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of California, Berkeley, California 94720, USA
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Abstract

We present a general approach to converge excited state solutions to any quan-

tum chemistry orbital optimization process, without the risk of variational collapse.

The resulting Square Gradient Minimization (SGM) approach only requires analytic

energy/Lagrangian orbital gradients and merely costs 3 times as much as ground state

orbital optimization (per iteration), when implemented via a finite difference approach.

SGM is applied to both single determinant ∆SCF and spin-purified Restricted Open-

Shell Kohn-Sham (ROKS) approaches to study the accuracy of orbital optimized DFT

excited states. It is found that SGM can converge challenging states where the Max-

imum Overlap Method (MOM) or analogues either collapse to the ground state or

fail to converge. We also report that ∆SCF/ROKS predict highly accurate excitation
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energies for doubly excited states (which are inaccessible via TDDFT). Singly excited

states obtained via ROKS are also found to be quite accurate, especially for Rydberg

states that frustrate (semi)local TDDFT. Our results suggest that orbital optimized

excited state DFT methods can be used to push past the limitations of TDDFT to

doubly excited, charge-transfer or Rydberg states, making them a useful tool for the

practical quantum chemist’s toolbox for studying excited states in large systems.

1 Introduction

Accurate quantum chemical methods for modeling electronic excited states are essential for

gaining insight into the photophysics and photochemistry of molecules and materials. The

most widely used technique for excited state calculations at present is time dependent density

functional theory (TDDFT),1–5 on account of its relatively low computational complexity

(O(N2−3), where N is the molecule size) and reasonable accuracy for many problems.6,7

TDDFT excited states are computed via determining the linear response of a ground state

DFT solution to time-dependent external electric fields,5 permitting simultaneous modeling

of multiple excited states. In principle, TDDFT is formally exact1 when the exact time-

dependent kernel of the exact exchange-correlation (xc) ground state functional is employed,

although lack of that functional, and the need for the widely used adiabatic local density

approximation3–5 (ALDA) prevents this from being the case in practice. ALDA in fact re-

stricts utility of TDDFT to single excitations out of the reference alone, with large errors

arising whenever the target excited state has significant double (or higher) excitation charac-

ter.8–11 Furthermore, TDDFT is known to systematically underestimate excitation energies

for charge-transfer5,12–14 and Rydberg8,15 states (although long-range corrected functionals

can be tuned to ameliorate these problems16,17), and yields qualitatively erroneous potential

energy surfaces along single bond dissociation coordinates.18 These effects originally stem

from errors in the ground state DFT solution like delocalization error19,20 or spin symmetry

breaking,21,22 but the linear response protocol augments these deficiencies in the reference
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to catastrophic levels in excited states, on account of insufficient orbital relaxation.23–26

Orbital-optimized excited state methods have consequently seen a renewal of interest in

recent years,27–40 and have been successfully applied to problems like core excitations41,42 and

CT states26,29 where orbital relaxation is expected to play a key role. However, excited state

orbital optimization is fundamentally a challenging task due to the possibility of collapsing

back into the ground state (often described as “variational collapse”) as excited states are

typically saddle point solutions of the orbital optimization equations. The Maximum Overlap

Method (MOM)27 attempts to mitigate this by selecting occupied orbitals after each iteration

via maximization of overlap with the occupied orbitals from the previous iteration (instead

of filling orbitals in ascending order of their energies). MOM has been quite successful in

reducing the frequency of variational collapse, but has not fully eliminated it in practice.43,44

The continuing spectre of variational collapse has subsequently led to attempts to develop

alternative variational principles33,34,45 where excited states are true minima instead of saddle

points. Such principles often employ the energy variance, which involves the Ĥ2 operator.

The matrix elements of Ĥ2 are quite computationally challenging due to the presence of

three and four particle operators. Furthermore, a straightforward generalization to DFT is

not possible as xc functionals approximate 〈Ĥ〉 and not 〈Ĥ2〉, making it difficult to capitalize

on the enormous strides made in Kohn-Sham DFT (KS-DFT) functional development for

(ground state) energetics46–49 and properties50,51 in recent years.

In this work, we present a general approach that can extend any ground state orbital-

optimization method to excited states, without any apparent onset of variational collapse.

The computational cost of this approach is only about 3 times the cost of ground state orbital

optimization (per iteration), when implemented via a simple finite-difference protocol based

on analytic orbital gradients of the energy/Lagrangian. This method is subsequently applied

to two excited state orbital optimized DFT techniques: ∆SCF and Restricted Open-Shell

Kohn-Sham (ROKS). The utility of these approaches is demonstrated via application to

theoretically well characterized double excitations of small molecules, singly excited states
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of formaldehyde and an analysis of the absorption spectrum of zinc phthalocyanine.

2 Theory

2.1 Objective Function

Orbital optimization based methods attempt to minimize some Lagrangian L against orbital

degrees of freedom ~θ (that mix occupied orbitals {i} with virtual orbitals {a}). L is simply

the energy for Hartree-Fock (HF) or DFT (or indeed, any variational method), although

it can be considerably more complex (eg. including amplitude constraint terms) for non-

variational methods like Møller-Plesset perturbation theory52–55 or coupled cluster.56 For

excited states, the typical objective is to find an unstable extremum of L instead of the

global minimum, which is quite challenging due to the possibility of variational collapse

down to a minimum. While (quasi) Newton methods can be successful in converging to a

saddle point if supplied with an excellent initial orbital guess and good initial L Hessian, the

possibility of collapsing into a local minimum instead remains fairly high.

We convert the extremization problem into a minimization by instead focusing on:

∆ =
∣∣∇~θL

∣∣2 =
∑
ai

∣∣∣∣ ∂L∂θai
∣∣∣∣2 (1)

∆ therefore is merely the square of the gradient of L against orbital degrees of freedom ~θ,

and is therefore positive semidefinite by construction. ∆ = 0 if and only if ∇~θL = 0, which

indicates stationarity of L against the orbital degrees of freedom. The challenges typically

encountered in optimizing unstable extrema (i.e. saddle points or maxima) in L are therefore

averted, as every orbital optimized state is a global minima of ∆. Other extrema are possible,

as discussed later, but are easily identifiable by ∆ 6= 0.
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2.2 Gradient

The gradient of ∆ with respect to ~θ is given by:

∂

∂θai
∆ =

∂

∂θai

∑
bj

∣∣∣∣ ∂L∂θbj
∣∣∣∣2 =

∑
bj

(
∂L
∂θbj

)∗(
∂2L

∂θbj∂θai

)
+ h.c. (2)

For HF/DFT, the cost of analytically evaluating the gradient via the matrix-vector contrac-

tion
∑
bj

(
∂L
∂θbj

)∗(
∂2L

∂θbj∂θai

)
should roughly equal the cost of constructing the Fock matrix

F̂. The cost of analytically evaluating ∇~θ∆ should therefore be twice the cost of evaluating

∇~θL: once for constructing ∇~θL, and another for the contraction with the Hessian

(
∂2L
∂~θ∂~θ′

)
.

Analytical ∆ gradients are therefore straightforward at the HF/DFT level, at a compute cost

of roughly twice the analytical L orbital gradient. However, efficient implementation of the

analytic L Hessian is undoubtedly challenging for more complex methods.

A simple finite difference approach permits us to sidestep this issue for very little addi-

tional cost. Such an approach has already been used for orbital stability analysis (i.e. ex-

tremal eigenvalues of the orbital Hessian),55,57 building on earlier work evaluating extremal

eigenvalues of the force constant matrix (Hessian with respect to nuclear displacements).58–61

We know that:

(
∂L
∂θai

)
~θ= ~θ0+ ~δθ

=

(
∂L
∂θai

)
~θ= ~θ0

+
∑
bj

(
∂2L

∂θbj∂θai

)
~θ= ~θ0

δθbj +O(( ~δθ)2) (3)

from a Taylor expansion of the derivative
∂L
∂θai

about the point ~θ = ~θ0, on account of a
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perturbation ~δθ. Subsequently, we can choose ~δθ = λ
(
∇~θL

)∗
~θ= ~θ0

, which yields:

∑
bj

(
∂L
∂θbj

)∗
~θ= ~θ0

(
∂2L

∂θbj∂θai

)
~θ= ~θ0

=
1

2λ

((
∂L
∂θai

)
~θ= ~θ0+ ~δθ

−
(
∂L
∂θai

)
~θ= ~θ0− ~δθ

)
+O

(
λ2
((
∇~θL

)∗
~θ= ~θ0

)3)
(4)

=⇒
(
∇~θ∆

)
~θ= ~θ0

=
1

2λ

((
∇~θL

)
~θ= ~θ0+ ~δθ

−
(
∇~θL

)
~θ= ~θ0− ~δθ

)
+ h.c.+O

(
λ2
((
∇~θL

)∗
~θ= ~θ0

)3)
(5)

In other words, taking the finite difference between the gradient ∇~θL at two slightly shifted

~θ (with the shift being proportional to the gradient ∇~θL at the central point) yields the

desired Hessian-gradient contraction. The cost of this approach for finding ∇~θ∆ is therefore

thrice the cost of a single ∇~θL gradient evaluation, which is not a substantial increase over

the 2× cost associated with contraction with the analytic Hessian. While this approach

does introduce precision errors associated with finite differencing, their magnitude can be

controlled via judicious choice of λ. More importantly, the errors scale as O
(
λ2
((
∇~θL

)∗)3)
,

indicating that they are the largest when we are far from convergence (i.e. large ∇~θL) when

a very accurate gradient is not critical. The errors should be quite small close to convergence

(when ∇~θL should be small). Alternative higher order finite difference formulae could also

be employed, though we shall not consider such choices here.

2.3 Preconditioner

The convergence of a gradient based optimization process can be dramatically accelerated

via use of appropriate preconditioners, like a diagonal approximation to the Hessian. This

is especially true for a relatively less well conditioned problem like ∆ minimization. Unfor-

tunately, exact evaluation of the diagonal terms of the ∆ Hessian is likely far too compu-

tationally demanding to be worthwhile. However, mean-field terms (i.e. F̂ terms) make up

the largest portion of L for non-strongly correlated species. Focusing on those terms alone

suggests that within a pseudocanonical orbital basis (i.e. occupied-occupied and virtual-
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virtual blocks of F̂ are diagonal), an approximate preconditioner Bia,jb = 8 (εa − εi)2 δiaδjb

(where εa and εi are energies of pseudocanonical spin-orbitals a and i, respectively) would

be appropriate. This is basically a generalization of the preconditioner used in the geometric

direct minimization (GDM) method62 for ground state minimization.

2.4 The SGM method for orbital optimization

The gradient and the preconditioner described in the two preceding subsections can be

employed to minimize ∆, starting from any initial guess in orbital space. To do so, we

build upon the GDM quasi-Newton method63 for L minimization (which uses the BFGS

update64–67). For our squared gradient minimization (SGM) problem, we supply the gradient

and preconditioner appropriate for ∆ to the GDM algorithm. The computational cost of a

single SGM iteration should therefore be at most three times the cost of the corresponding

GDM iteration for the ground state.

SGM would ideally converge to the closest solution in orbital space, when supplied with an

initial set of guess orbitals. In practice however, the highly approximate nature of the initial

preconditioner could result in large initial steps that lead to convergence to an alternative

root (or even the ground state!). However, this can be easily mitigated by scaling the gradient

down by some scalar c to minimize the size of the initial steps in order to prevent large initial

stepsizes. The approximate BFGS Hessian would however be effectively scaled by the same

c, and the long term convergence rate not be (too) negatively impacted. We have found

that c = 1 is typically adequate for most cases, but a very low value of c = 0.01 could be

employed as a conservative choice for difficult cases. We also note that ∆ minimization is

less well conditioned than energy/Lagrangian minimization (due to squaring of the gradient)

and SGM is consequently an inefficient ground state optimizer (which can also converge to

unwanted saddles if starting from a poor initial guess), relative to conventional GDM.
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2.5 Relationship with other methods

∆ minimization via SGM is essentially a generalization of GDM62 for saddle point optimiza-

tion. It is consequently a direct minimization based alternative to F̂ matrix diagonalization

methods like the Maximum Overlap Methods (MOM).27,44 In addition, SGM is closely re-

lated to the excited state variational principle employed by the Excited State Mean-Field

(ESMF) approach described in Ref 33 and the σ-SCF approach described in Ref 34. The

objective function in Ref 33 reduces to ∆ if its energy targeting component is deleted. This

has very recently been generalized to a generalized variational principle (GVP),40 which

smoothly scales various components, and can thus become ∆ in some limits. The presence

of the energy targeting term enables GVP to target states close to a particular input energy,

while SGM ∆ minimization aims to converge to the closest minima in orbital space to the

initial guess. SGM is therefore simpler, though necessarily more guess-dependent. The more

general form of the GVP also permits it to switch from minimization to saddle point search,

which however comes with some risk of collapse if the minimization component has not ade-

quately converged a good starting point for the saddle point convergence. SGM has no such

issues as it is a pure minimization. The use of Tensorflow’s68 automatic differentiation pack-

age in Ref 40 also restricts applicability to large systems, while our analytic/finite-difference

based ∆ gradients do not have such issues. It is also worth noting that a finite difference

approach was employed in Ref 40 for Newton-Raphson iterations, although the per-iteration

computational cost was larger due to the need to construct a large Krylov subspace for

inverting the Hessian of the objective function.

The parallels with σ-SCF34 are less obvious at first glance. σ-SCF minimizes the energy

variance σ2 =

〈
Φ

∣∣∣∣(Ĥ− 〈Ĥ〉)2∣∣∣∣Φ〉 =
〈

Φ
∣∣∣Ĥ2

∣∣∣Φ〉−(〈Φ
∣∣∣Ĥ∣∣∣Φ〉)2 for a single determinant

|Φ〉. The computational expense of evaluation of
〈

Φ
∣∣∣Ĥ2

∣∣∣Φ〉 makes it natural to wonder if

substitution of Ĥ with a mean-field 1 body Hamiltonian like the Fock-matrix F̂ would be
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acceptable. The most challenging term would then be:

〈
Φ
∣∣∣F̂2

∣∣∣Φ〉 =
∑
|D〉

〈
Φ
∣∣∣F̂∣∣∣D〉〈D ∣∣∣F̂∣∣∣Φ〉 (6)

by doing a resolution of the identity over all determinants |D〉 in Hilbert space.
〈

Φ
∣∣∣F̂∣∣∣D〉 6=

0 only if |D〉 is either |Φ〉 or a single excitation |Φa
i 〉. Therefore:

〈
Φ
∣∣∣F̂2

∣∣∣Φ〉 =
(〈

Φ
∣∣∣F̂∣∣∣Φ〉)2 +

∑
i,a

〈
Φ
∣∣∣F̂∣∣∣Φa

i

〉〈
Φa
i

∣∣∣F̂∣∣∣Φ〉 (7)

=⇒
〈

Φ
∣∣∣F̂2

∣∣∣Φ〉− (〈Φ
∣∣∣F̂∣∣∣Φ〉)2 =

∑
i,a

〈
Φ
∣∣∣F̂∣∣∣Φa

i

〉〈
Φa
i

∣∣∣F̂∣∣∣Φ〉 =
∑
i,a

|Fai|2 =
1

4
∆ (8)

In essence, SGM (or any single determinant optimizer like MOM) performs mean-field vari-

ance minimization, in contrast to the full Ĥ based variance minimization of σ-SCF.

2.6 Local extrema in ∆

From Eqn 2, we can infer that ∇~θ∆ = 0 implies either ∇~θL = 0 (indicating successful ex-

tremization) or that the gradient ∇~θL belongs to the null-space of the Hessian
∂2L
∂~θ∂~θ′

. While

cases with singular
∂2L
∂~θ∂~θ′

are known in quantum chemistry as Coulson-Fischer points,69 such

points are defined by zero gradients. Hence little or nothing is known about singular orbital

hessians with nonzero gradients. Interestingly, we have encountered a few such solutions

over the course of our investigations, as indicated by ∆ 6= 0 at convergence. We were able

to escape them via use of “better” initial guesses, such as by providing converged local spin-

density approximation (LSDA) excited state orbitals to a hybrid DFT calculation (instead

of ground state hybrid DFT orbitals).
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3 Orbital optimized excited state DFT

3.1 ∆SCF

∆SCF70,71 methods converge a single Slater determinant as an excited state solution to the

HF/KS equations. The likelihood of variational collapse had long restricted the utility of

∆SCF, but the development of MOM led to a revival of interest in the method.27,41,71,72

MOM nonetheless does not always succeed in averting variational collapse (as will be shown

later), making it desirable to have alternative solvers for challenging cases.

Apart from convergence, other main concerns with ∆SCF are twofold. The Hohenberg-

Kohn theorem73 does not formally hold for excited states,74 and it cannot be assumed that

ground state functionals will be accurate for excited states. ∆SCF is thus a pragmatic choice

for modeling excited states in large systems, but will not be a foolproof solution. Nonethe-

less, practical studies have shown that quite high levels of accuracy can be obtained from

∆SCF27,41,44,71,72 for challenging problems that TDDFT fails to address properly, without

compromising accuracy in TDDFT’s ideal domain of applicability (valence excitations in

closed shell species). Our results also demonstrate this point, as will be shown later.

The second, closely related, challenge facing ∆SCF is that unlike ground states, excited

states cannot often be well approximated by a single Slater determinant. In particular, single

excitations out of closed-shell molecules are intrinsically multiconfigurational, as both α and

β electrons are equally likely to be excited (leading to at least two configurations of equal

weights). ∆SCF within the MS = 0 subspace can only target one of the configurations and

would therefore yield a heavily spin-contaminated (“mixed”) determinant with 〈S2〉 ≈ 1 for

even otherwise well-behaved single excitations. This is an issue for singlet excited states

alone, as MS = ±1 triplet states are typically well described by single determinants and

thus ∆SCF. The singlet energies can be approximated via approximate spin-purification,75

if the only major spin-contaminant is the corresponding triplet. It would however be ideal

to orbital optimize the spin-purified energy directly instead of optimizing the mixed and
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triplet configurations separately. The Restricted Open-Shell Kohn-Sham (ROKS) method

achieves this for pure open shell singlet states, and is described in the next subsection.

Other potentially more general alternatives like half-projection35 or the DFT generalization

to ESMF39 appear to possess double counting errors, making them somewhat less appealing.

3.2 ROKS

The Restricted Open-Shell Kohn Sham (ROKS) technique30,76 optimizes orbitals for spin-

pure singly excited states by extremizing

LROKS = 2EM − ET (9)

where EM is the energy of the mixed determinant and ET is the energy of the triplet within

the MS = 1 subspace, using the same spin-restricted orbitals. This is reasonable for true

open shell singlets, as the mixed state is half singlet and half triplet when RO orbitals are

used. The same strategy could also be applied to double excitations where a single electron

pair has been broken, such as the 1B3g state of tetrazine.77 ROKS has been shown to be

quite effective at predicting HOMO→LUMO type excitations in organic molecules30 and is

excellent for CT state energies in systems where TDDFT fails catastrophically.26 However,

the implementation described in Ref 30 is restricted to the lowest excited singlet (S1) state

alone. SGM however permits application of ROKS to arbitrary excited singlet states without

collapse back to the S1 state, thus considerably generalizing its applicability to excited state

calculations. Of course, ROKS is itself limited in applicability: ROKS can only describe

transitions that are well represented as promotions from one spatial occupied orbital to one

spatial virtual orbital after orbital optimization. Excitations that can only be represented by

transitions between multiple orbital pairs that have no common orbitals are unlikely to be

well described on account of their natively multiconfigurational nature. A rather well-known

example of the latter are the Lb dark states in polyaromatic compounds.78
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3.3 Constrained Methods

There exist other excited state DFT ansatze that employ constraints for the purpose of

transferring electrons into the virtual space of the ground state determinant or attempt to

impose strict orthogonality between ground and excited state determinants, for the purpose

of avoiding collapse back to the ground state. Some examples of such methods are SCF con-

strained variational DFT (SCF-CV-DFT),79,80 orthogonality constrained DFT (OCDFT)81

or excited constrained DFT (XCDFT).82 SGM could in principle be applied to these as well,

although we have not attempted to do so at present.

4 Applications

4.1 Comparison of SGM to MOM and IMOM

MOM has encountered considerable success in averting variational collapse for ∆SCF, but

is nonetheless not a perfect solution.43 Two systems where MOM fails to avert variational

collapse are the 2p→ 3p excitation in the B atom44 and a Rydberg-like single excitation out

of the highest energy oxygen lone-pair to a C 4py orbital in formaldehyde. SGM however

is successful at converging both, as can be seen from the plots in Fig 1. As shown in Fig

1, the Initial MOM (IMOM) method44 (which selects occupied orbitals at the end of a F̂

diagonalization based on overlap with an initial set of orbitals vs the ones from the preceding

step) is also able to converge to the same solution as SGM for both of these cases, for a

considerably smaller computational cost (stemming from fewer F̂ builds being required).

IMOM’s good performance stems from it avoiding ‘drifting’ of orbitals away from the

initial guess over multiple SCF iterations. However, IMOM can exhibit oscillatory behavior

and fail to converge to a solution, as exhibited by the case of an excitation from the highest

energy π lone pair to the second lowest π∗ orbital in nitrobenzene (as depicted in Fig 2), where

IMOM shows no sign of convergence even after 500 DIIS86 steps. This is likely a consequence
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(a) 2p→3p of B atom (UHF/aug-cc-pVTZ83,84).
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(b) O lone pair → C 4py Rydberg state of HCHO (UHF/aug-cc-pVTZ83,84).

Figure 1: Energy and gradient (~∇~θL) convergence to ∆SCF solutions with MOM, IMOM
and SGM. SGM converges energies to 10−8 a.u. in 13 iterations (39 Fock builds) for the B
atom and 46 iterations (138 Fock builds) for HCHO, with c = 1. In contrast, IMOM requires
12 and 29 SCF cycles, respectively.

of IMOM picking significantly different orbitals after some steps, based on discontinous

ranking changes arising from small fluctuations in the overlap with the initial orbitals. On the

other hand, MOM monotonically collapses back to the ground state. Considering all three

examples, SGM appears to be a relatively stable ∆SCF solver that could prove effective

in converging challenging states, although it is more expensive than MOM or IMOM per

iteration (and typically requires more steps when those methods converge).
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Figure 2: Energy and gradient (~∇~θL) convergence to ∆SCF solutions for the excitation from
the highest energy π lone pair to the second lowest π∗ orbital in nitrobenzene (UHF/def2-
TZVP85). MOM collapses back to the ground state while IMOM fails to converge even after
500 iterations (only the first 150 are shown). SGM (with c = 1) however converges the
energy to 10−8 a.u. after 82 iterations (246 Fock builds).

4.2 Application to Doubly Excited States

Doubly excited states (or states with significant double excitation character) are typically

inaccessible via TDDFT due to use of the ALDA. The efficacy of ∆SCF for modeling such

double excitations has already been hinted at,44,72 leading us to study the extent to which

ground state DFT functionals could reproduce vertical excitation energies for a few systems

with theoretically well-characterized pure double excitations from Ref 77. ∆SCF solutions

were examined for all states aside from the 1B3g state of tetrazine, where the presence of

a broken electron pair necessitated use of ROKS (the corresponding doubly excited triplet

was modelled with RO orbitals as well, to ensure spin-purity). SGM was used to converge

all solutions, although MOM would likely also be effective for most of the ∆SCF solutions.

The results shown in Table 1 demonstrate that orbital optimization with standard density

functionals can achieve very good accuracy for the doubly excited states considered here,

surpassing considerably more expensive wave function techniques like CC388 that do not

incorporate excited state orbital relaxation. Indeed, even the humble SPW9289,90 LSDA

functional (that is only accurate for the uniform electron gas) has a lower root mean squared
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Table 1: Vertical excitation energies (in eV) for pure double excitations with DFT/aug-
cc-pVTZ,83,84,87 compared to CC3 and theoretical best estimates (TBE) from Ref 77. CC3
values from Ref 77 have been extrapolated to the complete basis set (CBS) limit. Root mean
squared error (RMSE), mean error (ME) and maximum absolute error (MAX) relative to
TBE are also reported.

Species (Excitation) Rung 1 Rung 2 Rung 3 Rung 4 CC3 TBE
SPW92 PBE SCAN B97M-V PBE0 ωB97X-V

Be (2s2 → 2p2) 6.97 6.98 7.11 7.08 7.23 7.52 7.08 7.06

HNO (n2 → (π∗)2) 4.00 4.13 4.24 4.33 4.24 4.26 5.21 4.32

HCHO (n2 → (π∗)2) 9.56 9.73 10.02 10.06 10.07 10.20 11.18 10.34

C2H4 (π2 → (π∗)2) 11.78 11.75 12.22 12.23 12.27 12.57 12.80 12.56

CH3NO (n2 → (π∗)2) 4.63 4.63 4.71 4.81 4.70 4.69 5.73 4.74

Glyoxal (n2 → (π∗)2) 4.83 4.97 5.37 5.56 5.88 6.56 6.76 5.54

Pyrazine (n2 → (π∗)2) 7.35 7.49 7.90 8.15 8.43 8.78 9.17 8.04

Tetrazine (n2 → (π∗)2, 1Ag) 3.99 4.14 4.55 4.89 5.10 5.72 6.18 4.60
Tetrazine(n2 → π∗1π

∗
2, 3B3g) 4.77 4.87 5.24 5.73 5.92 6.78 7.34 5.51

Tetrazine(n2 → π∗1π
∗
2, 1B3g) 5.12 5.24 5.62 6.19 6.40 7.20 7.60 6.14

RMSE 0.65 0.56 0.25 0.18 0.31 0.76 1.15
RMSE (insensitive) 0.52 0.47 0.21 0.20 0.20 0.22 0.71
RMSE (sensitive) 0.77 0.64 0.28 0.17 0.39 1.05 1.46
ME -0.58 -0.49 -0.19 0.02 0.14 0.54 1.02
MAX 1.02 0.90 0.52 0.33 0.50 1.27 1.82

error (RMSE) than CC3! It appears that the meta generalized gradient approximations

(mGGAs) SCAN91 and B97M-V92 from Rung 3 of Jacob’s ladder are very accurate for the

double excitations studied, yielding rather small RMSEs ≤ 0.25 eV. The PBE093 global

hybrid GGA also performs well, with an RMSE of only 0.31 eV, while the range-separated

hybrid, ωB97X-V94 yields rather disappointing performance in light of its good accuracy for

ground state energetics47 and properties.50,51

The origin of this behavior could be partly understood by looking at the sensitivity

of the predictions to the functional choice. The majority of the species in Table 1 show

remarkably little functional sensitivity (with CH3NO having a standard deviation of only

0.07 eV between predictions), but the lone pair to π∗ transitions of glyoxal, pyrazine and

tetrazine show significant sensitivity to the choice of functional (standard deviation of ≥ 0.5

eV). We therefore classify these species into a “sensitive” subset and the remainder into
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a “insensitive” one, with the subset RMSEs also reported in Table 1. SCAN, B97M-V,

PBE0 and ωB97X-V give excellent (and very similar) performance for the five insensitive

transitions, while LSDA and PBE perform somewhat more poorly. On the other hand, the

sensitive transitions are considerably more challenging, with LSDA and PBE significantly

underestimating the excitation energy, while ωB97X-V significantly overestimates it. SCAN,

B97M-V and PBE0 make predictions intermediate to the two extremes and consequently have

low error. These trends seem to correlate well with the delocalization error present in these

functionals,20 although the significant difference in performance between SPW92/PBE and

SCAN/B97M-V cannot be fully explained by any delocalization based argument alone. We

do however note that a similar performance gap between Rung 1-2 and Rung 3 functionals

were seen for static polarizability predictions,51 which is a global metric for accuracy of

symmetry allowed singly excited states.

Despite these limitations, all functionals tested are more accurate than the O(N7) scaling

CC3 method, at only O(N3−4) cost. The very good performance of Rung 3 functionals is

encouraging in this light, as it shows that useful results can be obtained from relatively

inexpensive local functionals, permitting reasonable estimate of energies of doubly excited

states for very large molecular systems or even extended materials.

4.3 Singly excited states of formaldehyde

HCHO is a small molecule whose lowest lying excited states have been very well theoretically

characterized,95 making it an ideal candidate for applying the SGM approach to converge

ROKS for higher singlet excited states. The resulting excitation energies are shown in Table

2, along with ∆SCF energies for the triplet state within the MS = 1 subspace (using RO

orbitals for consistency with ROKS). Corresponding TDDFT numbers have been provided in

the Supporting Information. Quantitative errors for all methods (along with corresponding

values from TDDFT and some wave function theories) are reported in Table 3.

The values in Table 3 stem from only one species, but nonetheless contain some inferences
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Table 2: ROKS singlet excitation energies and RO-∆SCF triplet excitation energies for
HCHO in eV (using the aug-cc-pVTZ basis). The best theoretical estimates (TBE) has been
obtained from Ref 95.

Transition (Symmetry) SPW2 PBE B97M-V SCAN PBE0 ωB97X-V TBE
Singlet
Valence n→ π∗ (1A2) 3.81 3.65 3.84 3.51 3.62 3.81 3.97

σ → π∗ (1B1) 8.84 8.58 8.86 8.40 8.64 8.83 9.21
π → π∗ (1A1) 8.72 8.88 9.59 9.55 9.78 9.86 9.26

Rydberg n→ 3s (1B2) 7.02 6.92 7.11 6.99 7.06 7.30 7.3
n→ 3p (1B2) 7.83 7.71 8.00 7.83 7.89 8.23 8.14
n→ 3p (1A1) 7.87 7.71 7.98 7.80 7.89 8.25 8.27
n→ 3p (1A2) 8.36 8.13 8.58 8.26 8.31 8.73 8.50

Triplet
Valence n→ π∗ (3A2) 3.32 3.29 3.37 3.12 3.26 3.45 3.58

π → π∗ (3A1) 6.58 6.22 6.02 5.80 5.84 6.08 6.07

Rydberg n→ 3s (3B2) 6.84 6.73 6.83 6.81 6.91 7.21 7.14
n→ 3p (3B2) 7.66 7.55 7.70 7.68 7.74 8.12 7.96
n→ 3p (3A1) 7.74 7.58 7.78 7.72 7.79 8.19 8.15

that are likely to be transferable. First, using ROKS for singlet excited states (and RO-∆SCF

for triplets) does not lead to any degradation in performance for valence excitations, consis-

tent with previous studies.30,71 This is unsurprising, as standard valence excitations should

not be accompanied by considerable orbital relaxation. Second, the situation is different for

Rydberg states, where TDDFT has long been known to systematically underestimate exci-

tation energies on account of delocalization error.5 ROKS/RO-∆SCF dramatically reduces

errors in local functionals, often by more than a factor of 3. The residual error still stems

from systematic underestimation, which is likely on account of delocalization error (which

overstabilizes the diffuse density of Rydberg states relative to the ground state), This is

similar to behavior seen for CT excited states in Ref 26. The global hybrid PBE0 also sees a

substantial reduction in error with the orbital optimized procedure, although the range sep-

arated hybrid ωB97X-V functional gives very similar behavior across both approaches. This

is not too surprising, as the non-local exchange in ωB97X-V guarantees correct asymptotic

behavior for long-ranged particle-hole interactions (that are essential for Rydberg states)
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Table 3: Errors (in eV) in predicting low lying excited states of HCHO (as given in Table 2)
for various functionals, using both TDDFT (as indicated in the table) and ROKS/RO-∆SCF.
Wave function theory errors have been found from values in Table S6 of Ref 95.

Method Valence Excitations Rydberg Excitations All Excitations
DFT protocols RMSE ME RMSE ME RMSE ME
SPW2 0.40 -0.16 0.31 -0.30 0.35 -0.24
SPW92/TDDFT 0.73 -0.43 1.26 -1.25 1.07 -0.91
PBE 0.39 -0.29 0.45 -0.45 0.43 -0.38
PBE/TDDFT 0.35 -0.31 1.42 -1.41 1.11 -0.95
B97M-V 0.24 -0.08 0.25 -0.21 0.25 -0.16
B97M-V/TDDFT 0.54 -0.25 0.87 -0.85 0.75 -0.60
SCAN 0.50 -0.34 0.35 -0.34 0.42 -0.34
SCAN/TDDFT 0.49 -0.09 0.65 -0.61 0.59 -0.39
PBE0 0.42 -0.19 0.28 -0.27 0.34 -0.23
PBE0/TDDFT 0.46 -0.29 0.56 -0.54 0.52 -0.43
ωB97X-V 0.33 -0.01 0.12 0.08 0.23 0.04
ωB97X-V/TDDFT 0.27 -0.13 0.16 -0.15 0.22 -0.14
Wave function Theories95

CIS(D) 0.20 0.02 0.48 -0.44 0.39 -0.25
CIS(D∞) 0.09 -0.01 0.67 -0.67 0.52 -0.39
ADC(2) 0.09 -0.01 0.67 -0.67 0.52 -0.39
CC2 0.13 0.11 0.62 -0.62 0.48 -0.32
CCSD 0.12 0.04 0.01 -0.01 0.08 0.01
ADC(3) 0.24 -0.19 0.35 0.35 0.31 0.13
CC3 0.03 0.00 0.04 -0.04 0.04 -0.02

within linear response theory itself.

The overall ROKS/RO-∆SCF DFT errors for the Rydberg states compare very well with

the wave function theory errors in Table 3, with only the highly expensive CCSD and CC3

methods having substantially lower errors. The wave function theories however are more

accurate for the valence excitations, although the ROKS/RO-∆SCF errors are not too large

for some modern functionals. Further studies involving larger datasets (like the full set

presented in Ref 95) and many more functionals would be necessary to determine the overall

efficacy of the DFT based approaches. The relatively low errors of ROKS/RO-∆SCF and the

high computational scaling of wave function based methods however indicate considerable

promise for use of ROKS/RO-∆SCF to study low-lying excited states of large systems where

wave function theory is unaffordable and TDDFT unsuitable.
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5 Low lying excited states of zinc phthalocyanine

Figure 3: Zinc Phthalocyanine.

Metallophthalocyanines are species with a large, extensively π conjugated phthalocyanine

ligand coordinated to a metal atom. They share many structural features with the biolog-

ically relevant porphyrin species and possess readily tunable electronic properties that has

led to use in the electronics industry96–98 and as photosensitizers.99 The excited state spectra

of Zn-phthalocyanine (ZnPc) has consequently been studied both experimentally100–104 and

theoretically.105–109 The sheer size of this system makes DFT based approaches the reason-

able choice (although a coupled cluster study with very small basis and significant virtual

space truncation has been reported109) and we have consequently chosen it to demonstrate

SGM’s applicability to sizeable systems. We examined the symmetry allowed singlet excited

states involving the twenty highest energy occupied orbitals and the ten lowest energy vir-

tual orbitals, using the PBE0 functional and the def2-SV(P)85 basis. The corresponding

TDDFT excitation energies were also computed for comparison. Only the low energy (i.e.

≤ 5 eV) Q,B and N bands are reported here,100 as high energy states have (potential) mul-

ticonfigurational character and the possibility of Rydberg like behavior109 that cannot be
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captured without diffuse functions in the basis set. It is worth noting that ligand to metal

CT (LMCT) type transitions are not possible as Zn has a full 3d10 shell. Metal to ligand CT

(MLCT) transitions are possible, but appear to occur at energies ≥ 5.3 eV with both ROKS

and TDDFT. The reported transitions are therefore entirely based out of ligand orbitals.

Table 4: Symmetry allowed vertical singlet excitation energies (in eV) computed with
PBE0/def2-SV(P), as compared to experimental measurements of ZnPc in Ar matrix.104

The experimental band assignments (Q,B etc.) have also been supplied. The TDDFT as-
signments have been based on the largest coefficient for transitions, in the ground state
orbital basis.

Transition ROKS TDDFT Experiment104

2a1u(HOMO)→ 7eg(LUMO) 1.97 2.15 1.89 Q
2.08 Q′

3b2u → 7eg(LUMO) 3.57 3.56
6a2u → 7eg(LUMO) 3.72 3.86 3.71 B2

2b1u → 7eg(LUMO) 3.96 3.92
5a2u → 7eg(LUMO) 3.97 4.03 3.74 B1

28eu → 7eg(LUMO) 4.08 3.99 3.99 B3

2a1u(HOMO)→ 8eg 4.13 4.10
1a1u → 7eg(LUMO) 4.52 4.52 4.41 N1

4.7 N2

The computed vertical excitation energies have been reported in Table 4, along with Ar

matrix experimental data.104 The computed ROKS and TDDFT energies agree very well

with each other, showing that orbital optimization was not particularly necessary for this

system. Nonetheless, the good agreement between the two approaches permits us to draw

conclusions more confidently, as TDDFT possesses multiconfigurational character (within the

singles subspace). The lack such multiconfigurational character therefore does not appear to

affect ROKS performance here.

The lowest energy Q band for ZnPc is well separated from the rest of the spectrum, on

account of the HOMO and LUMO being energetically separated from other orbitals. Our

computed PBE0/def2-SV(P) ROKS energy for the Q band agrees quite well with experiment.

However, we do not observe any symmetry allowed states that are close in energy to the Q′

state that has been suggested by experimental work (via subtraction of simulated curves from
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observed spectra).104 Previous theoretical work105,106,109 has also not observed such a state,

indicating that it is not of electronic origin. There exists a possibility that it is a symmetry

forbidden state that appears due to vibronic distortion. However, the original assignment

of it being of a A2u state stemming from excitation of N lone pairs into π∗ levels103,104 is

very unlikely on account of lack of any lone pairs close in energy to the HOMO (even after

ignoring symmetry considerations). It is also worth noting that the HOMO2 →LUMO2

double excitation energy is estimated to be 3.56 eV by ∆SCF with PBE0/def2-SV(P), making

it an unlikely candidate for the Q′ band. This dark state can nonetheless play a role in the

photophysics/photochemistry of the system. It is, of course inaccessible to TDDFT, which

illustrates a comparative strength of the ∆SCF approach.

The B band is experimentally observed to be very broad, extending from approx. 3.0

eV to 4.3 eV. Ref 104 interpreted it as a combination of two transitions B1 and B2, al-

though solvent phase measurements have suggested the presence of as many as five separate

transitions.103 We also find 5 states with Eu symmetry corresponding to that region of the

spectrum, with energies roughly centered around the reported Ar matrix band maximums.

Interestingly, one of those states is a transition to an unoccupied orbital that is not the

LUMO (the 2b1u → 8eg excitation). It is worth noting that the B3 state is distinct from

the rest of the B band as it has been assigned to be a N lone pair to π∗ transition of A2u

symmetry, and we also find a state with the same symmetry at 4.08 eV with ROKS, offering

fairly reasonable agreement.

The N band offers more of a challenge, for although we observe a state similar to the

experimentally observed N1 state, no state anywhere close in energy to the N2 band was

found with either TDDFT or ROKS. This might be a consequence of the multiconfigurational

nature of the state (which could cause the ROKS energy to be too high). However, the N2

band was a very weak contributor to the experimentally observed N band, and could likely

have a non-electronic origin (or arise from symmetry forbidden transitions on account of

vibronic perturbations).
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6 Summary and discussion

We have presented a general approach to converge excited state solutions for any quantum

chemistry orbital optimization technique. A simple finite difference based implementation of

the resulting Squared Gradient Minimization (SGM) approach requires only analytic orbital

gradients of the energy/Lagrangian and costs approximately three times as much as standard

ground state minimization (on a per iteration basis). SGM represents a direct minimiza-

tion based alternative to the existing Maximum Overlap Method (MOM),27,44 that provides

robust minimization to the stationary point closest to the initial guess at the expense of

somewhat increased computational cost. It is simpler and thus more efficient, though also

more initial-guess dependent, than other recently proposed excited state variational princi-

ples.33,34,40

Promising results were obtained within the KS-DFT framework (using the ∆SCF and

ROKS approaches), especially for challenging problems like charge-transfer, Rydberg and

doubly excited states (using ∆SCF when no electron pairs are broken and ROKS when

one pair is uncoupled) that are beyond the ability of standard TDDFT to model. TDDFT

nonetheless possesses the distinct advantage of being ‘black-box’ in the sense that it permits

simultaneous computation of multiple excited states without any prior knowledge about their

nature/energies. TDDFT is also quite accurate for low lying valence excitations of closed-

shell molecules, where state-by-state orbital optimization offers little additional benefit. It is

therefore useful to list the circumstances under which usage of SGM is likely to be beneficial

for applications purposes.

SGM is the most effective when the nature of the target state can be reliably guessed,

from chemical intuition or experimental data. The Q band of ZnPc is a clear example of this

nature, as it is quite well understood to be a HOMO→LUMO type of transition. Similarly,

it is also often possible to enumerate potential CT states in donor-acceptor complexes or

LMCT/MLCT excitations in transition metal compounds, and directly target them. Naive

enumeration of states would likely be unwise on account of a rapidly growing number of
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possibilities, necessitating use of narrow selection rules or extraneous information to limit

the search space.

An alternative is to first run a pilot TDDFT computation and subsequently determine

which states are of CT or Rydberg nature, followed by specifically optimizing them with

SGM while leaving valence excitations as is. TDDFT natural transition orbitals (NTOs)

could in fact prove to be very useful initial guesses for such problems. This strategy would

not be useful for double excitations (as TDDFT cannot detect them directly). Information

from more sophisticated wave function approaches like CC3 could be helpful, but likely

impractical due to their very high computional cost. The best way to identify potential

double excitations (aside from chemical intuition) is via examination of low energy TDDFT

single excitations, which might couple together.

Further work is certainly desirable to assess the performance of ground state function-

als for modeling excited states within the ∆SCF and ROKS approaches. It is possible to

consider extending the present approach by employing SGM to converge regularized orbital

optimized MP2 (OOMP2)55 or even orbital optimized coupled cluster (CC) methods56 for

excited states. This direction potentially complements very recent work on converging CC

amplitudes for excited states.110,111

From a practical standpoint, the ∆SCF and ROKS ansatze constrain the current applica-

tions of SGM to single configuration excited states. This limitation can be lifted in practice

by using a set of optimized excited HF determinants (i.e. abandoning DFT) as a many-

electron basis for non-orthogonal Configuration Interaction (NOCI).112,113 NOCI-MP2114,115

then provides an approach to add dynamic correlation in a well defined manner and for

relatively low computational cost.
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Computational Details

All calculations were performed with the Q-Chem 5.2116 package. Local exchange-correlation

integrals were calculated over a radial grid with 99 points and an angular Lebedev grid with

590 points for all atoms.
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