [L3M−1]) (Equation 2.2).

WFblue =
CWUblue × A/��A

Y/��A
=

CWUblue × A
Y

WFgreen =
CWUgreen × A/��A

Y/��A
=

CWUgreen × A
Y

(2.2)

Crop water use is defined by the amount of water used by a crop in a given year.
The volume of water used by a crop can be considered as a depth of water [CWU, [L]]
expressed over a cultivated area [A, L2]. To produce a volumetric quantity, CWU must
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be multiplied by the area of crop grown (to produce m3/ha, for example). Crop yield
(Y, [ML−2]) is defined as the mass of food product produced in a given year. This is
expressed as a mass quantity per unit area of crop grown (e.g., tonne/ha).

2.3.1 Calculation of Crop Water Use

This study assumes that crop water use is equivalent to the crop’s water requirement
multiplied by the process irrigation efficiency. The crop water requirement (CWR, [L])
is the amount of water a crop would require to grow under “standard conditions”,
achieving the maximum rate of evapotranspiration (Equation 2.3). “Standard” growth
conditions are described in FAO Irrigation and Drainage Paper No. 56 as “disease-free,
well-fertilized crops, grown in large fields, under optimum soil water conditions, and
achieving full production under the given climatic conditions” (Allen et al., 1998). The
irrigation efficiency (Ei) is defined the ratio of irrigation water beneficially used, to irri-
gation water actually applied to the crop1 (Equation 2.4) (Martin and Gilley, 1993).

CWU ≡ CWR × Ei (2.3)

Ei =
volume of irrigation water beneficially used

volume of irrigation water supplied
× 100% (2.4)

Simulations run with an irrigation efficiency of 100% (such as this study) can be
considered as a lower-bound for real-world crop water use.

2.3.2 Calculation of the Crop Water Requirement

In accordance with the Assessment Manual, the blue and green components of the crop
water requirement (CWR) are calculated by accumulating daily crop evapotranspira-
tion over the complete growing period (Equation 2.5). By canceling units, this can be
represented a depth of water (CWU, [L]) expressed used over the cultivated area.

CWR = 10 ×
lgp

∑
t

(
ETc, blue + ETc, green

)
(2.5)

Daily crop evapotranspiration (ETc, [LT−1]) is defined by the amount of water tran-
spired in a single day, by an unstressed crop grown under standard conditions (refer
to 2.3.2 for “standard conditions”). This is represented as a depth of water (e.g. mm)
transpired by a unit crop, per day. The length of the growing period (lgp, [T]) is defined
in units of days, from the first day to the last day of applied irrigation.

The irrigated, freshwater component of crop evapotranspiration (ETc,blue) is calcu-
lated as the difference between daily crop evapotranspiration (ETc) and daily effective
precipitation (Pe f f ). The rainwater rainwater component of crop evapotranspiration
(ETc,green) is calculated as minimum of the daily effective precipitation (Pe f f ) and daily

1Application efficiency (Ea) and application adequacy can be distinguished from overall irrigation effi-
ciency when designing an irrigation system or an irrigation schedule.
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crop evapotranspiration (Equation 2.6). If there is more precipitation than crop evap-
otranspiration, then the irrigated component is equal to zero (ETc,blue = 0), and the
rainwater component is equal to the daily crop evapotranspiration (ETc,green = ETc).

ETc, blue = max (0, ETc − Pe f f )

ETc, green = min (ETc, Pe f f )
(2.6)

2.3.3 Calculation of Crop Evapotranspiration

Evapotranspiration (ET) describes all of the physical processes by which water is lost to
the atmosphere in phase conversions to vapor at or near terrestrial surfaces (Dingman,
2015). It incorporates evaporation, the free conversion of water to vapor from soil and
plant surfaces, and transpiration, which is the plant-driven conversion of water to vapor
that generally occurs inside of plant stomata. Over a growing season, the amount of
water lost to ET is orders of magnitude greater than the amount of water physically
embodied in plant tissue. Equation 2.5 assumes that the volume of water physically
embodied in plant tissue is negligible compared to the volume of water transpired over
the length of a crop’s growing season.

This study simulates daily crop evapotranspiration under standard conditions us-
ing the “single crop coefficient” method described in FAO Irrigation and Drainage Pa-
per No. 56 (Allen et al., 1998; Doorenbos and Pruitt, 1977). This method is shared
by other crop evapotranspiration tools developed for California, including Basic Irri-
gation Scheduling (BIS) and California Simulation of Evapotranspiration of Applied
Water (Cal-SIMETAW) (Orang et al., 2013; Snyder et al., 2007). In this method, ETc is de-
rived by multiplying the evapotranspiration of a reference crop (ET0) by a crop-specific
experimentally-derived factor (Kc) (Equation 2.7).

ETc = ET0 × Kc (2.7)

2.3.4 Definition of Reference Evapotranspiration

Evapotranspiration is constrained by physical factors, including meteorological condi-
tions (temperature, humidity, wind speed, solar radiation), soil characteristics, and the
physiological conditions of the given plant. By using a reference crop, grown under
“standard conditions” (see 2.3.1), it is possible to define a “reference evapotranspira-
tion” (ET0), as a function of solely meteorological observations. This “reference evapo-
transpiration” would reflect an ambient “evaporative demand” that is independent of
crop type, management practices, or soil factors (Allen et al., 1998).

In accordance with FAO-56, this study uses a reference ET defined as: ”A hypothetical
reference crop with an assumed height of 0.12 m, a fixed surface resistance of 70 s m−1, and albedo
of 0.23”. While this is described as a grass reference surface, alfalfa is also used in some
regions as a reference crop (with a height of 0.50 meters for a full cover of alfalfa) (Walter
et al., 2001). A standard method of calculating ET0 uses the FAO Penman-Monteith
equation; the ASCE method for ET0 is nearly identical, and differs only in the values
used for hourly surface resistance (Allen et al., 2005).
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2.3.5 Definition of Crop Coefficients

FIGURE 25 
Generalized crop coefficient curve for the single crop coefficient approach 
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FIGURE 2.2: Crop coefficient curve for a hypothetical an-
nual crop. The crop coefficient curve begins on the first
day of irrigation, which is typically the day of planting

for most annual plants (Allen et al., 1998).

In order to calculate the specific
crop evapotranspiration (ETc),
the reference evapotranspiration
is scaled by an empirical factor
that incorporates all of the fac-
tors that distinguish the specific
crop from the reference. These
factors include physiological dif-
ferences which constrain transpi-
ration (crop height, leaf albedo,
age, canopy roughness, and
stomatal properties) and cultiva-
tion differences which constrain
soil evaporation and transpira-
tion (irrigation frequencies, soil
type, planting density) (Allen et
al., 1998; Doorenbos and Pruitt,
1977). Kc values can be calcu-
lated as the ratio between ETo
and ETc at any given point in a
crop’s growth period (Equation
2.8, from Equation 2.7).

Kc =
ETc

ET0
(2.8)

In accordance with FAO-56, this study uses a daily crop coefficient (Kc), computed
from a curve, anchored at reference values that describe the initial, mid-season, and
late-station crop coefficients. Daily values are calculated by interpolating between these
defined values according to the duration of different growth stages (Figure 2.2, also
discussed further in section 2.3.3). Kc values are specific to the type of reference crop
used, and can be converted between grass and alfalfa references with a scaling factor.

2.4 California Case Study

The methodology described above was used to evaluate the water footprint of orchards
and field crops in California, from 2008 through 2015 water years. This case study in-
corporates a combination of surveyed observations and modeled simulations to both
calculate the water footprint and compute daily crop evapotranspiration. Specifically,
the entire state was divided into a 30-meter resolution grid and crop water requirements
were computed on a daily time step. This was combined with county-level surveys of
crop yield to produce county-level water footprint calculations.
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2.4.1 Reference Evapotranspiration (Spatial CIMIS)

This study used the California Irrigation Management Information System (CIMIS) to
obtain daily reference evapotranspiration (ET0) observations across the state. Specifi-
cally, the Spatial CIMIS data product was used to obtain raster (gridded) representations
of daily ET0 at a 4 km spatial resolution. This data was upscaled to 30 meters, using bi-
linear interpolation (see section 2.7). The original data is housed and maintained by
the California Department of Water Resources (DWR), and can be accessed through the
CIMIS web interface 2.

CIMIS comprises a network of over 100 automated weather stations that measure
the different meteorological parameters at urban and rural sites throughout California.
The system was originally established as a project of DWR and the University of Cali-
fornia, Davis in 1982 (CIMIS; Snyder and Pruitt, 1992). Each station is sited away from
buildings and trees, on a bed of healthy grass that is: “well maintained, properly irri-
gated and fertilized and mowed or grazed frequently to maintain a height between 10
to 15 centimeters (4 to 6 inches)” (Eching and Moellenberndt, Decamber 1998). Hourly
weather observations are transmitted nightly to Sacramento, where the data are used to
compute an average daily evapotranspiration of the reference grass surface underneath
each station, using a modified version of the 1977 FAO Penman-Monteith ET0 equation
(PM). The CIMIS Equation differs in its use of a wind function and a method of cal-
culating net radiation from mean hourly solar radiation (Dong et al., 1992; Eching and
Moellenberndt, Decamber 1998).The ET0 observations are made publicly available with
the primary purpose of aiding agricultural growers develop irrigation schedules.

While the CIMIS network provides station-specific ET0 calculations, the Spatial CIMIS
data product produces a continuous daily ET0 calculation across the entire state. This is
accomplished by using raster observations from the National Oceanic and Atmospheric
Administration (NOAA) Geostationary Operational Environmental Satellite (GOES) sys-
tem as inputs to the ASCE-Penman-Monteith (ASCE-PM) ET equation (Hart et al., 2009).
Spatial CIMIS also interpolates temperature and wind measurements from CIMIS sta-
tions, to serve as inputs to the ASCE-PM equation (Equation A.1, also see Appendix
A).

Radiative inputs to the ASCE-PM equation are derived from a clear sky factor that
is directly related to cloud cover, as observed by GOES satellite data. Specifically, Spa-
tial CIMIS uses GOES visible imagery (visible radiance) to derive a clearness parameter
that is directly related to cloud cover in a given grid cell. This is combined with a clear
sky solar radiation model developed for the Heliosat-II model (Rigollier, Bauer, and
Wald, 2000). Heliosat-II is a software commissioned by the Solar Radiation Data (SoDa)
project, with the purpose of converting images acquired by geostationary meteorolog-
ical satellites into maps of global solar irradiation, received at ground level (Lefèvre,
Albuisson, and Wald, 2004). The model incorporates a seasonal turbidity factor, which
describes atmospheric attenuation of light due to aerosols and gases. Additional de-
scription of inputs to the Spatial CIMIS implementation of the ASCE-PM equation can
be found in Appendix A).

Spatial CIMIS has a weakness in estimating solar radiation in scenarios where changes
in the surface albedo can be mistaken for cloud cover. This typically occurs in regions
that have snowfall and persistent fog, both common winter conditions for some regions

2http://www.cimis.water.ca.gov/SpatialData.aspx

http://www.cimis.water.ca.gov/SpatialData.aspx
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in California. Grid cells that contain snowcover and/or fog that persist for greater than
14 days lead to an underestimation of cloud cover and an over-prediction of net radi-
ation during cloudy days Hart et al., 2009. Depending on the location in California,
some studies have found good agreement between Spatial CIMIS ET0 and other meth-
ods, while others have used Spatial CIMIS after applying correction factors (Figures 2-4
in Cahn and Farrara, 2012, Figure 6 in Howes, 2017, Figures 3,4 in Orang et al., 2013).

2.4.2 Crop Coefficients (Basic Irrigation Scheduling)

This study used crop coefficients from Basic Irrigation Scheduling (BIS) to scale Spatial
CIMIS ET0 into crop-specific estimations of evapotranspiration ETc. Kc values for 45
unique crops were selected from the BIS software. These values were supplemented
with Kc values from the Consumptive Use Program Plus (CUP+) for garlic and oranges
and values from the University of California Division of Agriculture and Natural Re-
sources (UCANR) for some orchard crops. Kc values for peppermint and unspecified
caneberries were selected from the AgriMet crop coefficients, which were assembled by
the United States Bureau of Reclamation (USBR), Pacific Northwest region. Kc values
for unstressed Pomegranites were obtained from a study conducted at the Ben-Gurion
University of the Negev, Israel.

BIS is an application implemented in Microsoft Excel that is used for the planning
of irrigation schedules for crops in California (Snyder et al., 2007). The software was
developed as a collaboration between the University of California, Davis, the California
Department of Water Resources, and the University of California Cooperative Exten-
sion. The program is currently hosted by the UC Davis Biometerology Group and can
be accessed at the BIS home page 3.

Among other uses, BIS is used to determine irrigation schedules, irrigation timings,
and maximum allowable soil water depletion for 66 unique crop types. It accomplishes
this by estimating crop evapotranspiration given mean climate data for a particular re-
gion. BIS partitions evapotranspiration into the component of water evaporated from
spoil and plant surfaces (E) and the component transpired by leaves (T). As the crop ma-
tures, the ratio of T to ET increases, until the transpiration component dominates crop
ET. To account for the variable ETc, BIS defines: Kc values at different stages in a crop’s
life cycle, typical planting and harvest days, and the proportion of the growing period
dedicated to each growth stage. These coefficients are defined according to the FAO-56
“single crop coefficient” method, which assigns values according to 4 growth stages of
a typical crop: initial growth, crop development, mid-season, and late-season (Allen et
al., 1998; Doorenbos and Pruitt, 1977). These growth stages characterize a crop’s daily
Kc function, a curve that describes how the values vary as a function of the time in the
crop’s growing period.

BIS distinguishes between four main crop types. Type-1 crops describe field and
row crops that have a period of senescence and defoliation (Figure 2.3). They are char-
acterized by crop coefficients with three inflection points, at 10% ground shading, 75%
ground shading, and the onset of senescence. Some type-1 crops such as peas and let-
tuce, are harvested before their period of senescence. They are characterized by two
inflection points, at 10% ground shading and 75% ground shading. Type-2 crops have

3http://biomet.ucdavis.edu/irrigation_scheduling/bis/BIS.htm

http://biomet.ucdavis.edu/irrigation_scheduling/bis/BIS.htm
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Kc values that are essentially fixed for most of the season. These include alfalfa, pas-
ture, and most types of turfgrass. Shading of soil by dormant grass may cause an over-
prediction of soil evaporation and total ETc, however the error may be slight due to
the lower overall ETo during the cold winter season Richard L. Snyder, 2014. Type-3
crops do not have a water requirement prior to shoot and leaf growth in the spring (e.g.
deciduous trees and vines) and can be characterized by a Kc curve with two inflection
points. Type-4 crops represent orchard crops that have fixed Kc values throughout their
growing season—similar to type-2 crops. Type-4 crops include subtropical orchards
(avocado, citrus, and olives) (Snyder et al., 2007).
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FIGURE 2.3: Crop coefficient curves expressed as a function of time since
the onset of irrigation. Modified from (Snyder et al., 2007)

The daily crop coefficient values are derived by the length of each growth period
and the value of its endpoint. The beginning and end dates of a given crop’s growing
period are defined by a “Planting” month and day (signifying the first date of irrigation)
and a “Harvest” month and day (signifying the last day of irrigation). The values used
for crop coefficients can be found in Appendix B and a description of the function used
to generate daily Kc values can be found in Appendix I.

BIS crop coefficients were aggregated across a range of studies and specifications;
the provenance is described in a note within the BIS program (reproduced in Appendix
B). Many of these values were reproduced in the Consumptive Use Program Plus, an
application implemented in Microsoft Excel that also estimates crop evapotranspiration



Chapter 2. Methods 13

through a method of crop coefficients identical to BIS Orang, Matyac, and Snyder, 2011.
CUP+ crop coefficients can be found within the CUP+ application, which can be ac-
cessed through the DWR “Land and Water Use” webpage 4. When Kc values differed
between BIS and CUP+, values from CUP+ were chosen (see Appendix B).

Kc values for some orchard crops were obtained from a orchard irrigation reference,
published UCANR (Schwankl et al., 2007). Kc values for peppermint and caneber-
ries were obtained from AgriMet, a program from the USBR Pacific Northwest region,
which includes an evapotranspiration modeling effort for the Columbia river basin (Bu-
reau of Reclamation, 2016). These values were reported for use with an alfalfa refer-
ence, and were converted to the grass ET0 according to the recommended conversion
factors in FAO-56. AgriMet coefficients are maintained by USBR and can be found on
the AgriMet “Crop Water Use Information” webpage 5. Coefficients for pomegranates
were obtained from (Bhantana and Lazarovitch, 2010). Kc values were reconciled to fit
the growth season partitions used in BIS and CUP+ (see Appendix B).

2.4.3 Land cover (USDA-NASS Cropland Data Layer)

This study assigned Kc values to individual grid cells according to the crop cover, as
observed in the Cropland Data Layer (CDL). The United States Department of Agricul-
ture (USDA) National Agricultural Statistics Service (NASS) has produced land cover
raster image products for major agricultural regions since 1970, and for the 48 conter-
minous states since 2009 (Boryan et al., 2011; Han et al., 2012). Annual CDL images can
be viewed through CropScape, a web GIS application maintained by USDA-NASS and
the Center for Spatial Information Science and Systems at George Mason University 6.
CDL rasters can be downloaded from the CropScape web service, or at the National
Resources Conservation Service Geospatial Data Gateway 7.

The CDL was first created by the USDA NASS Research and Development Divi-
sion, Geospatial Information Branch, Spatial Analysis Research Section (USDA-NASS,
2018). It was based on an image processing and acreage estimation software named
Peditor, written in the 1970s and maintained through 2006 (Boryan et al., 2011). The
stated goal of the NASS CDL program is to provide commodity acreage estimates to the
Agricultural Statistics Board and other agricultural stakeholders. CDL rasters use stan-
dard land cover categories, with an emphasis on agricultural land covers. Records for
the State of California begin in the 2007 calendar year; CDL products have a 56-meter
spatial resolution from 2007-2009, and a 30-meter spatial resolution from 2009-present.

Currently, the CDL is primary constructed from the supervised classification of re-
motely sensed satellite imagery, from the Advanced Wide Field Sensor (AWiFS) onboard
the Indian Remote Sensing (IRS) satellite, RESOURCESAT-1 (Boryan et al., 2011). This is
supplemented with imagery from land imaging sensors8 onboard the United States Ge-
ological Survey Landsat satellites and 16-day Normalized Difference Vegetation Index
(NDVI) composites, from the National Aeronautics and Space Administration (NASA)

4http://wdl.water.ca.gov/landwateruse/models.cfm
5https://www.usbr.gov/pn/agrimet/h2ouse.html
6https://nassgeodata.gmu.edu/CropScape/
7https://datagateway.nrcs.usda.gov/
8Specifically, the Thematic Mapper (TM) on Landsat 4-5, the Enhanced Thematic Mapper (ETM+) on

Landsat 7 and the Operational Land Imager (OLI) on Landsat 8.

http://wdl.water.ca.gov/landwateruse/models.cfm
https://www.usbr.gov/pn/agrimet/h2ouse.html
https://nassgeodata.gmu.edu/CropScape/
https://datagateway.nrcs.usda.gov/
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moderate-resolution imaging spectroradiometer (MODIS). A table of sensor specifica-
tions can be found in Appendix 3.

The primary source of ground truth observations for the CDL products is the USDA
Farm Service Agency (FSA) Command Land Unit (CLU) program (Boryan et al., 2011).
The FSA CLU comprises digitized polygon boundaries of “semi-permanent ‘fields’” and
is a confidential NASS-internal data set. Auxiliary input data sources include the USGS
National Elevation Data set (NED), the Multi-Resolution Land Characteristics Consor-
tium (MRLC) National Land Cover Dataset (NLCD).

Prior to 2006, classification was performed using a maximum likelihood classifier
in the NASS-internal Peditor program, an image processing software written in Pascal
and FORTRAN (Boryan et al., 2011). Beginning in 2006, Rulequest Research’s See5.0
software was used to create a decision tree classifier. This is applied to the remotely
sensed imagery using the MRLC NLCD Mapping Tool and ERDAS Imagine.

Accuracy reports are presented in state-level metadata files each annual CDL survey.
For supervised classification, ground-truthed observations are defined as polygons, and
are subsequently buffered inward by 30 meters. This was done in part to reconcile
differences between the different spatial resolutions of the remotely sensed imagery (see
Appendix C). Prior to 2016, this method of inward-buffering was used for validation
and the construction of accuracy reports. However, this excluded edge pixels (locations
near boarder of different landcover types) from the accuracy reports. This resulted in a
somewhat inflated accuracy assessments. Starting in 2017, only “unbuffered” accuracy
assessments are reported. In 2016, the CDL metadata included both “buffered” and
“unbuffered” accuracy reports (elements reproduced in Appendix C). Overall accuracy
for California FSA crops tend to range between 80 and 90 percent.

2.5 Precipitation (PRISM)

In order to determine the proportion of daily crop water requirements that were met by
direct rainfall, this study used precipitation observations from the Parameter-elevation
Regressions on Independent Slopes Model (PRISM) climate mapping system. Specif-
ically, 800-m daily precipitation rasters were upscaled to 30 meters, using bilinear in-
terpolation (see section 2.4). The PRISM Climate Group at the Northwest Alliance for
Computational; Science and Engineering (NACSE) at Oregon State University main-
tains daily 800-m and 4-km raster datasets of precipitation across the 48 conterminous
states, spanning back to 1981. The group also maintains raster datasets of temperature
(mean, minimum, and maximum), dewpoint temperature, vapor pressure deficit (min-
imum and maximum), and 30-year annual “normals” (climatological averages). PRISM
rasters are freely available on the PRISM climate group homepage9, with the exception
of 800-m monthly and daily data, which must be ordered.

PRISM precipitation rasters were commissioned by USDA through the Natural Re-
sources Conservation Service (NRCS) to serve as the official spatial climate data sets
of the USDA (Daly et al., 2008). PRISM rasters are created at a 30-arcsecond ( 800-m)
spatial resolution and are also available at a 2.5-arcminute resolution ( 4km), matching
previous USDA-NRCS 1961-1990 climate data sets developed in the 1990s.

9http://prism.oregonstate.edu/

http://prism.oregonstate.edu/


Chapter 2. Methods 15

At its core, PRISM is is an interpolation technique that reproduces the spatial cli-
mate patterns of the United States, with a particular emphasis on the effect of elevation
and slope on precipitation (Daly et al., 2002). The method was originally developed by
Dr. Christopher Daly of Oregon State University in an attempt to reproduce the process
that climatologists used to construct climate maps of the United States (Daly et al., 2008;
Daly and Bryant, 2013). At its core, the model incorporates data from surface weather
stations ( 13,000 for precipitation and 10,000 for temperature). PRISM utilizes a linear
climate-elevation relationship, rather than a multiple regression model due to difficul-
ties in predicting “complex relationships between multiple independent variables and
climate”. Instead, weather station observations are weighted by distance, elevation,
coastal proximity, topographic facet, vertical layer, topographic position, and effective
terrain (Daly et al., 2008).

Accuracy estimates using single-deletion jackknife cross validation, leave-one-out
cross validation, and a 70% prediction interval have been performed on various revi-
sions to the PRISM method (Daly et al., 2008; Daly, Smith, and Olson, 2015). Regional
mean absolute error between predicted and observed precipitation and temperature
tend to be similar overall and higher in the physiographically complex western United
States. A 2008 evaluation of PRISM for the central California coast saw good agreement
between PRISM, WorldClim, and Daymet temperature observations for the central val-
ley of California (Daly et al., 2008).

2.6 Yield

Per crop water footprints were calculated by aggregating daily crop water use over each
water year and dividing by the reported yield in each calendar year. Reported yields
were obtained from the annual County Agricultural Commissioner’s (CAC) reports,
aggregated statewide by USDA-NASS (California County Agricultural Commissioners’ An-
nual Crop Report Manual 2012). Over 300 unique commodities are recorded in the CAC
reports, which includes animal and processed agricultural goods. These categories are
reconciled with the crop cover categories observed in the CDL using a pairing similar
to the relation described in an earlier water footprint assessment of California (Fulton,
Cooley, and Gleick, 2012). The relation used in this study can be found in Appendix
D.1. CAC commodities were only included for consideration if they appeared in every
year in the study period (2008-2015). The CAC commodities not included in this study
can be found in Appendix D.2.

To assess broader trends in agricultural commodities, CDL land cover classes were
further assigned a broad commodity label according to the Indicative Crop Classifica-
tion 1.1 (ICC), a taxonomy of agricultural, developed by the FAO for the 2010 World
Programme for the Census of Agriculture (WCA). A description of the ICC-commodity
relations used in this study can be found in Appendix 4C.

2.7 Model Framework

The core analytic method employed by this study can be divided into three components:
1. a gridded daily estimation of crop water requirement, 2. a gridded daily estimation of
the proportions of crop water requirement that are satisfied by rainwater and irrigation
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respectively, 3. a regional aggregation to reconcile the modeled crop data with county-
level surveyed yields.
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FIGURE 2.4: Architectual overview of the framework

Raster data sets are scaled and reprojected into a common coordinate reference sys-
tem using R (a statistical analysis software) as a wrapper for utilities found within the
Geospatial Data Abstraction Library (GDAL) (GDAL Development Team, 2018; R Core
Team, 2017). Crop water requirements were calculated on a cell-wise basis as raster al-
gebra expressions in R using the ‘raster‘ package (Hijmans et al., 2017). Zonal statistics
functions in the ‘raster’ R package were used to aggregate CWU in order to match the
spatial and temporal resolution of the yield surveys. Summary statistics were calcu-
lated and visualized using a variety of functions in base R and the ‘tidyverse’ family of
packages Wickham, Chang, and RStudio, 2016; Wickham and RStudio, 2017.

The entire analytic workflow is written in the literate programming style, as R mark-
down notebooks (Allaire et al., 2018; Knuth, 1984). Notebooks are separated according
the scripts which comprise the water balance model and the scripts which aggregate
and visualize the outputs. For the California case study, a 24-thread workstation was
used to run the water balance on a daily interval, across the state (excluding islands),
at a 30-meter spatial resolution (1,071,543,084 simulated observations per raster). The
notebooks are reproduced in Appendix I.
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Chapter 3

Results

3.1 Proximate analysis – Meteorological conditions

The 2008 through 2015 water years extended across 20-year extremes in mean annual
precipitation and mean annual temperature (Figure 3.1). Noteworthy years included
the span from 2011 to 2016, which contained a 5-year drought marked by warm sum-
mertime temperatures. This span also includes the coldest year since 2000 (2011). The
wettest year since 2000 also lies within the 2008-2015 study period.

warm
er 

an
d

dri
er

coo
ler

 an
d

wett
er

2001

2002

2003

2004

2005 2006

2007

2008 2009

2010

2011

2012
2013

2014

2015

2008
2015

330

450

550

650

794

14.0 14.5 15.0 15.5 16.0
Mean annual temperature ( °C)

M
ea

n 
to

ta
l p

re
ci

pi
ta

tio
n 

(m
m

)

FIGURE 3.1: Mean annual precipitation and mean annual temperature
since water year 2000, as depicted in the PRISM daily rasters. The period

modeled in this study spans WY 2008-2015.
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Average annual statewide temperature was summarized from the 800-m PRISM
data sets and compared to the 4-km mean temperature and precipitation products. Ag-
gregations from both datasets produced identical values, demonstrating that the anal-
ysis could be replicated (with more coarse temporal resolution) with the precipitation
data sets that are freely available from the PRISM web page.

3.2 Land use and distribution

Among the fruits, nuts, and vegetables examined in this study, a total of 54 unique
crops were observed in the CDL from 2008 through 2015. Counties with the greatest
variety of crops included Fresno (31 unique crops), Riverside (29), and Kern (27), while
counties with the least crop diversity included Alpine, Del Norte, Humboldt, Mariposa,
Mendocino, Nevada, and Tuolumne (1 unique crop). (Table E.1) Overall, the number of
unique crops followed a positive trend, year over year.

The area of harvested acres also followed a positive trend until the 2012 water year,
whereupon the number of harvested acres declined from a peak of nearly 7 million
acres, to approximately 5 million acres in 2015 (Figure E.1). The majority of harvested
acres in any given year are found in the counties within the Sacramento and San Joaquin
Valleys (Figure E.3). The top 10 counties by average harvested acres were: Fresno, Tu-
lare, Kern, San Joaquin, and Stanislaus (Table E.2).

FIGURE 3.2: Total annual harvested acres, aggregated by FAO ICC 1.1
Group. Individual crops are visualized in Figure E.2

Of the modeled crops, the only crop categories that displayed a decrease in irri-
gated area were cereals, leguminous crops, oilseed crops, and the “other crops” cate-
gory. While nuts and grasses displayed the largest magnitude of increase irrigated area,
the general categories of leafy vegetables and root vegetables experienced the largest
proportional increases from 2008 to 20115 (Table E.3).
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3.3 Crop water use and evapotranspiration

Consistent with the water footprint assessment manual, crop evapotranspiration was
partitioned into a rain-fed ET and irrigation-fed ET (Refer to section 2.3). In order to cal-
culate the blue and green components of crop ET, volumes of precipitated water were
tallied over irrigated acres. While there was an observed declining trend of precipita-
tion over irrigated crops, the crop water requirements remained fairly constant, with a
positive trend across the state (Figure 3.3, Table F.1).

FIGURE 3.3: Annual CWR and precipitation by DWR hydrologic region.

After accounting for the precipitation component of ETc, similar regional patterns
persist as with the crop water requirement, with the exception of counties in the Tulare
Lake hydrologic region, which had the highest magnitude of rain-fed ET for most years
in the study period (Figure 3.4).
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FIGURE 3.4: Annual CWR and precipitation by DWR hydrologic region.

Statewide, the modeled irrigated crops in the 95th percentile of crop water require-
ment included alfalfa, almonds, walnuts, grapes and miscellaneous pasture grasses
(other hay/non-alfalfa). Overall, trends of CWR were consistent for most modeled crops
(Figure 3.5, Table F.2). The distribution of precipitation across different crops was similar
to the distribution of annual CWR among crops (both are directly related to the number
of irrigated acres, for a given crop). Modeled crops that received the most precipitation
(95th percentile) included: alfalfa, almonds, rice, and grapes (Figure F.3).

FIGURE 3.5: Annual crop water requirement by CDL crop. Crops in the
top 5% of observations foe each year are labeled. This effectively high-

lights the top 3 crops per year.
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Spatially, the majority of crop ET is located in the central hydrologic regions of Cal-
ifornia. The majority of CWR is located in the southern regions (Tulare Basin) and the
majority of precipitation over cultivated acres occurs in the northern regions (Sacra-
mento River). Maps which describe these spatial trends can be found in Appendix F,
Figures F.4 and F.5.

3.4 Green and blue water footprints

The water footprint incorporates the effect of yields on crop water use. Assuming negli-
gible losses of water, the crop water requirement assumed to be equivalent to the actual
crop water use. The resultant water footprints can be considered a “best-case scenario”,
as inefficiencies in water distribution and application can only increase the actual crop
water use, increasing the blue component of the water footprint. Water footprints are
expressed in units of cubic meter of water per metric ton of harvested product. From
a resource management perspective, the WF of applied (blue) water is most valuable
for regions that are predominantly reliant on surface water resources. Total WF figures
are presented in Appendix 5, sections G-H. From 2008 to 2015, the blue WF was always
orders of magnitude higher than the green WF (Figure 3.6), further demonstrating the
minor role of direct rainfall toward satisfying crop water requirements in California
(Figure F.1).

Across large regional extents, the overall water footprint for most hydrologic regions
does not vary much year to year, with the exception of isolated fluctuations driven by
changes in reported yield (Figure 3.6). These fluctuations are also visible in the crop-
specific annual totals (Figure 3.7). For example, low mint yields in Shasta County in 2013
inflate the 2013 water footprint for mint (Figure 3.7). This fluctuation is also visible in
the regional WF statistic—due to the low intensity of agriculture in the North Lahontan
region (Figure 3.4), the low yield bias on the WF is visible at the regional scale.

FIGURE 3.6: Annual blue and green water footprint by hydrologic region,
expressed as cubic meters of water per metric ton of harvested product.
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Most commodity groups experience an increase in blue WF, with fiber crops seeing
a nearly 500% increase between 2008 and 2015. Nuts (-20%) and oilseed crops (-40%)
experienced a decrease in blue WF over the same period (Table G.3, see also Figure G.1).

FIGURE 3.7: Annual blue water footprint by CDL crop. Crops in the top
5% of observations foe each year are labeled. This effectively highlights

the top 3 crops per year.
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Chapter 4

Discussion

4.1 Validation of crop ET model

A 2018 study by the University of California, Davis compared the consumptive use of
water by crops in the Sacramento-San Joaquin Delta of California using seven differ-
ent crop evpotranspiration models. This “Delta ET” study included methods that were
based on crop coefficients and methods which are reliant on remotely sensed satellite
measurements. Monthly crop ET values were published along with the region of inter-
est, for the 2015 and 2016 water years. Overall crop ET observations from this study
were compared to the monthly mean of the seven ET models from the Delta ET study.

FIGURE 4.1: Monthly total crop ET modeled in the Delta Service Region
for the 2015 water year. Calculations from this study labeled “ucm_wf”.

Data from (Medellín-Azuara et al., 2018).

Overall, there was general agreement between this study and the methods detailed
in the Delta ET study. This study tended to underestimate crop ET each month by no
greater than 50% (see Table H.1 and figure 4.1). The highest proportion of underes-
timation occurred during the winter months. However, due to the small magnitude
of wintertime ET, this only resulted in a 22% cumulative underestimation (see Figure
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H.2). The Delta ET models include some land cover classes that this study does not
model. The SIMS ET model implemented by the Delta ET study does not model semi-
agricultural/right-of-way and wet herbaceous/sub-irrigated pasture. The results of this
study closely match the monthly results from SIMS within 1%.

4.2 Distribution of water utilization

The water footprint can be thought as a measure of the effectiveness of a unit applica-
tion of water, given yields as the test for effectiveness. Regionally, it is expected that the
highest proportion of crop water use would occur in the intensively-cultivated central
valley region (encompassing the Sacramento River, San Joaquin River, and Tulare Lake
hydrologic regions). Compared to regions less suitable for agriculture (or dominated
by urban land use). these regions are exceptional in their overall water use. However,
they are not exceptional in the water footprint of agricultural activities (Figure 4.2). For
example, Monterey county contained the largest overall average water footprint of agri-
cultural production, in spite of the possessing a small proportion of overall agricultural
water requirement.

FIGURE 4.2: Treeplot of mean annual blue water footprint expressed on
a linear color scale and mean annual crop water requirement expressed
as a proportion of overall average CWR. Counties are further grouped by

DWR hydrologic region.

Among agricultural commodities, average water footprints agree with other assess-
ments in terms of rank order of water footprint and overall crop water requirement.
For example, nuts and grasses both have a large water footprint and large crop water
requirement, compared to other crops modeled in this study (Figure 4.3). The large pro-
portional crop water requirement could be function of crop-specific ET characteristics,
or it could be an artifact of a large overall cultivated area. However, when compared
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the proportion of harvested acres, lower WF crops make up a slightly larger portion of
cultivated acres than fruits and nuts (Figure G.4).

4.3 Resource availability impacts

Droughts can be used to study the effects of reductions the overall amount of water
available in a distribution system. For the drought period starting in 2012, reductions
in harvested acres were observed, especially with grasses and some specialty crops.
Crop water requirements either remain constant or increase for some crops (as the warm
temperatures of the 2011-16 drought drive higher rates of potential evapotranspiration).
The equivalence of crop water use and crop water requirement was a central assumption
in this study. The response of the water footprint under deficit irrigation can be an
important topic for future work, as reductions in water use may be less effective from a
footprint perspective if yields are dramatically affected.

FIGURE 4.3: Treeplot of mean annual blue water footprint expressed
on a logarithmic color scale and mean annual crop water requirement
expressed as a proportion of overall average CWR. Crops are further

grouped by ICC group.

Some water footprint assessments use the proportion of the blue and green water
footprint to draw conclusions regarding a region’s reliance on a particular type of water
resource (Johansson et al., 2016). All regions in California have a significantly larger
blue WF than green wf, and these footprints are not necessary to identify the state’s
reliance on surface water resources. Regionally, the counties with the highest overall
CWU tended to contain crops with higher water footprints than those with lower CWU
(Figure 4.4).
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FIGURE 4.4: Average water footprint and crop water requirement. For
panel 2, counties in the top 10% of total state CWU are highlighted.
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Chapter 5

Summary and Conclusions

This study explored the distribution of water footprints across the State of California
regionally, across different commodities, and across a 7 year period, marked by wet
and dry climatic extremes. A model of crop water use was coupled with surveyed
observations of precipitation, harvest statistics, and a land cover model. Findings from
this study revealed an overall insensitivity of the water footprint to climatic extremes
and significant inter-annual variability in the metric (by orders of magnitude at times).

As a highly derivative metric, the water footprint accumulates errors from all of the
data sources used in its calculation. Unreliable yield reports can dramatically change
the water footprint, due to the power-law relationship (multiplicative inverse) between
the water footprint and crop yield. By quantifying the uncertainty of this metric, the
water footprint could become even more useful as a decision support tool. However,
even exploring the relative proportions of water footprints are useful in defining the
conceptual extent of the water-use for a given territory or commodity. Future studies
can conduct sensitivity analysis of the metric, to examine which input parameters (aside
from yield) have the greatest effect on water footprint variability.

In the course of this study, a framework was created and implemented in R that
allows this analysis to be replicated and run with different inputs. This framework can
be utilized in future analyses to compare the footprint metric with the ever improving
agricultural methodologies found in California, from modeling irrigation efficiencies,
to using improved land use surveys and methods of modeling crop evapotranspiration.
The framework can also be applied to different regions, provided that there are harvest
and crop ET models which adequately characterize the region.

An understanding of the water footprint of agricultural production can provide in-
formation to the grower who wishes to maximize the economic return of a given volume
of water, the state planner who wishes to maximize utility per unit of water allocated,
the national administrator who wishes to understand national risks and strengths, or
the informed citizen who wishes to align their consumptive activities with a vision for
the conditions conferred to the next generation. This information is a critical component
of the continuous motivation to characterize relationships between society and natural
resource systems, with the ultimate goal of creating sustainable and resilient social and
natural systems.
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Appendix A

Spatial CIMIS

A.1 ASCE-ET Equation as used by Spatial CIMIS

ET0 =
0.408∆(Rn − G) + γ Cn

Tm+273U2(es − ea)

∆ + γ(1 + CdU2)
(A.1)

A.2 CIMIS weather station sensors used for ground station in-
terpolation

CIMIS Sensor Model Sensitivity
Total solar radiation (pyranometer) Li-Cor LI200S ±5%
Air temperature Fenwal UUT5J1 (HMP35) ±0.1 ◦ C
Relative humidity Vaisala Humicap (HMP35) ±2–4% RH
Wind direction (wind vane) Met-One 024A ±5%
Wind speed (anemometer) Met-One 014A ±1.5%
Precipitation (tipping bucket) TI TE525M ±1% at 5 cm/h

TABLE A.1: CIMIS weather station sensors, via (Hart et al., 2009)

A.3 Spatial CIMIS ASCE-PM parameters derivation

CIMIS sensors ASCE-PM Parameter Interpolation Method
Dew Point (Tdewp) actual vapor pressure (ea) average of TG, RST
Min air temp (Tmin) daily max air temperature (Tx) average of TG, 2-D RST
Max air temp (Tmin) daily min air temperature (Tn) average of TG, 2-D RST
Avg wind speed (U2) wind speed (U2) 3-D RST

TABLE A.2: Spatial CIMIS ASCE-PM station parameters and ASCE-PM
derivations, via (Hart et al., 2009)

Note: Tx, Tn, and Tdewp represent temperature at 1.5 m above ground level. U2 repre-
sents wind peed at 2 m above ground level.
Note: Tdewp is calculated as a function of relative humidity and air temperature and is
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returned as a station parameter by the CIMIS system.
Note: Truncated Gaussian (TG) interpolation is calculated according to the method in
(Thornton, Running, and White, 1997).
Note: Regularized Spline with Tension (RST) interpolation is computing using 3D splines
in the v.vol.rst GRASS module (GRASS Development Team, 2017).

GOES sensor ASCE-PM Parameter Derivation Method
GOES Visible & Linke turbidity &
Solar Almanac

Solar radiation
(Rn, Rns, Rnl , Rs, Rso)

Heliosat-II

GOES Visible & Linke turbidity &
Solar Almanac

Clear sky factor (K) Similar to Heliosat-II

TABLE A.3: Spatial CIMIS ASCE-PM satellite parameters and derivation,
via (Hart et al., 2009)

A.4 Spatial CIMIS ASCE-PM ETo framework

FIGURE A.1: Spatial CIMIS processing flowchart via (Hart et al., 2009)
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Appendix B

Crop Coefficients

B.1 BIS/CUP+ Type-1 crops (field and row) modeled in this study

Crop
Number

Crop
Name

%season
B

%season
C

%season
D

Kc AB Kc CD Kc E
Planting
Month

Planting
Day

Harvest
Month

Harvest
Day

1.03 Asparagus 12 25 95 0.25 1 0.25 1 1 12 31
1.04 Barley 20 45 75 0.7 1.1 0.15 11 1 5 31
1.06 Beans (dry) 24 40 91 0.2 1 0.1 6 15 9 30
1.1 Broccoli 20 50 83 0.3 1 0.8 3 15 7 1
1.11 Cabbage 25 63 88 0.3 1 0.85 8 1 11 15
1.12 Carrots 20 50 83 0.85 0.95 0.8 1 15 5 15
1.13 Celery 15 40 90 0.8 0.95 0.95 9 15 1 15
1.15 Corn (silage) 20 45 100 0.2 1 1 5 1 8 15
1.16 Cotton 15 25 85 0.35 0.95 0.5 5 15 10 15
1.17 Cucumber 19 47 85 0.8 0.85 0.85 3 15 6 15
1.18 Eggplant 23 54 85 0.8 0.9 0.85 4 1 11 15
1.19 Flax 17 45 80 0.2 1.1 0.25 4 1 7 31
C.1.2 Grains (small) 20 45 75 0.33 1.1 0.15 11 1 5 31
C.1.21 Grains (winter) 20 45 75 0.33 1.05 0.15 11 1 5 31
C.1.22 Garlic 25 73 92 0.55 1.3 0.2 10 25 6 12
1.23 Lentil 24 40 91 0.2 1 0.1 6 15 9 30
1.24 Lettuce 25 65 90 0.8 0.8 0.8 3 15 7 15
1.25 Melon 21 50 83 0.8 0.95 0.75 4 1 11 15
1.26 Millet 14 36 75 0.3 1 0.3 11 1 5 31
1.27 Mustard 25 63 88 0.3 1 0.85 8 1 11 15
1.28 Oats 20 45 75 0.33 1.1 0.15 11 1 5 31
1.29 Onion (dry) 10 26 75 0.55 1.2 0.55 3 1 10 1
1.31 Peas 20 47 83 0.2 1 1 3 1 5 31
1.32 Peppers 20 45 85 0.8 1 0.85 3 1 8 31
1.33 Rice 24 37 86 1.2 1.05 0.8 5 15 9 30
1.34 Radishes 20 45 85 0.8 0.85 0.75 4 1 5 1
1.35 Potatoes 20 45 78 0.8 1.1 0.7 4 15 8 15
1.36 Safflower 17 45 80 0.2 1.05 0.25 4 1 7 31
1.38 Sorghum 16 42 75 0.2 1.05 0.5 4 1 11 15
1.4 Squash 20 50 80 0.52 0.9 0.7 1 15 4 15

1.41
Strawberries
w/mulch

15 45 80 0.2 0.7 0.7 5 1 9 30

1.42 Sugarbeet 15 45 80 0.2 1.15 0.95 3 15 9 30
1.43 Sugarcane 17 44 78 0.4 1.25 0.75 4 1 12 27
1.44 Sunflower 20 45 80 0.2 1.1 0.4 5 1 9 10
1.45 Sweet Potatoes 20 45 78 0.8 1.1 0.7 4 15 8 15
1.46 Tomatoes 25 50 80 0.3 1.1 0.65 4 1 8 31
1.47 Vegetables 33 67 92 0.8 0.9 0.9 3 1 8 31
1.48 Wheat 20 45 75 0.33 1.1 0.15 11 1 5 31
1.49 Watermelon 20 50 75 0.8 1 0.75 4 1 11 15

TABLE B.1: Data from (Snyder et al., 2007). Garlic, grains (small and
winter), and crop numbering from Orang, Matyac, and Snyder, 2011.



Appendix B. Crop Coefficients 31

B.2 BIS/CUP+ Type-2 crops (grass and pasture) modeled in this
study

Crop
Number

Crop
Name

%season
B

%season
C

%season
D

Kc AB Kc CD Kc E
Planting
Month

Planting
Day

Harvest
Month

Harvest
Day

2.01
Alfalfa
(annual)

25 50 75 1 1 1 1 1 12 31

TABLE B.2: Data from (Snyder et al., 2007). Crop numbering from Orang,
Matyac, and Snyder, 2011.

B.3 BIS/CUP+ Type-3 crops (deciduous orchards and vines) mod-
eled in this study

Crop
Number

Crop
Name

%season
B

%season
C

%season
D

Kc AB Kc CD Kc E
Planting
Month

Planting
Day

Harvest
Month

Harvest
Day

A.3.01 Almonds 0 47 80 0.54 0.94 0.7 3 16 11 15
3.02 Apple 0 50 75 0.55 1.15 0.8 4 1 11 15
C.3.04 Table Grapes 0 25 75 0.45 1.05 0.35 4 1 11 1
A.3.07 Stone fruit 0 33 80 0.55 0.87 0.68 3 1 10 31
A.3.08 Walnuts 0 40 73 0.12 1.14 0.28 3 16 11 15
3.09 Peach 0 50 90 0.55 1.2 0.65 4 1 10 15
A3.10 Prunes 0 15 62 0.62 0.96 0.57 4 1 10 31
A.3.12 Pistachios 0 36 64 0.7 1.17 0.35 4 1 11 15

TABLE B.3: Data from (Schwankl et al., 2007). Apples and peaches from
(Snyder et al., 2007). Table grapes from (Orang, Matyac, and Snyder,

2011).

B.4 BIS/CUP+ Type-4 crops (subtropical orchards) modeled in
this study

Crop
Number

Crop
Name

%season
B

%season
C

%season
D

Kc AB Kc CD Kc E
Planting
Month

Planting
Day

Harvest
Month

Harvest
Day

4.06 Olives 0 33 67 0.8 0.8 0.8 1 1 12 31
4.07 Orange 0 33 67 1 1 1 1 1 12 31
A.4.10 Pears 7 29 79 0.55 0.87 0.65 5 16 12 31

TABLE B.4: Data from (Snyder et al., 2007). Pears from (Schwankl et al.,
2007).

B.5 Agrimet crop coefficients

Crop
Number

Crop
Name

%season
B

%season
C

%season
D

Kc AB Kc CD Kc E
Planting
Month

Planting
Day

Harvest
Month

Harvest
Day

PPMTcc Peppermint 10 57 76 0.19 0.95 0.8 4 30 8 1
TBERcc Caneberries 10 48 67 0.19 1 0.8 11 1 9 30

TABLE B.5: Data for peppermint from Canyon County (Idaho) Extension
Office, 1976. Caneberries from USBR Mid-Pacific Region, 1975 (Bureau of

Reclamation, 2016).
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B.6 Other crop coefficients

Crop
Number

Crop
Name

%season
B

%season
C

%season
D

Kc AB Kc CD Kc E
Planting
Month

Planting
Day

Harvest
Month

Harvest
Day

BL 2010 Pomegranates 14 43 43 0.16 0.64 0.2 4 30 10 15

TABLE B.6: Data from (Bhantana and Lazarovitch, 2010)

B.7 BIS crop coefficient notes

Reproduced from (Snyder et al., 2007).

Kc data marked in blue were derived in work by T.C. Hsiao and former students

at UC Davis.

The Kc for corn was derived by Steduto and Hsiao (1998) maize canopies uhnder

two soil water regimes II. Seasonal trends of evapotranspiration, carbon dioxide

assimilation and canopy conductance, and as related to leaf area index. Agric.

and forest Meteorol. 89:185-200. The Kc =1.05 for cotton is based on work

by Held and Hsiao The Kc = 1.00 for sorghum is based on work by Held and Hsiao.

Millet and For tomato a Kc = 1.10 was selected based on unpublished data from

Snyder and Cahn and on expeiments by Held & Hsiao. The kc values reported by

Held and Hsiao were slightly higher, but the tomatoes were full canopy (not

in beds, which is the normal practice). The data from Snyder and Cahn were

typical for California practices. The data for sunflower were based on data

from Hsiao (personal communication)

Kc data marked in green were derived from several sources. The assumption

is that corn has a Kc = 1.00 for ETo calculated using the Pruitt and Doorenbos

(1977) hourly ETo equation that is used by the California Irrigation Management

Information System CIMIS

Snyder and Pruitt (1992) Evapotranspiration Data Management in California

Irrigation & Drainage Session Proceedings/Water Forum '92, EE,HY,IR,WR Div/ASCE,

Baltimore, MD/August 2-6, 1992. pp128-133..

Relative Kp values for alfalfa for the crops marked in green were selected

from Wright (1982) New Evapotranspiration Crop Coefficients. Presented at Irrigation

and Drainage Specialty Conference, ASCE, July 17-20, Albuquerque, New Mexico.

pp 57-74.

The peak Kp values were corn = 0.95, alfalfa = 1.0, beans = 1.0, potatoes

= 0.8, sugar beets = 1.0, peas = 0.9, and cereals = 1.0. Because the equation

for ETo was not available at that time, the Kp values cannot be used directly.

However, assuming the Kc = 1.00 is correct for corn, then the approximate peak

Kc values for the other crops are found by dividing the Kp by 0.95. The peak

Kc values for a grass ETo are corn = 1.00, alfalfa = 1.05, beans = 1.00, potatoes

= 0.85, sugar beets = 1.05, peas =0.95, and cereals = 1.05.

The rice Kc = 1.1 more current data on typical ETo from CIMIs and the article

Lourence and Pruitt (1971) Energy balance and water use of rice grown in

the Central Valley of California. Agron. J. 63:827-832.
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Lourence and Pruitt found ET of rice to be about 4-5% higher than lysimeter

measured grass in Davis. Rice ET was measured by Bowen ratio about 25 miles

north of Davis. The postulated that the ETo would be less in the rice growing

region because of higher humidity. As a result, they recommend a Kc = 1.20

to 1.25. However, CIMIS data indicates that the ETo is only about 5% higher

in Davis than at the Nicolas site and in Colusa, which are near the rice growing

region. As a result, we would recommend a Kc = 1.05 x 1.05 = 1.10 to estimate

ETrice from ETo estimated at a CIMIS station in the rice growing region.
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Appendix C

Crop Coefficients

C.1 Satellite imaging sensor specifications

Landsat TM IRS AWiFS
Altitude 705 km 817 km
Equatorial crossing time 9:45 +/- 15 min 10:30 +/- 5 min
Temporal resolution 16 days 5 days

Spatial resolution
30×30 m (reflective),
120×120 m (thermal)

56×56 m

Radiometric resolution 8-bit (256) 10-bit (1024)

Spectral resolution
6 (B, G, R, NIR, SWIR, MIR)
+ Thermal IR

4 (G, R, NIR,SWIR)

Swath width 185 km 740 km
Scene size 184×170 km 370×370 km

TABLE C.1: Data from .(Boryan et al., 2011).

C.2 Selection from 2016 Cropland Data Layer accuracy report

Correct Total Accuracy Error Kappa
Overall 1696086 1919814 88.30% 11.70% 0.871
FSA Crops 891603 995949 89.50% 10.50% 0.887
Principal Crops 313515 361429 86.70% 13.30% 0.844
Tilled Crops 523619 606242 86.40% 13.60% 0.848
Forage 159414 178712 89.20% 10.80% 0.699
Vegetables 81947 105093 78.00% 22.00% 0.679
Orchards 208570 239815 87.00% 13.00% 0.817
Berries 110 210 52.40% 47.60% 0.272

TABLE C.2: Data from 2016 “Buffered” CDL validation. Available at CDL
web site 1.
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Correct Total Accuracy Error Kappa
Overall 1512346 1864389 81.10% 18.90% 0.79
FSA Crops 707938 940610 75.30% 24.70% 0.728
Principal Crops 219953 335109 65.60% 34.40% 0.589
Tilled Crops 346070 521238 66.40% 33.60% 0.615
Forage 166276 214196 77.60% 22.40% 0.477
Vegetables 24976 53307 46.90% 53.10% 0.426
Orchards 195592 266572 73.40% 26.60% 0.631
Berries 134 409 32.80% 67.20% 0.058

TABLE C.3: Data from 2016 “Buffered” CDL validation. Available at CDL
web site 2.

C.3 Description of CDL inputs and methods

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005
Field Data Field level training data collected from June Agricultural Surveys
Satellite Sensor Landsat 4/5/7
Other inputs
MODIS AwiFS
AwiFS
Landsat
Deimos-1 / UK-DMC 2
National Land Cover Dataset
Cultivated Mask Data
Classification Method Maximum likelihood classifier
Vector Processing

USGS PEDITOR
Raster Processing
Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Field Data Farm Service Agency Command Land Unit
Satellite Sensor IRS – P6 Resourcesat-1 Landsat 8
Other inputs
MODIS MODIS NDVI product
AwiFS AwiFS Orthorectified by GeoEye
Landsat Landsat TM / ETM
Deimos-1 / UK-DMC 2 DCM
National Land Cover Dataset NLCD non-agricultural data
Cultivated Mask Data Coverage for entire USA
Classification Method Decision-tree based classifier
Vector Processing ESRI ArcGIS
Raster Processing ERDAS Imagine

TABLE C.4: Data from Boryan et al., 2011; Han et al., 2012; Kimberly
Panozzo, 2016
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Appendix D

Agricultural Commodity Relations

D.1 Commodities and Commodity Codes as reported by the
County Agricultural Commissioners’ Reports

CDL Landcover Class CAC Commodity

Almonds Almonds All
Apples Apples All
Apricots Apricots All
Asparagus Asparagus Fresh Market, Asparagus Unspecified
Barley Barley Feed, Barley Seed, Barley Unspecified

Dry Beans

Beans Blackeye (Peas), Beans Dry Edible Unspecified, Beans Garbanzo,
Beans Kidney Red, Beans Lima Baby Dry, Beans Lima Green, Beans
Lima Large Dry, Beans Lima Unspecified, Beans Pink, Beans Seed, Peas
Dry Edible

Peas
Beans Fava, Beans Fresh Unspecified, Beans Snap Fresh Market, Beans
Snap Processing, Beans Snap Unspecified, Peas Edible Pod (Snow), Peas
Green Unspecified, Peas Seed

Caneberries
Berries Blackberries, Berries Boysenberries, Berries Bushberries Unspec-
ified, Berries Loganberries, Berries Raspberries

Strawberries
Berries Strawberries Fresh Market, Berries Strawberries Processing,
Berries Strawberries Unspecified

Broccoli
Broccoli Food Service, Broccoli Fresh Market, Broccoli Processing, Broc-
coli Unspecified

Cabbage Cabbage Chinese & Specialty, Cabbage Head

Carrots
Carrots Food Service, Carrots Fresh Market, Carrots Processing, Carrots
Unspecified

Celery Celery Food Service, Celery Fresh Market, Celery Unspecified
Cherries Cherries Sweet

Citrus
Citrus By-Products Misc., Citrus Unspecified, Lemons All, Limes All,
Tangerines & Mandarins

Greens Collard Greens, Endive All, Salad Greens Misc.
Corn Corn Grain, Corn Seed, Corn Silage, Corn Sweet All, Corn White
Pop or Orn Corn Corn Popcorn

Cotton
Cotton Lint Pima, Cotton Lint Unspecified, Cotton Lint Upland, Cotton
Seed Planting, Cottonseed

Cucumbers Cucumbers
Eggplants Eggplant All
Small grains (average) Food Grains Misc., Rice Wild, Rye Grain

Misc Vegs & Fruits
Fruits & Nuts Unspecified, Vegetables Oriental All, Vegetables Unspeci-
fied

Garlic Garlic All
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Grapes
Grapefruit All, Grapes Raisin, Grapes Table, Grapes Unspecified,
Grapes Wine

Mustard Greens Turnip & Mustard
Alfalfa Hay Alfalfa, Seed Alfalfa, Sprouts Alfalfa & Bean

Other Hay/Non Alfalfa
Hay Grain, Hay Green Chop, Hay Other Unspecified, Hay Sudan, Hay
Wild, Silage, Straw

Lettuce
Lettuce Bulk Salad Products, Lettuce Head, Lettuce Leaf, Lettuce Ro-
maine, Lettuce Unspecified

Cantaloupes Melons Cantaloupe
Honeydew Melons Melons Honeydew, Melons Unspecified
Watermelons Melons Watermelon
Mint Mint
Nectarines Nectarines
Oats Oats Grain, Oats Seed
Olives Olives
Onions Onions
Oranges Oranges Navel, Oranges Unspecified, Oranges Valencia
Peaches Peaches Clingstone, Peaches Freestone, Peaches Unspecified
Pears Pears Asian, Pears Bartlett, Pears Prickly, Pears Unspecified
Peppers Peppers Bell, Peppers Chili Hot
Pistachios Pistachios
Plums Plumcots, Plums, Plums Dried
Pomegranates Pomegranates
Potatoes Potatoes All, Potatoes Seed
Sweet Potatoes Potatoes Sweet
Pumpkins Pumpkins
Radishes Radishes
Rice Rice Milling, Rice Seed
Safflower Safflower, Safflower Seed Planting
Sorghum Sorghum Grain, Sorghum Silage
Herbs Spices And Herbs
Squash Squash
Sugarbeets Sugar Beets
Sunflower Sunflower Seed Planting

Tomatoes
Tomatoes Cherry, Tomatoes Fresh Market, Tomatoes Processing, Toma-
toes Unspecified

Triticale Triticale
Walnuts Walnuts Black, Walnuts English
Wheat all (average) Wheat All, Wheat Seed

TABLE D.1: Relations between the USDA-NASS Cropland Data Layer
land cover classes used in this study and corresponding commodity
classes in the County Agricultural Comissioners’ annual report. This
paring follows a similar pairing made for an earlier water footprint as-
sessment of California agriculture and trade (Fulton, Cooley, and Gleick,

2012).
Due to the length, this appendix does not contain the CDL and CAC classes that are not
used in this study. Both raw descriptors are available at the home pages of the California
“County Ag Commissioners’ Data Listing”1 and the “Cropland Data Layer“2.

1USDA-NASS: https://www.nass.usda.gov/Statistics_by_State/California/Publications/

AgComm/Detail/
2USDA-NASS: https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php

https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/Detail/
https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/Detail/
https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
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D.2 CAC commodities not present in all years

APIARY PRODUCTS BEES NUCLEI VEGETABLES BABY
BARLEY SEED WALNUTS BLACK
BEANS KIDNEY RED WATERCRESS
BEANS LIMA GREEN ASPARAGUS FRESH MARKET
BEANS PINK CHIVES
BEANS SNAP FRESH MARKET CORN SEED
BERRIES BOYSENBERRIES FISH SHELL
BIOMASS FOR ENERGY FLOWERS CHRYSANTHEMUM CUT POM.
CATTLE CALVES EXCLUDED UNSPECIFIED FLOWERS LILACS CUT
CHERIMOYAS FOOD GRAINS MISC.
CHESTNUTS HIDES SKIN & FUR
CHICKENS CHICKS BROILER MELONS CRENSHAW
CHICKENS HENS SPENT MOHAIR
CORN CRAZY NURSERY HORTICULTRAL SPECIMIN MISC.
CORN POPCORN PEAS SEED
CORN WHITE QUAIL
EGGS CHICKEN HATCHING RHUBARB
FLOWERS ANTHURIUMS CUT SEED VETCH
FLOWERS GARDENIAS CUT SHEEP BREEDING STOCK
FLOWERS ORCHIDS CUT ALL SOYBEANS
JOJOBA BERRIES LOGANBERRIES
MACADAMIA NUTS CHAYOTES
NURSERY FLOWER BULBS/CORMS/RHIZOMES EGGS DUCK ALL
NURSERY FLOWER PROPAGATIVE MATERIALS TARO ROOT
NURSERY FRUIT/VINE/NUT NON-BEARING BEANS SNAP PROCESSING
NURSERY GERANIUMS FLOWERS ROSES CUT STANDARD
OATS SEED PEARS PRICKLY
PEANUTS ALL CATTLE CALVES EXCLUDED UNSPECIFIE
PEAS DRY EDIBLE GOAT CHEESE
PHEASANTS GUAR
POTATOES SEED NURSERY FLOWER BULBS/CORMS/RHIZOM
SEED CLOVER UNSPECIFIED NURSERY FLOWER PROPAGATIVE MATERI
TOMATILLO NURSERY FRUIT/VINE/NUT NON-BEARIN
TOMATOES CHERRY NURSERY HORTICULTRAL SPECIMIN MIS
TOMATOES GREENHOUSE SPINACH PROCESSING
TURKEYS TOMS & HENS

TABLE D.2: County Agricultural Comissioners’ commodity categories
that were not present in all years. These commodities were excluded
from yield consideration for the study years (2008-2015). This list was
constructed by itemizing all unique commodities across the State of Cal-
ifornia, for each calendar year. The intersection of each annual list was
computed (representing the set containing elements common to all an-
nual lists). The remaining elements are displayed in the above table. The
derivation is documented in Appendix I, Notebook 9 (yield prep), Section

4.
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D.3 FAO Indicative Crop Classification

In order to assess broader trends in agricultural commodities, this study utilizes a tax-
onomy of agricultural commodities, named the Indicative Crop Classification (ICC 1.1)
The ICC was developed by the Food Agriculture Organization of the United Nations
(FAO) for the 2010 World Programme for the Census of Agriculture (WCA) (Food and
Agriculture Organization of the United Nations, 2017). The WCA provides assistance
and a standardized framework for countries to conduct national agricultural censuses.
ICC 1.1 is specified in Annex 4, “Classification of Crops” in the World Programme for
the Census of Agriculture 2020. Originally developed for WCA 2010, the 1.1 incorpo-
rates commodity classifications from the UN Central Product Classification 2.1, which
includes categories based on “the nature of the product and industry of origin”. A
translation between crop cover classes in the Cropland Data Layer is presented below.

ICC 1.1 Group CDL Crop

Cereals
Corn, Rice, Sorghum, Sweet Corn, Pop or Orn Corn, Barley,
Durum Wheat, Spring Wheat, Winter Wheat, Other Small
Grains, Oats, Millet, Triticale

Fiber crops Cotton, Flaxseed
Oilseed crops Sunflower, Safflower, Mustard, Olives
Fiber Mint
Grasses Alfalfa, Other Hay/Non Alfalfa
Sugar crops Sugarbeets, Sugarcane
Leguminous crops Dry Beans, Lentils, Peas
Root crops Potatoes, Sweet Potatoes
Other crops Other Crops, Misc Vegs & Fruits, Herbs

Vegetables and melons
Watermelons, Onions, Cucumbers, Tomatoes, Carrots, As-
paragus, Garlic, Cantaloupes, Honeydew Melons, Broccoli,
Greens, Lettuce, Cabbage, Celery, Radishes, Eggplants

Fruit and nuts

Caneberries, Cherries, Peaches, Apples, Grapes, Citrus,
Almonds, Walnuts, Pears, Pistachios, Prunes, Oranges,
Pomegranates, Nectarines, Plums, Strawberries, Squash,
Apricots, Pumpkins

Stimulant, spice and aromatic crops Peppers

TABLE D.3: Data from manual reconciliation between WCA2020 and
CDL land cover categories..
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Appendix E

Extended results, plots, and
tabulations: Harvest statistics

E.1 Unique crop cover observations

County 2008 2009 2010 2011 2012 2013 2014 2015 All Years
Alameda 1 2 3 3 3 3 3 3 3
Alpine NA NA 1 1 1 1 1 1 1
Amador 3 3 3 3 3 3 3 3 3
Butte 10 10 10 10 10 10 10 10 11
Calaveras 1 2 4 4 4 4 4 3 4
Colusa 10 10 10 11 12 12 12 12 13
Contra Costa 7 7 9 10 11 10 10 9 13
Del Norte NA NA 1 1 1 NA NA 1 1
El Dorado NA NA 1 5 4 3 3 5 7
Fresno 25 26 27 29 31 29 31 27 34
Glenn 12 11 13 12 14 14 15 15 16
Humboldt NA NA 1 1 1 1 1 1 1
Imperial 7 7 6 9 17 17 17 17 17
Inyo NA 1 1 1 2 2 1 1 2
Kern 17 15 18 20 22 20 21 20 27
Kings 15 15 17 16 16 16 15 14 20
Lake 2 1 1 2 2 2 2 2 2
Lassen 4 5 5 2 2 2 2 2 5
Los Angeles 2 2 1 4 3 4 5 4 5
Madera 14 14 14 14 14 14 14 14 16
Marin 1 1 2 2 2 2 2 2 2
Mariposa 1 1 NA NA 1 1 1 1 1
Mendocino 1 NA NA 1 1 1 1 1 1
Merced 16 17 17 16 18 19 17 16 19
Modoc 3 4 5 6 6 6 NA NA 6
Mono 2 2 2 2 2 2 1 1 2
Monterey 13 11 11 14 16 14 15 13 20
Napa 2 2 3 3 2 2 2 3 3
Nevada 1 1 1 1 1 1 1 1 1
Orange 1 2 1 1 NA NA 1 1 2
Placer 3 4 5 6 7 7 7 6 7
Plumas 1 1 2 2 2 2 2 2 2
Riverside 7 6 9 13 23 23 23 25 29
Sacramento 9 9 12 12 12 13 12 13 17
San Benito 8 7 7 9 9 8 8 8 11
San
Bernardino 3 3 4 4 4 5 5 6 7

San Diego 2 2 2 4 3 1 1 2 7
San Joaquin 15 17 20 20 22 23 23 21 24
San Luis Obispo 10 6 7 11 11 11 10 10 13
San Mateo 1 1 2 2 2 1 2 3 3
Santa Barbara 6 3 4 9 10 9 5 3 11
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Santa Clara 9 11 10 11 11 12 13 10 16
Santa Cruz 2 2 2 3 4 2 2 2 4
Shasta 2 3 4 5 5 5 5 5 5
Sierra 1 1 2 2 2 2 2 2 2
Siskiyou 4 4 5 7 7 7 7 7 7
Solano 12 13 16 12 14 13 13 13 18
Sonoma 3 3 4 3 3 3 4 4 4
Stanislaus 16 15 17 18 19 19 18 13 20
Sutter 11 11 13 12 13 14 14 12 15
Tehama 7 7 8 8 9 9 9 9 9
Trinity NA NA 1 1 2 2 NA NA 2
Tulare 18 17 18 18 20 20 21 20 22
Tuolumne NA NA 1 1 1 1 1 1 1
Ventura 4 2 2 7 6 8 8 7 12
Yolo 8 8 9 9 11 11 11 11 11
Yuba 5 6 7 12 7 7 7 7 13
Total 42 41 41 44 52 52 52 51 54

TABLE E.1: Counts of unique harvested acres, by county. The “All Years”
column reflects all of the unique crops observed in the county across all
years (not a sum). The “Total” row reflects all of the unique crops ob-

served across all counties (statewide, not a sum).

E.2 Tabulations of annual total harvested acres

County 2008 2009 2010 2011 2012 2013 2014 2015 All Years
Alameda 495 2669 8520 8124 8969 7439 6324 5265 47805
Alpine NA NA 122 122 150 200 250 250 1094
Amador 4370 4158 4089 4057 4656 4485 4590 5292 35697
Butte 184967 187306 178926 193601 193850 201037 181045 195052 1515784
Calaveras 800 1600 2040 2240 2125 2115 2018 1890 14828
Colusa 242810 249640 252330 251634 263465 273166 231506 221384 1985935
Contra
Costa 19168 15661 19772 22816 22904 22115 19419 22270 164125

Del Norte NA NA 2500 2430 2600 NA NA 3430 10960
El Dorado NA NA 216 3282 2458 2456 2446 2728 13586
Fresno 793714 802837 821311 842423 926798 810135 829450 838490 6665158
Glenn 165310 183890 191691 189255 209960 215460 202056 200782 1558404
Humboldt NA NA 3523 10898 10600 10600 10600 10600 56821
Imperial 207654 186966 177470 168820 249197 232607 244150 297291 1764155
Inyo NA 3200 3200 3280 4985 4825 2420 0 21910
Kern 552386 466046 568866 629747 664117 653081 710300 637097 4881640
Kings 271455 219582 325388 284861 300483 279992 262936 258067 2202764
Lake 10654 2600 3100 11400 11450 11550 11770 11810 74334
Lassen 64974 66708 65956 27000 28903 28903 28903 28000 339347
Los
Angeles 6098 7145 53 10396 10702 9153 9862 9797 63206

Madera 247400 232810 263640 274520 280020 282850 275550 286050 2142840
Marin 195 193 4526 4156 3766 2985 3325 3445 22591
Mariposa 100 90 NA NA 104 110 77 73 554
Mendocino 16400 NA NA 16700 16800 16800 16900 16900 100500
Merced 364514 386420 373260 353240 361521 392613 387214 397120 3015902
Modoc 36725 40947 70950 72006 72006 72006 NA NA 364640
Mono 16000 16000 16000 16000 15480 15180 8100 0 102760
Monterey 78459 74346 67197 64421 121974 62325 61968 57875 588565
Napa 43114 43238 43867 44065 43824 44370 44250 44170 350898
Nevada 402 248 236 343 312 424 342 352 2659
Orange 77 1187 761 856 NA NA 658 545 4084
Placer 14269 16788 19440 16001 17817 18872 16681 12711 132579
Plumas 5500 6105 10000 10000 10000 10000 10000 8410 70015
Riverside 67158 53033 69990 75616 118133 130868 129724 123244 767766
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Sacramento 78080 86120 98208 102478 107793 108657 108906 108866 799108
San Benito 11139 12639 26488 34258 32545 22785 20931 21179 181964
San
Bernardino 10770 11045 13522 17996 17026 11216 14744 13512 109831

San Diego 7253 6700 6707 12716 7032 4930 3850 6815 56003
San
Joaquin 460975 446557 569117 557527 610927 592610 609174 585641 4432528

San Luis
Obispo 50149 49221 63759 71798 72308 60171 62487 71235 501128

San Mateo 400 330 693 842 815 423 554 718 4775
Santa
Barbara 36672 12102 18647 53670 53693 53558 32203 29672 290217

Santa Clara 5777 9989 10446 11745 12214 11319 12043 10391 83924
Santa Cruz 3899 3802 3927 7424 10936 3976 3954 3776 41694
Shasta 3940 4120 24310 25130 24360 24830 24850 25950 157490
Sierra 2000 160 3550 3550 3550 3550 3440 1920 21720
Siskiyou 64846 55128 57629 47578 68960 57958 67767 63160 483026
Solano 76959 80369 98301 91945 105974 112797 118849 107193 792387
Sonoma 56037 56998 72569 74040 71083 72555 71436 69585 544303
Stanislaus 312403 364254 416074 404743 408018 389387 378462 352622 3025963
Sutter 172240 180825 193966 191191 214061 221544 189271 188254 1551352
Tehama 36604 40203 47065 45752 60310 59440 60321 60471 410166

NA NA 550 550 664 664 NA NA 2428
Tulare 576412 570857 767545 764970 785709 625683 653328 926969 5671473
Tuolumne NA NA 300 300 NA NA NA NA 1980
Ventura 26288 13608 300 360 360 360 33380 15554 181491
Yolo 178347 173891 189830 202280 207440 207170 201400 175710 1536068
Yuba 48218 51590 56841 55837 63547 66415 66345 69236 478029
Total 5634576 5501921 6322744 6412672 6938988 6569985 6452889 6609179 50442954

TABLE E.2: Sums of harvested acres, by county. This table was con-
structed by tallying harvested acres as they appeared in the annual NASS
Ag Commissioners’ Reports, provided that there were one or more observa-
tions of the crop in the CDL raster in a given county, in a given year. Crops
that have an entry in the Ag Comissioners’ report, but are not observed

in the CDL are not counted.
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CDL
Name 2008 2009 2010 2011 2012 2013 2014 2015 All Years

Alfalfa 1165225 1129997 1040060 950020 1041451 949816 890016 866566 8033151
Almonds 756861 772152 840160 875861 904130 940070 1038417 1108242 7235893
Apples 3956 5179 5444 6256 5091 4712 2990 2599 36227
Apricots 6333 9525 10242 9018 8838 8780 9079 NA 61815
Asparagus 15024 11282 7310 7450 9380 8280 8890 2820 70436
Barley 41967 44894 53402 53045 67685 33869 22139 27802 344803
Broccoli NA NA NA NA 83060 23480 21470 22263 150273
Cabbage NA NA NA NA 3025 1707 2390 1220 8342
Caneberries NA NA NA NA 4183 NA 1460 NA 5643
Cantaloupes 24735 31821 34770 32162 27145 27587 25500 22570 226290
Carrots 15504 NA 1862 17322 18430 20369 23015 24252 120754
Cherries 32837 33697 39909 38457 39931 41384 39668 39597 305480
Citrus 45472 23197 29858 33290 34200 54080 66922 58791 345810
Corn 728252 667073 701585 726573 750525 764181 629081 623698 5590968
Cucumbers NA NA NA NA NA 2140 NA NA 2140
Dry Beans 51604 72811 75022 61209 73126 58086 51966 45010 488834
Eggplants NA NA NA NA 349 406 260 220 1235
Garlic NA 17200 21700 27590 18820 22060 22410 23148 152928
Grapes 788579 749033 751832 846602 951599 878907 897978 868988 6733518
Greens 13976 19563 NA NA 9240 5980 3230 2830 54819
Herbs 1277 NA NA 105 863 1155 1249 1597 6246
Honeydew
Melons NA NA NA NA 11363 13067 13653 11979 50062

Lettuce NA 0 0 57628 56158 40934 20119 57020 231859
Mint NA NA NA 1485 1085 1480 1310 1230 6590
Misc Vegs
& Fruits 86137 2261 3888 4678 4326 4839 4882 3657 114668

Nectarines 33380 31603 28470 25320 25385 25184 22075 21120 212537
Oats 4692 8248 5905 4371 3193 3283 7285 7381 44358
Olives 30210 34174 37403 38602 40840 42336 42846 38005 304416
Onions 10505 9968 46591 52042 45156 44009 42538 43889 294698
Oranges 187310 178512 179943 174411 161417 164020 169924 160514 1376051
Other Hay/
Non Alfalfa 43225 42925 789403 745708 758451 563191 616352 772646 4331901

Peaches 68165 67517 68587 58222 62742 60589 56301 53133 495256
Pears NA NA NA NA 7203 6276 6689 6780 26948
Peas 2306 622 717 5791 5025 5128 3543 1641 24773
Peppers 4449 5941 6890 7735 12978 15191 9653 9552 72389
Pistachios 142447 137320 145288 170378 188852 210038 256779 291167 1542269
Plums 42667 40439 40670 46939 86495 82857 79535 71890 491492
Pomegranates 6870 9543 14570 11465 12820 9552 10350 9460 84630
Potatoes 20138 24799 26310 35322 37562 32452 28070 27380 232033
Pumpkins NA NA NA 292 3419 4167 3633 2801 14312
Radishes NA NA NA NA NA NA NA 249 249
Rice 539462 582225 587929 575860 578811 578870 458293 445117 4346567
Safflower 61307 22485 25705 28313 29254 22576 18297 19798 227735
Sorghum 20908 9310 7055 11960 11832 12600 13100 16084 102849
Squash 1292 NA 2444 4551 2122 2096 1288 120 13913
Strawberries 10534 25739 26517 25833 25005 27667 26959 26596 194850
Sugarbeets 23773 18022 NA NA 25400 25400 24400 22500 139495
Sunflower 19208 26605 20350 26158 30200 36865 31210 17690 208286
Sweet
Potatoes 14660 17586 17930 18180 16270 18440 18870 19250 141186

Tomatoes 311095 349887 334273 300925 319699 312646 325752 323482 2577759
Triticale 2833 2205 2370 1120 3820 9150 10600 10270 42368
Walnuts 249462 261351 282790 289733 312247 338223 359793 363705 2457304
Watermelons 5939 5210 7590 4690 8787 9810 10660 10860 63546
Total 5634576 5501921 6322744 6412672 6938988 6569985 6452889 6609179 50442954
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TABLE E.3: Sums of harvested acres, by CDL crop. This table was con-
structed by tallying harvested acres as they appeared in the annual NASS
Ag Commissioners’ Reports, provided that there were one or more observa-
tions of the crop in the CDL raster in a given county, in a given year. Crops
that have an entry in the Ag Comissioners’ report, but are not observed

in the CDL are not counted.

FAO ICC 1.1 Group % Difference Difference

Aromatic crops 115 5103
Cereals -16 -207762
Fiber NA 1230
Fruit 8 93365
Fruit vegetables 5 14236
Grasses 36 430762
Leafy vegetable 197 57153
Leguminous crops -13 -7259
Melons 48 14735
Nuts 53 614344
Oilseed crops -32 -35232
Other crops -94 -82160
Root crops 34 11832
Root vegetables 252 65529

TABLE E.4: Data from Table E.3, expressed as a percent difference and
actual difference (between 2015 and 2008) in harvested acres, aggregated

by FAO Indicative Crop Classification 1.1 (see Appendix D.3).
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E.3 Visual representations of annual total harvested acres

FIGURE E.1: Total annual harvested acres, across all modeled crops and
counties.
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FIGURE E.2: Annual sums of harvested acres, by CDL crop and by FAO
ICC 1.1. Harvested acres are reported by the County Ag Comissioners’
reports and are included in the study only if there was an observation in

the CDL for a given year.
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FIGURE E.3: Annual sums of harvested acres, by county, as reported by
the County Ag Comissioners’ reports, provided that there is an observa-

tion in the CDL for that year.
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Appendix F

Extended results, plots, and
tabulations: Crop water requirement

F.1 Tabulations of annual modeled crop water requirement

County 2008 2009 2010 2011 2012 2013 2014 2015 All Years
Alameda 4.86E+06 5.90E+06 6.10E+06 5.76E+07 4.12E+07 2.21E+07 1.05E+07 6.86E+06 1.55E+08
Alpine NA NA 8.08E+05 5.45E+05 1.78E+06 9.88E+05 1.82E+06 9.17E+05 6.86E+06
Amador 5.41E+06 3.66E+06 4.49E+06 3.76E+06 1.75E+07 1.47E+07 7.15E+06 5.18E+06 6.19E+07
Butte 4.08E+08 3.67E+08 3.81E+08 3.91E+08 3.91E+08 4.20E+08 4.37E+08 4.36E+08 3.23E+09
Calaveras 1.69E+06 1.46E+06 4.19E+06 1.86E+06 6.31E+06 4.38E+06 2.82E+06 2.15E+06 2.49E+07
Colusa 4.37E+08 4.41E+08 4.29E+08 4.28E+08 4.56E+08 4.91E+08 4.95E+08 4.94E+08 3.67E+09
Contra
Costa 8.09E+07 6.65E+07 9.64E+07 9.53E+07 1.34E+08 1.05E+08 1.46E+08 1.28E+08 8.51E+08

Del Norte NA NA 9.74E+05 1.51E+05 2.35E+04 NA NA 2.20E+07 2.32E+07
El Dorado NA NA 2.43E+05 8.36E+04 4.26E+06 4.92E+06 3.94E+05 2.51E+05 1.02E+07
Fresno 1.93E+09 1.76E+09 1.86E+09 1.90E+09 1.95E+09 1.94E+09 1.95E+09 1.83E+09 1.51E+10
Glenn 4.14E+08 4.37E+08 4.35E+08 4.42E+08 4.94E+08 4.97E+08 4.78E+08 4.71E+08 3.67E+09
Humboldt NA NA 2.26E+07 5.81E+07 6.03E+07 5.23E+07 9.24E+07 1.47E+07 3.00E+08
Imperial 2.92E+08 2.67E+08 6.80E+08 8.45E+08 1.09E+09 1.17E+09 1.12E+09 1.03E+09 6.48E+09
Inyo NA 3.13E+06 8.22E+06 1.62E+07 1.75E+07 1.25E+07 1.42E+07 1.84E+07 9.02E+07
Kern 1.41E+09 1.25E+09 1.42E+09 1.55E+09 1.67E+09 1.63E+09 1.72E+09 1.58E+09 1.22E+10
Kings 9.04E+08 8.40E+08 8.86E+08 9.29E+08 1.02E+09 1.05E+09 1.04E+09 1.04E+09 7.71E+09
Lake 4.91E+06 6.50E+05 1.95E+05 3.91E+05 3.83E+07 4.24E+07 8.76E+06 8.52E+06 1.04E+08
Lassen 1.22E+08 2.15E+08 2.51E+08 1.91E+08 2.20E+08 2.08E+08 2.84E+08 2.24E+08 1.72E+09
Los
Angeles 3.16E+07 3.97E+07 6.50E+04 3.95E+07 2.09E+07 1.55E+07 1.38E+07 2.61E+07 1.87E+08

Madera 6.68E+08 6.57E+08 6.08E+08 6.56E+08 5.45E+08 4.77E+08 4.30E+08 4.91E+08 4.53E+09
Marin 9.47E+03 1.89E+03 5.90E+05 9.94E+04 3.41E+05 4.74E+06 3.76E+06 1.77E+06 1.13E+07
Mariposa 1.00E+05 8.89E+03 NA NA 2.83E+05 1.36E+05 3.85E+05 2.94E+05 1.21E+06
Mendocino 6.89E+05 NA NA 1.32E+06 5.58E+07 6.72E+07 1.22E+07 8.86E+06 1.46E+08
Merced 9.16E+08 8.57E+08 9.19E+08 9.24E+08 1.04E+09 9.86E+08 1.11E+09 1.00E+09 7.75E+09
Modoc 1.96E+08 1.61E+08 4.70E+08 4.48E+08 3.95E+08 4.22E+08 NA NA 2.09E+09
Mono 6.05E+06 1.26E+07 1.50E+07 1.46E+07 2.27E+06 2.12E+07 1.46E+07 2.33E+07 1.10E+08
Monterey 2.28E+08 1.67E+08 1.96E+08 1.41E+08 3.34E+08 3.12E+08 3.83E+08 3.52E+08 2.11E+09
Napa 3.74E+06 1.01E+06 1.12E+07 2.08E+06 1.24E+08 1.35E+08 1.64E+08 1.31E+08 5.72E+08
Nevada 6.03E+03 1.78E+03 8.94E+02 8.50E+02 1.03E+06 1.29E+06 7.19E+04 4.38E+03 2.40E+06
Orange 4.05E+04 1.43E+05 1.91E+05 1.33E+05 NA NA 1.47E+05 1.29E+04 6.67E+05
Placer 6.56E+07 6.53E+07 8.68E+07 7.76E+07 8.03E+07 8.16E+07 9.32E+07 9.25E+07 6.43E+08
Plumas 3.69E+07 2.94E+07 4.77E+07 4.82E+07 2.81E+07 4.01E+07 6.70E+07 5.10E+07 3.48E+08
Riverside 3.45E+08 2.14E+08 3.54E+08 4.75E+08 5.44E+08 4.87E+08 5.27E+08 4.92E+08 3.44E+09
Sacramento 3.52E+08 2.75E+08 4.94E+08 4.36E+08 5.15E+08 4.90E+08 5.63E+08 5.50E+08 3.67E+09
San Benito 1.96E+07 5.12E+06 1.44E+07 2.49E+07 4.53E+07 3.20E+07 2.26E+07 1.46E+07 1.79E+08
San
Bernardino 2.87E+07 5.05E+07 4.86E+07 3.79E+07 3.36E+07 2.49E+07 2.38E+07 2.77E+07 2.76E+08

San Diego 1.73E+06 5.29E+05 3.33E+04 2.93E+04 3.84E+05 9.68E+04 1.01E+05 1.84E+05 3.08E+06
San
Joaquin 9.99E+08 7.90E+08 9.38E+08 9.88E+08 1.02E+09 1.01E+09 1.16E+09 1.10E+09 8.01E+09
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San Luis
Obispo 1.58E+08 1.16E+08 1.65E+08 1.34E+08 2.34E+08 2.21E+08 2.35E+08 2.70E+08 1.53E+09

San Mateo 2.13E+04 1.73E+03 3.21E+05 6.67E+04 1.71E+04 1.07E+05 2.51E+05 8.79E+04 8.74E+05
Santa
Barbara 2.46E+07 1.81E+07 1.16E+08 2.43E+07 9.44E+07 1.02E+08 1.52E+08 1.03E+08 6.35E+08

Santa Clara 2.41E+07 1.78E+07 9.80E+06 1.43E+07 2.24E+07 1.81E+07 1.93E+07 1.15E+07 1.37E+08
Santa Cruz 2.34E+06 1.04E+06 3.34E+05 9.90E+04 3.07E+06 1.68E+06 2.34E+06 1.37E+06 1.23E+07
Shasta 3.74E+07 1.18E+07 8.43E+07 1.07E+08 1.12E+08 9.80E+07 1.30E+08 1.20E+08 7.00E+08
Sierra 6.01E+06 5.21E+06 1.36E+07 1.03E+07 6.16E+06 1.26E+07 2.17E+07 1.19E+07 8.76E+07
Siskiyou 3.32E+08 2.89E+08 4.06E+08 4.26E+08 5.06E+08 4.78E+08 4.74E+08 4.68E+08 3.38E+09
Solano 3.06E+08 2.77E+08 3.64E+08 3.08E+08 3.91E+08 4.12E+08 4.53E+08 4.51E+08 2.96E+09
Sonoma 1.67E+07 7.74E+06 1.56E+07 9.29E+06 1.95E+08 2.12E+08 2.49E+08 2.11E+08 9.16E+08
Stanislaus 6.41E+08 5.34E+08 6.43E+08 6.94E+08 8.62E+08 8.37E+08 8.88E+08 8.29E+08 5.93E+09
Sutter 4.66E+08 4.27E+08 4.10E+08 4.13E+08 4.62E+08 4.86E+08 5.23E+08 4.97E+08 3.68E+09
Tehama 2.46E+08 2.58E+08 3.06E+08 2.44E+08 2.47E+08 3.02E+08 2.47E+08 2.75E+08 2.12E+09
Trinity NA NA 1.13E+06 4.58E+05 4.37E+05 1.92E+05 NA NA 2.21E+06
Tulare 1.96E+09 1.87E+09 1.78E+09 1.94E+09 2.01E+09 2.04E+09 2.14E+09 2.04E+09 1.58E+10
Tuolumne NA NA 4.49E+03 1.10E+03 1.97E+04 2.23E+04 4.35E+05 6.58E+04 5.49E+05
Ventura 1.36E+07 1.22E+06 1.17E+07 8.87E+06 4.59E+06 8.61E+06 2.08E+07 2.29E+06 7.18E+07
Yolo 6.53E+08 5.88E+08 6.71E+08 6.13E+08 7.36E+08 7.50E+08 8.27E+08 8.10E+08 5.65E+09
Yuba 2.10E+08 2.26E+08 2.36E+08 2.19E+08 2.07E+08 2.35E+08 2.47E+08 2.58E+08 1.84E+09
Total 1.50E+10 1.36E+10 1.59E+10 1.64E+10 1.85E+10 1.85E+10 1.90E+10 1.80E+10 1.35E+11

TABLE F.1: Annual modeled crop water requirement (CWR) by county,
for cultivated areas as identified in the CDL.

CDL
Name 2008 2009 2010 2011 2012 2013 2014 2015 All Years

Alfalfa 4.96E+09 4.64E+09 4.65E+09 4.53E+09 4.52E+09 4.36E+09 4.50E+09 4.39E+09 3.65E+10
Almonds 2.31E+09 2.07E+09 1.92E+09 1.92E+09 1.96E+09 2.04E+09 2.22E+09 2.32E+09 1.68E+10
Apples 5.30E+06 3.81E+06 3.87E+06 4.93E+06 4.91E+06 3.28E+06 4.56E+05 4.84E+05 2.70E+07
Apricots 1.47E+07 4.76E+07 1.34E+07 4.85E+06 1.05E+07 4.13E+06 5.82E+06 NA 1.01E+08
Asparagus 1.46E+07 1.22E+07 1.61E+06 9.46E+06 1.11E+07 1.17E+07 9.34E+06 3.18E+06 7.33E+07
Barley 1.31E+08 1.05E+08 1.00E+08 1.03E+08 1.41E+08 1.49E+08 1.47E+08 1.18E+08 9.93E+08
Broccoli NA NA NA NA 7.06E+06 1.02E+07 1.27E+07 5.98E+06 3.59E+07
Cabbage NA NA NA NA 1.18E+06 1.04E+06 1.23E+06 6.66E+05 4.12E+06
Caneberries NA NA NA NA 9.42E+05 NA 9.10E+05 NA 1.85E+06
Cantaloupes 5.98E+07 3.17E+07 7.15E+07 7.49E+07 6.15E+07 3.84E+07 3.91E+07 4.65E+07 4.24E+08
Carrots 4.79E+05 NA 1.33E+04 2.21E+07 2.95E+07 1.93E+07 3.17E+07 2.32E+07 1.26E+08
Cherries 1.40E+08 9.22E+07 8.82E+07 7.13E+07 1.38E+08 1.26E+08 1.26E+08 8.33E+07 8.65E+08
Citrus 7.56E+07 8.86E+07 7.53E+07 2.15E+08 2.34E+08 4.08E+08 2.90E+08 2.42E+08 1.63E+09
Corn 9.17E+08 5.94E+08 7.96E+08 7.97E+08 8.03E+08 7.67E+08 6.80E+08 5.94E+08 5.95E+09
Cotton 7.64E+08 6.69E+08 8.87E+08 7.96E+08 8.28E+08 6.99E+08 6.14E+08 5.09E+08 5.77E+09
Cucumbers NA NA NA NA NA 6.04E+05 NA NA 6.04E+05
Dry Beans 1.97E+07 1.61E+07 3.45E+07 4.18E+07 4.19E+07 4.15E+07 4.88E+07 2.18E+07 2.66E+08
Eggplants NA NA NA NA 3.41E+05 9.09E+04 2.04E+05 2.11E+05 8.47E+05
Garlic NA 1.62E+07 1.43E+07 3.80E+07 3.64E+07 3.98E+07 4.05E+07 3.39E+07 2.19E+08
Grapes 1.06E+09 9.14E+08 1.06E+09 9.84E+08 2.11E+09 2.14E+09 2.43E+09 2.16E+09 1.29E+10
Greens 1.87E+07 1.68E+07 NA NA 3.01E+07 1.91E+07 4.47E+07 6.32E+07 1.92E+08
Herbs 2.50E+06 NA NA 4.63E+05 1.82E+06 2.09E+06 8.06E+05 4.32E+06 1.20E+07
Honeydew
Melons NA NA NA NA 1.41E+07 1.46E+07 1.52E+07 1.68E+07 6.07E+07

Lettuce NA 3.09E+03 5.14E+07 6.46E+07 6.38E+07 5.22E+07 4.91E+07 2.11E+07 3.02E+08
Mint NA NA NA 1.42E+06 1.59E+06 2.47E+06 1.60E+06 2.12E+06 9.19E+06
Misc Vegs
& Fruits 1.82E+07 3.59E+05 3.45E+06 9.05E+07 7.78E+07 5.89E+07 8.10E+07 8.29E+07 4.13E+08

Nectarines 2.34E+07 5.02E+06 1.12E+07 2.84E+07 1.33E+07 5.61E+06 2.85E+07 9.85E+06 1.25E+08
Oats 2.51E+07 2.17E+07 2.85E+07 2.59E+07 3.29E+07 1.93E+07 3.47E+07 3.65E+07 2.25E+08
Olives 2.63E+08 3.23E+08 3.45E+08 2.81E+08 2.02E+08 1.74E+08 1.60E+08 1.23E+08 1.87E+09
Onions 1.16E+07 9.76E+05 7.71E+06 1.83E+08 2.00E+08 1.63E+08 1.95E+08 1.62E+08 9.23E+08
Oranges 9.23E+08 8.17E+08 7.38E+08 7.48E+08 6.64E+08 7.39E+08 8.28E+08 8.09E+08 6.27E+09
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Other Hay/
Non Alfalfa 8.29E+05 1.19E+08 1.73E+09 1.68E+09 1.89E+09 1.91E+09 1.81E+09 1.68E+09 1.08E+10

Peaches 5.59E+07 4.07E+07 7.17E+07 4.45E+07 4.57E+07 1.67E+08 3.89E+07 2.12E+07 4.86E+08
Pears NA NA NA NA 1.99E+07 1.90E+07 2.01E+07 1.82E+07 7.72E+07
Peas 7.82E+04 7.26E+02 4.33E+02 6.85E+05 1.10E+06 9.17E+05 7.50E+05 1.24E+05 3.66E+06
Peppers 4.27E+06 3.08E+05 2.88E+06 3.66E+06 1.68E+07 1.06E+07 8.13E+06 1.43E+07 6.10E+07
Pistachios 6.01E+08 5.35E+08 6.12E+08 8.16E+08 8.82E+08 8.78E+08 8.88E+08 9.18E+08 6.13E+09
Plums 3.84E+07 2.97E+07 6.80E+07 6.77E+07 2.07E+08 2.24E+08 1.74E+08 1.04E+08 9.13E+08
Pomegranates 2.44E+07 1.65E+07 2.90E+07 1.92E+07 2.14E+07 1.66E+07 1.75E+07 2.30E+07 1.68E+08
Potatoes 1.75E+07 2.97E+07 4.96E+07 5.97E+07 7.45E+07 6.11E+07 6.93E+07 7.31E+07 4.34E+08
Pumpkins NA NA NA 1.43E+05 4.99E+03 8.70E+05 1.35E+06 4.31E+05 2.79E+06
Radishes NA NA NA NA NA NA NA 5.32E+04 5.32E+04
Rice 5.04E+08 5.17E+08 5.24E+08 5.13E+08 5.15E+08 5.08E+08 5.05E+08 5.20E+08 4.10E+09
Safflower 2.18E+08 5.50E+07 1.12E+08 5.37E+07 5.25E+07 4.42E+07 3.63E+07 4.72E+07 6.19E+08
Sorghum 8.86E+06 8.13E+05 7.52E+06 1.73E+07 2.20E+07 2.10E+07 2.81E+07 2.47E+07 1.30E+08
Squash 1.13E+04 NA 9.41E+02 5.61E+04 2.66E+05 1.96E+05 5.09E+04 3.26E+02 5.82E+05
Strawberries 3.15E+07 2.66E+07 4.31E+07 1.98E+07 4.22E+07 2.44E+07 6.14E+07 4.65E+07 2.95E+08
Sugarbeets 2.36E+07 6.95E+05 NA NA 1.58E+08 1.18E+08 1.41E+08 1.26E+08 5.67E+08
Sunflower 1.70E+07 5.01E+07 2.85E+07 5.69E+07 8.68E+07 9.46E+07 9.34E+07 4.33E+07 4.71E+08
Sweet
Potatoes 2.87E+07 2.63E+07 2.48E+07 8.88E+06 3.64E+07 2.51E+07 3.61E+06 7.76E+06 1.62E+08

Tomatoes 3.12E+08 4.08E+08 3.85E+08 7.52E+08 8.25E+08 7.87E+08 8.72E+08 8.57E+08 5.20E+09
Triticale 5.00E+06 6.76E+06 5.15E+06 1.82E+06 7.45E+06 1.11E+07 1.79E+07 2.87E+07 8.39E+07
Walnuts 1.35E+09 1.23E+09 1.33E+09 1.24E+09 1.32E+09 1.43E+09 1.56E+09 1.60E+09 1.11E+10
Watermelons 3.36E+06 4.55E+07 4.54E+06 5.78E+06 2.32E+07 2.98E+07 2.52E+07 2.27E+07 1.60E+08
Total 1.50E+10 1.36E+10 1.59E+10 1.64E+10 1.85E+10 1.85E+10 1.90E+10 1.80E+10 1.35E+11

TABLE F.2: Annual modeled crop water requirement (CWR) by crop, for
cultivated areas as identified in the CDL.

F.2 Visual representations of annual modeled crop water require-
ment

FIGURE F.1: Annual sum of modeled crop water requirement and ob-
served precipitation over irrigated lands, aggregated by ICC 1.1 crop

group
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FIGURE F.2: Annual sum of modeled green and blue crop evapotranspi-
ration, aggregated by ICC 1.1 crop group. Note the order of magnitude

difference in the scale of the y-axis between green and blue ET.

FIGURE F.3: Annual sum of precipitation over CDL irrigated crops. Ob-
servations in the 95% percentile of overall annual precipitation are high-

lighted.



Appendix F. Extended results, plots, and tabulations: Crop water requirement 52

FIGURE F.4: Spatial distribution of mean annual crop evapotranspiration,
precipitation (over irrigated acres), and crop water requirement, by DWR

hydrological region.
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FIGURE F.5: Spatial distribution of mean annual crop evapotranspira-
tion, precipitation (over irrigated acres), and crop water requirement, by

county.
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Appendix G

Extended results, plots, and
tabulations: Water footprint

G.1 Tabulations of annual modeled water footprints

County 2008 2009 2010 2011 2012 2013 2014 2015 All Years
Alameda 2.03E+03 4.38E+03 1.20E+03 9.67E+03 5.97E+03 3190 3580 5.63E+03 35700
Alpine NA NA 2.73E+03 1.71E+03 6.53E+03 1090 1000 5.05E+02 13600
Amador 8.27E+03 6.68E+03 1.31E+04 1.09E+04 1.35E+04 8630 12400 1.21E+04 85500
Butte 2.74E+04 2.29E+04 1.79E+04 1.70E+04 1.15E+04 12700 15700 1.58E+04 141000
Calaveras 4.23E+03 2.67E+03 5.39E+03 2.88E+03 5.82E+03 4220 4070 2.41E+03 31700
Colusa 1.49E+04 2.53E+04 2.95E+04 2.25E+04 2.36E+04 25300 23200 1.72E+04 182000
Contra
Costa 9.18E+03 1.44E+04 1.53E+04 1.30E+04 1.30E+04 11600 21000 1.55E+04 113000

Del Norte NA NA 1.72E+02 2.58E+01 3.83E+00 NA NA 2.48E+03 2680
El Dorado NA NA 9.36E+02 8.11E+02 2.33E+03 1240 644 1.64E+03 7610
Fresno 5.20E+04 9.29E+04 2.68E+04 2.59E+04 2.79E+04 28300 43700 4.35E+04 341000
Glenn 2.27E+04 2.69E+04 1.97E+04 3.01E+04 2.33E+04 25600 24600 2.59E+04 199000
Humboldt NA NA 7.49E+02 1.61E+03 2.03E+03 2370 4190 6.65E+02 11600
Imperial 1.66E+03 1.77E+03 1.55E+03 4.32E+03 6.89E+03 12400 11200 6.88E+03 46700
Inyo NA 1.66E+02 4.36E+02 8.38E+02 1.61E+03 1020 997 1.31E+03 6380
Kern 3.29E+04 2.05E+04 2.11E+04 2.90E+04 3.04E+04 27800 40400 1.79E+04 220000
Kings 3.45E+04 3.59E+04 2.28E+04 1.99E+04 2.20E+04 23100 24200 3.04E+04 213000
Lake 7.97E+03 5.48E+02 1.60E+02 3.01E+02 1.36E+03 1140 1250 3.25E+02 13100
Lassen 6.78E+03 5.59E+03 9.44E+03 1.75E+03 2.07E+03 1980 2750 1.95E+03 32300
Los
Angeles 7.26E+02 9.29E+02 1.44E+02 1.93E+03 6.93E+02 687 1830 1.60E+03 8540

Madera 1.94E+04 3.89E+04 1.08E+04 1.72E+04 1.19E+04 10700 12300 1.28E+04 134000
Marin 5.25E+01 8.49E+00 4.61E+02 3.72E+01 9.26E+02 17000 11900 1.53E+04 45800
Mariposa 7.46E+02 9.80E+01 NA NA 3.02E+03 1180 7190 8.53E+03 20800
Mendocino 1.66E+01 NA NA 2.54E+01 8.66E+02 951 217 1.70E+02 2250
Merced 1.37E+04 1.91E+04 1.50E+04 2.13E+04 1.69E+04 13200 13700 1.45E+04 127000
Modoc 4.23E+03 5.29E+03 1.34E+04 1.36E+04 8.68E+03 11500 NA NA 56700
Mono 1.35E+02 2.05E+02 2.41E+02 2.38E+02 4.62E+01 559 306 5.08E+02 2240
Monterey 1.40E+05 7.33E+04 8.21E+04 7.47E+04 4.81E+04 73200 100000 5.63E+04 648000
Napa 2.98E+03 2.55E+03 3.83E+03 1.04E+03 9.59E+02 1050 2390 1.78E+03 16600
Nevada 5.59E+00 7.59E-01 1.34E+00 5.27E-01 1.32E+03 1140 60.1 7.32E+00 2540
Orange 4.72E+01 3.02E+01 9.04E+00 6.18E+00 NA NA 13.7 1.09E+00 107
Placer 7.27E+03 7.43E+03 9.64E+03 3.90E+04 2.26E+04 20200 33100 2.23E+04 161000
Plumas 2.46E+03 1.77E+03 3.47E+03 3.79E+03 2.70E+03 3320 5450 5.18E+03 28100
Riverside 6.60E+03 9.31E+05 3.57E+04 1.66E+04 1.59E+04 9740 21500 1.74E+04 1050000
Sacramento 1.22E+04 6.55E+03 3.87E+04 2.49E+04 2.26E+04 41600 22700 1.94E+04 189000
San Benito 1.12E+04 2.71E+03 4.95E+03 2.84E+03 2.57E+03 2400 8440 2.43E+04 59400
San
Bernardino 7.07E+02 8.39E+02 1.37E+03 6.41E+02 6.67E+02 3130 862 7.38E+02 8960

San Diego 4.09E+03 2.39E+01 1.72E+00 5.37E+01 1.03E+01 10.8 14.5 5.96E+01 4260
San
Joaquin 1.21E+04 9.31E+03 1.27E+04 1.27E+04 1.10E+04 12000 11900 1.23E+04 94100
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San Luis
Obispo 1.46E+04 1.04E+04 6.32E+03 8.54E+03 9.93E+03 28400 56600 1.92E+04 154000

San Mateo 9.79E+01 1.11E+01 1.12E+03 1.11E+02 3.45E+01 134 5360 1.14E+03 8020
Santa
Barbara 2.42E+03 8.71E+02 5.99E+03 2.76E+03 3.67E+03 2810 1710 1.48E+03 21700

Santa Clara 1.85E+04 1.61E+04 1.42E+04 7.87E+03 3.67E+03 4410 3950 1.17E+04 80500
Santa Cruz 1.35E+03 1.31E+02 1.94E+02 2.80E+01 1.10E+03 890 733 5.47E+02 4980
Shasta 8.43E+03 3.23E+03 3.37E+03 2.33E+04 3.34E+04 197000 7830 6.28E+04 339000
Sierra 1.38E+03 1.71E+04 3.36E+03 2.54E+03 1.58E+03 3280 5660 3.77E+03 38700
Siskiyou 2.66E+03 2.39E+03 5.26E+03 3.11E+04 4.58E+04 19400 44400 4.57E+04 197000
Solano 2.52E+04 2.06E+04 1.97E+04 1.99E+04 2.73E+04 41100 39500 2.54E+04 219000
Sonoma 4.91E+04 1.44E+04 9.49E+03 9.14E+03 6.37E+03 9550 41700 5.60E+04 196000
Stanislaus 8.57E+03 5.66E+03 6.09E+03 5.55E+03 5.91E+03 6860 9510 8.64E+03 56800
Sutter 3.82E+04 3.68E+04 5.65E+04 2.51E+04 4.16E+04 31400 38100 3.55E+04 303000
Tehama 2.97E+04 3.52E+04 3.13E+04 3.98E+04 4.44E+04 43600 23300 3.22E+04 280000
Trinity NA NA 1.86E+03 7.55E+02 1.41E+03 507 NA NA 4530
Tulare 3.56E+04 5.87E+04 2.73E+04 2.78E+04 2.63E+04 23500 38100 2.85E+04 266000
Tuolumne NA NA 7.17E+00 1.76E+00 3.15E+01 26.2 513 9.59E+01 675
Ventura 1.59E+03 7.76E+01 4.51E+01 1.21E+03 1.65E+02 890 1000 1.01E+03 5990
Yolo 2.13E+04 1.58E+04 2.19E+04 1.42E+04 2.06E+04 18100 19200 1.95E+04 151000
Yuba 6.39E+04 4.85E+04 6.00E+04 7.16E+04 1.83E+04 28400 33100 8.17E+04 405000
Total 7.85E+05 1.65E+06 6.96E+05 7.14E+05 6.63E+05 875000 860000 8.50E+05 7090000

TABLE G.1: Annual modeled total water footprint of cultivated agricul-
ture by county, for cultivated areas as identified in the CDL.

cdl.name 2008 2009 2010 2011 2012 2013 2014 2015 All Years
Alfalfa 1.50E+05 1.23E+05 1.23E+05 118000 7.55E+04 68600 92800 7.73E+04 8.27E+05
Almonds 1.68E+05 1.32E+05 1.15E+05 110000 7.91E+04 75200 93800 1.54E+05 9.28E+05
Apples 9.87E+02 5.73E+02 7.69E+02 275 3.59E+02 49.8 16.2 1.14E+01 3.04E+03
Apricots 2.49E+03 1.29E+04 2.56E+03 595 5.89E+02 524 1040 NA 2.07E+04
Asparagus 2.87E+03 3.47E+03 4.23E+02 981 9.82E+02 1890 1340 4.31E+02 1.24E+04
Barley 2.09E+04 2.57E+04 2.29E+04 16300 1.71E+04 41100 98500 3.50E+04 2.78E+05
Broccoli NA NA NA NA 8.76E+01 257 256 1.13E+02 7.13E+02
Cabbage NA NA NA NA 4.54E+01 51.6 40.2 3.50E+01 1.72E+02
Caneberries NA NA NA NA 7.43E+01 NA 100 NA 1.75E+02
Cantaloupes 3.04E+02 4.37E+02 6.48E+02 1110 1.22E+03 874 1250 8.37E+02 6.67E+03
Carrots 1.21E+00 NA 2.50E-01 106 1.06E+02 126 97.1 2.06E+02 6.42E+02
Cherries 1.17E+04 1.12E+04 1.27E+04 7480 1.41E+04 11700 35600 3.33E+04 1.38E+05
Citrus 9.17E+02 8.51E+02 8.29E+02 2430 3.16E+03 7970 4010 2.34E+03 2.25E+04
Corn 4.67E+03 6.12E+03 4.59E+03 2850 3.44E+03 2780 2990 2.74E+03 3.02E+04
Cotton 1.76E+04 3.24E+04 1.60E+04 12200 1.22E+04 14300 16100 1.64E+04 1.37E+05
Cucumbers NA NA NA NA NA 35.6 NA NA 3.56E+01
Dry Beans 4.22E+03 3.25E+03 5.87E+03 12700 2.07E+04 12800 27400 7.29E+03 9.42E+04
Eggplants NA NA NA NA 9.25E+01 15.1 49.5 5.59E+01 2.13E+02
Garlic NA 1.14E+02 8.09E+01 323 5.92E+02 436 503 6.87E+02 2.73E+03
Grapes 1.85E+04 9.56E+03 9.03E+03 11200 3.56E+04 48900 41200 6.29E+04 2.37E+05
Greens 1.61E+02 6.54E+02 NA NA 1.42E+03 1140 4690 2.73E+03 1.08E+04
Herbs 6.81E+02 NA NA 659 4.93E+02 486 216 5.39E+02 3.07E+03
Honeydew Melons NA NA NA NA 3.15E+02 573 759 4.46E+02 2.09E+03
Lettuce NA 5.45E-03 9.74E+01 657 1.79E+02 131 200 1.32E+02 1.40E+03
Mint NA NA NA 41400 6.92E+04 205000 42000 8.75E+04 4.45E+05
Misc Vegs
& Fruits 1.86E+03 5.86E+01 4.97E+02 5260 4.86E+03 2080 14100 3.48E+03 3.22E+04

Nectarines 2.35E+03 1.56E+02 2.66E+02 393 7.51E+02 510 534 1.91E+02 5.16E+03
Oats 5.79E+04 9.48E+05 4.83E+04 24800 2.14E+04 17100 52800 6.76E+04 1.24E+06
Olives 4.38E+04 1.30E+05 3.34E+04 54100 2.11E+04 30200 24100 1.17E+04 3.48E+05
Onions 4.83E+01 3.90E+00 4.19E+01 1310 1.65E+03 1060 1150 1.48E+03 6.75E+03
Oranges 6.36E+03 3.58E+03 4.05E+03 2030 1.03E+03 1270 1530 1.58E+03 2.14E+04
Other Hay/
Non Alfalfa 4.30E+01 8.41E+02 5.34E+04 78000 5.46E+04 83900 93300 7.07E+04 4.35E+05

Peaches 1.97E+03 2.55E+03 2.32E+03 1720 2.76E+03 2070 902 3.42E+02 1.46E+04
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Pears NA NA NA NA 6.16E+03 1530 3430 3.21E+03 1.43E+04
Peas 4.76E+01 3.58E-01 1.15E-01 2280 2.02E+03 1000 1480 1.73E+02 7.00E+03
Peppers 2.88E+02 2.01E+01 1.04E+02 109 4.96E+02 404 163 3.00E+02 1.88E+03
Pistachios 4.20E+04 4.37E+04 3.93E+04 46600 5.66E+04 56600 35000 5.55E+04 3.75E+05
Plums 9.87E+02 8.68E+02 1.13E+03 6110 1.91E+04 24300 29600 1.03E+04 9.25E+04
Pomegranates 1.44E+03 5.84E+02 1.48E+03 787 6.10E+02 2090 1570 5.67E+02 9.13E+03
Potatoes 9.34E+01 3.95E+02 3.78E+02 561 5.20E+02 600 493 4.63E+02 3.50E+03
Pumpkins NA NA NA 69.8 1.25E-01 31.4 83.9 8.01E+00 1.93E+02
Radishes NA NA NA NA NA NA NA 4.04E+01 4.04E+01
Rice 8.42E+03 7.88E+03 8.17E+03 6930 7.23E+03 5940 5380 6.27E+03 5.62E+04
Safflower 3.69E+04 2.04E+04 3.00E+04 16700 1.47E+04 13000 11800 1.57E+04 1.59E+05
Sorghum 2.01E+03 1.24E+03 2.13E+04 114 1.99E+02 110 146 8.39E+02 2.60E+04
Squash 2.27E+00 NA 1.31E-01 24.8 4.74E+02 153 21.2 3.65E-01 6.75E+02
Strawberries 6.21E+02 3.58E+02 3.98E+02 190 1.83E+02 132 1540 7.58E+02 4.18E+03
Sugarbeets 2.88E+01 9.40E-01 NA NA 1.47E+02 110 147 1.41E+02 5.75E+02
Sunflower 9.64E+03 1.41E+04 1.28E+04 21000 2.15E+04 22500 23900 2.28E+04 1.48E+05
Sweet
Potatoes 2.82E+02 1.48E+02 1.26E+02 83.5 2.64E+02 154 61.4 7.45E+01 1.19E+03

Tomatoes 1.69E+03 7.49E+02 1.26E+03 1960 2.52E+03 1870 2610 2.21E+03 1.49E+04
Triticale 4.31E+03 4.21E+03 4.54E+03 831 7.08E+02 545 686 3.30E+03 1.91E+04
Walnuts 1.58E+05 1.05E+05 1.18E+05 103000 8.40E+04 110000 87500 8.44E+04 8.50E+05
Watermelons 6.26E+01 5.93E+02 4.76E+01 115 6.98E+02 760 453 4.12E+02 3.14E+03
Total 7.85E+05 1.65E+06 6.96E+05 714000 6.63E+05 875000 860000 8.50E+05 7.09E+06

TABLE G.2: Annual modeled total water footprint of cultivated agricul-
ture by crop, for cultivated areas as identified in the CDL.

FAO ICC 1.1 Group % Difference Difference

Aromatic crops 4 12
Cereals 18 17546
Fiber 491 86291
Fruit 139 67240
Fruit vegetables 35 583
Grasses -1 -1979
Leafy vegetable 14 413
Leguminous crops 75 3198
Melons 362 1329
Nuts -20 -73854
Oilseed crops -44 -40144
Other crops 58 1482
Root crops 43 162
Root vegetables 4776 2364

TABLE G.3: Data from Table G.2, expressed as a percent difference and
actual difference (between 2015 and 2008) in total water footprint, aggre-

gated by FAO Indicative Crop Classification 1.1 (see Appendix D.3).
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G.2 Visual representations of annual water footprints

FIGURE G.1: Annual blue and green water footprint by ICC group, ex-
pressed as cubic meters of water per metric ton of harvested product.
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FIGURE G.2: Spatial distribution of mean annual water footprint, pre-
cipitation (over irrigated acres), and crop water requirement, by DWR

hydrological region.
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FIGURE G.3: Spatial distribution of mean annual water footprint, precip-
itation (over irrigated acres), and crop water requirement, by county.
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FIGURE G.4: Treeplot of mean annual blue water footprint expressed on
a logarithmic color scale and mean annual harvested acres expressed as
a proportion of the total statewide harvested acres. Crops are further

grouped by ICC group.
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Appendix H

Validation - Delta Crop ET
Comparative Study

H.1 Background Information

FIGURE H.1: Region modeled in the 2015 Delta Crop ET Comparative
Study. The modeled “Delta Service Region” is marginarly larger than
the legal boundaries, which do not extend as far to the West. Map from

(Medellín-Azuara et al., 2018)
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Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Cuml
TAF (ucm) 55 20 14 16 33 66 108 127 224 242 183 99 1198
% diff 36.6 56.5 55.5 49.9 48.6 44 31.5 21 4.33 6.38 18.7 35.7 22.2
ratio 63.4 43.5 44.5 50.1 51.4 56 68.5 79 95.7 93.6 81.3 64.3 77.8

TABLE H.1: Monthly difference between Delta ET and this study. Data
from (Medellín-Azuara et al., 2018).

FIGURE H.2: Cumulative crop ET modeled in the Delta Service Region
for the 2015 water year. Calculations from this study labeled “ucm_wf”.

Data from (Medellín-Azuara et al., 2018).
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Appendix I

Analysis Scripts

The analytic portions of this study were spread across 9 individual files. Aggregation
and data transformation operations (for map and chart creation) are not included in this
appendix. Script purposes are as follows:

• 2.kc_prep.Rmd creates daily crop coefficients and encodes the relation between
crop coefficients and landcover classes

• 3.Lc_prep.Rmd reconciles the landcover rasters to the project coordinate reference
system (CRS)

• 4.eto_prep.Rmd reconciles the reference et rasters to the project CRS

• 5.cwu_calcs.Rmd executes daily, cell-wise crop ET calculation

• 6.ppt_prep.Rmd reconciles the precipitation rasters to the project CRS

• 7.zone_sums.Rmd computes precipitation over irrigated crops and crop water re-
quirements, per crop, per region of interest

• 8.zone_prep.Rmd disentangles the result of the previous script, assigns metadata,
and performs unit conversions as necessary

• 9.yield_prep.Rmd reconciles yield records with the crop classes used in the crop
ET model

• 10.wf_calc.Rmd computes the water footprint and aggregates harvested acreage
from the yield records

The scripts begin at #2. There is no script prefixed with 1.



2.kc_prep.Rmd
In this file, we create the Kc rasters using Kc values compiled for the CUP+ model. Out of 70 crops that we
have Kc values for,

We also import Kc data compiled by Snyder, Orang, Bali, Eching, and Zaccaria 2000 (revised 2014). The
data was compiled for the Basic Irrigation Scheduling model (BISe), an Excel application that estimates
irrigation water requirement and crop ET using the ASCE-PM equation. Kcs are found on the CropRef
worksheet of the BISe application. Remarks are as follows:

Kc data marked in blue were derived in work by T.C. Hsiao and former students at UC Davis.

The Kc for corn was derived by Steduto and Hsiao (1998) maize canopies uhnder two soil
water regimes II. Seasonal trends of evapotranspiration, carbon dioxide assimilation and canopy
conductance, and as related to leaf area index. Agric. and forest Meteorol. 89:185-200. The Kc
=1.05 for cotton is based on work by Held and Hsiao The Kc = 1.00 for sorghum is based on work
by Held and Hsiao. Millet and For tomato a Kc = 1.10 was selected based on unpublished data
from Snyder and Cahn and on expeiments by Held & Hsiao. The kc values reported by Held and
Hsiao were slightly higher, but the tomatoes were full canopy (not in beds, which is the normal
practice). The data from Snyder and Cahn were typical for California practices. The data for
sunflower were based on data from Hsiao (personal communication)

Kc data marked in green were derived from several sources. The assumption is that corn has a
Kc = 1.00 for ETo calculated using the Pruitt and Doorenbos (1977) hourly ETo equation that is
used by the California Irrigation Management Information System CIMIS

Snyder and Pruitt (1992) Evapotranspiration Data Management in California Irrigation & Drainage
Session Proceedings/Water Forum ’92, EE,HY,IR,WR Div/ASCE, Baltimore, MD/August 2-6,
1992. pp128-133..

Relative Kp values for alfalfa for the crops marked in green were selected from

Wright (1982) New Evapotranspiration Crop Coefficients. Presented at Irrigation and Drainage
Specialty Conference, ASCE, July 17-20, Albuquerque, New Mexico. pp 57-74.

The peak Kp values were corn = 0.95, alfalfa = 1.0, beans = 1.0, potatoes = 0.8, sugar beets =
1.0, peas = 0.9, and cereals = 1.0. Because the equation for ETo was not available at that time,
the Kp values cannot be used directly. However, assuming the Kc = 1.00 is correct for corn, then
the approximate peak Kc values for the other crops are found by dividing the Kp by 0.95. The
peak Kc values for a grass ETo are corn = 1.00, alfalfa = 1.05, beans = 1.00, potatoes = 0.85,
sugar beets = 1.05, peas =0.95, and cereals = 1.05.

The rice Kc = 1.1 more current data on typical ETo from CIMIs and the article

Lourence and Pruitt (1971) Energy balance and water use of rice grown in the Central Valley of
California. Agron. J. 63:827-832.

Lourence and Pruitt found ET of rice to be about 4-5% higher than lysimeter measured grass in
Davis. Rice ET was measured by Bowen ratio about 25 miles north of Davis. The postulated that
the ETo would be less in the rice growing region because of higher humidity. As a result, they
recommend a Kc = 1.20 to 1.25. However, CIMIS data indicates that the ETo is only about 5%
higher in Davis than at the Nicolas site and in Colusa, which are near the rice growing region. As
a result, we would recommend a Kc = 1.05 x 1.05 = 1.10 to estimate ETrice from ETo estimated
at a CIMIS station in the rice growing region..
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1: Prepare lookup table

We multiply coefficients by 100 to get integer values between 0 and 100. This will allow us to reclassify the
landcover rasters and retain the 8-bit grayscale color depth. If we were to crate rasters with decimal values,
the values would be stored as 4-byte floating point and we’d end up with a huge 32-bit image that would be
very large on disk, large in memory, and would process at a glacial pace. Of course, it means sacrificing a bit
of precision (which we will quantify later).
CDL.Kc.LUT <- read_csv("input/TABLES/cup+_kc_cdl.csv")

CDL.Kc.LUT[["start.date.1"]] <- as.Date(paste(CDL.Kc.LUT[["Planting Month"]],
CDL.Kc.LUT[["Planting Day"]], 2001, sep = "-"), format = "%m-%d-%Y")

CDL.Kc.LUT[["end.date.1"]] <- as.Date(paste(CDL.Kc.LUT[["Harvest Month"]],
CDL.Kc.LUT[["Harvest Day"]], ifelse(CDL.Kc.LUT[["Harvest Month"]] <

CDL.Kc.LUT[["Planting Month"]], 2002, 2001), sep = "-"),
format = "%m-%d-%Y")

CDL.Kc.LUT[["start.date.2"]] <- as.Date(paste(CDL.Kc.LUT[["2nd Planting Month"]],
CDL.Kc.LUT[["2nd Planting Day"]], 2001, sep = "-"), format = "%m-%d-%Y")

CDL.Kc.LUT[["end.date.2"]] <- as.Date(paste(CDL.Kc.LUT[["2nd Harvest Month"]],
CDL.Kc.LUT[["2nd Harvest Day"]], ifelse(CDL.Kc.LUT[["2nd Harvest Month"]] <

CDL.Kc.LUT[["2nd Planting Month"]], 2002, 2001), sep = "-"),
format = "%m-%d-%Y")

CDL.Kc.LUT[["is.doublecrop"]] <- !is.na(CDL.Kc.LUT[["2nd Planting Day"]])

# TEST: Remove unrepresented crops and print TODO: Move to
# unit tests
warning("The following landcover classes do not have matching coefficients, and will be removed: ",

paste(unique(unlist(CDL.Kc.LUT[!complete.cases(CDL.Kc.LUT[["Kc AB"]]),
"cdl_name"])), " "))

CDL.Kc.LUT <- CDL.Kc.LUT[complete.cases(CDL.Kc.LUT[["Kc AB"]]),
]

# Scale coeff by 100
CDL.Kc.LUT[, c("Kc AB", "Kc CD", "Kc E", "2nd Kc AB", "2nd Kc CD",

"2nd Kc E")] <- CDL.Kc.LUT[, c("Kc AB", "Kc CD", "Kc E",
"2nd Kc AB", "2nd Kc CD", "2nd Kc E")] * 100

# Calculate length of growing period
CDL.Kc.LUT[["lgp.1"]] <- CDL.Kc.LUT$end.date.1 - CDL.Kc.LUT$start.date.1
CDL.Kc.LUT[["lgp.2"]] <- CDL.Kc.LUT$end.date.2 - CDL.Kc.LUT$start.date.2

# Calculate dates of Kc inflection points TODO: Clean up with
# a function; DRY
CDL.Kc.LUT <- cbind(CDL.Kc.LUT, t_a.1 = CDL.Kc.LUT[["start.date.1"]],

t_b.1 = CDL.Kc.LUT[["start.date.1"]] + (CDL.Kc.LUT[["lgp.1"]] *
CDL.Kc.LUT[["% season B"]] * 0.01), t_c.1 = CDL.Kc.LUT[["start.date.1"]] +
(CDL.Kc.LUT[["lgp.1"]] * CDL.Kc.LUT[["% season C"]] *

0.01), t_d.1 = CDL.Kc.LUT[["start.date.1"]] + (CDL.Kc.LUT[["lgp.1"]] *
CDL.Kc.LUT[["% season D"]] * 0.01), t_e.1 = CDL.Kc.LUT[["end.date.1"]],

t_a.2 = CDL.Kc.LUT[["start.date.2"]], t_b.2 = CDL.Kc.LUT[["start.date.2"]] +
(CDL.Kc.LUT[["lgp.2"]] * CDL.Kc.LUT[["% season B"]] *

0.01), t_c.2 = CDL.Kc.LUT[["start.date.2"]] + (CDL.Kc.LUT[["lgp.2"]] *
CDL.Kc.LUT[["% season C"]] * 0.01), t_d.2 = CDL.Kc.LUT[["start.date.2"]] +

2



(CDL.Kc.LUT[["lgp.2"]] * CDL.Kc.LUT[["% season D"]] *
0.01), t_e.2 = CDL.Kc.LUT[["end.date.2"]])

Next we create the actual look-up table that contains daily Kc values, computed according to the heuristic
from CUP+. We’re using if-else tests for clarity, but the following could be vectorized for a marginal speedup.

TODO: Vectorize with logical array (http://kitchingroup.cheme.cmu.edu/blog/2013/02/23/Vectorized-piecewise-functions/ )

# Plot and inspect plot(seq.Date(as.Date('2001-01-01'), by =
# 'day', length.out = 730),
# calculateKcDaily(seq.Date(as.Date('2001-01-01'), by =
# 'day', length.out = 730), as.data.frame(CDL.Kc.LUT)[4,]))

# Create daily Kc values for 2 years.
CDL.Kc.LUT.daily <- do.call("rbind", by(CDL.Kc.LUT, 1:nrow(CDL.Kc.LUT),

function(row) rbind(calculateKcDaily(seq.Date(as.Date("2001-01-01"),
by = "day", length.out = 730), row))))

# TEST: See if we can wrap the coefficients of the second
# year into the beginning of the first without overlap DRY:
# This test should occur when CDL.Kc.LUT is imported. TODO:
# Move to unit tests
if (any(c(by(CDL.Kc.LUT.daily, 1:nrow(CDL.Kc.LUT.daily), function(row) any(row[1:365] !=

0 & row[366:730] != 0))))) warning("oops, you STILL may have double crops with overlapping growing periods for: ",
paste(which(c(by(CDL.Kc.LUT.daily, 1:nrow(CDL.Kc.LUT.daily),

function(row) any(row[1:365] != 0 & row[366:730] != 0)))),
collapse = " "))

# Wrap into single year and label
CDL.Kc.LUT.daily <- pmax(CDL.Kc.LUT.daily[, 1:365], CDL.Kc.LUT.daily[,

366:730])
CDL.Kc.LUT.daily <- CDL.Kc.LUT.daily[, -(366:730)]
colnames(CDL.Kc.LUT.daily) <- 1:365
CDL.Kc.LUT.daily <- cbind(value = CDL.Kc.LUT[["VALUE"]], cdl_name = CDL.Kc.LUT[["cdl_name"]],

as.data.frame(CDL.Kc.LUT.daily))

# TODO: Evaluate if it's more readable to set NA earlier in
# logic
CDL.Kc.LUT.daily[CDL.Kc.LUT.daily == 0] <- NA

# Plot and inspect par(mfrow = c(7, 7)) for (row in
# 1:nrow(CDL.Kc.LUT.daily)){
# plot(1:365,CDL.Kc.LUT.daily[row,3:367]) }

This final structure is not “tidy”, in the sense of variables forming columns and observations forming rows.
It’s a 3-dimensional lookup table project into two.
saveRDS(CDL.Kc.LUT.daily, "output/tables/CDL_Kc_LUT_daily.rds")
write.csv(CDL.Kc.LUT.daily, "output/tables/CDL_Kc_LUT_daily.csv")
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2. Create special LUT for dual-cropped regions for later dis-
entanglement

# Subset to only dual-cropped regions
CDL.LUT.dual <- CDL.Kc.LUT[CDL.Kc.LUT[["is.doublecrop"]] == TRUE,

]
# Create daily Kc values for 2 years.
CDL.LUT.dual <- do.call("rbind", by(CDL.LUT.dual, 1:nrow(CDL.LUT.dual),

function(row) rbind(tagKcDaily(seq.Date(as.Date("2001-01-01"),
by = "day", length.out = 730), row))))

CDL.LUT.dual <- pmax(CDL.LUT.dual[, 1:365], CDL.LUT.dual[, 366:730])
CDL.LUT.dual <- CDL.LUT.dual[, -(366:730)]
colnames(CDL.LUT.dual) <- 1:365
CDL.LUT.dual <- cbind(value = CDL.Kc.LUT[CDL.Kc.LUT[["is.doublecrop"]] ==

TRUE, ][["VALUE"]], cdl_name = CDL.Kc.LUT[CDL.Kc.LUT[["is.doublecrop"]] ==
TRUE, ][["cdl_name"]], as.data.frame(CDL.LUT.dual))

CDL.LUT.dual[CDL.LUT.dual == 0] <- NA

saveRDS(CDL.LUT.dual, "output/tables/CDL_LUT_dualtagged.rds")
write.csv(CDL.LUT.dual, "output/tables/CDL_LUT_dualtagged.csv")
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3.Lc_prep
There are different export options in the USDA, NASS, CropScape and Cropland Data Layers tool. Users
can export subsets of the national data set under different regional masks, such as state boundaries, however
all inherit the default WGS 84 / Lon Lat CRS, reproduced below as OGC WKT:

GEOGCS["WGS 84",
DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],

AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],
UNIT["degree",0.0174532925199433,

AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]

# ca_boundary defines the boundary for the area/(s) of
# analysis (includes counties) ca_boundary <-
# readOGR('input/MAPS/cb_2014_CA_5m.shp',
# layer='cb_2014_CA_5m')
ca_boundary.path <- "Input/SHAPEFILES/cnty24k09/cnty24k09_state_poly_s100.shp"
lc.dir <- "input/CDL_CA_WGS84"
lc.crs <- CRS("+init=epsg:4326")

1. Collect landcover rasters and inspect

First we collect all of the landcover rasters in our input directory and organize them into a table with
relevant metadata, e.g. resolution and extent. Rasters are tagged as anomalous if their extent or resolution
is different from the most common values of the group (criteria mode).
# TODO: Generalize as function
lc.paths <- list.files(path = lc.dir, pattern = ".(tif)$", full.names = T,

recursive = TRUE)

lc.table <- data.frame(abs_path = lc.paths, source = sapply(strsplit(file_path_sans_ext(lc.paths),
"/"), "[[", 2), product_name = sapply(strsplit(file_path_sans_ext(lc.paths),
"/"), "[[", 4), date = as.Date(sprintf("%s-01-01", regmatches(lc.paths,
regexpr("(?<=CA_WGS84\\/CDL_)(.{4})(?=_clip)", lc.paths,

perl = TRUE))), format = "%F"), stringsAsFactors = FALSE)

# HACK: Clean up ugly product name

lc.table[["product_name"]] <- paste0("CDL_", 2007:2016)

# Tag (x,y)[min,max,res], ncell, and nlayers if applicable
lc.table <- rtTagParam(lc.table)
# Tag anomalous parameters according to metadata parameters
# specified
lc.table["anoml"] <- tagAnomalous(lc.table, c("xmin", "xmax",

"ymin", "ymax", "ncell", "xres", "yres"), modal)
rm(lc.paths)
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2. Clean anomalous rasters and re-inspect

2.1 Upscale coarse landcover rasters

At this point, we visually inspect anom.indicies and perform manual cleaning depending on what the problem
is. For CDL, the resolution of older products is 56, so we must upscale to match the later years. NOTE:
Here, the criterion for cleaning is anoml == TRUE, since there are no other anomalous features, but this
probably won’t be the same for different data sources!

resample_cdl is a function that resamples each raster that you feed into it to match the dimensions of the
last raster in the landcover file table. It can be run sequentially on one thread (commented out below), or in
parallel on multiple threads using parallel.
# anom.table = makeAnomtable(lc.table)

# Upscale with nearest neighbor interpolation (to preserve
# categorical variable) to match resolution of most recent
# CDL (56 meters)
resample_cdl <- function(lc.table, abs_path, source, product_name) {

dir.create(paste0("output/cleaned_inputs/", source, "_30m/"),
recursive = TRUE, showWarnings = FALSE)

outpath <- paste0("output/cleaned_inputs/", source, "_30m/",
product_name, ".tif")

resample(raster(abs_path), raster(lc.table[["abs_path"]][nrow(lc.table)]),
method = "ngb", filename = outpath, format = "GTiff",
prj = TRUE, progress = "text", datatype = "INT1U", overwrite = TRUE)

}

# TODO: Figure out why apply returns extra row, creating NA
# directory Non parallel version
# apply(lc.table[lc.table['xres'] == 56,], 1, function(x)
# resample_cdl(lc.table, x['abs_path'], x['source'],
# x['product_name']))

# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(min((detectCores() - 1), sum(lc.table["anoml"] ==

TRUE)))
clusterExport(cl, list("lc.table", "resample_cdl"))
clusterEvalQ(cl, library(raster))
parRapply(cl, lc.table[lc.table["anoml"] == TRUE, ], function(x) resample_cdl(lc.table,

x["abs_path"], x["source"], x["product_name"]))
stopCluster(cl)

project_cdl <- function(lc.table, abs_path, source, product_name) {
dir.create(paste0("output/cleaned_inputs/", source, "_30m/"),

recursive = TRUE, showWarnings = FALSE)
outpath <- paste0("output/cleaned_inputs/", source, "_30m/",

product_name, ".tif")
projectRaster(raster(abs_path), crs = CRS("+init=epsg:4326"),

method = "ngb", filename = outpath, format = "GTiff",
prj = TRUE, progress = "text", datatype = "INT1U", overwrite = TRUE)

}

cl <- makeCluster(min((detectCores() - 1), nrow(lc.table)), outfile = "debug.txt")
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clusterExport(cl, list("lc.table", "project_cdl"))
clusterEvalQ(cl, library(raster))
parRapply(cl, lc.table, function(x) project_cdl(lc.table, x["abs_path"],

x["source"], x["product_name"]))
stopCluster(cl)

2.2 Import and re-inspect upscaled rasters

# Load cleaned files into file table TODO: DRY
lc.paths.cleaned <- list.files(path = "output/cleaned_inputs/CDL_CA_30m",

pattern = ".(tif)$", full.names = T, recursive = TRUE)

# TODO: remove hardcoded gsub
lc.table.cleaned <- data.frame(abs_path = lc.paths.cleaned, source = gsub(".{4}$",

"", sapply(strsplit(file_path_sans_ext(lc.paths.cleaned),
"/"), "[[", 3)), product_name = sapply(strsplit(file_path_sans_ext(lc.paths.cleaned),

"/"), "[[", 4), date = as.Date(sprintf("%s-01-01", regmatches(lc.paths.cleaned,
regexpr("(?<=CA_WGS84_30m\\/CDL_)(.*)(?=.tif)", lc.paths.cleaned,

perl = TRUE))), format = "%F"), stringsAsFactors = FALSE)

# Merge cleaned into file table and redo checks TODO: DRY
# TODO: Add test to ensure that all of 'anoml' column ==
# FALSE
lc.table[lc.table[["date"]] %in% lc.table.cleaned[["date"]],

] <- lc.table.cleaned[lc.table.cleaned[["date"]] %in% lc.table[["date"]],
]

# Tag (x,y)[min,max,res], ncell, and nlayers if applicable
lc.table <- rtTagParam(lc.table)
# Tag anomalous parameters according to metadata parameters
# specified
lc.table["anoml"] <- tagAnomalous(lc.table, c("xmin", "xmax",

"ymin", "ymax", "ncell", "xres", "yres"), modal)

rm(lc.paths.cleaned, lc.table.cleaned)

2.3 Warp Lc

We use gdalwarp to allign all of our datasets, with the same extent and same number of rows/columns.
warp_lc <- function(abs_path, cut.shapefile, source, date) {

dir.create(paste0("E:/Users/lbooth/Documents/wfar/output/cleaned_inputs/",
source, "_projected/", year(date)), recursive = TRUE,
showWarnings = FALSE)

outpath <- paste0("E:/Users/lbooth/Documents/wfar/output/cleaned_inputs/",
source, "_projected/", year(date), "/", format(date,

format = "%Y_%m_%d"), ".tif")
gdalwarp_wrapper("bin/gdal/apps/gdalwarp.exe", "-s_srs EPSG:4326 -t_srs EPSG:3310 -tr 30 30 -r near -overwrite -crop_to_cutline -co \"COMPRESS=LZW\" -co \"PREDICTOR=2\" -wm 2000 --config GDAL_CACHEMAX 2000",

cut.shapefile, abs_path, outpath)
}
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# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(1, outfile = "debug.txt")
clusterExport(cl, list("lc.table", "warp_lc", "ca_boundary.path",

"gdalwarp_wrapper"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
parRapply(cl, lc.table, function(x) warp_lc(x[["abs_path"]],

ca_boundary.path, x[["source"]], x[["date"]]))
stopCluster(cl)
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4.eto_prep.Rmd (CWU Calculations)
# ca_boundary defines the boundary for the area/(s) of
# analysis (includes counties) ca_boundary <-
# readOGR('Input/SHAPEFILES/cb_2014_CA_5m.shp',
# layer='cb_2014_CA_5m')
ca_boundary.path <- "Input/SHAPEFILES/cnty24k09/cnty24k09_state_poly_s100.shp"
eto.dir <- "input/SPATIALCIMIS"
eto.crs <- CRS("+init=epsg:3310")

To perform operations on collections of daily ETo layers, we can stack each raster file
eto.paths <- list.files(path = eto.dir, pattern = ".(asc)$",

full.names = T, recursive = TRUE)

eto.table <- data.frame(abs_path = eto.paths, source = sapply(strsplit(file_path_sans_ext(eto.paths),
"/"), "[[", 2), product_name = sapply(strsplit(file_path_sans_ext(eto.paths),
"/"), "[[", 6), date = as.Date(regmatches(eto.paths, regexpr("(?<=SPATIALCIMIS)(.*)(?=ETo.asc)",
eto.paths, perl = TRUE)), format = "/%Y/%m/%d/"), stringsAsFactors = FALSE)

eto.table["w.year"] <- as.Date(waterYearlt(eto.table$date))

eto.table["minval"] <- sapply(eto.table[["abs_path"]], function(x) minValue(setMinMax(raster(x))))
eto.table["maxval"] <- sapply(eto.table[["abs_path"]], function(x) maxValue(setMinMax(raster(x))))

eto.table[c("xres", "yres", "minval", "maxval")] <- sapply(eto.table[["abs_path"]],
function(x) {

x <- setMinMax(raster(x))
return(c(xres(x), yres(x), minValue(x), maxValue(x)))

})

# Tag (x,y)[min,max,res], ncell, and nlayers if applicable
eto.table <- rtTagParam(eto.table)
# Tag anomalous parameters according to metadata parameters
# specified
eto.table["anoml"] <- tagAnomalous(eto.table, c("xmin", "xmax",

"ymin", "ymax", "ncell", "xres", "yres"), modal)

rm(eto.paths)

anom.table <- makeAnomtable(eto.table)
anom.indicies <- unique(which(anom.table == TRUE, arr.ind = TRUE)[,

1])
anom.table <- cbind(eto.table[anom.indicies, ], anom.table[anom.indicies,

])

# At this point, we visually inspect anom.indicies and
# perform manual cleaning depending on what the problem is

# (x,y)[res] 2012-06-25 is the only one with an anomalous
# resolution (500m vs 2000m)'

# (x,y)[min,max] The rest appear to be missing a couple of
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# rows or columns worth of data

# Limit our analysis to 2007-2016
eto.table <- eto.table[!(year(eto.table[["date"]]) < 2007), ]
seq(ymd("2007-01-01"), ymd("2016-12-31"), by = "day")
missing.date.index <- !(seq(ymd("2007-01-01"), ymd("2016-12-31"),

by = "day") %in% eto.table[["date"]])
missing.dates <- seq(ymd("2007-01-01"), ymd("2016-12-31"), by = "day")[missing.date.index]
warning(paste0("Missing dates: "), missing.dates, "will be set to the last complete observation.")

filled.obs <- as.data.frame(lapply(eto.table[eto.table[["date"]] ==
missing.dates[1] - 1, ], rep, length(missing.dates)))

filled.obs[["date"]] <- missing.dates
eto.table <- rbind(eto.table, filled.obs)
rm(filled.obs, missing.dates, missing.date.index)

As there is nothing major amiss, the resolution and minor extent issues can be resolved by resample-ing,
which is required for upscaling anyway.

Round ETo

This is a very quick step. Completes in under 10 minutes on 22 threads.
scale_eto <- function(abs_path, eto.crs, source, date) {

dir.create(paste0("output/cleaned_inputs/", source, "_scaled/",
year(date)), recursive = TRUE, showWarnings = FALSE)

outpath <- paste0("output/cleaned_inputs/", source, "_scaled/",
year(date), "/", format(date, format = "%Y_%m_%d"), ".tif")

calc(raster(abs_path, crs = eto.crs), fun = function(x) {
round(x * 100)

}, format = "GTiff", progress = "text", datatype = "INT2U",
overwrite = TRUE, filename = outpath)

}

# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(min((detectCores() - 2), nrow(eto.table)),

outfile = "debug.txt")
clusterExport(cl, list("eto.table", "scale_eto"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
parRapply(cl, eto.table, function(x) scale_eto(x[["abs_path"]],

CRS("+init=epsg:3310"), x[["source"]], x[["date"]]))
stopCluster(cl)

2.2 Import and re-inspect rounded rasters

# Load cleaned files into file table TODO: DRY
eto.paths.scaled <- list.files(path = "output/cleaned_inputs/SPATIALCIMIS_scaled",
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pattern = ".(tif)$", full.names = T, recursive = TRUE)

# TODO: remove hardcoded gsub
eto.table.scaled <- data.frame(abs_path = eto.paths.scaled, source = sapply(strsplit(file_path_sans_ext(eto.paths.scaled),

"/"), "[[", 3), product_name = "ETo", date = as.Date(sapply(strsplit(file_path_sans_ext(eto.paths.scaled),
"/"), "[[", 5), format = "%Y-%m-%d"), stringsAsFactors = FALSE)

rm(eto.paths.scaled, eto.table)

Warp ETo

warp_eto <- function(abs_path, cut.shapefile, source, date) {
dir.create(paste0("E:/Users/lbooth/Documents/wfar/output/cleaned_inputs/",

source, "_projected/", year(date)), recursive = TRUE,
showWarnings = FALSE)

outpath <- paste0("E:/Users/lbooth/Documents/wfar/output/cleaned_inputs/",
source, "_projected/", year(date), "/", format(date,

format = "%Y_%m_%d"), ".tif")
gdalwarp_wrapper("bin/gdal/apps/gdalwarp.exe", "-s_srs EPSG:3310 -t_srs EPSG:3310 -tr 30 30 -r bilinear -overwrite -crop_to_cutline -co \"COMPRESS=LZW\" -co \"PREDICTOR=2\" -wm 2000 --config GDAL_CACHEMAX 2000",

cut.shapefile, abs_path, outpath)
}

# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(20, outfile = "debug.txt")
clusterExport(cl, list("eto.table.scaled", "warp_eto", "ca_boundary.path",

"gdalwarp_wrapper"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
parRapply(cl, eto.table.scaled, function(x) warp_eto(x[["abs_path"]],

ca_boundary.path, x[["source"]], x[["date"]]))
stopCluster(cl)

Performance note: Started at 16:11 finished at 23:01. 7 hrs on 20 threads, smt
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5_cwu_calcs.Rmd (CWU calulations)
eto.dir <- "output/cleaned_inputs/SPATIALCIMIS_scaled_projected"
lc.dir <- "output/cleaned_inputs/CDL_CA_projected"
kc.lut <- readRDS("output/tables/CDL_Kc_LUT_daily.rds")
# TODO: Remove leap year hack (`366` = kc.lut[['365']])
kc.lut <- cbind(index = 1:nrow(kc.lut), kc.lut, `366` = kc.lut[["365"]])
global.crs <- CRS("+init=epsg:3310")

Note: We have already alligned and reprojected all data sets in previous steps.

1.1 Import rounded eto

# Load cleaned files into file table TODO: DRY
eto.paths <- list.files(path = eto.dir, pattern = ".(tif)$",

full.names = T, recursive = TRUE)

# TODO: remove hardcoded gsub
eto.table <- data.frame(abs_path = eto.paths, source = sapply(strsplit(file_path_sans_ext(eto.paths),

"/"), "[[", 3), product_name = "ETo", date = as.Date(sapply(strsplit(file_path_sans_ext(eto.paths),
"/"), "[[", 5), format = "%Y-%m-%d"), stringsAsFactors = FALSE)

rm(eto.paths, eto.dir)

1.2 Import rounded landcover

# Load cleaned files into file table TODO: DRY
lc.paths <- list.files(path = lc.dir, pattern = ".(tif)$", full.names = T,

recursive = TRUE)

lc.table <- data.frame(abs_path = lc.paths, source = sapply(strsplit(file_path_sans_ext(lc.paths),
"/"), "[[", 3), product_name = "CDL", date = as.Date(sprintf("%s-01-01",
sapply(strsplit(file_path_sans_ext(lc.paths), "/"), "[[",

4)), format = "%F"), stringsAsFactors = FALSE)

rm(lc.paths, lc.dir)

1.3 Append data to eto table

eto.table[["lc_path"]] <- sapply(year(eto.table[["date"]]), function(x) lc.table[year(lc.table[["date"]]) ==
x, ][["abs_path"]])

2 Perform CWR/ETc calculation day-wise

TODO: Verify that global.crs is not needed
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make_etc <- function(abs_path, lc_path, global.crs, date) {
dir.create(paste0("output/cwr_calcs/", year(date)), recursive = TRUE,

showWarnings = FALSE)
outpath <- paste0("output/cwr_calcs/", year(date), "/", format(date,

format = "%Y_%m_%d"), ".tif")
day.of.year <- yday(date)
overlay(raster(abs_path), raster(lc_path), fun = function(eto.value,

lc.value) {
return(kc.lut[match(lc.value, kc.lut[["value"]]), as.character(day.of.year)] *

eto.value)
}, format = "GTiff", progress = "text", datatype = "INT4U",

overwrite = TRUE, filename = outpath, forcefun = TRUE)
}

# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(min((detectCores() - 2), nrow(eto.table)),

outfile = "debug.txt")
clusterExport(cl, list("eto.table", "make_etc", "kc.lut"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
parRapply(cl, eto.table, function(x) make_etc(x[["abs_path"]],

x[["lc_path"]], CRS("+init=epsg:4326"), x[["date"]]))
stopCluster(cl)

Performance notes:

duration 32 hrs w/ 20 threads, smt 34h:27m
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6.ppt_prep.Rmd (CWU calulations)
# ca_boundary defines the boundary for the area/(s) of
# analysis (includes counties)
ca_boundary.path <- "input/SHAPEFILES/cnty24k09/cnty24k09_state_poly_s100.shp"
ppt.dir <- "input/PRISM"
ppt.crs <- CRS("+init=epsg:4269")

To perform operations on collections of daily ppt layers, we can stack each raster file
ppt.paths <- list.files(path = ppt.dir, pattern = ".(tif)$",

full.names = T, recursive = TRUE)

ppt.table <- data.frame(abs_path = ppt.paths, source = sapply(strsplit(file_path_sans_ext(ppt.paths),
"/"), "[[", 2), product_name = "ppt", date = as.Date(regmatches(ppt.paths,
regexpr("(?<=prism_ppt_us_30s_)(.*)(?=.tif)", ppt.paths,

perl = TRUE)), format = "%Y%m%d"), stringsAsFactors = FALSE)

# ppt.table['w.year'] <- as.Date(waterYearlt(ppt.table$date))

# ppt.table['minval'] <- sapply(ppt.table[['abs_path']],
# function(x) minValue(setMinMax(raster(x))))
# ppt.table['maxval'] <- sapply(ppt.table[['abs_path']],
# function(x) maxValue(setMinMax(raster(x))))

# ppt.table[c('xres', 'yres', 'minval', 'maxval')] <-
# sapply(ppt.table[['abs_path']], function(x) { x <-
# setMinMax(raster(x))
# return(c(xres(x),yres(x),minValue(x),maxValue(x))) })

# Tag (x,y)[min,max,res], ncell, and nlayers if applicable
# ppt.table <- rtTagParam(ppt.table) Tag anomalous parameters
# according to metadata parameters specified
# ppt.table['anoml'] <- tagAnomalous(ppt.table, c('xmin',
# 'xmax', 'ymin', 'ymax', 'ncell', 'xres', 'yres'), modal)

rm(ppt.paths)

At least for PRISM, the data are clean.
any(ppt.table$anoml)
# Limit our analysis to 2007-2016
ppt.table <- ppt.table[!(year(ppt.table[["date"]]) < 2007), ]

missing.date.index <- !(seq(ymd("2007-01-01"), ymd("2015-12-31"),
by = "day") %in% ppt.table[["date"]])

any(missing.date.index)
rm(filled.obs, missing.dates, missing.date.index)

As there is nothing major amiss, the resolution and minor extent issues can be resolved by resample-ing,
which is required for upscaling anyway.
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Round ppt

This is a very quick step. Completes in under 6 minutes on 20 threads.
scale_ppt <- function(abs_path, ppt.crs, source, date) {

dir.create(paste0("output/cleaned_inputs/", source, "_scaled/",
year(date)), recursive = TRUE, showWarnings = FALSE)

outpath <- paste0("output/cleaned_inputs/", source, "_scaled/",
year(date), "/", format(date, format = "%Y_%m_%d"), ".tif")

calc(raster(abs_path, crs = ppt.crs), fun = function(x) {
round(x * 100)

}, format = "GTiff", progress = "text", datatype = "INT2U",
overwrite = TRUE, filename = outpath)

}

# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(min((detectCores() - 5), nrow(ppt.table)),

outfile = "debug.txt")
clusterExport(cl, list("ppt.table", "scale_ppt"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
parRapply(cl, ppt.table, function(x) scale_ppt(x[["abs_path"]],

CRS("+init=epsg:4269"), x[["source"]], x[["date"]]))
stopCluster(cl)

2.2 Import and re-inspect rounded rasters

# Load cleaned files into file table TODO: DRY
ppt.paths.scaled <- list.files(path = "output/cleaned_inputs/PRISM_scaled",

pattern = ".(tif)$", full.names = T, recursive = TRUE)

# TODO: remove hardcoded gsub
ppt.table.scaled <- data.frame(abs_path = ppt.paths.scaled, source = sapply(strsplit(file_path_sans_ext(ppt.paths.scaled),

"/"), "[[", 3), product_name = "ppt", date = as.Date(sapply(strsplit(file_path_sans_ext(ppt.paths.scaled),
"/"), "[[", 5), format = "%Y-%m-%d"), stringsAsFactors = FALSE)

rm(ppt.paths.scaled, ppt.table)

Warp ppt

Warp took 6 hrs on 19 threads (12 hyperthreaded cores) Started: 23:35 Ended: 05:17
warp_ppt <- function(abs_path, cut.shapefile, source, date) {

dir.create(paste0("E:/Users/lbooth/Documents/wfar/output/cleaned_inputs/",
source, "_projected/", year(date)), recursive = TRUE,
showWarnings = FALSE)

outpath <- paste0("E:/Users/lbooth/Documents/wfar/output/cleaned_inputs/",
source, "_projected/", year(date), "/", format(date,

2



format = "%Y_%m_%d"), ".tif")
gdalwarp_wrapper("bin/gdal/apps/gdalwarp.exe", "-s_srs EPSG:4269 -t_srs EPSG:3310 -tr 30 30 -r bilinear -overwrite -crop_to_cutline -co \"COMPRESS=LZW\" -co \"PREDICTOR=2\" -wm 2000 --config GDAL_CACHEMAX 2000",

cut.shapefile, abs_path, outpath)
}

# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(20, outfile = "debug.txt")
clusterExport(cl, list("ppt.table.scaled", "warp_ppt", "ca_boundary.path",

"gdalwarp_wrapper"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
parRapply(cl, ppt.table.scaled, function(x) warp_ppt(x[["abs_path"]],

ca_boundary.path, x[["source"]], x[["date"]]))
stopCluster(cl)
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7.zone_sums (County Aggregations)
# ca_boundary defines the boundary for the area/(s) of
# analysis (includes counties) ca_boundary <-
# readOGR('input/SHAPEFILES/cb_2014_CA_5m.shp',
# layer='cb_2014_CA_5m')
ca.counties.path <- "output/ca_counties.tif"
ca.counties <- readOGR("input/SHAPEFILES/cnty24k09_poly/cnty24k09_poly_s100.shp")
cwr.dir <- "output/cwr_calcs"
ppt.dir <- "output/cleaned_inputs/PRISM_scaled_projected"
lc.dir <- "output/cleaned_inputs/CDL_CA_projected"
index.dir <- "output/intermediaries/county_lc_index/"

cwr.paths <- list.files(path = cwr.dir, pattern = ".(tif)$",
full.names = T, recursive = TRUE)

cwr.table <- data.frame(abs_path = cwr.paths, source = sapply(strsplit(file_path_sans_ext(cwr.paths),
"/"), "[[", 2), product_name = "cwr", date = as.Date(sapply(strsplit(file_path_sans_ext(cwr.paths),
"/"), "[[", 4), format = "%Y-%m-%d"), stringsAsFactors = FALSE)

cwr.table["w.year"] <- as.Date(waterYearlt(cwr.table$date))

ppt.paths <- list.files(path = ppt.dir, pattern = ".(tif)$",
full.names = T, recursive = TRUE)

ppt.table <- data.frame(abs_path = ppt.paths, source = sapply(strsplit(file_path_sans_ext(ppt.paths),
"/"), "[[", 3), product_name = "ppt", date = as.Date(sapply(strsplit(file_path_sans_ext(ppt.paths),
"/"), "[[", 5), format = "%Y-%m-%d"), stringsAsFactors = FALSE)

ppt.table["w.year"] <- as.Date(waterYearlt(ppt.table$date))

lc.paths <- list.files(path = lc.dir, pattern = ".(tif)$", full.names = T,
recursive = TRUE)

lc.table <- data.frame(abs_path = lc.paths, source = sapply(strsplit(file_path_sans_ext(lc.paths),
"/"), "[[", 3), product_name = "CDL", date = as.Date(sprintf("%s-01-01",
sapply(strsplit(file_path_sans_ext(lc.paths), "/"), "[[",

4)), format = "%F"), stringsAsFactors = FALSE)

index.paths <- list.files(path = index.dir, pattern = ".(tif)$",
full.names = T, recursive = TRUE)

index.table <- data.frame(abs_path = index.paths, date = as.Date(sprintf("%s-01-01",
sapply(strsplit(file_path_sans_ext(index.paths), "/"), "[[",

4)), format = "%F"), stringsAsFactors = FALSE)

## TODO: Add input validation logic
rm(ppt.dir, cwr.dir, ppt.paths, cwr.paths, lc.paths, lc.dir,

index.dir, index.paths)
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Tangle aggregation units (2 units)

# raster(raster()) uses the first landcover raster as a
# template, discarding values 22858 seconds
ca.counties.r <- rasterize(ca.counties, raster(raster(lc.table[1,

1])), "NUM", fun = "last", filename = "output/ca_counties.tif")

tangle_lc_boundaries <- function(lc_path, region_path, date) {
dir.create("output/intermediaries/county_lc_index", recursive = TRUE,

showWarnings = FALSE)
outpath <- paste0("output/intermediaries/county_lc_index/",

year(date), ".tif")
overlay(raster(lc_path), raster(region_path), fun = function(x,

y) {
return(szudzik_pair(x, y))

}, format = "GTiff", progress = "text", datatype = "INT4U",
overwrite = TRUE, filename = outpath, forcefun = TRUE)

}

# Make only as many clusters as necessary, bound by available
# cores
cl <- makeCluster(min((detectCores() - 2), nrow(lc.table)), outfile = "debug.txt")
clusterExport(cl, list("lc.table", "tangle_lc_boundaries", "ca.counties.path",

"szudzik_pair"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
parRapply(cl, lc.table, function(x) tangle_lc_boundaries(x[["abs_path"]],

ca.counties.path, x[["date"]]))
stopCluster(cl)
# 529 seconds

make_zone_sum <- function(abs_paths, index_path) {
z.table = zonal(raster(abs_paths), raster(index_path), "sum",

na.rm = TRUE, progress = "text")
return(z.table)

}

product_name = "cwr"

# Make only as many clusters as necessary, bound by available
# cores
exe.starttime <- Sys.time()
cl <- makeCluster(min((detectCores() - 2), nrow(cwr.table)),

outfile = "debug.txt")
clusterExport(cl, list("cwr.table", "index.table", "make_zone_sum",

"product_name"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))
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for (year.index in unique(year(cwr.table[["date"]]))) {

clusterExport(cl, "year.index")
z.table <- clusterMap(cl, make_zone_sum, abs_paths = cwr.table[year(cwr.table[["date"]]) ==

year.index, ][["abs_path"]], MoreArgs = list(index_path = index.table[year(index.table[["date"]]) ==
year.index, ][["abs_path"]]), RECYCLE = TRUE, SIMPLIFY = FALSE)

dir.create("output/summaries/", recursive = TRUE, showWarnings = FALSE)
saveRDS(z.table, paste0("output/summaries/", product_name,

"_", year.index, ".rds"))

z.table <- Reduce(function(dtf1, dtf2) cbind(dtf1, dtf2[,
2]), z.table)

z.table <- cbind(szudzik_unpair(z.table[, 1]), z.table[,
-1])

colnames(z.table) <- c("crop", "county", seq(1, length(colnames(z.table)) -
2))

write.csv(z.table, file = paste0("output/summaries/", product_name,
"_", year.index, ".csv"))

}
stopCluster(cl)
exe.stoptime <- Sys.time()
print(paste("Began calculation at", exe.starttime, "and completed at",

exe.stoptime))
print(exe.stoptime - exe.starttime)

Performance notes: 2 days 12 hrs on 20 threads, smt 8.5 days on 6 threads, smt
make_zone_sum <- function(abs_paths, index_path) {

z.table = zonal(raster(abs_paths), raster(index_path), "sum",
na.rm = TRUE, progress = "text")

return(z.table)
}

product_name = "ppt"

# Make only as many clusters as necessary, bound by available
# cores
exe.starttime <- Sys.time()
cl <- makeCluster(min((detectCores() - 2), nrow(ppt.table)),

outfile = "debug.txt")
clusterExport(cl, list("ppt.table", "index.table", "make_zone_sum",

"product_name"))
clusterEvalQ(cl, {

library(raster)
library(lubridate)

})
clusterEvalQ(cl, rasterOptions(progress = "text", time = TRUE))

for (year.index in unique(year(ppt.table[["date"]]))) {

clusterExport(cl, "year.index")
z.table <- clusterMap(cl, make_zone_sum, abs_paths = ppt.table[year(ppt.table[["date"]]) ==

year.index, ][["abs_path"]], MoreArgs = list(index_path = index.table[year(index.table[["date"]]) ==
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year.index, ][["abs_path"]]), RECYCLE = TRUE, SIMPLIFY = FALSE)

dir.create("output/summaries/", recursive = TRUE, showWarnings = FALSE)
saveRDS(z.table, paste0("output/summaries/", product_name,

"_", year.index, ".rds"))

z.table <- Reduce(function(dtf1, dtf2) cbind(dtf1, dtf2[,
2]), z.table)

z.table <- cbind(szudzik_unpair(z.table[, 1]), z.table[,
-1])

colnames(z.table) <- c("crop", "county", seq(1, length(colnames(z.table)) -
2))

write.csv(z.table, file = paste0("output/summaries/", product_name,
"_", year.index, ".csv"))

}
stopCluster(cl)
exe.stoptime <- Sys.time()
print(paste("Began calculation at", exe.starttime, "and completed at",

exe.stoptime))
print(exe.stoptime - exe.starttime)

(2 days, 6 hrs)
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8.zone_prep.Rmd (Preparation of zone sums for WF
calculation)

This worksheet leans heavily on tidyverse packages.

Introduction

In the previous step, we computed zonal sums for crop water demand and precipitation respectively. Each
unique zone was created as a pair of a county index and a landcover (i.e. crop) index. This worksheet unpairs
the zone index and recovers the crop and county information.

output/summaries/{cwr,ppt}_year.rds contains the raw zone sums, stored as large lists, with each list
representing a year of observations. Each daily observation is stored as a 2-D matrix, with one column
representing the zone indicies, and the other column representing the zone sums.

Some landcover indices, represent regions that are dual-cropped. That is, for part of the year, the region
contains one crop, and for another part of the year, it contains a different crop. For these regions, we replace
the dual-crop landcover index with the appropriate single-crop index. The lookup table for these substitutions
is found in output/tables/CDL_LUT_dualtagged.rds.

Crop and landcover index pairings are found in output/tables/CDL_Kc_LUT_daily.rds. Modeled crop
indicies are found in output/tables/CDL_Kc_LUT_daily.rds.
calc.dir <- "output/summaries"
kc.lut <- readRDS("output/tables/CDL_Kc_LUT_daily.rds")
cdl.table <- read_csv("input/TABLES/cdl_classes_all.csv")
CDL.LUT.dual <- readRDS("output/tables/CDL_LUT_dualtagged.rds")

calc.paths <- list.files(path = calc.dir, pattern = ".(rds)$",
full.names = T, recursive = TRUE)

calc.table <- data.frame(abs_path = calc.paths, product_name = sapply(strsplit(basename(file_path_sans_ext(calc.paths)),
"_"), "[[", 1), date = as.Date(sprintf("%s-01-01", sapply(strsplit(basename(file_path_sans_ext(calc.paths)),
"_"), "[[", 2)), format = "%F"), stringsAsFactors = FALSE)

## TODO: Add input validation logic
rm(calc.dir, calc.paths)

Split double-cropped categories into respective crops

There are some categories that represent two crop’s worth of CWU in a respective year. Setting aside the
assumptions that we made for modeling this split CWU, we now must split the year depending on what we
expect to be growing in the region on the particular day of year. We make use of CDL_LUT_dualtagged, a
table that associates a dual-crop category with the expected crop for a given day-of-year.

First, we prepare the look-up-table for the dual-crop categories. Second, we create a function that changes
re-assigns a dual cropped zone to the appropriate planted crop depending on the day of year. We call this
function in the following block.
# SMALL HACK: Resolve for leap years by adding a 366'th day
# that has crop parameters equal to the 365th Instead of
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# modeling Feb 29, we model Dec 31st twice TODO: We can make
# this more accurate by modeling Feb 28th twice, or adding
# logic to extend the growing season by one day during leap
# years. Nevertheless, late December and February conditions
# are typically similar.
CDL.LUT.dual <- cbind(CDL.LUT.dual, `366` = CDL.LUT.dual[["365"]])
CDL.LUT.dual <- gather(CDL.LUT.dual, "day_of_year", "real_value",

3:368, -cdl_name, convert = TRUE)

reassign_dualcrop <- function(crop, date) {
real_value <- left_join(data.frame(crop = crop, date = yday(date)),

CDL.LUT.dual, by = c(crop = "value", date = "day_of_year"))[["real_value"]]
return(ifelse(is.na(real_value), crop, real_value))

}

Read in and prep files (rds import)

TODO: This function was written before I moved everything north of gather (Reduce et al.) into the
region-aggregation worksheet (7.county-aggregations.Rmd), When you re-generate the .rds files, remove
the Reduce() and szudzik_unpair() logic from assemble_zonesums.

There are a lot of entries to process in this chunk, but it can be done on a laptop. Expect 4M entries to take
a minute or two on a modern laptop (sandy bridge or newer, 8GB RAM or more).
assemble_zonesums <- function(calc.table, parameter){

calc.table <- calc.table[calc.table[["product_name"]] == parameter,]
master.table <- data.frame()
for (rownum in 1:nrow(calc.table)){

master.table <- rbind(master.table, # Concat to placeholder dataframe
readRDS(calc.table[rownum,"abs_path"]) %>% # Read in list of daily zone-sums
map(as.data.frame) %>% # Convert all entries in list from matrix to data.frame
Reduce(function(x, y) full_join(x, y, by = "zone"), .) %>% # Combine to data frame, each col is a day
{cbind(szudzik_unpair(.[,1]), .[,-1])} %>% # Unpair "zone" into "crop" and "county" and drop "zone"
`colnames<-`(c("crop", "county", seq(1,ncol(.)-2))) %>% # Name wide dataframe: "crop", "county", day "1", ...
gather(date, zsum, -crop, -county) %>% # Gather into narrow table
mutate(date = as.Date(as.numeric(date) - 1,

origin = paste0(year(calc.table[rownum,"date"]),"-01-01"),
format="%Y-%m-%d"))) %>% # Change day-of-year to date

mutate(crop = reassign_dualcrop(crop, date)) # Unpair dual-crop categories
}
return(master.table)

}

# WARNING: Hardcoded paths
cwr.master <- assemble_zonesums(calc.table, "cwr")
saveRDS(cwr.master, "output/cwr_master.rds")

ppt.master <- assemble_zonesums(calc.table, "ppt")
saveRDS(ppt.master, "output/ppt_master.rds")

Note that the line that uses purrr::map() could be replaced with: lapply(., as.data.frame)

TODO: There are a few elements of the above logic that can be improved: * Rather than binding the individual
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daily counts into a wide table, then collapsing into key-value pairs with gather, our data are already in
key-value pairs from the previous step! (key = zone, value = zonesum). Turning it into a wide table is
convenient for labeling dates, but if we added, some date metadata from the previous step, then we could use
dplyr:mutate() to assign a date early on.

Clean zone sums to remove non-crop counts

When we computed zone sums in the last step, we used the raw landcover rasters, which included land
cover classifications that we were not interested in (urban, grassland, forest, shrubland, water). We are only
interested in the landcover classifications that correspond to the crops that we modeled. There are other crop
classifications present in the landcover raster that we did not model, due to a lack of information or otherwise.

It would be useful to: 1. remove the non-crop landcover category zone sums, and 2. identify the crops that
had a landcover classification, but were not modeled. In order to do this, we simply compare the unique
landcover categories from our zone sum table (below, we’re using the cwr table) to the crop categories in the
crop coefficient lookup table (found in output/tables/CDL_Kc_LUT_daily.rds, wherein the crop categories
have already set to use the same index as the landcover categories).

TODO: This logic should be moved to the kc-prep worksheet. NOTE: Some of these tests seem kind of silly, but
they’ve saved me twice already. Tests are good.
# List landuse-zones present in our zonesums that are NOT
# present in our crop model table These zones are either
# other non-crop categories, or crops that we did not model
(not.counted <- sort(unique(cwr.master$crop)[!(unique(cwr.master$crop) %in%

kc.lut$value)]))

# Test that the values that went into `not.counted` are the
# same for the ppt and cwr tables Should be all TRUE, since
# the crop-zone layer was the same for both cwr and ppt
# aggregation
stopifnot(unique(cwr.master$crop)[!(unique(cwr.master$crop) %in%

kc.lut$value)] == unique(ppt.master$crop)[!(unique(ppt.master$crop) %in%
kc.lut$value)])

# Test that the values in `not.counted` are in the list of
# landcover indicies NOT present in the kc table This should
# also be TRUE, since the CDL table contains the metadata for
# all of the land-use-zones However, this CDL table also
# contains many NA entries that are simply not present in the
# CDL raster at all TODO: Remove or something, this is
# superfluous and confusing
stopifnot(not.counted %in% unique(cdl.table[["VALUE"]])[!(unique(cdl.table[["VALUE"]]) %in%

kc.lut$value)])

# Subset cdl.table by not.counted so that we can see the
# description name, and reassgn to not.coun#ted
not.counted <- cdl.table[cdl.table[["VALUE"]] %in% not.counted,

]

# Remove these values from both datasets WARNING: Hardcoded
# paths
cwr.master <- cwr.master %>% filter(!(crop %in% not.counted[["VALUE"]])) %>%

write_rds("output/cwr_master_cleaned.rds", compress = "gz")
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ppt.master <- ppt.master %>% filter(!(crop %in% not.counted[["VALUE"]])) %>%
write_rds("output/ppt_master_cleaned.rds", compress = "gz")

# Check that the values were removed. Now, there should not
# be any zonesums present that are not in our lookup table
# Should be TRUE
stopifnot(is_empty(sort(unique(cwr.master[["crop"]])[!(unique(cwr.master[["crop"]]) %in%

kc.lut[["value"]])])))

Crops present in dataset but not modeled in our analysis are as follows (after removing non-irrigated-crop
landcover categories):
(not.counted <- not.counted[not.counted[["VALUE"]] %in% c(5,

26, 27, 31, 38, 71, 74, 231, 232, 233, 234, 238, 242, 244,
247, 250), ])

# WARNING: Hardcoded path
write.csv(not.counted, file = "output/excluded_crops.csv")

Convert raw values into volumes

Reverse scaling factors

For different reasons, we applied multiplication factors to individual cell values in order to avoid working with
floting point values (wikipedia actually has an article on this if you want to learn more https://en.wikipedia.
org/wiki/Scale_factor_%28computer_science%29). Now would be a good time to undo those earlier scaling
factors before we are unable to (ie. once we start adding and subtracting terms).

We applied scaling factors of 100 to the evapotranspiration and precipitation rasters, AND to the crop
coefficients. If z1 is our cumulative scaling factor for ET :

CWR ≈ ETo × Kc
CWR × z1 = (100 · ETo) × (100 · Kc)

z1 = (100 × 100) = 1002

Likewise, our scaling factor for PPT (z2) is:

ppt × z2 = ppt × 100
z = 100

Note that there is no error here. If you think
z

for precipitation should be
1002

, think about it a bit harder.

TODO: I’d like to figure out a more elegant and automated way of keeping track of these scaling factors.
# WARNING: Hardcoded scaling factors
z1 = 100 * 100
z2 = 100

cwr.master <- cwr.master %>% mutate(zsum = zsum/z1)
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ppt.master <- ppt.master %>% mutate(zsum = zsum/z2)

Convert depths into volumes

{cwr,ppt}.master both represent the sum of all of the daily depths of precipitation and crop evapotranspo-
ration ‘observed’ in all of the grid cells of each zone. We can turn this value into an actual volume of water by
multiplying the depth of water in each cell by the area of each cell. Since we use a uniform grid for the entire
state (!!! see below), each cell has the same area. There are a few ways to think of the following operation:

1. Dimensional analysis: wherein you multiply depths of ET by a cell-conversion-factor

x mm ET × 30 ∗ 30 (m2)
cell

× m
1000 mm = 0.9 · x m3ET

cell

2. Distribution: wherein we perform the above operation on each cell. Multiplying this cell-conversion-
factor by a zone sum is the same as multiplying every cell by the conversion factor, and summing the
cells. If our coversion factor is y, and we have cells a through d in a particular zone, then:

(z · a + z · b + z · c + z · d) = z · (a + b + c + d)︸ ︷︷ ︸
zone sum

WARNING/TODO: Early on, we made a simplifying assumption regarding the grid used to model california.
This means that the grids in the northern parts of the state over-estimate how much water precipitated/
transpired. This can be fixed with a more appropriate choice of map projection.
xy.res <- 30
z.unit <- 0.001 #Units are in milimeters = 0.001 meters

cwr.master <- cwr.master %>% mutate(vol = zsum * (xy.res^2) *
z.unit)

ppt.master <- ppt.master %>% mutate(vol = zsum * (xy.res^2) *
z.unit)

Compute IRW and Green-water ET

In order to partition the water footprint into a rain-fed and irrigated water component, we first need to
calculate the irrigation water requirement.
# We don't have PPT observations for the year of 2016, so
# let's drop them from the CWR table
cwr.master <- cwr.master %>% filter(date < as.Date("2016-01-01"))

# WARNING: Hardcoded path
cwu.master <- cwr.master %>% select(crop, county, date) %>% mutate(cwr = cwr.master[["vol"]]) %>%

mutate(ppt = ppt.master[["vol"]]) %>% mutate(et.b = pmax(0,
(cwr - ppt))) %>% mutate(et.g = pmin(cwr, ppt)) %>% write_rds("output/cwu_master.rds",
compress = "gz")
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9.yield_prep.Rmd (County Aggregations)

Contents
Meta-data (units) 1

CDL Quirks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Import data and set constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Import and prepare yield and county data 2

Explore unique values in harvest dataset 3
Unique crop categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Unique ROI categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Associate yield ROIs and crop categories with landcover ROIs and crop categories 4
Associate counties from harvest record with landcover ROIs . . . . . . . . . . . . . . . . . . . . . . 4
Associate harvested crops with CDL crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Summarize harvested acres statewide for comparison with landcover areas . . . . . . . . . . . . . . 4
Perform crop-category association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Clean up unit names (CAC-specific) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Summarize harvest data by regions of intereste 5
Summarize harvested weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

This worksheet uses tidyverse packages, heavily.

NOTE Make sure to set your working directory to the project root. In RStudio, this means set the Knit
Directory to “Project Directory”.

Meta-data (units)

In our YIELDS directory, we inport county-level crop yield data, collected from the County Agricultural
Commissioners’ (USDA/NASS). Hereafter, this dataset will be referred to as yield.master, since this table
contains yields, and the yields could be sourced from anywhere (not just USDA/NASS/CAC).

The data used in this worksheet can be found at the following URL, (as of June 2017): https://www.nass.
usda.gov/Statistics_by_State/California/Publications/AgComm/Detail/

From the USDA/NASS PDF reports: > Values are recorded for all products grown during the calendar year,
regardless of when they are marketed.

From the USDA/NASS reports, most production units are expressed in mass units, specifically (short) Tons
US (2000 lbs). When tonnes (metric) are used in NASS reorts, I’ve seen them explicitly specified as ‘metric
tons’. Other production units include: “Lbs/LBS/lbs” (pounds US), “Cwt/CWT/cwt” (hundredweight, aka
100 pounds US), “Col/COL/col” (colonies, for apiary production), “Each/EACH/each” (units, for certin
products such as bee nuclei, queen bees, and turkey eggs for hatching), “Cord/CORD/cord” (volumetric unit
for timber) and “Thou/THOU/thou” (thousands of units, for nursery plants).

Area units are in US survey acres, based on the square survey foot (NBS Special Publication 447, NIST Hand-
book 44 - 2012). Differences between the survey acre and the international acre are <2ppm (wikipedia::acre,
NIST Handbook 44 - 2012). When hectares are used in NASS reports, I’ve seen them explicitly specified as
‘hectares’.

Yield units are reported as (production mass)/(harvested acre). Specifically, yields are expresed as short tons
per acre.
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All of the above♪ is also detailed in USDA/ERS Agricultural Handbook Number 697 “Weights, Measures,
and Conversion Factors for Agricultural Commodities and Their Products”. This document also provides
conversion factors for unusual commodity weights and measures (eg. carton, bushel, sack, barrel, lug) that
we (luckily) don’t have to use.

CDL Quirks

Some quirks that you may notice in the CDL data set:

• Inconsistent capitalization in the Unit field (LBS vs Lbs vs lbs)
• Typos in the County field (“State Total” vs “State Totals” and “San Luis Obisp” vs “San Luis Obispo”)
• Typos in the Commodity Name field (“CATTLE CALVES EXCLUDED UNSPECIFIE” vs “CATTLE

CALVES EXCLUDED UNSPECIFIED” and “NURSERY HORTICULTRAL SPECIMIN MIS” vs
“NURSERY HORTICULTRAL SPECIMIN MISC.” and others)

Import data and set constants

yield.dir <- "input/YIELDS"
kc.index <- readRDS("output/tables/CDL_Kc_LUT_daily.rds")[, 1:2]
kc.lut <- readRDS("output/tables/CDL_Kc_LUT_daily.rds")
cdl_nass <- read_csv("output/tables/CDL_NASS.csv")
counties <- readOGR("input/SHAPEFILES/cnty24k09_poly/cnty24k09_poly_s100.shp")
counties.index <- read_csv("output/ca_counties_attributes.csv")

If you end up doing lots of unit conversions, it may make sense to use a dedicated library/package, but luckily,
the harvested crops that we are interested in are only reported in US tons (short tons). It’s easier for me to
verify the calculations on paper if everything is in SI units, so let’s define some conversion factors here, for
later use.

All conversion factors are from the USDA/ERS Agricultural Handbook Number 697 “Weights, Measures,
and Conversion Factors for Agricultural Commodities and Their Products”.

I really like the udunits2 and units packages, along with the UNIDATA library that they depend on.
# TODO: Use units/udunits2/UNIDATA Short tons (US) to tonnes
# (metric tons)
conv <- list(ton = list(ton = 1, kg = 907.18474, tonne = 0.90718474),

lb = list(lb = 1, kg = 0.45359237, tonne = 0.00045359237),
cwt = list(cwt = 1, lb = 100, kg = 45.35924, tonne = 0.045359237))

Import and prepare yield and county data

Note that by defailt, the attribute table is read with R data frame conventions, thatis, coercing to factors
whenever possible. You can use readr::type_convert to run readr’s type-guessing logic on existing data
frames.
yield.paths <- list.files(path = yield.dir, pattern = ".(csv)$",

full.names = T)

yield.master <- do.call("rbind", lapply(yield.paths, read_csv,
col_types = cols(`Harvested Acres` = col_number(), Value = col_number())))

rm(yield.dir, yield.paths)
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# Make the `Units` column lowercase to make things consistent
yield.master[["Unit"]] <- tolower(yield.master[["Unit"]])

Explore unique values in harvest dataset

Unique crop categories

Here, we create common.crops, which is a character vector of the crop names that have an entry in all of the
yearly crop reports. In other words, if there’s a crop name category that is present in 2005-2011, but not
present in 2012, then we will ignore that particular crop.

We’re only checking this becaue the length of the unique crop names differs from year to year, suggesting
that some categories are present some years, and some aren’t present other years. That said, having an entry
does not guarentee that there were any harvested acres that year. In other words, a year may have an entry
for a crop that did not have any harvested acres (which, is expected).
# Calc number of unique crop categories each year
yield.master %>% group_by(Year) %>% summarize(unique = length(unique(`Crop Name`)))

# Find the crop categories that are present in all years
# (Inner join across all categories)
yield.master %>% group_by(Year) %>% distinct(`Crop Name`)

The key operation is dplyr::intersect() (find which members of “Crop Name” are in common) which can
be thought of as a SQL inner join. First, we produce a list of unique (dplyr::distinct) crop names by-year,
then we intersect the list of names (performing the inner join).
# TODO: Use dplyr::inner_join() instead of Reduce(intersect)
common.crops <- yield.master %>% group_by(Year) %>% distinct(`Crop Name`) %>%

summarize(cropname = list(`Crop Name`)) %>% dplyr::select(cropname) %>%
lapply(function(x) {

(x)
})

common.crops <- Reduce(intersect, common.crops[["cropname"]])
all.crops <- unique(unique(yield.master[["Crop Name"]]))

Note the crops that were removed. We may want to look at these in more detail later. epecially for categories
like “CORN WHITE”, or “BEANS SNAP PROCESSING”, and “TARO ROOT” (who knew that CA produced
taro).
# TODO: Investate the mass of the crops that weren't
# harvested every year
all.crops[!(all.crops %in% common.crops)]

Unique ROI categories

We also have to allign the regions of interest (ROI) in our landcover dataset to our harvest dataset. Remember
that we partitioned the CWU calculation into ROIs based on counties, since harvest yields are reported at
the county-scale.

Now, we have to make sure that the county categories that we used for the spatial partitioning (from our
political border shapefile) allign with the county categories used in the harvest yield reporting. We will also
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construct a look-up table.

Luckily, the CAC county names match up perfectly with the shapefile metadata, aside from a typo or two.
# Which counties in the harvest dataset ARE NOT present in
# the ROI index?
unique(yield.master$County)[which(!(unique(yield.master$County) %in%

counties.index$NAME_PCASE))]

# Fix the typos WARNING: HARDCODED VALUES
yield.master <- yield.master %>% mutate(County = replace(County,

County == "San Luis Obisp", "San Luis Obispo")) %>% mutate(County = replace(County,
County == "State Total", "State Totals"))

Associate yield ROIs and crop categories with landcover ROIs and
crop categories

Associate counties from harvest record with landcover ROIs

Here, we use dplyr::inner_join to join the county identifiers, (counties.index["r_index"]s to the
CAC master table, by matching county names. TODO: Replace r_index with NUM once we update
ca_counties.tif
# Merge county identifiers
yield.master <- yield.master %>% left_join(counties.index[c("NAME_PCASE",

"r_index")], by = c(County = "NAME_PCASE")) %>% rename(roi.index = r_index) %>%
mutate(roi.index = replace(roi.index, County == "Sum of Others",

991)) %>% mutate(roi.index = replace(roi.index, County ==
"State Totals", 999))

# TODO: TEST: Did the join operation work properly?
# setdiff(t1[sample(nrow(t1), 100),][c('County',
# 'roi.index')], counties.index[c('NAME_PCASE', 'NUM')] )
# t1[sample(nrow(t1), 100),][['roi.index']] %in%
# counties.index[['NUM']]

Associate harvested crops with CDL crops

Summarize harvested acres statewide for comparison with landcover areas

Here, we generate a list harvested acres for all years, for all counties (County Code == 999). We save this
file as NASS_acres_state.csv

The key operation is dplyr::outer_join(), an operation that can be thought of as the union set.

Why did we care about harvested acres? It serves as a point of comparison, and allows us to see if the acres
harvested align with the acres planted, as identified by CDL. We do this comparison in the 21.validation
worksheet.

NOTE: We are fortunate that the CAC data set includes harvested acres. Don’t expect all yield reports from
other regions to include harvested acres.
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NOTE: I dropped the typos in Crop Name when manually reconciling CDL and CAC categories. TODO:
Maybe create logic for flagging instances when a commodity code is mapped to more than one commodity
name (which is what happened for “CATTLE CALVES. . . ”, “NURSERY FLOWER. . . ” and etc.).

Perform crop-category association

For now, we manually reconciled the USDA/NASS production categories to the CDL classes, using a
pairing similiar to that used by Fulton et al. 2012 (Appendix 2), where they related the County Agricultural
Commissioners’ Production Data Commodity Descriptions to “PI Codes” (Where PI likely refers to “Photo
Identifier”). This manually-annotated table is found under output/tables/CDL_NASS.csv. Let’s import it
and create a lookup table.

Here, we use dplyr::inner_join to join the cdl_values and the cdl_names to the CAC master table, by
matching Commodity Codes.
# Import if it hasn't been done already WARNING: Hardcoded
# path
cdl_nass <- read_csv("output/tables/CDL_NASS.csv")

yield.lc.master <- yield.master %>% left_join(cdl_nass[c("Commodity Code",
"cdl_value", "cdl_name")], by = "Commodity Code")

yield.lc.harvested <- yield.lc.master %>% filter(!is.na(cdl_value) &
!is.na(Production))

yield.lc.excluded <- yield.lc.master %>% filter(is.na(cdl_value) |
is.na(Production))

We just excluded crops that had a missing landcover index (cdl_values) and no reported yield (Production).
Therefore, the entries that we excluded had either missing cdl_values or missing Production.

Clean up unit names (CAC-specific)

At least for the CAC harvest dataset, the Unit field had some formatting inconsistency. Removing the
non-harvested crops seems to have left only one type of production unit
unique(yield.lc.harvested["Unit"])

NA values are found in the entries for State Totals or Sum of Others, which are expressed in the same
units as the entries for each county. Let’s just coerce all units to tons (after a quick sanity check).
# WARNING: Hardcoded units
yield.lc.harvested <- yield.lc.harvested %>% mutate(Unit = "ton")

Summarize harvest data by regions of intereste

Now, let’s summarize harvest data by categories and prepare for exporting into our next step. Here is where
one of the larger assumptions are made:

• Assumption: our mapping of crops from the harvest data to our landcover classes and crop coefficient
classes is somewhat accurate. For example, it’s reasonable to map BERRIES BLACKBERRIES and BERRIES
RASPBERRIES into a general ‘Caneberries’ category, since we can expect them to have similar growing
characteristics, and the landcover dataset does not discriminate between different types of caneberries.
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Ideally, we would like to be able to discriminate between different caneberries and have a crop growth
model for each type of plant.

• Assumption: There is no “double-counting” of harvested crop mass between similar crop categories.
For example, if we combine PEACHES CLINGSTONE, PEACHES FREESTONE, and PEACHES UNSPECIFIED
into a general ‘Peaches’ category, then we wouldn’t expect any double counting. What about CELERY
FOOD SERVICE, CELERY FRESH MARKET, and CELERY UNSPECIFIED? Well, if a region reports celery
harvested for the fresh market, it wouldn’t also be reported food service sale. The same goes for other
commodities. Cotton has a few categories:COTTON LINT PIMA, COTTON LINT UNSPECIFIED, COTTON
LINT UPLAND, COTTON SEED PLANTING, and COTTONSEED. We wouldn’t expect the same biomass to get
counted multiple times as lint, planting seed, and cottonseed.

Summarize harvested weight

So, now let’s add up all of the production amounts within each county, by commodity, by year. For the
county tallies,we drop the categories that represent aggregrations of counties. For the statewide tally, we
condition on the State Totalscategory.
# WARNING: Hardcoded path
yield.lc.bycounty <- yield.lc.harvested %>%

group_by(Year, cdl_name, cdl_value, roi.index, County) %>%
filter(`County Code` != 991 & `County Code` != 999) %>%
summarise(prod.tons = sum(Production), val.usd = sum(Value), hvst.acres = sum(`Harvested Acres`)) %>%
mutate(prod.tonne = `prod.tons` * conv[["ton"]][["tonne"]]) %>%
rename(cdl.value = cdl_value, cdl.name = cdl_name) %>% # TODO: Replace with consistent naming
mutate_all(as.character) %>% # TODO: Remove with readr:write_csv is fixed https://github.com/tidyverse/readr/pull/765
write_csv(., "output/yields/NASS_summarized_bycounty.csv")

yield.lc.bystate <- yield.lc.harvested %>%
group_by(Year, cdl_name, cdl_value, roi.index, County) %>%
filter(`County Code` == 999) %>%
summarise(prod.tons = sum(Production), val.usd = sum(Value), hvst.acres = sum(`Harvested Acres`)) %>%
mutate(prod.tonne = `prod.tons` * conv[["ton"]][["tonne"]]) %>%
rename(cdl.value = cdl_value, cdl.name = cdl_name) %>% # TODO: Replace with consistent naming
mutate_all(as.character) %>% # TODO: Remove with readr:write_csv is fixed https://github.com/tidyverse/readr/pull/765
write_csv(., "output/yields/NASS_summarized_bystate.csv")
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10.wf_calc.Rmd (County Aggregations)

Contents
Perform the WF calculation 1

By calendar year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
By water year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Save results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Inspecting discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

This worksheet uses tidyverse packages, heavily.

NOTE Make sure to set your working directory to the project root. In RStudio, this means set the Knit
Directory to “Project Directory”.
# # TODO: Remove readr::type_convert(), once CDL_Kc_LUT_daily
# isnt written with factors kc.index <-
# readRDS('output/tables/CDL_Kc_LUT_daily.rds')[,1:2] %>%
# mutate_all(as.character) %>% type_convert

cdl.index <- read_csv("input/TABLES/cdl_crops.csv")
cwu.master <- readRDS("output/cwu_master.rds")
yield.master <- read_csv("output/yields/NASS_summarized_bycounty.csv")

Perform the WF calculation

By calendar year

TODO: Create ../wfs/ if it does not exist already
cwu.master.cyear <- cwu.master %>% group_by(crop, county, year = year(date)) %>%

summarize_at(vars(cwr, ppt, et.b, et.g), funs(sum(., na.rm = TRUE)))

wf.master.cyear <- yield.master %>% inner_join(cwu.master.cyear,
by = c(cdl.value = "crop", roi.index = "county", Year = "year")) %>%
mutate(wf.b = (et.b/prod.tonne)) %>% mutate(wf.g = (et.g/prod.tonne)) %>%
write_csv("output/wfs/wf_total_cyr.csv") %>% write_rds("output/wfs/wf_total_cyr.rds",
compress = "gz")

By water year

cwu.master.wyear <- cwu.master %>%
group_by(crop, county, year = year(waterYearlt(date))) %>% # Create water year grouping
filter(n_distinct(date) == 365 | n_distinct(date) == 366) %>% # Filter for only complete years
summarize_at(vars(cwr, ppt, et.b, et.g), funs(sum(., na.rm = TRUE)))

wf.master.wyear <- yield.master %>%
inner_join(cwu.master.wyear, by = c("cdl.value" = "crop", "roi.index" = "county", "Year" = "year")) %>%
mutate(wf.b = (et.b / prod.tonne)) %>%
mutate(wf.g = (et.g / prod.tonne)) %>%
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write_csv("output/wfs/wf_total_wyr.csv") %>%
write_rds("output/wfs/wf_total_wyr.rds", compress = "gz")

Save results

Note that we are explicitly casting categorical variables into the proper data type. We do this now, since we
are going to be passing these modeling results to the visualization and analysis routines, which can perform
specialized operations on

Inspecting discrepancies

Confused why the number of observations in the wf table is so much dramatically smaller (by ~50%) than the
yield observations table? Well, there are many entries for crops harvested in counties that were not observed
in the landcover dataset for that particular year. This is simply due to deficiencies in the land cover data set
(in this case, the CDL).

For example, the CAC records report lettuce harvests for every year from 2007 through 2016. However, the
CDL data set does not report any pixels of lettuce landcover for 2007 and 2009 (including the double-crop
lettuce landcover categories). There are many other entries with discrepancies, either due to:

• Missing observations in the yield or landcover datasets respectively. Note: The CDL dataset is the
result of supervised classification (specifically, a decision tree classifier), whereas the CAC dataset is the
result of surveys. We can assume that the CAC dataset is more reflective of what is actually harvested
and grown within a region.

• Misallignments between the yield and landcover datasets. For example, in Imperial county, sweet corn
does not appear in the landcover datasets until 2011, however it is present in the harvest records every
year, and unspecified corn is present in the landcover datasets every year. One attempt to reconcile
data sets would be to aggregrate all types of corn into one category.

To inspect this a bit deeper, we can use dplyr::anti_join(), which only displays entries in x (yield.master)
that don’t have a matching entry in y (cwu.master...).
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