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ABSTRACT

The method'of_phase contours is applied to eome probiems
coneerned with‘scattering etvfixed angles;' The crqssing symmetric
generalized Regge model developed in a previous paper is used to'.
illustratejpossible characteristics of the behaviof of scattering
ampiitudes. These characteristics are discussed both in the complex

energy plane at fixed angle and in the complex cos © plane at fixed

- high energy. Thevarmer‘leads to'a procedﬁre for studying fixed’

angle behavior by means of entire functions on whose orders some

1limits can be established. The latter leads to a generalization of

the lower bounds on high energy behavior obtained earlier by Cerulus

and Martin, and by Chiu and Tan.
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1. INTRODUCTION

"QOur main purpose in this paper is to show how the method of

.phase contours can be used in the problem of fixed angle scattering

at high energy. In particular we will show that it gives a new way

“of formulating the problem, which is relevant to an heﬁristic approach

~and may also be used for a rigorous discussion of assumptions and

consequent bounds on the high energy behavior.

We will make extensive use of results and techniques on phése
contoﬁrs that werevdevelbped in the two previous‘papersl’2 (hereafter
denoted by I and II).. In particular, we will use the crossing symmetric
model developed in II as a basi; for formilating our discussién of
fixed angle behavior. This model is based on dominance by Regge pole

terms that correspond to rising trajectories. We use our knowledge of

‘phase contours and zeros in this model to indicate the kind of behavior

that shouid‘be‘taken into account in a more general discussion of high
enérgy behavior at fixed angles. Two essentially different approaches.
are considered. The first is directed towards the use of entire
functioﬁs to describe the main features of scattering at a fixed angle.
The second approach makes use of modulus. contours in the complex cos O
plane at high energy and can bé used to obtain a fixed angle ldwer
bound.

In Seétidn 2 we express the scattering amplitude for our model

at fixed momentum transfer in terms of a Herglbtz function and a ratio
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of polynomials in the energy. These polynomiéls are related to zeros
of thg scattering amplitﬁde on the physical sheet and to phase contours
on the boundary of the physical sheet. In Section 3 this result is
geﬁéralized to fixed angle behévior, where the polynomials become
réﬁlaced by entire functions. The orders of the entire functions can
be_reléted tolthe distribufion of zeros and the distribution_of phase

: cohtours. It thé entire function giving the zeros is dominant at
high energies, then its order must be greater‘than or equal to one half.

In Section M»we'study'thé behaviQr‘of modulus cbntours for the

t:mpiitude in the complex cbs(et) plane, where O, is the scattering
~angle. By considering the limiting form of these contours at high
-'engrgy in our model we see that pglynomial boundedness in energy will
in-genergl be limited t§ a finité part of the cos Qt plane. This
indicates the need for a géneralizatién of the‘method for obtaining

‘lower bounds that was first developed by‘CeruluS'and Martin. The

generalization is described in Section 5.
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2. PHASE CONTOURS FOR A CROSSING SYMMETRIC MODEL

In paperFII we developed solutions for phase'contours from a
Regge modei that satisfies ceftain consistency tests under crossing
symmetry. 'The starting point for thé model is the asSumption that the
(equal mass boson) scattering amplitude has the asymptotic form, as

S -+,

P(s,t) .;“b(t) Sa‘F) exp[?ﬁ{} - % a(ti}].i (2.1)
’ sin[—é— nq(t)jl rla(t)]

In our model we assume that the Regge trajectory o(t) rises continu-
ously as t iﬁcréases, and falls as t decreases. We also assume
single pole dominance in the asymptotic limit s — +o for fixed 1,

éxcept at zeros'df therfesidue, that come from poles of the gamma

function at

o(t) = -(en+1). o)

Thére.ére two esséntially different types of behavior for crossing
symmetfic phase contoursvon fhe physical sheetthafdepend on the
relative béhévior ofzthg léading Regge pole (2.1) and the ﬁext Regge
polé. These two typés of behavior'were denoted (a) and (b) in

Section 5 of II. We wiil £ind that with type (a) there is an infinité
sequénce of Zeros on the physical sheet at fixed angleé, whereas with

type (b) this sequence of zeros of the scattering amplitude lies on
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unphysicai sheets. There may be mixtures of the two types but, in -
order fo avoid an unduly long‘discussion, we will limit ourselves to
the unmixed typgs.
In this gection we will describe the characteristics‘of the
phase contours in our modei at fixed momentum transfer, and will use
them to relate the scattering amplitude to a Herglotz function. In

Section 3 we make the analagous steps at fixed angle,

The Phase Contours

The phase @(s,t), of the scattering amplitude F(s,t), is

" defined by

B(s,t) = Tm[log(F(s,t)]], | (2.5)

together with a specification of the route to the point (s,t) from

the asymptotic forward direction, where we define our initial phase,

(s >, t=0) = = (2.4)

An account of theoretical and experimental properties of phasé contours
was givén in I. Using these;propertiesAwe developed the crossing
symmetric édlutions of types (a) and (b) in II (Sections 5 and 7),
Bgsed on Eg. (2.1) above. Wé will discuss case (b) first since it is

somewhat simpler than (a).
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Case (b

The phase contours in the real s, real +t, plane for type (b)
are shown in Fig. 2.1 [see Fig. 7.1 .of II]. The important features

are (1) thevphase‘oscillates.between x and 2y in the region

u > Mm?, £ > hm°. - ' : (2.5)
(2) the phase in the region,

u < O; t <‘.O,‘ ( o ' o (2.6)

increases as ‘s’ increases. For fixed negative t and large s, its

approximate value is
B(s;t) % xll - a(t)]. B (2.7)

. The differencé

|-

between this phase (2.7) and the phase in the exponent in Eq. (2.1)

is due to the zeros of thevresidue and the'effects of the next'highést
Regge‘trajécfory. “The relatién between the phase contours shown

in Fig. 2.1 aﬁd the high enefgy behavior for fiXed‘negétive t has
been discussed in iI (Sectién 5). . We will be céncernéd with the
éorfespondiﬁg_reiation at fixed angle;b Howéver it ié uéefui to note
first some features that épPly to the simplef case of fiked  t.

© In Fig. 2.1, the small black circles denote real zeros of |

| the-amplitude,iand-the attached dotted curves denote complex zeros. In
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case (b), which we are now considering, these zeros remain on the
physical sheet, in the complex s plane, as t decreases through
real values. ' In addition zeros come in from infinity, each time t -
decreases through a zerc of the residue given by a solution of Eq. (2.2).
These zeros also remain on the physical sheet as. t decreases.
We consider the behavior of F(s,t), for some fixed real
negative value of t, as a function of s. There will be a finite

number of zeros in Im s > 0, at

a, (£), 2 (t), a3(t),,..;az(t). (2.8)

These can be factored out from F, giving

£
F(s,t) = ’rl‘i’ (s - a) G(s,t). : (2.9)

The function G(s,t) will have phase contours that determine the
oscillations through zero of Im G(s,t). Let the zeros of Im G(s,t)

for real s (along s + i0) occur at
bl(t), bg(t),,..bm(t), (2.10)

and at

-

ci(t), en(t),. .. (t), | | (2.11)

where bi(t) denote points at which the pPhase of G increases through

a value NOn as s 1increases, and cj(t) denotes points at which it
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decreases. Then, as described in I (Sections 2 and 4), we can write

G(s,t) in the form

H(s,t), o (2.12)

- where +H 1is a Herglotz function of s, and satisfies

C ' . ) v ) - " ‘ .
o7 < [HG®)] < c's], ' - (2.13)
for some C and C' as E - @, in Im s ->. O..

The scattering amplitude F can therefore be written in the

'fofm,.
F(s,t) = —=—2 H(s,t), (2. -

where Pa’ Pb’

PC 'denoté'polynomials whose -order and coefficients
depend on the chosen real value of “t. -In our mddél;iwhen a(t) is near
a negative even integer, - 2N 'say, the order of these polynomials will

be N +N', 0, and 3N + N", respectively to withinm 1, where N' ..

denotes the number of real zeros of F(s,t) in the interval (O,t);
Case (a)

Case (a) of our crossing symmetric model, has phase contours

that differ from those in Fig. 2.1, by having an oscillatory phase in
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the region u'< 0, t <0, giving phase contours =, =, %, ..., in this

region also. in addition the complex zeros (dotted lines in Fig. 2.1)

go to infinity and leave the physical sheet at values tl, t2, ’55,”,0

which satisfy Eq. (2.2). Thus the real zeros shown in Fig. 2.1,

become directly associated with the zeros of residues, in case (a).
The reduction of F to a Herglotz function, for fixed

in case (a), will give a form similar to that in Eq. (2.1k), except

that the order of the polynomials will noW be* 0, 0, and 2N for

P

o> Py» P, Tespectively, to within 1. In case (a) we take the real

zeros to be in bne to one correspondence with the zerosvof residues,
so that no more fhan one is on the phjsical sheet for each negative
value of " t. |

Further discussion of céses (a)_and (b) in the complex s
plane for fixed negative t 1s given in II. The information obtained
there about the complex phase contours is necessary for thé above
conclusions and the reader should refer eséecially_to IT Section 5

for further details.
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3. PHASE CONTOURS AND FIXED ANGLE BEHAVIOR

At a fixed angle we cannot make direct deductions .from our
model, either aBout thélspacing of‘phase contoufs, or about the location
of zeros, since both would requiré detailed'assumptions'about the foim
of the Reggertrajéctories, and the way in which different terms
interfere. - Sﬁéh aésumptionS'may be essential for é more’detailed
freétment but they are not appfopriate to ‘the discussion of general
features with which we are éoncerned Heré. Instead we will uée
cénsistency argumeﬁts, basedIOn the assum@tibn‘that»the différeﬁtial
cross section at fixed angle falié iike SOméveﬂfiré function for 1arge

s. - Thus,
F(s, cos ©) ~ B exp[-A sP), o o - (3.1)

where the order p..and the type A Dboth depend-on 6.

In case (b), discussed in II (Section 5 and 7) and in the
previous section, the rgal phase contours are givén*by Fig. é.l.v
At fixed angle,‘on-éur assumptioﬁ of dominance by Régge_térms-havingb
cqntinuously falling trajectories as t decreases; the phaée |
@(s, cos 8) increases continuéusiy.as 5 - +m aloﬂg» s + 10, for
feal cos @ in (-1, 1). Only for cos 6 = %l does‘the behavior change
~radically; then the‘phase tends to ‘% M, a8 § - +o. For fixed angle
and neggtive s, along s + i0, the phase oscillates. Hence,’from our

discussion in I, and in Section 2 above, we would expect the rate of
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decrease of the amplitude, as s — +o, to be relafed to the increase

of the phase. There may also be zeros in Im s > O, but for case (b)

it is consistent to assume they are finite in number, and for simplicity -
' we éssumé there are none.

If the phase contours, for fixed 6, along s real and'positive,

ceased to cycle through multiples of 2% for s > s., for case (b)

O}
on the above assumptions, we would obtain
F(s, cos ©) = ‘H(s, cos 9) ' | (3.2)
’ Pc(s, cos ©) )

analagous to (2.14), where P, is a polynomial in s of order n,

where n denotes the phase near s = s However, in our model the

"o 0
phase does not have an upper bQund as s »+m .at fixed angle of
scattering, and heuristically we,must therefore replace the form

(3.2) vy
F(s, cos ) = pracorgs - (3.3)

where "H 1is Herglotz in s, andv R denotes an eﬁtire'functioq
- obtained by factoring out the’zeros'df'lm F on ﬁhé right hand cut
in the complek s plane.

More generally, without the-use‘Qf-our:generalized‘Regge model,
if an amplitude F(s, cos ) has (i) a boﬁnded phase as s —>—o§, v
(ii) a fihite number of zerosfinllm s >0, andv(iii) an unbounded

inecreasing phase'as s — +w, it would have the form (3.3) modified by
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including a polynomial in the numerator. Conversely, if (1) and (ii)
hold,.and we assume Eq. (3.1) on experimental grounds, we can deduce
(iii).

The qualitative form of the phase contours of F(s, cos ©)
in the s plane, can be deduced from Fig. 2.1, with the aid of an
extrapolation from the fixed t phase contours considéred in 1II
(Section 5). They are shown in Fig. 3.1 fér case (b). ‘The order of
the entire function R in Eq. (3.3) can be related to the asymptotic
foim of the phase contours on the ieft of Fig. 5.1, in the.simple case

where, for large |s| near arg(s) = =,
R(s, cos 8) ~ exp[A!slp exp(ip¥) 1, : : (3.4)

where V¥ = arg(s). Then the phaée contours héve the asymptotic form

|s|® sin(p¥) = Constgnt.' , - (3.5)

The order of R caﬁ.alsb‘be‘related to the density of points.
gt which  Im F = O, with @ = n%, for largerreai and‘positivé values
of s}‘ Let N(x) be the number of zeros of 'Im'F(s,-cosz)‘for :

0 < s < x. From its construction (discuséed in I Sections é'and Ly,
the:function R wili'have zeros at each of thé'real zefos df Im F,

and N(x) will denote the number of zeros of R in"lsl < X. o

Jensen's theorem gives
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r 2 ' ‘
J N(x) dx 1 J [1og|R(r exp i V)| 4 ﬂ- log[R(0)]. -
X T2 ' ‘
0 T 0 (3'6)
R is of order p, so
log|R(r exp i ¥)| < K(e)P™€, | (3-7)

where € is any small positive number. Also,

2r 2r
[ oM s we) [ E s e s (5.8)
Hence
- or \
Cw(r) < 102 5 f Mﬁl ax < K rP'c, = (3.9)
. _ 0

Thus the density of phase contours

#(s,t) = nx, (3.10)

in Fig. 2.1,,15 closely.related to the order p(©) of the entire
function R for a fixed angle of scattering 6.

Tn case (a), discussed in II (Sections 5 and 7) and in

&

Section‘2.above, the phase @(s, cos 6) has bounded oscillations along
_the real s axis above the branch cut. In this case the oscillations ‘

.

of Im F play only a minor role in the asym@totic behavior of 'IF

If there were no zeros of F(s, cos ) in Im s >0, it would be
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essentially a Herglotz function, and we would have an inequality like
(2.13). This is in contradiction with our model which assumes dominance
by ieading Regge terms in the physical region. More generally it
contradicts our requirement (3.1) for a rapid decrease of cross section
at fixed angle.

'We conclude that in case (a) there must be an infinite number
of zeros of F(s, cos ®) in Im s >0, when cos © is in (-1, 1),
but cos G:* zl. If the number of zeros was only finite, they would

lead to a polynomial factor in F(s, cos. @), like Pa(s) in Eq. (2.1h),

‘which would increase the power behavior at'infinity. " However, an

. infinite number of zeros, leads to an entire function, and we obtain

AF(S, cos 8) = E(s, cos 8) H(s, cos 6), (3.11)

where E .is an entire function in s.
The zeros of F(s, cos ©) are evidently closely related to
the zeros of residues in our model. They must all leave the physical

sheet in the limits cos © = 1. For cos © near to 1, say’

cos © =1 - €, o ' (3.12)

‘wé can discuss the location of thé zero of F that is associated with

"~ a zero of a residue, as was done for fixed'real t- in II Section 5.

l; and the next term F,, give

o F(s, t) ~ Fio+Fy = Fy |5+ 14, | (3.13)
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% = -Z—;—g—t—)y so(dl_ae) exp {i@E - %)(%n - W)] . (3.1k4)

" x-<% ¢ s, exp(i ¥). - - (3.15)

We choose €. to be small, then choose SO large enough so that

~5 €y = bt -e', | (3.16)
where
8. (£.9) = 0 (3.17)
it :
o . . ; 0 , L
For t near tl R 52 is negative. For t > tl , Bl is positive,
. : 5

and for 1t < tl s By is négative. For simplicity, we take

= 1. For ¥ =0 in Eq. (3.1}), the ratio F, to F

(@ - ay) 1 2

is pure imaginary. But for ¥ > 0, from (3.15-17), Bl(t) will *
become nearly pure imaginary even for small YV, provided e’ is

sufficiehtly small. The'phaSe of Bl will then cancel the phase

from the exponential in Eq. (3.14). Since B, 1is negative, we obtain.

F, _ (e 5, W)‘SO

- = - - . : - ' .1 .
F2 -—"Zﬂzggr-—' v (3.18)

o
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We can choose ¥ so that this ratio is a minus one, giving a zero in
(3.13). As € — 0, this zero of F(s, cos ©) tends to infinity in
the s plane, Just above the real axis.

The phase contours and zeros of ‘F(s, cos 8), for complex s,
are shown in Fig. 3.2 for ‘case (a). Since F is real analytic, the
phase contours and zeros on ﬁhe physical sheet in Im s { 0 will
be ﬁhe mirror imagevof thoseAshown in Im s > O. |

It is evident from Figs; 3.1 and 3.2 that their essential
features are closely rel&tédQ In Fig. 3.1 the zeros lie on the
unphysical sheet through the right hand branch-cut. When one changes
ffom casei(b) [Fig. 3.1] to case (a) [Fig. 3.2] the zeros simply
lift up from the unphysical sheet on to the physical sheet.

v. The'acfﬁal behavior éf phaselcqntours énd zeros is likely to

be a mixtufe of case (b) and case (a). Then we would expect the high

- energy behavior at fixéd angles to depend on the ratio of entire

functions giving,

#(s, cos §) - E(ssc0s ) (s, cos ©) H(s, cos 0)  (5.19)

R(s, cos ©)

where ‘L(s, cos ©) comes from real values of s where Im F(s, cos 8) = O,

at which the phase ¢ is decreasing. R comes from similar values

where '¢ is increasing. E comes from the zeros of F, on the

physicél:sheet.

- If the entire fUnétion E is dominant for large s, then its

ofder'must be greaterfﬁhan or equal to %. This follows from Polya's
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inequality, which states that
n(r) > [M(r)]{cos(p “)'?}, for large r, (3.20)

where m(r) and M(r) denote the minimum and maximum values of
the entire function on |s| =r, and p denotes its order. In
‘defining m(r) the neighborhoods of zeros are excluded. Thus, if
p was less than 1/2, we could deduce that m(r) increases with r,
and the differential cross section would increase with energy at
fixed angle. We reject this on physical groﬁnds and deduce that

the order p satisfies
1 : :
P 2z 3 ' (3.21)

If a smooth angular dependence is assumed, we can also reject ©p <‘%

on the grounds that it contradicts unitarity.
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4, MODULUS CONTOURS AT HIGH ENERGY

A fixed angle lower bound was first obtained by Cerulus and

5

Martin” under certain assumed uniform boundedness properties of the
scattering amplitude.. Their results were genefalized by Chiu and Tan,
who discussed also their relation to rising Regge trajectories. Using
analagous methods but different assumptions; Tiktopoulos and Treimari5
have obtained certain constraints on the angular dependence of
scattering amplitudes.

In this section we discuss the characteristicvfeétures of
phase contours in the Zy plane at large values of t, wheré t

denotes the energy and z the cosine of the scattering angle.

t .
Using the harmonic properties of the phase and modulus contours we

note how one can define a region DOO in the Zy plane, in which the

scattering amplitude is polynomial bounded. The properties of the

region DOo are used in Section 5 to provide a lower bound for fixed

angle behavior that is a generalization of earlier results.

In formulatihg our approach we make use_Of our deductions,
about'phase contours for the crossing symmetric model developed in II
and discussédvin previous sections. Some of our conclusiéns are more.
general in chafécter and depend only on the specific asymptotic:form

of certain modulus contours.
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(a) Phase Contours in the z, Plane

For fixed t, the transformation from s to zt is linear,

so the topology of the phase contours will not be altered in going

from the s plane to the complex Zy plane,

g, = L+—E2 o Bt (4.1)
t - bm t - bm

We-éonsider the phase.contéurs for réal.nf abéﬁe the brancﬁ cut
(t'+'iO),‘in the cvomple)'c#-zt plane. These are analagous to those
shown in paper II Fig. 7.2. Using the limit t + io; the real
section for 't > ng différs from that. shown in Fig. 2.1 by (i)

. an interchange of the left hand side with the right hand side, and
(ii) thév 3n/2 confdurs »are‘reﬁlaced by xn/2 contours. The

resulting complex section is shown in the Z,

plape in Fig. h.l,
for.reél, t. éorresponding to  |

5 < alt) < b - - (4.2)
TheasymptdtiéAphaseiin the zy plane is given by

Bt + 140, z.) ~ Zx + a(t)e, o O (h3)

where =z = Iztl exp(i ), and zp & ®, for 0 <6< x. This

- corresponds. to asymptotic behavior Iztla(t) of the modulus of F,
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t|. Note that the region above the right hand cut in

the Z, plane corresponds to Im (s) > O, whereas that above the left

hand cut corresponds to Im (u) < O. This ‘explains‘ the asymmetry
since t. also is above threshold. 1In addition there is no real region
where the amplitude F is also real (because t > hmg), so we do
not have any upper and lower half-plane symmetry.’

In our model we assume.that as t increases a(t) increases
without limit. Then, for increaéing t, there will be new phase

contours continuously entering the physical sheet of the zZy plane

from the left hand cut.  All of these contours remain unbounded
(1. e. they go to infinity) on thevphysical sheet.

In contrast to the phase contours from the left hand cut,

“there will be a class of bounded contours_cbming from the region

< e T A .. S (bl

t - ﬁmg E Tt —.hm?

 These contours are associated with decreasing a(s) and a(u) in

~ the physical 't channel, as s and u became more negétive.

The above unbounded and bounded types of contours are separated

by the leading bounded x contour. In addition, there are

=

7
contours associated with the right hand cut, but our argumént does -
not require us to know whether these are unbounded or bounded. We

denote by A% the region in the zZy plane that is bounded by the

leading x contour for given t.
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As t — +@, the phase contours in the real (s, t, u) plane

become parallel to u = constant, or s = constant. Thus a particular

phase contour, say
o 1 ' _ . L.
@(t, zt) = 3w +nm, _ ( .5)

will meet the left hand cut of the 2, plane at a point ’Pn given by, -

g - a1 - 2cm® o S (n.6)

' b4

where c(n) is defined by
a[c(n)] = n. , , » (k.7)

The phase (L4.5) using (4.6) will apply out to the point A in Fig. L.1,
where the phase contour ﬁhrough the sequence of zeros meets_the real

Zt‘ axis., As t —;+4D;'the point A in our model tends to Zy = -3, i
~since it lies on the line u =t. In cohtrast, each point Pn’ for

fixed n, will approach. Zy = -1 as t —+m, like (t)_l. The
" phase contours (4.5) will wind around the bounded contour, and

then move to infinity in their asymptotic direction in the 2y plane,

- found from Eq. (3.4). At the same time, for increasing +t, the
bounded phaée cbntours will become denser near the limiting =«

contour, within' the region A% that it bounds.
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We will assume that as t - +00,

At -—>- AOO’ . ‘ | o o : - ()*~8)

where ﬁio. is a finite bounded region in the Zy plane. For
simplicity, we assume that

ﬁ%J_C:L%E’ if b <ty - | - (4.9)

Then all of the closed phase contours; for finite t, lie inside [%D.

The generalifofm of the phase contours for large t 1is sketched in
Fig. 4.2. As noted above,>Wé do not expect these contours to show any
symmetry with respect to Im (zt) = 0. In particular the boundary of

'A% will not in genéral meet the real axis at right angles. We denote

the angles by Ql(t)' and @é(t)v as shoWn in Fig. 4.2, and assume

that they tend to values 6, and 6, in (0, % 7)) as t - oo.

(b) Modulus Contours in the z_ Plane’

t

The phdse ¢(s, t), and log|F(s,t)|, are respectively the
imaginary.andlthe real parts'of"log[F(s;t)], Hence they are harmonic

functions of x ‘and y, where 'z, = x + iy. From the properties'of 

harmonic functions, the phase contours and the modulus contours will

q

be mutually orthogonal in thé'complex’ z,

% plane.  If the phase contours

are known, the modulus contours can be constructed. For“example,



UCRL~17923
D0
is large enough, the modulus contours will approximate to

if |z, |

semicircles centered on the origin with radius |Zt|' The phase and
modulus contours, that correspond to fixed real t such that
3 < a(t) < L, are shown in Fig. 4.3

- We will make special use of the modulus contour that goes

through the thresholds at z, = ip5. where
P =1 4 = 8m = - : E o . - (ka0)
: t -~ Um ' '

Thié contour is given by
|2t 2| = |7 o) | . | (4.11)

and we will denote the corréSpqnding curve in the zZ, plane by Pt .
Its shape will éhange as t 1is increased, and its detailed form will
depend. on the dynamics of the system. For our model, we expect it to

- approach the form Fdo’ that is indicated in Fig. L.k, enclosing an
area DGD in the zZy plane, We expect. D“)v to enclose A%D,

- since the modulus contours are orthogonal to the phase contours.

In general the angle & of 1 with the left hand real axis will

differ from the correspbnding angle with the right hand axis.

For =z, inside D_ in the z_ plane, we will have

—-)O,'as t >, : o (ka2)
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since for large t,

I5(s, 0] < 275 R ()

Outside Dq), in our model, .any modulus contour Ft(n), having a
value t- '(with n fixed), will move towards To and will coincide
with it in the limit t — ®. Hence at any fixed point Zto outside
D, we will have
CD,
F(t: Zto)
- ®, as t - o. o o (L.1k)

tn

Thus, in our model, the modulus of the amplitude will be

 bounded by a polynomial in t as t - ®, for points =z * inside

t

DG)Q It will not be bounded by a polynomial for points ztO outside

DOO in the zZy plane. This Suggests avnéed for new generalization

3

of ‘the results of Cerulus and Martin’ on a fixed angle bound. Our

~generalization, which we give in the next section does not depend on

the special assumptions involved in our model, However it is designed

to take into aécounﬁ the'spécial'features.and difficulties that the

model indicates are likely to be associated with rising Regge

trajectories;vor more. generally with scattering amplitudes that are

not polynomial bounded.
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5. A FIXED ANGLE LOWER BOUND

In the general case we assume that, for any t, there exists

a region Dt of the Zy plane, within which the amplitude is poly=-

nomial bounded in the variable +t. We assume that as t — o0, Dt

has the limiting form shown as D. in Fig. bL.lL, and makes an angle

& with the left hand (and right hand) branch cuts. Let Ty be the

boundary curve of D%.
3

Cerulus and Martin~ requires © = 0, whereas we would in general

¢

As noted by Chiu and Tan,h the method of

expect © to be non-zero.
We will make a transformation such that the image of the

. ecurve T

+ becomes tangential to the real axis at the image of the

points Zy = ip. Once this is done, we can then use the Cerulus-

Martin theorem6;to obtain a lower bound at fixed angle as t — .
A transformatiOn satisfying this requirement is given by,

vv.‘ {lmx . EQJ ' v :
u(z,) Q i NCEY

G P

where
1 5 .
5 = 1 . . . | \ (5.2)

The appropfiafe branch of - w 1is the one whose inverse

O (SRR el G R B

is feal ahalytic and Herglotz,

B

} | 5 (5.3)

1
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. AConSider'the funetion
Gk, w) = P, _zt).i' : o R (5.4)
It has branch points at
) . P o _ : | )
R R 0%’ _ - 55)
p - (P - 1) 7|+ S . , :
and as t - o,

3,4

‘With the usual assumptions; ' which include a specification of the

form of Dt’ we can apply the Cerulus Martin theorem and find that
L a . o ‘
|7 (t, 2,)| > Clexp[-C (z,) t log tl. (5.7)

for -1z, <1, as 't - ®. If we assume

4t
| 1 | R | - -
Ogd<Zn (L=-¢) | - (5.8)
" we obtaln
=~ 1 1 ' ’ | o |
-E—ga<l+€. . v : : ) (5-9)
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“Phase contours in the complex" z'
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. FIGURE CAPTIONS

Phase contours in the.rsai (s,t, u) piéﬁe, fofsaisrossingA
syﬁﬁetric.amplitude Eased on‘the generalizéd Regge mo&el;
The small black circles indicate real zerss and the dotted
lines indicate complex;seros. .The.phasevsontours sﬁa,zeros\

cOrrespdnd to case (b) discussed in the text.

Phase contours in the‘complex‘ s - plane for fixed angle in
case (b). This complex section corresponds to the phase

contours shown in Fig. 2.1 for real s and 't.

Phase contours and zeros in thé.compléx s plane forvfixed
angle invcaSe (a). The zeros are shown as small black
circles; aﬁ the intersections of phase contours for which

Im F = O and phase contours for which Re F = 0.

£ plane for t real in

‘the 1imit (t + 10), such that 3 <o(t) <4 in the crossing

symmetric model. The upper phases aré obtained for a path
above the zeros, the lower phases are for a path beldﬁ'the '
zeros, in both cases starting from the realﬂaxis on the

right hand side.
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Fig. b4.3.
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Phase contours in the =z

& plane in the crossing symmetric o o

model for large energy (t).

Phase contours (heavy lines) and modulus contours (thin
lings) for the crossing symmetric model, in the complex

zy plane. The energy has similar value to that giving the

phase contours in Fig. 4.1.

The .asymptotic limit Poo of modulus contours that correspond

to a polynomial in the energy (t), shown in the Zy . plane.

The interior of Pa> is the region denoted -Da>’ The

curve ' is symmetric and within Dd), it surrounds the

~region D,
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Fig. 2.1
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s plane

XBL6BI-1506

Fig. 3.1
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Fig. %.2
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Fig. 4.2
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Fig. 4.k

Zy plane
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implied, with respect to the accuracy, completeness,
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report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or
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or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that.
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








