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Abstract

In-place reconstruction of differenced data allows information on devices with limited storage capacity to be
updated efficiently over low-bandwidth channels. Differencing encodes a version of data compactly as a set of
changes from a previous version. Transmitting updates to data as a version difference saves both time and band-
width. In-place reconstruction rebuilds the new version of the data in the storage or memory the current version
occupies–no scratch space is needed for a second version. By combining these technologies, we support highly
mobile applications on space-constrained hardware. We present an algorithm that modifies a differentially en-
coded version to be in-place reconstructible. The algorithm trades a small amount of compression to achieve
this property. Our treament includes experimental results that show our implementation to be efficient in space
and time and verify that compression losses are small. Also, we give results on the computational complexity of
performing this modification while minimizing lost compression.

Index Terms—Differencing, differential compression, version management, data distribution, in-place recon-
struction, mobile computing.

1 Introduction

We develop a system for data distribution and version management to be used in highly mobile and resource-
limited computers operating on low-bandwidth networks. The system combines differencing with a technology
called in-place reconstruction. Differencing encodes a file compactly as a set of changes from a previous version.
The system sends the difference encoding to a target computer in order to update the file, saving bandwidth
and transfer time when compared with transmitting the whole file. In-place reconstruction brings the benefits of
differencing to the computers that need it the most–resource-constrained devices such as wireless handhelds and
celluar phones.

Differencing has been widely used to reduce latency and lower bandwidth requirements in distributed sys-
tems. The original applications of differencing focused on reducing the storage required to maintain sequences
of versions. Examples include source code control systems [24], [29], [18], editors [9], and databases [25]. In the
last decade, researchers have realized that these algorithms compress data quickly and can be used to reduce
bandwidth requirements and transfer time for applications that exchange data across networks. Examples un-
clude backup and restore [4], database consistency [6], and Internet protocols [2], [21], [5].
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For completeness, we often group delta compression [11], [12], [5] with differencing [1], [18]. Delta compres-
sion is a generalization of differencing and data compression [31], in that a version of a file may be compressed
with respect to matching strings from within the file being encoded, as well as from the other version. Although
the results of this paper concern differential compression, our methods apply to delta encoding as well.

To date, differencing has not been employed effectively for resource-constrained mobile and wireless devices.
While the problme space is ideal, it has not been used because reconstructing a differential encoding requires
storage space (disk or memory) to manifest a new version of data while keeping the old version as a reference.
This problem is particularly acute for mass-produced devices that use expensive nonvolatile memories, such as
personal digital assistants, wireless handhelds, and celluar phones. For these devices, it is important to keep
manufacturing costs low. Therefore, it is not viable to add storage to a device solely for the purpose of differencing.

In place reconstruction makes differential compression available to resource-constrained devices on any net-
work. Mobile and wireless networks are the most natural and interesting application. In-place reconstruction
allows a version to be updated by a differential encoding in the memory or storage that it currently occupies;
reconstruction does not need additional scratch space for a second copy. An in-place reconstructible differen-
tial encoding is a permutation and modification of the original encoding. This conversion comes with a small
compression penalty. In-place reconstruction brings the latency and bandwidth benefits of differencing to the
space-constrained, mass-produced devices that need them the most. The combination of differencing and in-
place reconstruction keeps the cost of manufacturing mobile devices low by reducing the demand on networking
and storage hardware.

For one example application, we choose updating/patching the operating system of phones in a celluar net-
work. Currently, the software and firmware in celluar phones remains the same over the life of the phone, or
at least until the customer brings a phone in for service. Suppose that the authentication mechanism in the
phone was compromised–perhaps the crypto was broken [15] or more likely keys were revealed [27]. In either
case, updating software becomes essential for correct operation of the system. In particular, without trustwor-
thy authentication, billing cannot be performed reliably. Using in-place reconstruction, the system patches the
software quickly over the celluar network. The update degrades performance minimally by making the update
size as small as possible. This example fits our system model well. Phones are mass-produced and, therefore,
resource-constrained in order to keep manufacturing costs low. Also, celluar networks are low-bandwidth and
celluar devices compete heavily for bandwidth. In-place reconstruction makes these devices manageable over
networks, instead of immutable.

For another example, we choose a distributed inventory management system based on mobile-handheld de-
vices. Many limited-capacity devices track quantities throughout an enterprise. To reduce latency, these devices
cache portions of the database for read-only and update queries. Each device maintains a radio link to update
its cache and runs a consistency protocol. In-place reconstruction allows the devices to keep their copies of data
consistent using differencing without requiring scratch space, thereby increasing the cache utilization at target
devices. We observe that in-place reconstruction applies to both structured data (databases) and unstructured
data (files) because they manipulate a differential encoding, as opposed to the original data. Algorithms for dif-
ferencing structured data [6] employ encodings that are suitable for in-place techniques.

Any application that has multiple resource-constrained computers sharing data interactively will want to use
this technology and, in particular, applications that involve computer-human workflows using celluar or radio-
frequency devices. Examples include security and law enforcement, property managements, airport services,
health care, and shipping/delivery.

1.1 Differencing and In-Place Reconstruction

We modify a differentially encoded file so that it is suitable for reconstructing the new version of the file in-
place. A difference file encodes a sequence of instructions, or commands, for a coputer to materialize a new file
version in the presence of a reference version, the old version of the file. When rebuilding a version encoded by
a difference file, data are both copied from the reference version to the new version and added explicity when
portions of the new version do not appear in the reference version.

If we were to attempt naively to reconstruct an arbitrary difference file in-place, the resulting output would
often be corrupt. This occurs when the encoding instructs the computer to copy data from a file region where
new file data has already been written. The data the algorithm reads have been altered and the algorithm rebuilds
an incorrect file.

We present a graph-theoretic algorithm for modifying difference files that detects situations where an ecndoing
attempts to read from an already written region an dpermutes the order that the algorithm applies commands in
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a difference file to reduce the occurrence of such conflicts. The algorithm elimindates any remaining conflicts
by removing commands that copy data and adding these data to the encoding explicitly. Eliminating data copied
between versions increases the side of the encoding but allows the algorithm to output an in-place reconstructible
difference file.

Experimental results verify the viability and efficiency of modifying difference files for in-place reconstruction.
Our findings indicate that our algorithms exchange a small amount of compression for in-place reconstructibility.

Experiments also reveal an interesting property of these algorithms not expressed by algorithmic analysis. We
show in-place reconstruction algorithms to be I/O bound. In practice, the most important performance factor
is the output size of the encoding. Two heuristics for eliminating data conflicts were studied in our experiments,
and they show that the heuristic that loses less compression is superior to the more time-efficient heuristic that
loses more compression.

The graphs constructed by our algorithm form an apparently new class of directed graphs, which we call CRWI
(conflicting read-write interval) digraphs. Our modification algorithm is not guaranteed to minimize the amount
of lost compression, but we do not expect an efficient algorithm to have this property because we show that
minimizing the lost compression is an NP-hard problem. We also consider the complexity of finding an optimally
compact, in-place reconstructible difference “from scratch,” i.e., directly from a reference file and a version file.
We show that this problem is NP-hard. In contrast, without the requirement of in-place reconstructibility, an
optimally compact difference file can be found in polynomial time [28], [20], [23].

2 Related Work

Encoding versions compactly by detecting altered regions of data is a well-known problem. The first appli-
cations of differential compression found changed lines in text data for analyzing the recent modifications to
files [13]. Considering data as lines of text fails to encode minimum sized difference, as it does not examine data
at a fine granularity and finds only matching data that are aligned at the beginning of a new line.

The problem of representing the changes between versions of data was formalized as string-to-string correc-
tion with block move [28]–detecting maximally matching regions of a file at an arbitrarily fine granularity without
alignment. However, differencing continued to rely on the alignment of data, as in database records [25], and the
grouping of data into block or line granules, as in source code control systems [24, 29], to simplify the combina-
torial task of finding the common and different strings between versions.

Efforts to generalize delta compression to unaligned data and to minimize the granularity of the smallest
change resulted in algorithms for compressing data at the granularity of a byte. Early algorithms were based
upon either dynamic programming [20] or the greedy method [23] and performed this task using time quadratic
in the length of the input files.

Differential compression algorithms were improved to run in linear time and linear space. Algorithms with
these properties have been derived from suffix trees [30, 19, 17].. Like algorithms based on greedy methods and
dynamic programming, these algorithms generate optimally compact delta encodings [28].

Delta compression is a more general form of differencing. It includes the concept of finding matching data
within the file being encoded as well as comparing that file to other similar files [11], [12], [5]. Delta compres-
sion runs in linear time. Related to delta compression is a coding technique that unifies differential and general
compression [16].

Recent advances produced differencing algorithms that run in linear time and constant space [1]. These algo-
rithms trade a small amount of compression in order to improve performance.

Any of the linear runtime algorithms allow differencing to scale to large inputs without known structure and
permit the application of differential compression to data management systems. These include binary source
code control [18] and backup and restore restore [4].

Applications distributing HTTP objects using delta files have emerged [21, 2]. They permit Web servers to both
reduce the amount of data transmitted to a client and reduce the latency associated with loading Web pages.
Efforts to standardize delta files as part of the HTTP protocol and the trend toward making small network devices
HTTP compliant indicate the need to distribute data to network devices efficiently.

3 Encoding Delta Files

Differencing algorithms encode the changes between two file versions compactly by finding strings common
to both versions. We term the first file a version file that contains the data to be encoded and the second a reference
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Figure 1: Encoding difference files. Common strings are encoded as copy commands 〈 f , t , l〉 and new strings in the
new file are encoded as add commands 〈t , l〉 followed by the string of length l of added data.

file to which the version file is compared. Differencing algorithms encode a file by partitioning the data in the
version file into strings that are encoded using copies from the reference file and strings that are added explicitly
to the version file (Figure 1). Having partitioned the version file, the algorithm outputs a difference that encodes
this version. This encoding consists of an ordered sequence of copy commands and add commands.

An add command is an ordered pair, 〈t , l〉, where t (to) encodes the string offset in the file version and l (length)
encodes the length of the string. The l bytes of data to be added follow the command. A copy command is
an ordered triple, 〈 f , t , l〉 where f (from) encodes the offset in the reference file from which data are copied, t
encodes the offset in the new file where the data are to be written, and l encodes that length of the data to be
copied. The copy command moves the string data in the interval [ f , f + l −1] in the reference file to the interval
[t , t + l −1] in the version file.

In the presence of the reference file, a difference file rebuilds the version file with add and copy commands. The
intervals in the version file encoded by these commands are disjoint. Therefore, any permutation of the command
execution order materializes the same output version file.

4 In-Place Modification Algorithms

An in-place modification algorithm changes an existing difference file into a difference file that reconstructs
correctly a new file version in the space the current version occupies. At a high level, our technique examines
the input difference file to find copy commands that conflict, in which one command reads data from the write
interval (file address range to which the command writes data) of other copy commands. It topologically sorts the
digraph to produce an ordering on copy commands that reduces conflicts. It eliminates the remaining conflicts by
converting copy commands to add commands. The algorithm outputs the permuted and converted commands
as an in-place reconstructible difference. Actually, as described in more detail below, the algorithm performs
permutation and conversion of commands concurrently.

4.1 Conflict Detection

Since we reconstruct files in-place, we concern ourselves with ordering commands that attempt to read a re-
gion to which another command writes. For this, we adopt the term write before read (WR) conflict [3]. For copy
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Figure 2: Data conflict and corruption when performing copy command C1 before C2. (a) Differential copy and
(b) in-place copy.

commands 〈 fi , ti , li 〉 and 〈 f j , t j , l j 〉, with i < j , a WR conflict occurs when

[ti , ti + li−1]∩ [ f j , f j + l j−1] ̸= ;. (1)

In other words, copy command i and j conflict if i writes to the interval from which j reads data. By denoting, for
each copy command 〈 fk , tk , lk 〉, the command’s read interval as Readk = [ fk , fk + lk −1] and its write interval as
Writek = [tk , tk + lk −1], we write the condition (1) for a WR conflict as Writei ∩Read j ̸= ;. In Figure 2, coammnds
C1 and C2 executed in that order generate a (blacked area) that corrupts data were the file reconstructed in place.

This definition considers only WR conflicts between copy commands and neglects add commands. Add com-
mands write data to the version file; they do not read data from the reference file. Consequently, an algorithm
avoids all potential WR conflicts from adding data by placing add commands at the end of an encoding. In this
way, the algorithm completes all reads from copy commands before executing the first add command.

Additionally, we define WR conflicts so that a copy command cannot conflict with itself, even though a sin-
gle copy command’s read and write intervals intersect sometimes and would seem to cause a conflict. We deal
with read and write intervals that overlap by performing the copy in a left-to-right or right-to-left manner. For
command 〈 f , t , l〉, if f ≥ t , we copy the string byte by byte starting at the left-hand side when reconstructing a
file. Since, the f (from) offset always exceeds the t (to) offset in the new file, a left-to-right copy never reads a
byte overwritten by a previous byte in the string. When f < t , a symmetric argument shows that we should start
our copy at the right-hand edge of the string and work backward. For this example, we performed the copies in a
byte-wise fashion. However, the notion of a left-to-right or right-to-left copy applies to moving a read/write buffer
of any size.

A difference file suitable for in-place reconstruction obeys the property

(∀ j )

[
Read j ∩

(
j−1⋃
i=1

Writei

)
=;

]
, (2)

indicating the absence of WR conflicts. Equivalently, it guarantees that a copy command reads and transfers data
from the original file.

4.2 CRWI Digraphs

To find a permutation that reduces WR conflicts, we represent potential conflicts between the copy commands
in a digraph and topologically sort this digraph. A topological sort on digraph G = (V ,E) produces a linear order

on all vertices so that if G contains edge
→

uv , then vertex u precedes vertex v in topological order.
Our technique constructs a digraph so that each copy command in the difference file has a corresponding

vertex in the digraph. On this set of vertices, we construct an edge relation with a directed edge
→

uv from vertex u to

vertex v when copy command u’s read interval intersects copy command v ’s write interval. Edge
→

uv indicates that
by performing command u before command v , the difference file avoids a WR conflict. We call a digraph obtained
from a delta file in this way a conflicting read write interval (CRWI) digraph. A topologically sorted version of this
graph adheres to the requirement for in-place reconstruction (Equation 2). To the best of our knowledge, the class
of CRWI digraphs has not been defined previously. While we know little about its structure, it is clearly smaller
than the class of all digraphs. For example, the CRWI class does not include any complete digraphs with more
than two vertices.
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4.3 Strategies for Breaking Cycles

As total topological orderings are possible only on acyclic digraphs and CRWI digraphs may contain cycles,
we enhance a standard topological sort to break cycles and output a total topological order on a subgraph. A
depth-first search implementation of topological sort [7] is modified to detect cycles. Upon detecting a cycle, our
modified sort breaks the cycle by removing a vertex. The sort outputs a digraph containing a subset of all vertices
in topological order and a set of vertices that were removed. The algorithm re-encodes the data contained in the
copy commands of the removed vertices as add commands in the output.

We define the amount of compression lost upon deleting a vertex to be the cost of deletion. Based on this cost
function, we formulate the optimization problem of finding the minimum cost set of vertices to delete to make a
digraph acyclic. Replacing a copy command (〈 f , t , l〉) with an add command (〈t , l〉) increases the encoding size by
l −∥ f ∥, where ∥ f ∥ is the size of the encoding of offset f . Thus, the vertex that corresponds to the copy command
〈 f , t , l〉 is assigned cost l −∥ f ∥.

When turning a digraph into an acyclic digraph by deleting vertices, an in-place conversion algorithm could
minimize the amount of compression lost by selecting a set of vertices with the smallest total cost. This problem,
called the FEEDBACK VERTEX SET problem, was shown by Karp [14] to be NP-hard for general digraphs. In Section 8
we show that it remains NP-hard even when restricted to CRWI digraphs. Thus, we do not expect an efficient
algorithm to minimize the cost in general. In our implementation, we examine two efficient, but not optimal,
policies for breaking cycles. The constant-time policy picks the “easiest” vertex to remove, based on the execution
order of the topological sort, and deletes this vertex. This policy performs no extra work when breaking cycles. The
locally-minimum policy detects a cycle and loops through all vertices in the cycle to determine and then delete
the minimum cost vertex. The local-minimum policy may perform as much additional work as the total length
of cycles found by the algorithm. Although these policies perform well in our experiments, we note in Section 4.7
that they do not guarantee that the total cost of deletion is within a constant factor of the optimum.

4.4 Generating Conflict Free Permutations

Our algorithm for converting difference files into in-place reconstructible difference files takes the following
steps to find and eliminate WR conflicts between a reference file and a version file.
Algorithm

1. Given an input difference file, we partition the commands in the file into a set C of copy commands and a
set A of add commands.

2. Sort the copy commands by increasing write offset, Csorted = {c1,c2, ...,cn }. For ci and c j , this set obeys:
i < j ←→ ti < t j . Sorting the copy commands allows us to perform binary search when looking for a copy
command at a given write offset.

3. Construct a digraph from the copy commands. For the copy commands c1,c2, ...,cn , we create a vertex set
V = {v1, v2, ..., vn }. Build the edge set E by adding an edge from vertex vi to vertex v j when copy command
ci reads from the interval to which c j writes:

−→
vi v j ←→ Readi ∩Write j ̸= ; ←→ [ fi , fi + li −1]∩ [t j , t j + l j −1] ̸= ;.

4. Perform a topological sort on the vertices of the digraph. This sort also detects cycles in the digraph and
breaks them. When breaking a cycle, select one vertex on the cycle, using either the local-minimum or
constant-time policy and remove it. Replace the data encoded in its copy command with an equivalent add
command, which is put into set A.

5. Output the remaining copy commands to the difference file in toplogoically sorted order.

6. Output all add commands in the set A to the difference file.

The resulting difference file reconstructs the new version out of order, both out of write order in the version file
and out of the order that the commands appeared in the original delta file.

For completeness, we give a brief description of how a standard depth-first search (DFS) algorithm was mod-
ified to perform Step 4 in our implementation, as these details affect both the results of our experiments and the
asymptotic worst-case time bounds. As described, the algorithm outputs the unremoved copy commands in re-
verse topologically sorted order; to output them in topologically sorted order simply reverse the edge relation. A
DFS algorithm outputs the unremoved copy commands in reverse topologically sorted order. A topological order
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is achieved by reversing the output of the DFS algorithm. A DFS algorithm uses a stack to visit the vertices of a
digraph in a certain order. The algorithm marks each vertex either unvisited, on-stack, or finished. Initially, every
vertex is marked unvisited. Until no more unvisited vertices exist, the algorithm chooses a unvisited vertex u and
calls VISIT(u). The procedure VISIT(u) marks u as on-stack, pushes u on the stack, and examines each vertex w

which there is an edge
→

uw in the graph. For each such w : (1) if w is marked finished, then w is not processed
further; (2) if w is marked unvisited, then VISIT(w) is performed; (3) if w is marked on-stack, then the vertices
between u and w on the stack form a directed cycle, which must be broken. For the constant-time policy, u is
popped from the stack and removed from the graph. Letting p denote the new top of the stack, the execution of
VISIT(p) continues as though u were marked finished. For the local-minimum policy, the algorithm loops through
all vertices on the cycle to find one of minimum cost, that is, one whose removal causes the smallest increase in the
size of the difference file; call this vertex r . Vertices r through u are popped from the stack and marked unvisited,
except r which is removed. If there is a vertex p on the top of the stack, then the execution of VISIT(p) continues
as though r were marked finished. Recall that we are describing an execution of VISIT(u) by examining all w such

that there is an edge
→

uw . After all such w have been examined, u is marked finished, u is popped from the stack,
and the copy command corresponding to vertex u is written in reverse sorted order. Using the constant-time
policy, this procedure has the same running time as DFS, namely, O(|V |+ |E |). Using the local-minimum policy,
when the algorithm removes a vertex, it retains some of the work (marking) that the DFS has done. However, in
the worst case, the entire stack pops after each vertex removal, causing running time proportional to |V |2 (While
we can construct examples where the time is proportional to |V |2, we do not observe this worst-case behavior in
our experiments.)

4.5 Algorithmic Performance

Suppose that the algorithm is given a difference file consisting of a set C of copy commands and a set A of add
commands. The presented algorithm uses time O(|C | log |C |) both for sorting the copy commands by write order
and for finding conflicting commands, using binary search on the sorted write intervals for the |V | vertices in V
– recall that |V | = |C |. Additionally, the algorithm separates and outputs add commands using time O(|A|) and
builds the edge relation using time O(|E |). As noted above, Step 4 takes time O(|V |+ |E |) using the constant-time
policy and time O(|V |2) using the local-minimum policy. The total worst-case execution time is thus O(|C | log |C |+
|E |+ |A|) for the constant-time policy and O(|V |2 +|A|) for the locally-minimum policy. The algorithm uses space
O(|E |+|C |+|A|). Letting n denote the total number of commands in the difference file, the graph contains as many
vertices as copy commands. Therefore, |V | = |C | =O(n). The same is true of add commands, |A| =O(n). However,
we have no bound for the number of edges, except the trivial bound O(|V |2) for general digraphs. (In Section 4.6,
we demonstrate by example that our algorithm can generate a digraph having a number of edges meeting this
bound.) On the other hand, we also show that the number of edges in digraphs generated by our algorithm is
linear in the length of the version file V that the delta file encodes (Lemma 1). We denote the length of V by LV .

After substituting these bounds on |E | into the performance expressions, for an input difference file containing
n commands encoding a version file of length LV , the worst-case running time of our algorithm is O(n logn +
min(LV ,n2)) using the constant-time policy and O(n2) using the locall-minimum policy. In either case, the space
is O(n +min(LV ,n2)).

4.6 Bounding the Size of the Digraph

The performance of digraph construction, topological sorting, and cycle breaking depends upon the number
of edges in the digraphs our algorithm constructs. We asserted previously (Section 4.5) that the number of edges
in a CRWI digraph constructed grows quadratically with the number of copy commands and is bounded above by
the length of the version file. We now verify these assertions.

No digraph has more than O(|V |2) edges. To establish that this bound is tight for CRWI digraphs, we show an
example of a difference file whose CRWI digraph realizes this bound. Consider a version file of length L that is
broken up into blocks of length

p
L (Figure 3). There are

p
L such blocks, b1,b2, ...,bp

L . Assume that all blocks
excluding the first block in the version file, b2,b2, ...,bp

L , are all copies of the first block in the reference file.

Also, the first block in the version file consists of
p

L copies of length 1 from any location in the reference file.
A difference file for this reference and version file consists of

p
L “short” copy commands, each of length 1, andp

L −1 “long” copy commands, each of length
p

L. Since each short command writes into each long command’s
read interval, a CRWI digraph for this difference file has an edge from every vertex representing a long command
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Figure 3: Reference and version file that have O(|C |2) conflicts.

to every vertex representing a short command. This digraph has
p

L−1 vertices each with out-degree
p

L for total
edges inΩ(L) =Ω(|C |2).

TheΩ(L) bound also turns out to be the maximum possible number of edges.

Lemma 1 For a difference file that encodes a version file V of length LV , the number of edges in the digraph repre-
senting potential WR conflicts at most LV .

Proof. The CRWI digraph has an edge representing a potential WR conflict from copy command i to copy com-
mand j when

[ fi , fi + li −1]∩ [t j , t j + l j −1] ̸= ;.

The copy command i has a read interval of length li . Recalling that the write intervals of all copy commands are
disjoint, there are at most li edges directed out of copy command i – this occurs when the region [ fi , fi + li −1]
in the version file is encoded by li copy commands of length 1. We also know that, for any encoding, the sum of
the lengths of all read intervals is less than or equal to LV . As all read intervals sum to ≤ LV , and no read interval
generates more out-edges than its length, the number of edges in the digraph from a difference file encoding V is
less than or equal to LV . ■

If each copy command in the delta file encodes a string of length at least ℓ, then a similar proof shows that
there are at most LV/ℓ edges.

Bounding the number of edges in CRWI digraphs, we verify the performance bounds presented in Section 4.5.

4.7 Nonoptimality of the Local-Minimum Policy

An adversarial example shows that the the cost of a solution (a set of deleted vertices) found using the local-
minimum policy is not bounded above by any constant times the optimal cost. Consider the digraph of Figure 4;
Lemma 2 in Section 7 shows that this is a CRWI digraph. The local-minimum policy for breaking cycles looks
at the k cycles (v0, . . . , vi , v0) for i = 1,2, . . . ,k. For each cycle, it chooses to delete the minimum cost vertex –
vertex vi with cost C . As a result, the algorithm deletes vertices v1, v2, . . . , vk , incurring total cost kC . However,
deleting vertex v0, at cost C +1, is the globally optimal solution. If we further assume that the original difference
file contains only the 2k−1 copy commands in Figure 4 and that the size of each copy command is c, then the size
of the difference file generated by the local-minimum solution is (2k −1)c +kC , the size of the optimal difference
file is (2k −1)c +C +1, and the ratio of these two sizes approaches 1+C /(2c) for large k. As C /c can be arbitrarily
large, this ratio is not bounded by a constant.

The merit of the local-minimum solution, as compared to breaking cycles in constant time, is difficult to deter-
mine. On difference files whose digraphs have sparse edge relations, cycles are infrequent and looping through cy-
cles saves compression at little cost. However, worst-case analysis indicates no preference for the local-minimum
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Figure 4: A CRWI digraph constructed from a binary tree by adding a directed edge from each leaf to the root vertex.
Each leaf has cost C and each other vertex has cost C+1. The local-minimum cycle breaking policy performs poorly
on this CRWI digraph, removing each leaf vertex, instead of the root vertex.

solution when compared to the constant-time policy. This motivates a performance investigation of the runtime
and compression associated with these two policies (Section 5).

5 Experimental Results

As in-place reconstruction is used for distributing data to mobile and resource-limited devices, we extracted a
large body of experimental data that consists of versions of software intended for handhelds and personal digital
assistants. Files include applications, boot loaders, and operating system components. In-place differencing was
measured against these data with the goals of:

• determining the compression loss due to making difference files in-place reconstructible,

• comparing the constant-time and local-minimum policies for breaking cycles,

• showing in-place conversion algorithms to be efficient when compared with differencing algorithms, and

• characterizing the graphs created by the algorithm.

In all cases, we obtained the original difference files using the correcting 1.5-pass differential compression algo-
rithm [1].
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The experimental data we collected and employed are characteristic of the intended application. Because
our interest lies in distributing files to resource-limited devices, we collected versions of open-source software
intended for the Compaq iPAQ handheld device, a personal digital assistant that can run versions of the Linux
operating system. Data were obtained in April 2002 from www.handhelds.org, a Web site designed to facilitate the
“creation of open source software for use on handheld and wearable computers.” To collect data, we downloaded
the software archive and ran scripts that search the archive for multiple versions of the same files. The original and
processed data are available from the Hopkins Storage Systems lab at http://hssl.cs.jhu.edu/ipdata/. All experi-
mental data are files that are distributed to handheld devices: boot loaders, applications, flash updates, and their
associated data files. We did not include source code or other data not intended for distribution to handhelds.

We categorize the difference files in our experiments into three groups that describe what operations were
required to make files in-place reconstructible. Experiments were conducted on 1,959 files files totaling more
than 87.4 Megabytes – an average file size of approximately 44 kilobytes. Of these files (Figure 5), 33 percent of the
files contained cycles that needed to be broken. Sixty-five percent did not have cycles, but needed to have copy
commands reordered. The remaining two percent of files were trivially in-place reconstructible; i.e., none of the
copy commands conflicted. For trivial files, performing copies before adds creates an in-place difference.

The amount of data in files is distributed differently across the three categories than are the file counts. Files
with cycles contain over 58.0 percent (50.7 MB) of data with an average file size of 78 KB. Files that need copy
commands reordered hold 39.3 percent (134.3 MB) of data, with an average file size of 27 KB. Trivially in-place
reconstructible files occupy 2.7 percent (2.4 MB) of data with an average file size of 60 KB.

The distribution of files and data across the three categories confirms that efficient algorithms for cycle break-
ing and command reordering are needed to deliver differentially compressed data in-place. While most difference
files do not contain cycles, those that do have cycles contain the majority of the data.
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Figure 6: Compression performance showing the compression achieved and the total number of bytes of com-
pressed data for each class of files. (a) Delta compression and (b) delta size.

We group compression results into the same categories. Figure 6(a) shows compression (size of difference files
as a fraction of the original file size) and Figure 6(b) shows the totail size of the difference fiels. For each cate-
gory and for all files, we report data for three algorithms, all of which are derived from the correcting 1.5-pass
differencing algorithm (HPDelta) [1]. These algorithms are: the correcting 1.5-pass differencing algorithm mod-
ified so that codewords are in-place reconstructible (IP-HPDelta), the in-place modification algorithm using the
local-minimum cycle breaking policy (IP-LMin), and the in-place modification algorithm using the constant-time
cycle breaking policy (IP-Const). The HPDelta algorithm is a linear-time, constant-space algorithm for generating
differentially compressed files.

The IP-HPDelta algorithm is a modification of HPDelta to output codewords that are suitable for in-place re-
construction. Throughout this paper, we have described add commands 〈t , l〉 and copy commands 〈 f , t , l〉, where
both commands encode explicitly the “to” t or write offset in the version file. However, differencing algorithms,
such as HPDelta, reconstruct data in write order and do not encode a write offset– an add command can sim-
ply be 〈l〉 and a copy command 〈 f , l〉. Since commands are applied in write order, the end offset of the previous
command implies the write offset of the current command implicitly. The codewords of IP-HPDelta are modified
to make the write offset explicit, allowing our algorithm to reorder commands. This extra field in each codeword
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introduces a per-command overhead in a difference file. The amount of compression loss varies, depending upon
the number of commands and the original size of the difference file. Overhead in these experiments ran to more
than 4.4 percent–which corresponds to putput delta files that are 16 percent larger than with HPDelta. The code-
words used in these experiements are not well tuned for in-place reconstruction, spending 4 bytes per codeword
to describe a write offset. In the future, in-place differencing will require the careful codeword design that has
been done for delta compression [16]to minimize these losses. For now our experiemnts focus on compression
loss from cycle breaking, i.e., compression loss attributable to in-place algorithms.
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Figure 7: Runtime results.

From the IP-HPDelta algorithm, we derive the IP-Const and IP-LMin algorithms. They run the IP-HPDelta
algorithm to generate a difference file and then permute and modify the commands according to our techniques.
The IP-Const algorithm implements the comstant-time policy and the IP-LMin algorithm implements the local-
minimum policy.

Experimental results indicate the amount of compression lost due to in-place reconstruction. Over all files,
IP-HPDelta compresses data to 31.1 percent their original size (Figure 6a). This number does not include data
compression, which be performed after the difference is taken. Compared to IP-HPDelta, IP-Const output is 3.6
percent larger, 28.10 MB as compared to 27.14 MB. The loss is attributed to breaking cycles. In contrast, IP-LMin
generates output only 0.5 percent larger, 27.26 MB versus 27.14. The local-minimum policy performs excellently
in practice–compression losses are one seventh that of the constant-time policy.

Because files with cycles contain the majority of the data (Figure 7b), the results for files with cycles dominate
the results for all files. In reorder and trivially in-place difference files, no cycles are present and no compression
is lost. The class of files that are trivially in-place are incompressible using differencing. This class is dominated
by few large files with little similarity between versions.

In-place algorithms incur execution time overheads when performing additional I/O and when permuting the
commands in a difference file. An in-place algorithm generate a difference file and then modifies the file to have
the in-place property. In-place algorithms create an intermediate file that contains the output of the differential
compression algorithm. This intermediate output serves as the input for the algorithm that modifies/permutes
commands. We present execution-time results in Figure 7(a) for both in-place algorithms – IP-Const and IP-LMin.
Figure 7b includes 95 percent confidence intervals, which are barely discernible. IP-LMin and IP-Const perform
all of the steps of the base algorithm (IP-HPDelta) before manipulating the intermediate file. Results show that
the extra work incurs an overhead of about 6 percent, i.e., the total run takes 20 seconds longer. Almost all of this
overhead comes from additional I/O. We conclude that task for in-place reconstruction are small when compared
with the effort of compressing data–the algorithmic tasks take only two seconds of additional time over the whole
experiment. Despite inferior worst-case runtime bounds, the local-minimum policy performs nearly identically
to (and marginally better than) the constant-time policy in practice.

Examining run-time results in more detail continues to show that IP-LMin traks the performance of IP-Const,
even for the largest and most complex inputs. In Figure 8, we see how run-time performance varies with the size
of the graph with the size of the graph the algorithm creates (number of edges and vertices); these plots measure
data rate – file size (bytes) divided by run time (seconds). Graph size is the complexity measure for which IP-Const
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Figure 8: Runtime results

and IP-Lmin should vary, but no such variance can be seen. Results show that in-place conversion algorithms are
I/O bound, as are differencing algorithms [1]. Reducing computational effort when breaking cycles benefits an
algorithm very little, as computation is a small fraction of total performance; whereas minimizing the size of the
output benefits an algorithm more, as I/O dictates overall performance.
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Figure 9: Edges in difference files that contain cycles.

In Figure 9, we look at some statistical measures of graphs constructed when creating in-place difference files.
While graphs can be quite large, a maximum of 26,626 vertices and 40,950 edges, the number of edges scales lin-
early with the number of vertices and less than linearly with input file size. The constructed graphs do not exhibit
edge relations that approach the O(|V |2) upper bound. Therefore, data rate performance should not degrade as
the number of edges increases. To illustrate, consider two pairs of versions as inputs to the IP-LMin algorithm in
which one pair of versions generates a graph that contains twice the edges of the other. Based on Figure 9, we
expect the larger graph to have twice as many vertices and encode twice as much data. While the larger instance
does twice the work breaking cycles, it benefits from reorganizing more than twice as much data.

The linear scaling of edges with vertices and file size matches our intuition about the nature of delta com-
pressed data. Delta compression encodes multiple versions of the same data. Therefore, we expect matching
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regions between these files (encoded as edges in a CRWI graph) to have spatial locality; i.e., the same string often
appears in the same portion of a file. These input data do not, in general, exhibit correlation between all regions of
a file that results in dense edge relations. Additionally, delta compression algorithms localize matching between
files, correlating or synchronizing regions of file data [1]. All of these factors result in the linear scaling that we
observe.

6 Generalization to In-Place Delta Compression

As mentioned in the Introduction, delta compression permits to be copied from the version file, as well as from
the reference file. Parts of the version file that have already been materialized during the reconstruction may be
copied to other parts of the version file. Although in-place delta compression is not a subject of this paper, we
note that the conversion of an arbitrary delta encoding to an in-place reconstructible delta encoding fits within
our framework. We assume that the input delta encoding is designed to materialize the version file in space that
is separate from the space occupied by the reference file. Thus, the copy commands can be partitioned into copy-
from-V commands that read from the version file. For in-place reconstruction, as before, no part of the read
interval of a copy-from-R command may be overwritten before the command is performed. But, for a copy-from-
V command, all of its read intervals must be overwritten with that part of the version file before the command is
performed.

An algorithm that converts an arbitrary delta encoding to an in-place reconstructible delta encoding proeeds
as follows: First, apply the algorithm of Section 4 to the copy-from-R commands and the add commands in the
input delta encoding. The output is a sequence of copy-from-R commands and the add commands in the input
delta encoding. The output is a sequence of copy-from-R commands followed by add commands (including the
add commands that were created by replacing a copy-from-R command by an equivalent add command). By the
correctness of our algorithm, when this command sequence is applied in-place to the reference file, it materi-
alized the version file except for thos intervals that are write intervals of copy-from-V commands. The in-place
reconstructible delta encoding is completed by placing the copy-from-V commands, in the same order that they
appear in the input delta encoding, after the add commands.

7 A Sufficient Condition for CRWI Digraphs

Sections 7, 8, and 9 contain our results on the graph theory and computational complexity of in-place differ-
ential encoding. All proofs are available in a companion technical report [22].

In this section we give a simple sufficient condition (Lemma 2) for a digraph to be a CRWI digraph. We use
this result to prove the theorems in Sections 8 and 9. We begin by recalling the definition of a CRWI digraph and

defining the CRWI digraphs meeting two restrictions. An interval is of the form I = [i , j ]
def=

{ i , i +1, . . . , j } where
i and j are integers with 0 ≤ i ≤ j . Let |I | denote the length of I , that is, j − i +1. A read-write interval set (RWIS)
has the form (R,W) where R = {R(1), . . . ,R(n)} and W = {W (1), . . . ,W (n)} are sets of intervals such that the intervals
in W are pairwise disjoint and |R(v)| = |W (v)| for 1 ≤ v ≤ n. Given a RWIS (R,W) as above, define the digraph
graph(R,W) as follows: (i) the vertices of graph(R,W) are 1, . . . ,n; and (ii) for each pair v, w of vertices with v ̸= w ,

there is an edge
→

v w in graph(R,W) iff R(v)∩W (w) ̸= ;.
A digraph G = (V ,E) is a CRWI digraph if G = graph(R,W) for some RWIS (R,W). Furthermore, G is a disjoint-

read CRWI digraph if in addition the intervals in R are pairwise disjoint. The motivation for this restriction is
that if a version string V is obtained from a reference string R by moving, inserting and deleting substrings, then
a delta encoding of V could have little or no need to copy data from the same region of R more than once. An
NP-hardness result with the disjoint-read restriction tells us that the ability of a delta encoding to copy data from
the same region more than once is not essential to the hardness of the problem. Let N+ denote the positive
integers. A digraph G with cost function Cost : V → N+ is a length-cost CRWI digraph if there is an RWIS (R,W)
such that G = graph(R,W) and |R(v)| = Cost(v) for all 1 ≤ v ≤ n. The motivation for the length-cost restriction
is that replacing a copy of a long string s by an add of s causes the length of the delta encoding to increase by
approximately the length of s. We let (G ,Cost) denote the digraph G with cost function Cost.

For a digraph G and a vertex v of G , let indeg(v) (resp., outdeg(v)) denote the number of edges directed into
(resp., out of) v . Define indeg(G) (resp., outdeg(G)) to be the maximum of indeg(v) (resp., outdeg(v)) over all

vertices v of G . The digraph G has the 1-or-1 edge property if, for each edge
→

v w of G , either outdeg (v) = 1 or
indeg(w) = 1 (or both).
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Lemma 2

1. Let G be a digraph. If G has the 1-or-1 edge property then G is a CRWI digraph. If in addition indeg(G) ≤ 2,
then G is a disjoint-read CRWI digraph.

2. Let G = (V ,E) be a digraph and let Cost : V → N+ with Cost(v) ≥ 2 for all v ∈ V . If G has the 1-or-1 edge
property and outdeg(G) ≤ 2, then (G ,Cost) is a length-cost CRWI digraph. If in addition indeg(G) ≤ 2, then
(G ,Cost) is a disjoint-read length-cost CRWI digraph.

We give the formal proof of this lemma, which is somewhat tedious, in the Appendix. Here we briefly outline
how the assumption that G has the 1-or-1 edge property is used in the proof. Suppose that indeg(w) ≥ 2 and let

v1, v2, . . . , vd be the vertices such that there is an edge
−→

vi w for 1 ≤ i ≤ d (see Figure 11 in the Appendix). By the
1-or-1 edge property, outdeg(vi ) = 1 for all i . Then we choose the read intervals R(v1),R(v2), . . . ,R(vd ) consecu-
tively and choose the write interval W (w) so that it intersects all of these read intervals. Because outdeg(vi ) = 1
for all i , there does not exist a vertex w ′ ̸= w such that R(vi ) intersects W (w ′). Therefore, the order of the intervals
R(v1),R(v2), . . . ,R(vd ) does not matter, and we are not forced to choose W (w ′) so that it intersects W (w). Simi-

larly, suppose that outdeg(v) ≥ 2 and let w1, w2, . . . , wd be the vertices such that there is an edge
−→

v wi for 1 ≤ i ≤ d
(see Figure 11). By the 1-or-1 edge property, indeg(wi ) = 1 for all i , so there does not exist a v ′ ̸= v such that R(v ′)
intersects W (wi ). Therefore, we can choose W (w1),W (w2), . . . ,W (wd ) consecutively and their order does not
matter.

(b)(a)

Figure 10: (a) A disjoint-read length-cost CRWI digraph that does not have the 1-or-1 edge property. (b) A graph
with outdeg ≤ 2 and indeg ≤ 2 that is not a CRWI digraph.

While Lemma 2 shows that the 1-or-1 edge property is a sufficient condition for a digraph to be a CRWI digraph,
it is not necessary. This is shown by the graph in Figure 10(a), which does not have the 1-or-1 edge property but
is a CRWI digraph, in fact, a disjoint-read length-cost CRWI digraph for any cost function with Cost(v) ≥ 2 for all
v . On the other hand, the conditions outdeg(G) ≤ 2 and indeg(G) ≤ 2 alone are not sufficient. This is shown by the
graph in Figure 10(b), which is not a CRWI digraph.

8 Optimal Cycle Breaking on CRWI Digraphs is NP-hard

In this section we prove the result mentioned in Section 4.3, that given a CRWI digraph G and a cost function on
its vertices, finding a minimum-cost set of vertices whose removal breaks all cycles in G is an NP-hard problem.
Moreover, NP-hardness holds even when the problem is restricted to the case that (G ,Cost) is a disjoint-read
length-cost CRWI digraph and all costs are the same.

For a digraph G = (V ,E), a feedback vertex set (FVS) is a set S ⊆ V such that the digraph obtained from G by
deleting the vertices in S and their incident edges is acyclic. Define φ(G) to be the minimum size of an FVS for G .
Karp [14] has shown that the following decision problem is NP-complete.

FEEDBACK VERTEX SET

Instance: A digraph G and a K ∈ N+.
Question: Is φ(G) ≤ K ?

His proof does not show that the problem is NP-complete when G is restricted to be a CRWI digraph. Because we
are interested in the vertex-weighted version of this problem where G is a CRWI digraph, we define the following
decision problem.
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WEIGHTED CRWI FEEDBACK VERTEX SET

Instance: A CRWI digraph G = (V ,E), a function Cost : V → N+, and a K ∈ N+.
Question: Is there a feedback vertex set S for G such that

∑
v∈S Cost(v) ≤ K ?

The following lemma is the basis for the proof of NP-completeness of this problem.

Lemma 3 There is a polynomial-time transformation that takes an arbitrary digraph G ′ = (V ′,E ′) and produces a
digraph G = (V ,E) such that G has the 1-or-1 edge property, outdeg(G) ≤ 2, indeg(G) ≤ 2, |V | ≤ 4|V ′|2, and φ(G) =
φ(G ′).

Proof. Let G ′ = (V ′,E ′). The digraph G contains the directed subgraph Dv for each v ∈ V ′. The subgraph Dv
consists of the vertex ṽ , a directed binary in-tree Tin,v with root ṽ and indeg(v) leaves (i.e., all edges are directed
from the leaves toward the root ṽ), and a directed binary out-tree Tout,v with root ṽ and outdeg(v) leaves (i.e.,
all edges are directed from the root ṽ toward the leaves). If indeg(v) = 0 (resp., outdeg(v) = 0) then Tin,v (resp.,

Tout,v ) is the single vertex ṽ . For each edge
→
x y of G ′, add to G an edge from a leaf of Tout,x to a leaf of Tin,y , such

that each leaf is an endpoint of exactly one such “added edge”. By construction, outdeg(G) ≤ 2 and indeg(G) ≤ 2.

To see that the 1-or-1 edge property holds: Let e = →
v w be an arbitrary edge of G ; if e is an edge of some in-tree,

then outdeg(v) = 1; if e is an edge of some out-tree, then indeg(w) = 1; and if e is an added edge, then outdeg(v) =
indeg(w) = 1. To show that |V | ≤ 4|V ′|2, it is enough to note that, for each v ∈ V ′ having indeg(v)+outdeg(v) ̸= 0,
the number of vertices of Dv is at most 2(indeg(v)+outdeg(v)) ≤ 4|V ′|.

It remains to show that φ(G) = φ(G ′). Say first that S′ is a FVS for G ′ with |S′| = φ(G ′). It is clear that S = { ṽ |
v ∈ S′ } is a FVS for G with |S| = |S′|, because every path from a leaf of Tin,v to a leaf of Tout,v must pass through ṽ .
Therefore, φ(G) ≤ |S| = |S′| = φ(G ′). Say now that S is a FVS for G with |S| = φ(G). Define S′ ⊆ V ′ by placing v in
S′ iff at least one vertex of Dv is in S. Obviously, |S′| ≤ |S|. It is easy to see that S′ is a FVS for G ′, because if C ′ is
a cycle in G ′ that passes through vertices v1, . . . , vm and none of these vertices belong to S′, then no vertex of Dvi

for 1 ≤ i ≤ m can belong to S. So there is a cycle in G , obtained from C ′, that passes through no vertex of S; this
contradicts the assumption that S is a FVS for G . Therefore, φ(G ′) ≤ |S′| ≤ |S| =φ(G). ■
Theorem 1 WEIGHTED CRWI FEEDBACK VERTEX SET is NP-complete. Moreover, for each constant C ≥ 2, it remains
NP-complete when restricted to instances where (G ,Cost) is a disjoint-read length-cost CRWI digraph, Cost(v) =C
for all v, indeg(G) ≤ 2, and outdeg(G) ≤ 2.

Proof. The problem clearly belongs to NP. To prove NP-completeness we give a polynomial-time reduction from
FEEDBACK VERTEX SET to WEIGHTED CRWI FEEDBACK VERTEX SET. Let G ′ and K ′ be an instance of FEEDBACK

VERTEX SET, where G ′ is an arbitrary digraph. Transform G ′ to G using Lemma 3. Let Cost ≡C . Because G has the
1-or-1 edge property, outdeg(G) ≤ 2, and indeg(G) ≤ 2, Lemma 2 says that (G ,Cost) is a disjoint-read length-cost
CRWI digraph. Clearly the minimum cost of an FVS for G is C ·φ(G), and C ·φ(G) =C ·φ(G ′) by Lemma 3. Therefore,
the output of the reduction is (G ,Cost) and C K . ■

Given an NP-hard optimization problem, it is natural to ask whether the problem can be approximately solved
by a polynomial-time algorithm. The worst-case approximation performance is typically measured by the worst-
case ratio of the cost of the solution found by the algorithm to the optimum cost; see, for example, [10]. The
currently best known polynomial-time approximation algorithm for the min-cost FVS problem on general di-
graphs has ratio O(logn loglogn) where n is the number of vertices in the input digraph; this is shown by Even
et al. [8], building on work of Seymour [26]. An obvious question is whether this ratio can be improved, perhaps to
a constant, by restricting G to CRWI digraphs. Unfortunately, the restriction to CRWI digraphs cannot help much,
in the sense that an improvement in r (n) for CRWI G would give a related improvement in r (n) for general G . A
modification to the proof of Theorem 1, again using Lemma 3, shows the following: If there is a polynomial-time
approximation algorithm with ratio r (n) for the min-cost FVS problem where the input (G ,Cost) is restricted to
be a disjoint-read length-cost CRWI digraph, then there is a polynomial-time approximation algorithm with ratio
r ′(n) = r (4n2) for the min-cost FVS problem where (G ,Cost) is arbitrary. For example, if r is constant then r ′ is
constant, and if r (n) =O(logn loglogn) and r is sufficiently smooth then r ′(n) =O(r (n)).

9 Complexity of Finding Optimal In-Place Difference Files

The subject of the paper up to this point has been the problem of postprocessing a given differential encoding
of a version file V so that V can be reconstructed in-place from the reference file R using the modified differential
encoding. A more general problem is to find an in-place reconstructible differential encoding of a given version
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file V in terms of a given reference file R. Thus, this paper views the general problem as a two-step process and
concentrates on methods for and complexity of the second step.

Two-Step In-Place Differential Encoding
Input: A reference file R and a version file V.

1. Using an existing differencing algorithm, find an encoding ∆ of V in terms of R.

2. Modify ∆ by permuting commands and possibly changing some copy commands to add commands so that
the modified delta encoding is in-place reconstructible.

A practical advantage of the two-step process is that we can utilize existing differencing algorithms to perform
Step 1. A potential disadvantage is the possibility that there is an efficient (in particular, a polynomial-time) algo-
rithm that finds an optimally-compact in-place reconstructible encoding for any input V and R. Then, the general
problem would be made more difficult by breaking it into two steps as above, because solving the second step op-
timally is NP-hard. However, we show that this possibility does not occur: Finding an optimally-compact in-place
reconstructible encoding is itself an NP-hard problem. For this result, we define an in-place reconstructible en-
coding ∆ to be one that contains no WR conflict. It is interesting to compare the NP-hardness of minimum-cost
in-place differential encoding with the fact that minimum-cost differential encoding (not necessarily in-place
reconstructible) can be solved in polynomial time [20, 23].

This NP-hardness result is proved using the following simple measure for the cost of a delta encoding. This
measure simplifies the analysis while retaining the essence of the problem.

Simple Cost Measure: The cost of a copy command is 1, and the cost of an add command 〈 t , l 〉 is the length l of
the added string.

BINARY IN-PLACE DELTA ENCODING

Instance: Two strings R and V of bits, and a K ∈ N+.
Question: Is there a differential encoding ∆ of V in terms of R such that ∆ contains no WR conflict and the simple
cost of ∆ is at most K ?

Taking R and V to be strings of bits means that copy commands in ∆ can copy any binary substrings from R; in
other words, the granularity of change is one bit. This makes our NP-completeness result stronger, as it easily
implies NP-completeness of the problem for any larger (constant) granularity.

Theorem 2 BINARY IN-PLACE DELTA ENCODING is NP-complete.

Proof. In this proof, “cost” means “simple cost”, and a “conflict-free”∆ is one containing no WR conflict. It suffices
to give a polynomial-time reduction from FEEDBACK VERTEX SET to BINARY IN-PLACE DELTA ENCODING. Let G ′
and K ′ be an instance of FEEDBACK VERTEX SET. We describe binary strings R and V and an integer K such that
φ(G ′) ≤ K ′ iff there is a conflict-free delta encoding ∆ of V in terms of R such that the cost of ∆ is at most K .

First, using the transformation of Lemma 3, obtain G where G has the 1-or-1 edge property, outdeg(G) ≤ 2,
indeg(G) ≤ 2, andφ(G) =φ(G ′). Let G = (V ,E) and V = {1,2, . . . ,n}. Let l = ⌈logn⌉. For each v ∈V , define the binary
string αv as

αv = 10100b100b200b300 . . . bl 00

where b1b2b3 . . .bl is the l-bit binary representation of v −1. Note that the length of αv is 3l +5 for all v , and that
v ̸= w implies αv ̸=αw . Let L = 3l +6, and define Cost(v) = L for all v ∈V . It follows from Lemma 2 that (G ,Cost)
is a disjoint-read length-cost CRWI digraph. Because the interval-finding procedure in the proof of Lemma 2
runs in polynomial time, we can construct in polynomial time a RWIS (R,W), with R = {R(1), . . . ,R(n)} and W =
{W (1), . . . ,W (n)}, such that G = graph(R,W), |R(v)| = |W (v)| = L for all v ∈ V , and the intervals of R are pairwise
disjoint (the intervals of W are pairwise disjoint by definition). Moreover, because indeg(G) ≤ 2 and L ≥ 4, it is
easy to see that we can make the read intervals be at least distance 3 apart, that is, if i ∈ R(v), j ∈ R(w), and
v ̸= w , then |i − j | ≥ 3. (Referring to the interval-choosing procedure in the proof of Lemma 2, this can be done by
incrementing k by an additional 2 after every execution of a step; and in executions of step 2 where d = 2 choosing
R(v1) = [k,k +L −1], R(v2) = [k +L +2,k +2L +1], and W (w) = [k +L −1,k +2L −2]. Note that R(v2)∩W (w) ̸= ;
because L ≥ 4 implies k +2L−2 ≥ k +L+2.)

Let ρ : {1, . . . ,n} → {1, . . . ,n} be a permutation such that the intervals of R in left-to-right order (ordered as
intervals) are R(ρ(1)),R(ρ(2)), . . . ,R(ρ(n)); thus, if 1 ≤ j1 < j2 ≤ n, i1 ∈ R(ρ( j1)), and i2 ∈ R(ρ( j2), then i1 < i2
(in fact, i1 ≤ i2 − 3). Similarly, let σ be a permutation such that the intervals in W in left-to-right order are
W (σ(1)),W (σ(2)), . . . ,W (σ(n)).
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The binary strings R and V are of the form

R =
PR︷ ︸︸ ︷

α1 0α2 0 . . . αn 0,0*αρ(1) 1000*αρ(2) 1000* . . . αρ(n−1) 1000*αρ(n) 1

V = 1* . . . 1* ασ(1) 11*ασ(2) 11* . . . ασ(n−1) 11*ασ(n) 1︸ ︷︷ ︸
SV

where 0* (resp., 1*) denotes a string of zero or more 0’s (resp., 1’s), and where these “rubber-length” strings are
adjusted so that: (i) the prefix PR of R does not overlap the suffix SV of V, and (ii) for all v, w ∈V , the substringαv 1

of R overlaps the substring αw 1 of V iff
→

v w is an edge of G . That (ii) can be accomplished follows from the facts
G = graph(R,W), all read and write intervals have length L = 3l +6 (which equals the length of αv 1 for all v), and
the read intervals are at least distance 3 apart so we can insert at least two zeroes between αρ(i )1 and αρ(i+1)1 for
1 ≤ i < n.

Three properties this R and V will be used:

(P1) R contains no occurrence of the substring 11;

(P2) for each v ∈V , the string αv 1 appears exactly once as a substring of R;

(P3) for each v ∈V with v ̸=σ(n), the string αv 1 always appears in V in the context . . .1αv 11. . ..

Property P1 is obvious by inspection. Property P2 follows from the facts: (i) 101 appears as a substring of R only as
the first three symbols of αw for each w ∈V ; and (ii) if v ̸= w then αv ̸=αw . Property P3 follows because, for each
w ∈V , the stringαw 1 both begins and ends with 1, and there are only 1’s betweenασ(i )1 andασ(i+1) for 1 ≤ i < n.

Let LV denote the length of V, and define K = LV −nL+n +K ′. We show that

φ(G) ≤ K ′ ⇔ there is a conflict-free delta encoding ∆ of V
such that the cost of ∆ is at most K .

(⇒) Let φ(G) ≤ K ′ and let S be a FVS for G with |S| ≤ K ′. We first describe an encoding ∆′ of V that is not

necessarily conflict-free. Each substring represented by 1* is encoded by an add command; the total cost of
these add commands is LV −nL. If v ∈ V −S, then αv 1 is encoded by a copy of αρ(i )1 in R, where i is such that
ρ(i ) = v ; the total cost of these copy commands is |V − S| = n − |S|. If v ∈ S, then αv 1 is encoded by a copy of
αv from PR followed by an add of “1”; the total cost of these commands is 2|S|. Therefore, the total cost of ∆′ is
LV −nL +n + |S| ≤ LV −nL +n +K ′ = K . For each v ∈ S, the read interval of the copy command that copies αv
from PR does not intersect the write interval of any copy command in ∆′. Therefore, the CRWI digraph of ∆′ is a
subgraph of the graph obtained from G by removing, for each v ∈ S, all edges directed out of v . Because S is an
FVS for G , the CRWI digraph of ∆′ is acyclic. Therefore, a conflict-free delta encoding ∆ of the same cost can be
obtained by permuting the copy commands of ∆′ and moving all add commands to the end.

(⇐) Let ∆ be a conflict-free delta encoding of V having cost at most K = LV −nL +n +K ′. By properties P1
and P3, it follows that no copy command in ∆ can encode a prefix (resp., suffix) of a substring αv 1 together with
at least one of the 1’s preceding it (resp., following it). Therefore, using property P1 again, the commands in ∆

that encode substrings denoted 1* must have total cost equal to the total length of these substrings, that is, cost
LV −nL. The remaining commands can be partitioned into sets C1,C2, . . . ,Cn such that the commands in Cv
encode αv 1 for each v ∈V . Let S be the set of v ∈V such that Cv contains at least two commands. We first bound
|S| and then argue that S is a FVS for G . By definition of S, the cost of ∆ is at least LV −nL+|V −S|+2|S|. Because
the cost of ∆ is at most LV −nL +n +K ′ by assumption, we have |S| ≤ K ′. To show that S is a FVS, assume for
contradiction that there is a cycle in G that passes only through vertices in V −S. If v ∈V −S then Cv contains one
command γv , so γv must be a copy command that encodes αv 1. By property P2, the copy command γv must be
to copy the substring αv 1 from the unique location where it occurs in R as αρ(i )1 where i is such that v = ρ(i ).

The strings R and V have been constructed such that, if
→

v w is an edge of G (in particular, if
→

v w is an edge on the
assumed cycle through vertices in V − S), then the substring αv 1 of R overlaps the substring αw 1 of V. So the
existence of this cycle contradicts the assumption that ∆ is conflict-free. ■

10 Conclusions

We have presented algorithms that modify difference files so that the encoded version may be reconstructed
in the absence of scratch memory or storage space. Such an algorithm facilitates the distribution of software
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to network-attached devices over low bandwidth channels. Differential compression lessens the time required
to transmit files over a network by encoding the data to be transmitted compactly. In-place reconstruction ex-
changes a small amount of compression in order to do so without scratch space.

Experimental results indicate that converting a differential encoding into an in-place reconstructible encod-
ing has limited impact on compression. We also find that, for bottom line performance, keeping difference files
small to reduce I/O matters more than execution time differences in cycle breaking heuristics because in-place
reconstruction is I/O bound. The algorithm to convert a difference file to an in-place reconstructible difference
file requires less time than generating the difference file in the first place.

Our results also add to the theoretical understanding of in-place reconstruction. We have given a simple suf-
ficient condition, the 1-or-1 edge property, for a digraph to be a CRWI digraph. Two problems of maximizing the
compression of an in-place reconstructible difference file have been shown NP-hard: first, when the input is a
difference file and the objective is to modify it to be in-place reconstructible; and, second, when the input is a
reference file and a version file and the objective is to find an in-place reconstructible difference file for them. The
first result justifies our use of efficient, but not optimal, heuristics for cycle breaking.

In-place reconstructible differencing provides the benefits of differening for data distribution to an impor-
tant class of applications–devices with limited storage and memory. In the current network computing envi-
ronment, this technology greatly decreases the time to distribute software without increasing the development
cost or complexity of the receiving devices. Differential compression provides Internet-scale file sharing with im-
proved version management and update propagation, and in-place reconstruction delivers the technology to the
resource-constrained computers that need it most.

11 Future Directions

Detecting and breaking conflicts at a finer granularity can reduce lost compression when breaking cycles. In
our current algorithms, we eliminate cycles by converting copy commands into add commands. However, typi-
cally only a portion of the offending copy command actually conflicts with another command; only the overlap-
ping range of bytes. We propose, as a simple extension, to break a cycle by converting part of a copy command
to an add command, eliminating the graph edge (rather than a whole vertex as we do today), and leaving the
remaining portion of the copy command (and its vertex) in the graph. This extension does not fundamentally
change any of our algorithms, only the cost function for cycle breaking.

As a more radical departure from our current model, we are exploring reconstructing difference files with
bounded scratch space, as opposed to zero scratch space as with in-place reconstruction. This formulation, sug-
gested by M. Abadi, allows an algorithm to avoid WR conflicts by moving regions of the reference file into a fixed
size buffer, which preserves reference file data after that region has been written. The technique avoids compres-
sion loss by resolving data conflicts without eliminating copy commands.

Reconstruction in bounded space is logical, as target devices often have a small amount of available space
that can be used advantageously. However, in-place reconstruction is more generally applicable. For bounded
space reconstruction, the target device must contain enough space to rebuild the file. Equivalently, an algorithm
constructs a difference for a specific space bound. Systems benefit from using the same difference file to update
software on many devices. For example, distributing an updated calendar program to many PDAs. In such cases,
in-place reconstruction offers a lowest common denominator solution in exchange for a little lost compression.

Although departing from our current model could yield smaller difference files, the message of this paper
remains that the compression loss due to in-place reconstructibility is modest even within this simple model.

Appendix

Proof of Lemma 2. We prove parts 1 and 2 together. For both parts we assume that G = (V ,E) has the 1-or-1 edge
property and Cost(v) ≥ 2 for all v ∈ V . We show how to choose the read intervals and write intervals such that

|R(v)| = |W (v)| for all v ∈V , the write intervals are pairwise disjoint, and R(v)∩W (w) ̸= ; iff
→

v w ∈ E . If in addition
indeg(G) ≤ 2, then the chosen read intervals are pairwise disjoint. If in addition outdeg(G) ≤ 2, then the choices
also satisfy the length-cost condition |R(v)| = Cost(v) for all v ∈V .

Let T0 (resp., T1,T2) be the set of vertices v ∈ V with outdeg(v) = 0 (resp., outdeg(v) = 1, outdeg(v) ≥ 2). The
three sets T0,T1,T2 partition V ; that is, they are pairwise disjoint and their union equals V . Let H0 be the set of

vertices w such that indeg(w) = 0. Let H1 be the set of w such that: (i) indeg(w) ≥ 1, and (ii) all v with
→

v w ∈ E have
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outdeg(v) = 1 (i.e., v ∈ T1). Let H2 be the set of w such that there exists a v with
→

v w ∈ E and outdeg(v) ≥ 2; that
is, w is the head of some edge whose tail v belongs to T2. Note that H0, H1, H2 partition V . In Figure 11 the sets
H j ,T j for j = 0,1,2 are illustrated in general, and Figure 12 shows these sets for a particular digraph. The intervals
are chosen by the following procedure. For j = 0,1,2, executions of step j choose read (resp., write) intervals
for vertices in T j (resp., H j ). Because T0 ∪T1 ∪T2 = H0 ∪ H1 ∪ H2 = V , the procedure chooses a read and write
interval for each vertex. Because T0,T1,T2 are pairwise disjoint and H0, H1, H2 are pairwise disjoint, no interval
is chosen at executions of two differently numbered steps. We show, during the description of the procedure, that
no interval is chosen at two different executions of the same-numbered step. It follows that each vertex has its
read interval and its write interval chosen exactly once. (The steps 0, 1, 2 are independent; in particular, it is not
important that they are done in the order 0, 1, 2.) While describing the procedure, it’s operation is illustrated for
the graph in Figure 12, assuming that all vertices have Cost = 2. Because this graph has indeg = outdeg = 2, the
chosen read intervals will be pairwise disjoint and the length-cost condition will be satisfied.

v1 v2 vdv

w dw1

T T T

v

H H H

10 2

. . .

0 1 2

w w

. . .

w2

Figure 11: Examples of vertices in the sets H j ,T j for j = 0,1,2. All edges directed out of v, v1, . . . , vd or into
w, w1, . . . , wd are shown. Edges directed into v, v1, . . . , vd or out of w, w1, . . . , wd are not shown.
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Figure 12: Example of the sets H j ,T j for a particular digraph.

Interval Choosing Procedure
Set k = 0. The parameter k is increased after each execution of step 0, 1, or 2, in order that all intervals chosen
during one execution of a step are disjoint from all intervals chosen during later executions of these steps. By an
“execution of step j ” we mean an execution of the body of a while statement in step j .

0. (a) While T0 ̸= ;:
Let v ∈ T0 be arbitrary (in this case, R(v) should not intersect any write interval); choose R(v) = [k,k +
Cost(v)−1]; remove v from T0; and set k ← k +Cost(v).

(b) While H0 ̸= ;:
Let w ∈ H0 be arbitrary (in this case, W (w) should not intersect any read interval); choose W (w) =
[k,k +Cost(w)−1]; remove w from H0; and set k ← k +Cost(w).
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Illustration. In Figure 12, T0 = {4} and H0 = {2}. Step 0 is executed twice. First, step 0(a) sets R(4) = [0,1],
T0 ←;, and k ← 2. Then, step 0(b) sets W (2) = [2,3], H0 ←;, and k ← 4.

1. While T1 ̸= ;:

(a) Let v1 be an arbitrary vertex in T1 and let w be the (unique) vertex such that
−→

v1w ∈ E . If indeg(w) = d ≥
2, let v1, v2, . . . , vd be the vertices such that

−→
vi w ∈ E for 1 ≤ i ≤ d . We claim that vi ∈ T1 for all 1 ≤ i ≤ d :

for i = 1 this is true by assumption; if 2 ≤ i ≤ d and outdeg(vi ) ≥ 2, this would contradict the 1-or-1

edge property because
−→

vi w ∈ E , outdeg(vi ) ≥ 2, and indeg(w) ≥ 2. A consequence of the claim is that
w ∈ H1. (See Figure 11.)

(b) Choose R(v1) = [l ,r ] and W (w) = [l ′,r +1] such that min{l , l ′} = k, | [l ,r ] | = Cost(v1), and | [l ′,r +1] | =
Cost(w). Because Cost(w) ≥ 2, we have l ′ ≤ r ; so r ∈ R(v1)∩W (w) (which implies R(v1)∩W (w) ̸= ;). If
d ≥ 2, choose R(vi ) = [r +1,ri ] such that | [r +1,ri ] | = Cost(vi ) for 2 ≤ i ≤ d . So r +1 ∈ R(vi )∩W (w) for
2 ≤ i ≤ d . Note that if outdeg(G) ≤ 2 then d ≤ 2, and R(v1)∩R(v2) =; if d = 2. Because this step is the
only one where more than one read interval is chosen at the same execution of a step, if outdeg(G) ≤ 2
then the chosen read intervals are pairwise disjoint.

(c) Remove v1, . . . , vd from T1. Because
→

v w ∈ E implies that v = vi for some 1 ≤ i ≤ d , this ensures
that none of W (w),R(v1), . . . ,R(vd ) are re-chosen at another execution of step 1. Set k ← max{r +
1,r2,r3, . . . ,rd }+1.

Illustration. In Figure 12, T1 = {1,2,3}. At the first execution of step 1, say that v1 = 1 is chosen. This defines
(recall that all costs are 2 in the example) w = 5, d = 2, v2 = 2, R(1) = [4,5], W (5) = [5,6], R(2) = [6,7],
T1 ← {3}, and k ← 8. At the next execution of step 1, the only choice is v1 = 3 which defines w = 1, d = 1,
R(3) = [8,9], W (1) = [9,10], T1 ←;, and k ← 11. (Because d = 1 in this execution, it would also work to set
R(3) =W (1) = [8,9] and k ← 10, but for simplicity this special case is not included in the procedure.)

2. While T2 ̸= ;:

(a) Let v be an arbitrary vertex in T2, let d = outdeg(v) (so d ≥ 2), and let w1, . . . , wd be the vertices such

that
−→

v wi ∈ E for 1 ≤ i ≤ d . Note that wi ∈ H2 for all i , by definition of H2. By the 1-or-1 edge property,
indeg(wi ) = 1 for all i . (See Figure 11.)

(b) If outdeg(G) ≤ 2, then d = 2, and our choice of intervals must satisfy the length-cost property. In this
case, choose R(v) = [l ,r ], W (w1) = [l ′,r −1], and W (w2) = [r,r2] such that min{l , l ′} = k and the inter-
vals have the correct lengths according to the cost function. Note that Cost(v) ≥ 2 implies that l ≤ r −1,
and this in turn implies that r −1 ∈ R(v)∩W (w1). Also r ∈ R(v)∩W (w2) by definition.

If outdeg(G) ≥ 3, then the length-cost property does not have to hold, so we choose R(v) = [k,k +d −1]
and W (wi ) = [k + i −1,k + i −1] for 1 ≤ i ≤ d .

(c) Remove v from T2. Because indeg(wi ) = 1 for all 1 ≤ i ≤ d , it follows that none of R(v),W (w1), . . . ,W (wd )
are re-chosen at another execution of step 2. Set k to one plus the maximum right endpoint of the in-
tervals R(v),W (w1), . . . ,W (wd ).

Illustration. In Figure 12, T2 = {5}. This defines v = 5, d = 2, w1 = 3, w2 = 4, R(v) = [12,13], W (3) = [11,12],
W (4) = [13,14], and T2 ←;. ■
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