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On the Formulation of High-Frequency Dissipative
Time-Stepping Algorithms for Nonlinear Dynamics.
Part II: Second Order Methods.*

by

F. ARMERO* & I. ROMERO

Structural Engineering, Mechanics and Materials
Department of Civil and Environmental Engineering
University of California, Berkeley CA 94720, USA

Abstract

We present in this paper the formulation of a new high-frequency dissipative time-stepping al-
gorithm for nonlinear elastodynamics that is second order accurate in time. The new scheme
exhibits unconditional energy dissipation and momentum conservation (and thus the given name
of EDMC-2), leading also to the conservation of the relative equilibria of the underlying physical
system. The unconditional character of these properties applies not only with respect to the
time step size but, equally important, with respect to the considered elastic potential. More-
over, the dissipation properties are fully controlled through an algorithmic parameter, reducing
to existing fully conserving schemes, if desired. The design of the new algorithm is described in
detail, including a complete analysis of its dissipation/conservation properties in the fully nonlin-
ear range of finite elasticity. To motivate the different constructions that lead to the dissipative
properties of the final scheme, the same arguments are used first in the construction of new linear
time-stepping algorithms for the system of linear elastodynamics, including first and second order
schemes. The new schemes exhibit a rigorous decay of the physical energy, with the second order
schemes formulated in a general two-stage formula accommodating the aforementioned control
parameter in the dissipation of the energy. A complete spectral analysis of the new schemes is
presented in this linear range to evaluate their different numerical properties. In particular, the
dissipative character of the proposed schemes in the high-frequency range is fully demonstrated.
In fact, it is shown that the new second order scheme is L-stable. Most remarkably, the extension
of these ideas to the nonlinear range is accomplished avoiding the use of multi-stage formulas,
given the freedom gained in using general nonlinear relations, while preserving the conservation
laws of the momenta and the corresponding relative equilibria. Several representative numerical
simulations are presented in the context of nonlinear elastodynamics to evaluate the performance
of the newly proposed schemes.

KEY WORDS: nonlinear elastodynamics; time-stepping algorithms; high-
frequency dissipation; relative equilibria; finite element method.
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1. Introduction

Typical problems in continuum and structural elastodynamics are characterized by a
strong numerical stiffness, which motivates the use of implicit integrators for their temporal
discretization. Many such time-stepping algorithms can be found in the literature; we refer
to HUGHES [1987], among others, for a comprehensive account of many classical works in
the linear range up to the mid 1980’s. When developing these temporal schemes, the
need of numerical dissipation in the high-frequency range, even though the underlying
physical system may show full energy conservation, was soon realized if one is to arrive
to robust implicit integrators. This feature is motivated, on one hand, by the need to
eliminate the large modeling error accumulated in this range of frequencies, namely, the
error introduced by spatial discretization of the infinite dimensional systems of interest.
But more importantly, the large amount of work that can be found in this direction has been
motivated by the need to avoid the numerical instabilities associated with the existence of a
double unit root at infinite frequency in the amplification matrices of common conserving,
mid-point type temporal approximations. In this way, the formulation of second-order
schemes that exhibit these stability and dissipativity properties was an area of intensive
research in the late 1970’s to mid 1980’s, and some of them have become standard in
everyday practice; we refer again to HUGHES [1987] for details.

Despite this large amount of literature in the linear range, the development of similar
schemes for the nonlinear finite deformation range is relatively recent. The need for ad-
ditional developments along these lines is motivated by the fact that the aforementioned
schemes, standard for applications involving linear elastodynamics, do lose their conserva-
tion/dissipation properties when applied to the nonlinear range, as illustrated in ARMERO
& PETOCZ [1996], KUHL & CRISFIELD [1997] and ARMERO & ROMERO [1999] among
others. The presence of numerical instabilities in nonlinear problems when employing
schemes that are unconditionally stable in the linear range, including the aforementioned
linearly dissipative schemes, has motivated the search for improved algorithms. Motivated
by these remarks, the formulation of energy-momentum conserving schemes for nonlinear
problems in continuum and structural elastodynamics has received a significant amount of
attention recently. Representative references are SIMO & TARNOW [1992], CRISFIELD &
SHI [1994] and GONZALEZ & SIMO [1995], among others. The proposed schemes consist
basically of the mid-point rule algorithm, with a modified stress formula to assure energy
conservation.

After these early experiences with energy conserving algorithms, the need of a con-
trolled numerical dissipation in the high-frequency range to gain the robustness needed
to solve the stiff problems of interest, as indicated above for the linear range, was also
realized. Along these lines, we presented in ARMERO & PETOCZ [1996] some initial ideas
on how to extend conserving schemes to incorporate energy dissipation in the context of
dynamic contact problems. The proper modification of the stress formula (contact forces
in contact problems) does lead to the incorporation of this numerical energy dissipation.
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This and other approaches have been investigated further in KUHL & CRISFIELD [1997],
CRISFIELD et al [1997] and KUHL & RAMM [1996,99] for nonlinear elastodynamics.

In ARMERO & ROMERO [1999], which we refer simply as Part I of this work hereafter,
we have explored further the development of dissipative schemes in nonlinear dynamics. We
formulated in this work a new time-stepping algorithm that is shown rigorously to exhibit
unconditional energy dissipation while preserving the conservation laws of the linear and
angular momentum in the mechanical problems of interest, the so-called energy-dissipative,
momentum-conserving scheme (EDMC-1). Furthermore, it was shown in detail that the
new algorithm does also preserve the relative equilibria of the underlying mechanical sys-
tem, along the lines of the analysis presented in GONZALEZ & SIMO [1996] for the model
problem of a nonlinear spring/mass system. More specifically, it was shown in Part I of
this work that the newly proposed EDMC-1 dissipative scheme no only preserves these
relative equilibria, characterized in the elastic systems under investigation by rigid mo-
tions superposed to a fixed deformation, but also lead to the introduction of the numerical
dissipation in the high frequency range of the internal modes of the motion, with the so-
lution tending asymptotically to the exact relative equilibria. This result was shown for
two model problems (a simple nonlinear spring/mass system and a simplified model of
thin beams), as well as for the general problem of nonlinear elastodynamics. In addition, a
complete analysis was presented of the Newmark method (NEWMARK [1959]) and the HHT
a-method (HILBER et al [1977]), as representative examples of the aforementioned linearly
dissipative schemes, showing that these schemes not only lose their dissipative character,
leading eventually to numerical instabilities, but also to the complete elimination of these
relative equilibria of the system. The failure to preserve the conservation of angular mo-
mentum was shown to be the main drawback of these standard methods, in this respect.
As a consequence, for the simple problem of a point mass rotating around a fixed point
through a nonlinear elastic spring, the computed solution with these standard schemes
either exploded for large time steps, or tended asymptotically to the static solution.

Despite the good stability and dissipation/conservation properties of the EDMC-1,
this scheme is only first-order accurate in time. We present in this paper the formulation
of a new time-stepping algorithm for nonlinear elastodynamics that exhibits the desired
second-order accuracy in time while showing the same dissipation/conservation properties.
Remarkably, the new scheme is based on the same structure as the EDMC-1 scheme, but
with a more involved definition of the dissipation functions. For this reason, we simply refer
to this new second-order scheme as the EDMC-2 scheme (energy-dissipative, momentum-
conserving second-order scheme).

The development of high order dissipative schemes exhibiting numerical dissipation
in the high-frequency range has been considered by several authors recently. For exam-
ple, the formulation of such schemes for a model of elastic beams has been presented in
BAUCHAU et al [1995], BAUCHAU & THERON [1996] and BoTASsO & BoORRI [1998] and,
more recently, in BAUCHAU & Joo [1999] for the continuum system of nonlinear elasto-
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dynamics. However, these schemes do not show any control over the introduced numerical
dissipation, in the form of an algorithmic parameter. In fact, these formulations are based
on existing fixed multi-stage formulas, some of them arising from the application of the
so-called discontinuous Galerkin in time (see e.g. JOHNSON et al [1984] and HUGHES &
HULBERT [1988] for some of the original references), thus leading to a considerable added
computational cost due to the doubling (extra displacement and velocity fields) for each
additional stage considered in the numerical scheme. In some cases, the decay properties of
the physical energy only applies to quadratic elastic potentials, especially if a second-order
scheme is desired. In other cases, like in BAUCHAU & J0O [1999], no attention is given to
the preservation of the conservation law of angular momentum which, as noted above, is a
crucial property of the numerical scheme to capture fundamental qualitative properties of
the underlying phase dynamics, even if numerical dissipation is introduced in the system.

In contrast, the EDMC schemes proposed in this work do show the numerical dissi-
pation, as well as momenta conservation, with these properties holding independently of
the elastic potential as well as the time step. In both the first and second order schemes
an algorithmic parameter is introduced to control the numerical dissipation, recovering
as a particular case a fully energy-conserving algorithm, if desired. Special care has been
taken in the development of the second-order EDMC-2 presented in this work for nonlinear
elastodynamics to avoid the cost associated to extra stages. Furthermore, the numerical
dissipation is shown to be in the high-frequency range (an intrinsically linear concept) by
deriving similar algorithms for linear elastodynamics following the same arguments, but
without the constraint given by the conservation of the angular momentum (an intrinsically
nonlinear concept).

In this context, before considering the problem of nonlinear elastodynamics in the
second part of this paper, we consider first the development of time-stepping algorithms for
linear elastodynamics that exhibit rigorously a decay of the physical energy of the system.
We note that usually it is not the physical energy that decays along the solutions computed
with classical dissipative schemes, but only a numerical norm of the discrete solution. Even
though this is enough for the scheme to show numerical stability in the linear range, the
dissipation of the actual energy of the physical system allows the extension of the linear
scheme to the general nonlinear range, as the results in this work illustrate. In this way,
we present first two new families of time-stepping algorithms for linear elastodynamics
that show energy dissipation in the high-frequency range. We call the new schemes the
energy-dissipative ED-1 and ED-2, for the first and second-order methods, respectively.
A complete spectral analysis of these methods characterize their stability, dissipation and
accuracy properties. In particular, the ED-2 scheme is shown to be L-stable (see e.g.
HAIRER & WANNER [1991]), being formulated as a two-stage algorithm to maintain the
linearity of the final formulas. Nonetheless, the freedom gained when extending the scheme
to the nonlinear range (to the EDMC-2 scheme) allows to formulate the scheme with
dissipation functions defined locally, without the need of introducing additional nodal
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values of the displacements and velocities in a time step for a typical finite element solution
of the problem of nonlinear elastodynamics. Furthermore, this extension is done in such a
way that the conservation laws of linear and angular momenta, as well as the associated
relative equilibria, are fully preserved.

An outline of the rest of the paper is as follows. Section 2 considers the problem of lin-
ear elastodynamics. After developing the new ED-1 and ED-2 schemes in Section 2.1.1 and
2.1.2, respectively, we present the spectral analysis of these methods in Section 2.2. The
extension of these ideas to the nonlinear range is undertaken in Section 3, leading to the
new EDMC-2 scheme, including rigorous proofs of the dissipation/conservation proper-
ties of the final time-stepping algorithm. The numerical implementation of the EDMC-2
scheme is described in detail in Appendix I. Section 4 includes several representative
numerical simulations to evaluate the accuracy and dissipation/conservation properties of
this scheme. Finally, some concluding remarks are drawn in Section 5.

2. The System of Linear Elastodynamics

We consider in this section the case of linear elastodynamics defined by the system of

equations
d=v,

(2.1)
M'l.) = _Kd+ fezt(t) 9

for unknown functions in time d,v : [0,T] — R™¥f, corresponding typically to a set of
Ndof (nodal) displacements. and velocities, respectively, with T' denoting the time interval
of interest. The symbol (-) denotes the time derivative of the corresponding variable.
We have made use in (2.1) of the classical notation of M € R™d°f*™d°f for the mass
matrix, K € R"¥f*"d°f for the stiffness matrix, and fez¢(t) € R™f for a general set of
external forces. The classical properties of positive definiteness for the mass matrix M and
positive semi-definiteness for the stiffness matrix K are assumed in this section, implying
the relations

a-Ma>0 and a-Ka>0 VaeR" , a#0, (2.2)
where - denotes the standard Euclidean inner product in R"4°f (i.e. a-b = a;b; summation

implied among the ng4,f components a; and b; of a and b, respectively). The first-order
system of ordinary differential equations (2.1) is accompanied with initial conditions

d0)=d, and v(0)=7,, (2.3)

for given initial values d, and B, of the displacements and velocities, respectively.
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The system of equations (2.1) defines a linear Hamiltonian system. In this context, a
standard calculation shows that ’ '

H = fea:t v, (24)
for the Hamiltonian function (the total energy)
H(d,p(v)) := tv-Mv + :d-Kd , (2.5)
——— N——

kinetic energy K potential energy V

with the (linear) momenta p(v) := Mw (so the kinetic energy reads K = p- M~1p/2) to
follow the classical notation in the field. For the force-free case f.o: = 0, we recover the
classical conservation of energy relation

H(d,p(v)) = constant , (2.6)

In time.

We are interested in time-stepping algorithms approximating the unknown functions
d(t) and v(t) solutions of (2.1) through the sequence d, =~ d(t,) and v, ~ v(t,) (n =
0,1,2,...) for a partition [0, T] = Un[tn,tnt1] of the time interval of interest and for given
initial conditions d, = d, and v, = ¥, after (2.3). More specifically, it is the goal of this
section to identify time-stepping algorithms that for a typical time step [t,,t,4+1] (with
At = t,41 — tn, Dot necessarily constant in n) show the stability estimate

Hppy—H,=-D<0, (2.7)

for the homogeneous problem f.;; = 0 and unconditionally in At, with D > 0 defining the
numerical dissipation. Here, H,, := H(d,,p(v,)) for the the Hamiltonian H(-) in (2.5)
of the continuum problem. We note that the estimate (2.7) is not a necessary condition
for the numerical stability of a linear system like (2.1). The so-called energy method
allows the identification of a general norm of the discrete solution satisfying a decaying
estimate like (2.7), and not necessarily the physical (semi-)norm defined by the actual
Hamiltonian; see e.g. HUGHES [1987], Chapter 9, for complete details. In fact, standard
unconditionally stable time-stepping algorithms exhibiting a high-frequency dissipation,
as it is the interest in this work (namely, the dissipative Newmark and the HHT schemes
referred to in Section 1) do not satisfy the estimate (2.7). Instead an algorithmic norm
(involving also contributions of the discrete acceleration approximating ¥) is shown to be
decaying. In general, one can prove that for a spectrally stable scheme (that is, possessing
a spectral radius less than one, as defined in Section 2.2 below) one can always construct,
under some minor technical conditions, a numerical norm that decays in time; see HUGHES
[1987], page 564. However, and as illustrated with the numerical examples presented in
Part I of this work, these stability estimates in the linear problem do not extend to the
nonlinear problem. The estimate (2.7), on the other hand, leads to a natural extension in
the context of nonlinear dynamics as shown in the developments presented in this paper.
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2.1. Some one-step dissipative schemes

With the stability estimate (2.7) in mind, we consider the generall one-step method

d —-d
"I‘l%t_n = Gcons t Gdiss »
(2.8)
VUn4+1 — U re
M—rlj-A—t-—-'1 = - (fcons + fdiss) + fe:ct 3

for an approximation fezt of the external force vector (e.g. Fort = Jext(tny1/2)). Here we
have introduced conserving and dissipative approximations of the right-hand-side terms of
the original equations (2.1), in the sense that the following equalities hold

fcons : (dn+1 - dn) = Vn+1 - Vn s }
(2.9)
Gcons * M ('Un+1 - vn) = Kn+1 - K’n 3
and
fdiss : (dn+1 - dn) = DV ) }
(2.10)
Gdiss * M (vn+1 - Un) - DK 3

as their counterparts in (2.1). The notation V;, := V(d,) and K, := K(v,,) for the exact
potential V'(-) and kinetic K (-) energies defined in (2.5) has been used in (2.9).

Multiplying (2.8); by M (vp4+1—vp), (2.8)2 by —(dn+1 —d,) and adding the resulting
expressions, we obtain

(Kn+1+Vn+1)—(Kn+Vn)_—.—DK+DV, (2.11)
Hpi H, D

identifying the numerical dissipation D in (2.7) with D = Dy + Dk in this case. We
emphasize again the need of a non-negative dissipation D > 0 for numerical stability, not
necessarily each of its components Dy and Dy . Similarly, we reiterate our interest that the
final numerical dissipation D is controllable and in the high-frequency range, as motivated
in the introduction presented in Section 1.

In this linear setting, linear conservative terms are easily obtained through the second-
order mid-point approximations

feons = %K (dn+1 + dn) = Kdn+ , and Gcons = % (vn+1 + 'Un) =

n+% )
(2.12)
The estimates (2.9) can be easily verified. Therefore, the discrete system (2.8) defines in

this case a consistent approximation of (2.1) if

1
2

faiss ~ O(AtP) and ggiss ~ O(At?) for p>1, (2.13)
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where we have used the standard notation of O(-) for the “big-oh” (that is, lim O(zP) / z®-1
— 0 as x — 0). Since in the resulting consistent approximations the differences

dny1 — d, ~ O(AY) and Upnt1 — Up ~ O(AY) (2.14)

we conclude from (2.10) that (2.13) implies that Dy, Dx ~ O(AtP*1). The final numerical
scheme will exhibit an order of accuracy of at least min{2, p}, that is, first or second order
methods. We consider in the next two sections these two cases separately.

Remark 2.1. We have considered, for simplicity in the exposition, the Hamiltonian
case given by the system of equations (2.1). The consideration of linear damping in (2.1)s,
that is,

Mb=-Cv—- Kd+ feys , (2.15)

for a positive semi-definite damping matrix C can be easily incorporated in the develop-
ments of this section. In particular, the general approximation of the damping term

Cv — C(dps1 — dn)/At (2.16)

leads to a dissipative approximation, with the added physical dissipation Do = (dp41 —
d,) - C(dnt+1 — dyn)/At > 0 to the numerical dissipation D in (2.11). We note, however,
that the consideration of an artificial damping C alone, not necessarily modeling a physical
damping, does not lead to the introduction of dissipation in the high-frequency range (see
e.g. HUGHES [1983], page 97). O

2.1.1. First—order dissipative schemes (ED-1)

Given the definiteness properties (2.2) of the mass and stiffness matrices, the simplest
choice of dissipative terms fuss and ga;ss satisfying the dissipation estimate (2.7) is given
by

fdiss =X, %K( n+1l — n) ’ and Gdiss = Xz% ('vn+1 - 'Un) . (217)
in terms of two numerical parameters x, and x,. With these definitions, the relations (2.8)
lead to the quadratic dissipation functions

Dszlé(n+1 n) (n+1—dn)20a}

(2.18)
Dk = Xz% (vn+1 - vn) - M ('Un+1 - 'Un) >0,

for x,,x, > 0 by (2.2). Given (2.14), we conclude that the choices determined by the
relations (2.17) define a first-order scheme (note that Dy, Dg ~ O(At?)). The resulting
scheme is denoted ED-1 (energy dissipative, first order), and reduces to the scheme referred
to as —method in WooD [1990] for the particular case given by x, = x,-
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2.1.2. Second-order dissipative schemes (ED-2)

We observe that the limited first-order character of the approximations (2.17) arises
from the first-order differences (2.14). Therefore, to arrive to second-order dissipative
linear schemes, we consider the alternative expressions for the dissipative terms

Jaiss = % K(Jn - dn) ’ and Gdiss = % ('En - 'vn) ’ (2-19)

for intermediate stage values Jn and v,. We are interested in these intermediate values
defining a second-order approximation of the corresponding values at t,, that is,

dp—d, ~O(AtY)  and B, — v, ~ O(AL?) (2.20)

s0 faiss and ggiss are second-order O(At?) in At. This order can be achieved with the
relations

~

d, =d, + Ata(0,—vp41),

) ) (2.21)
Mi}n = M'un— At K(dn - dn+1) [+At fea:t] )

for an algorithmic parameter . The term [+At fezt] in (2.21), has been added to recover
some existing methods as particular cases. For the methods proposed in this paper, we
simply take f.o¢ = 0. We note that the second-order relations (2.20) are automatically
satisfied for the definitions (2.21), even for fost = 0. More generally, we would need
feet ~ O(AL).

The particular cross definitions (2.21) for the intermediate values d, and %, have
been introduced to arrive at dissipative approximations. for any value of the parameter a.
Indeed, combining equations (2.19) and (2.21), the numerical dissipation D is given by
(2.10) for a # 0 as

D= DV + DK = QGdiss * M (vn+1 - 'Un) + fdiss . (dn+1 - dn)

=35 (Bn — ) M(Vny1—vs) + % (Jn —dy) - K(dnt1 — dy)

(&Y

(~n ""vn) M('En _vn)'i"% (Jn_dn) ’K(Jn_dn)
+ 1 (B —vn)  M(Vpg1 = Bn) + 3 (dn — dn) - K(dn41 — dn)

Il
N

2% (O — vn) - M(0p vn)‘*‘% (Jn_dn)‘K(Jn—dn)
1 . ~ 1 - _
-% m(vn"vn)'M(dn“dn)"'% Z—t‘&M(dn_dn)'(vn_'vn)
= ’é‘ ('En"‘vn)'M({’n"vn)"'% (Jn_dn)‘K(Jn“‘dn)ZO, (2-22)

given the assumed positive definiteness properties (2.2). For the case a = 0, the estimate

-~

(2.22) still holds since in this case we have from (2.21) d,, = d,, and ¥, = v, 50 faiss = 0,
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9diss = 0, and D = Dy = Dk = 0, recovering the conserving scheme. We note that, in
contrast we the first-order methods introduced in Section 2.1.1, it is the total dissipation
D (and not necessarily each component Dy and Dg) that is non-negative, as needed, for
the second-order schemes defined by (2.19). The cross definitions (2.21) of d,, and %, allow
the cancellation of terms in the proof of the estimate (2.22) resulting in the dissipative
character of the final scheme.

We can recognize several existing algorithms as particular cases of the time-stepping
algorithms given by (2.19) and (2.21). Namely, we have:

i. a =0 leads to the trapezoidal rule (with fez; = 0), the conserving formula (2.12).

il. a =1/6 leads to (linear in time) discontinuous Galerkin for

1 tn+1

Feat = Y .fezt(t) dt , (2.23)
in the original discrete approximation (2.8), and

2 bnt1 ¢ tny1/2 =t
f t=/ nt f +(t) dt (2.24)
ex . 2At2 ex

n

in (2.21). These very particular choices lead to a third-order scheme; see JOHNSON et
al [1984].

ili. a = 1/2 leads to the Lobatto IIIC Runge-Kutta method for
fe:z:t = %(femt(tn) + fezt(tn+1)) 3 (225)

in the original discrete approximation (2.8), and

femt = ';_‘(.femt(tn) - fe:z:t(tn+1)) ) (2.26)

in (2.21).

Hence, the new methods (2.19)-(2.21) can be seen to be extensions of the particular cases
indicated above, with the algorithmic parameter o controlling the introduced numerical
dissipation. The dissipative estimate (2.22) shows the unconditional stability of all the
resulting schemes, that is, for any o. The spectral analysis presented in the following
section shows that numerical energy dissipation in the high-frequency range is accomplished
for a > 0.
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Remarks 2.2.

1. We note the computational expense added by the introduction of the intermediate
stage (2.21), leading to an algebraic system of equations in 4 - Ndof unknowns (dp41,
Un+1, Jn and ¥,), typical of multi-stage implementations. The cross character of
the relations (2.21) leads to a fully coupled system of equations in this 4 - Ndof UN-
knowns, and its solution does not reduce to the simple evaluation of two dynamic
stages. For this reason, the use of the proposed numerical schemes in the linear set-
ting considered in this section may appear rather limited in front of existing single
stage formulas. However, and as shown in Section 3, the algorithms described in this
section provide the basis for the formulation of dissipative time-stepping algorithms
in the fully nonlinear range. In addition, the generality added by the consideration
of nonlinear formulae allows to these costly multi-stage implementations and preserve
other fundamental properties of the nonlinear dynamics.

2. We observe that the use of other mass and stiffness matrices in equations (2.19) and
(2.21)5, say M and K, would have led to the same energy decay estimate (2.22), as
long as these matrices satisfy the conditions (2.2). This observation also applies to
the relations (2.17) and (2.18) for the ED-1 scheme. This arbitrariness corresponds,
in essence, to a scaling of the algorithmic parameters, « or x, and x,, respectively. ]

2.2. Spectral analysis

The complete characterization of the stability and accuracy properties of time-stepping
algorithms in the linear range can be obtained through a spectral analysis of the discrete
equations. In particular, and following standard arguments (see e.g. HUGHES [1987],
Chapter 9, for complete details), we consider the homogeneous system of equations

iz, )
o = d+w?d=0, (2.27)
v =—-w‘d,

corresponding to a free one-degree of freedom linear oscillator of natural frequency w. The
system equations (2.27) can be understood as governing one of the modal equations of
the multi-dimensional system (2.1), for the corresponding frequency w of the response.
Indeed, and as a classical argument shows, if we denote by v; and w; the eigenvectors and
eigenvalues of the generalized eigenproblem

KV,’ = wiZ MUi N for i= l,ndof y (2.28)

(no sum in ¢ implied), the contraction of the equations (2.1) with each eigenvector v; leads
to the scalar equations (2.27) for each modal component d; := v; -d and v; = v; - v
(sub-indices 7 having been omitted in (2.27)).
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Following the same modal projection argument, the general class of linear time-
stepping algorithms (2.8), with (2.17) or (2.19), leads to the same discrete relations when
applied directly to the scalar system (2.27). For a typical time increment [t,,,,1] (with
At = tp4+1 — ty), the resulting equations can be written as

{ A‘i’;:il } = A(.Q){ A‘if;]n} , (2.29)

for the algorithmic amplification matrix A(£2) € R**2, function of the (non-dimensional)
sampling frequency {2 := w At € [0, c0).

The interest is focused on the properties of the eigenvalues v; € C (i = 1,2) of the
amplification matrix A(§2), with the spectral radius p({2) for the frequency 2 defined as

p(£2) := max |v;(£2)] with pe := lim p(£2). (2.30)
1=1,2 2—o00

The spectral stability of the numerical scheme is then defined by p(£2) < 1, with linearly
independent eigenvectors for repeated eigenvalues ; (otherwise, if the eigenvectors of re-
peated eigenvalues are linearly dependent, p(f2) < 1 strictly). In particular, the numerical
dissipation in the high-frequency range is reflected by the property po, < 1, strictly. A
complete characterization of the spectral properties of the numerical scheme is obtained
by considering the standard spectral error measures: the relative frequency error

24— 02
e = dQ where 24 = [Im(ln ;)] ,
(note that v; and 7, are real or complex conjugate, so |Im(y;)| = |Im(vz)|), and the
algorithmic damping ratio
1
&g = min2 €4, where &g, = —-Q—Re(lnfyi) for 1=1,2. (2.31)
1=1, d

We refer again to HUGHES [1987], Chapter 9, for complete details on these classical con-
cepts.

i. First-order ED-1 schemes. The amplification matrix (2.29) for the ED-1 scheme
(2.17) is given by

s o 6517 1 ﬁz‘]_i [1—02/3;“13; L
A(O)—[mﬂ'f 1} [—mﬁ; 1] A -2 1=
(2.32)
where
F=30+x), B =301-x
By 2(1+x), A 2 X)} and A :=1+ 2%8f6;+, (2.33)
T=10+x) B =31-x)
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FIGURE 2.1. Spectral analysis, ED-1 schemes. Distribution of the
spectral radius p(f2) in terms of the sampling frequency 2 = wAt of
a linear oscillator for different numerical parameters x; and x,. Note
that poo = max;=1,2 (|11 — xil/1 + xs)-

in terms of the algorithmic parameters x, and x,. The eigenvalues of the amplification
matrix (2.32) are given in closed-form by

02? 22 2
ED‘71,2=£—<1——2—([3H5'{ +ﬁ{ﬂ§’)i 9\/7 (ﬁfﬂ?—ﬁ{ﬁ;) —1) . (2.39)

Some analysis shows that p(£2) <1 for x,,x, > 0, and leads to the closed-form expression

1- 1-—-
EDlpoozmaX{l Xl | le}’ (2.35)

for the spectral radius at infinity. We observe that poo < 1 if x, > 0 and x, > 0, thus
requiring the presence of dissipative terms in both equations (2.8) for this class of first-order
schemes to exhibit high-frequency numerical dissipation.

The expression (2.34) shows that a bifurcation from two complex conjugate to two
real eigenvalues occurs for the sample frequency

3]
4

- (2.36)
Br By — BT By

bif = 5
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at which a repeated real eigenvalue exists. The closed-form expression (2.34) reveals that
in this case p(£2y;5) < 1, strictly. We also observe that {2;; = oo if and only if x, = x,.
This bifurcation can be seen in Figure 2.1 to reduce the spectral radius at {2;; # whenever
X, # X,- From these considerations (or directly from the expression (2.35) of the spectral
radius at infinity), we conclude the optimality of the choice x, = x,.

Figure 2.2 depicts the distribution of the algorithmic damping ratio £4(£2), relative
frequency error e (f2) and spectral radius p(£2) for this case. The three-dimensional plots
in the left column show these values versus the sampling frequency 2 and the algorithmic
parameter x, = x,. The 2-D plots in the right column correspond to sections of these
3D plots for a different fixed algorithmic parameter. The absence of numerical dissipation
(reflected by the values £4(§2) = 0 or p(§2) = 1) in the conservative case x, = x, = 0
is apparent, with increasing values of this numerical dissipation for increasing values of
the algorithmic parameter x, = x,. The relative frequency error ey is observed to be
non-positive, thus concluding that the computed frequencies §2; are smaller than the exact
frequency {2 for this scheme. Alternatively, we may say that the computed periods (T :=
At 2m/§2;) are always elongated when compared with the exact periods (T := At 27/02).

A calculation based on (2.34) results in the asymptotic values

&a(2) = 502+ 0(27) (2.37)
en(2) = —}-1 (;8 + %) 22+ 0(2%) (2.38)

as {2 — 0, and where the optimal case x, = X, = Xx has been assumed. The first-order
accuracy of the method (unless x = 0, that is, the conservative case) is a consequence
of the first-order nature of the algorithmic damping ratio £4(£2) in (2.37). Note that the
dissipation function D := Dy + Dk in (2.18) is of second order in At, but the final scheme
is first-order only, as discussed during the design of the algorithm in Section 2.1.1. This
first-order accuracy of the scheme is reflected in Figure 2.2 by the non-zero slope at 2 = 0
of the distribution of the algorithmic damping ratio 4(f2) for a fixed algorithmic parameter
X, = X,, in accordance with (2.37).

ii. Second-order ED-2 schemes. The amplification matrix (2.29) for the ED-2 scheme
(2.19) is given by

B0 A(0) = (A1 — A2A7AL) T (1 - 4,450 (2.39)
where
1 -1 0 -l] [ 1 —a] [ 0 a]
A, = 2|, A= 2|, Asz= , Ag= ,
! [%2 1 ] ? [%2 0 T lea 1 T len2a 0

(2.40)
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in terms of the algorithmic parameter a. After a long but stra.lghtforward calculatlon the
eigenvalues of the amplification matrix (2.40) are given in closed-form as

1——%2—a92+a2 224+i 0 1——a%3+a2 22

D2
_ , 2.41
T2 1+%2—a!22+a292+a2.(24 ( )

where ¢ = /—1. The spectral radius is then given by the closed-form expression (for o > 0)

a? 4
1+2 —a 22402 22402 Q4

ED25(0)) = nzlgxlfyz(ﬂﬂ = \/1 - (2.42)

which reduces to p(f2) = 1 for the conservative case & = 0 (no dissipation in this case for
any sampling frequency §2) and for a < 0.

From (2.41) and (2.42), we can also observe the limit

hm ED2 ED2
2— 00

T,2=0, so Poo =0, (2.43)

for a > 0, thus showing a full numerical dissipation in the infinite frequency. The ED-2
schemes are then L-stable for a > 0 (see e.g. HAIRER & WANNER [1991]). We note that,
even though a control over the spectral radius at infinity po, may certainly be a desired
feature (for example, for the calibration of the algorithmic parameter ), the infinite sam-
pling frequency may be considered as “far away as needed” in many practical applications.
With this we mean that we still have full control over the range of finite frequencies for a
particular problem and its discretization (in the sense that the desired amount of damp-
ing can be introduced through the variation of the algorithmic parameter «), while still
exhibiting energy dissipation in the infinite (say larger or unresolved) frequencies. The
calibration in this case can be accomplished through the value of the spectral radius at a
given sampling frequency, say £2%p(w) in (2.42).

The spectral response for small sampling frequencies 2 is characterized by the asymp-
totic limits

a2
&a(R) = 5 2°+0(2Y, (2.44)
ee()=1 (a - %) 2%+ 023, (2.45)

as {2 — 0, after some algebraic manipulations involving (2.41). The third-order accuracy of
the combination oo = 1/6 becomes apparent from these two last expressions. This property,
however, does not extend to the extensions to nonlinear elastodynamics presented in the
next section. Furthermore, we observe that the numerical dissipation introduced in the
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system, measured in terms of the damping ratio &; is of the order 23 for small values of
2 (note that the dissipation function D in (2.22) is of order At?).

Figure 2.3 depicts the results of this spectral analysis of the ED-2 scheme. As in
Figure 2.2 for the ED-1 scheme, the distributions of the damping ratio £4(£2), relative
frequency error e (42) and spectral radius p(f2) are shown continuously in the algorithmic
parameter o (the 3D plots in the left column) and for fixed values of o (the 2D plots
in the right column, sections of the previous 3D plots for fixed ). As expected and
shown above, we observe the absence of numerical dissipation (£4({2) = 0 or, equivalently,
p(2) = 1) for the conservative case @ = 0. Increasing the algorithmic parameter o
increases the numerical dissipation, characterized by increasing values of 4(£2) for a given
sampling sampling frequency (2. Similarly, we observe that for large sampling frequencies
the relative frequency error is negative (e < 0), indicating that the computed frequencies
are diminished compared with the exact value 2 for this range of frequencies (i.e., the
computed periods are elongated, as defined above). For small frequencies {2, the relative
frequency error is positive for large values of the algorithmic parameter a. The second-
order accuracy of the method for any value of a (third-order for @ = 1/6) is also apparent
by the zero slope of the curves in the right column, reflecting the limit values obtained
analytically in (2.44) and (2.45) for small 2.

3. Extensions to Nonlinear Elastodynamics

We address in this section the extension of the developments presented in the previous
section to the general system of nonlinear finite elastodynamics. The challenges in this
task can be stated as:

i. To maintain the energy dissipative character of the schemes for any elastic poten-
tial, including the control on the numerical dissipation (through the appropriate
algorithmic parameters) and their second-order accuracy in time.

ii. To preserve exactly the conservation laws of the momentum maps and corre-
sponding relative equilibria of the underlying continuum system, thus preserving
fundamental qualitative features of the phase dynamics.

.

iii. To avoid costly multi-stage implementations, as indicated above.

The time-stepping algorithms developed in the previous section where focused in the con-
struction of linear schemes given the linearity of the underlying problem, resulting in the
two-stage formulae of the second-order ED-2 scheme. Therefore, a direct application of the
previous algorithms to the nonlinear problem does not address the three aforementioned
challenges, including especially the conservation of angular momentum. Nevertheless, we
show in this section that these objectives can be accomplished following similar arguments
in the construction of the numerical schemes. In this way, after defining briefly the problem



On the formulation of high-frequency dissipative schemes 19

under consideration in Section 3.1, we formulate in Section 3.2 a new second-order energy-
dissipative/momentum-conserving time-stepping algorithm for nonlinear elastodynamics.

3.1. Problem definition

We are interested in the integration in time of the deformation ¢ : B x [0, T] — R™dim
and material velocity v : B x [0,T] = R™™ (ngy, = 1,2 or 3) of a solid B C R™im with
material particles denoted by X € B and a time interval [0,7]. The weak form of the
governing equations (balance of linear momentum) reads

p=uv,

/po'f)-&p dB+/ S : FT GraD(6¢) dB=/poB-6<p dB + T -0pdl,
B B B orB
(3.1)

for all admissible variations J¢ satisfying homogeneous essential boundary conditions d¢ =
0 on 9,B (the part of the boundary with imposed deformations), as usual. We have
denoted in (3.1) the reference density of the solid by p, > 0, the deformation gradient by
F := GRAD ¢ (with material gradient GRAD[']), the second Piola-Kirchhoff stress tensor
by S, the external body force B, and imposed tractions T on 7B has been employed in

(3.1). The hyperelastic relation

ow
S§=255. (3.2)

in terms of a general stored energy function W = W(C), with C := FTF (by frame
indifference).

As described in Part I of this work, the system of equations (3.1) defines an infinite
dimensional Hamiltonian system, exhibiting the following conservation laws:

i. Conservation of energy. For the Neumann problem with no applied forces (i.e., B =
T = 0 and 0,8 = @), the total energy is conserved, that is,

H(p,p(v)) =/3 3 Po |lv]|? dB—I—/B W(C(p)) dB = constant , (3.3)

for the Hamiltonian H(-) in terms of the linear momentum density p := p,v.

ii. Conservation of linear momentum. The invariance of the Hamiltonian (3.3) under
rigid translations leads to the conservation law

l:= / po v dB = constant , (3.4)
B

when the boundary conditions and loading exhbit this invariance (e.g., B =T =0
and 0,B = 0).
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iii. Conservation of angular momentum. The invariance of the Hamiltonian (3.3) under
rigid rotations leads to the conservation law

J = / Po P X v dB = constant , (3.5)
B

when the boundary conditions and loading share this invariance (e.g., B = T = 0 and
O0uB = ). In (3.5) we have made use of the cross product x of two vectors in R3, or
its corresponding embedding in lower dimensions.

As considered in detail in Part I, these symmetries lead also to the existence of relative
equilibria (see e.g. MARSDEN [1992]), that is, solutions of the general systems of equations
(3.1) consisting of a rigid-body motion (rigid rotation and translation) superposed to a fixed
equilibrium deformation. We refer to Part I of this work and references therein for details.

We consider a general isoparametric finite element approximation of the continuum
equations (3.1) through the interpolations

Nnode Mnode
=X+ Y Na(X)d*(t) and v= Y Na(X)v4(), (3.6)
A=1 A=1

in terms of the shape function N4 (-) for n,,4e nodes, nodal displacements d = {le a2’ .. }

T
€ R™4°f, and nodal velocities v = {vlT 0?2 . } € R™f  Standard procedures lead to
the nonlinear system of spatially discrete equations

d=v
3.7
Mv = —/ BTS dB + feut(t) (3.7)
B
in terms of the (consistent) mass matrix
M = [MAB 1] for Mg = / pPo Ngo Np dB € RMdimX"dim R (3.8)
B

(for A, B = 1,m,04c) and the linearized strain operator (Béd = sym[FT GRAD §¢] for a
deformation variation d¢ and corresponding nodal variations dd), and external forces foz;
(including possibly imposed boundary displacements). This system of ODE’s is supple-
mented by the initial conditions (2.3) as in the linear case. The same conservation laws
(3.3)-(3.5) are inherited by the spatially discrete system (3.7).
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3.2. Energy dissipative, momentum conserving schemes

Following the developments in Section 2 for the linear case, we consider the following
temporal discretization of the nonlinear system of equations (3.7)

—ﬁ——&t—“i = ’Un+% +9%issy (A=1,Nn0g),

(3.9)

Un+1 — Un T rs
M———=—- | B* ;SdV ,
At /t:)’ n +% + f ert
for a typical time increment [t,,t,1], and mid-point evaluations of the velocities v,, ;1 J2 =
(Vn41 + vn)/2, and the linearized strain operator Bpy1/2 (at @nt1/2 = (@n+1 + ©n)/2).
As in the linear case (2.8), the external force vector is approximated through a general
expression fe;: (e.g. the second-order expression fezt = fezt(t 1)). The stresses S in

n+§
(3.9)2 are given by
DW Cn+1 - C’n
S=Suns+2—2 N, for N:= , 3.10
cone G Gl [Crir — Cal (310
with the Euclidean norm of a rank-two tensor ||C||? := C;;C;;. Here, S.ons denotes a

conserving approximation of the stress formula (3.2), that is, satisfying the relation

Scons : % (Cn+1 - Cn) - W(Cn+1) - W(Cn) . (3.11)

The simulations presented in Section 4 consider the expression

= N+2|I-NQN|JAW(——————= .12
SCO’IIS 2 ||Cn+]_ _ Cn” + [ ® ] C ( 2 ) ? (3 )
with the well-defined limit

S.. =2 3CW(£'L’LI_1'_9£) for Cp=Chny1, (3.13)

2

first proposed in SIMO & GONZALEZ [1994]. As noted in Remark 5.1.2 of Part I of this
work, the discrete stress formula (3.10) can be written in more general form as

W (Cnt1) = W(Cn) +Dw &

S=8+|2 S:N}N, 3.14
[Cors = Cal (3:14)

for a general second-order approximation S of (3.13), while maintaining the dissipa-
tion/conservation properties described in this section.
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The dissipative contributions gg;ss to the velocity equation (3.9)1 are defined nodally
by gdws € R™im through the solution of the system of equations

Nnode

'u Un+1 + Un,
Mg g2, /NA + B, 3.15
2 dis Tomea] = Tonll Toms el + Tonl (3.15)

for a dissipation function D,. We note the equality

Nnode

> (v -vl) Map 9B, = / D, dB. (3.16)
A,B=1 B

similar to (2.10) for the linear case. In this way, multiplying equation (3.9); by M (v,41—
vy,) and (3.9)2 by (dn4+1 — dn), we arrive at the discrete energy evolution equation

HE, = Hf = fogr - (A1 — dn) — / [D, + Dw] dB, (3.17)
B

after some algebraic manipulations. Here H" and H" n+1 correspond to the exact Hamil-
tonian function (3.3) evaluated with the finite element solution at times ¢, and t,1,
respectively. The dissipative character of the resulting numerical scheme for the force-free
case foge = 0 is then concluded if we have D, + Dy > 0. We note that the two dissipation
functions Dw and D, are to be defined only locally at the quadrature points since they
appear under an integral sign. This important observation is employed below to arrive to
efficient second-order schemes.

In addition, the specific form of the dissipative terms in (3.9); and (3.15) leads to
approximations conserving the momenta. Indeed, denoting by I! 4+1 and I" the linear
momentum of the finite element solution at t,, and t,; respectively (i.e., formula (3.4)
with the finite element fields) and using (3.9)2, we arrive at the relation

(ln+1 ) a = /Ba * Po(Vn+1 — vn) dB

Nnode
— | §:FT | GraDp[a] dB + At fA. ] a
o577 Granta) ane e (35 4

0

Nnode
(Z fm> -a  Va€R™n (3.18)

thus leading to the conservation of the linear momentum when fezt = 0 (note that this
implies no imposed boundary displacements as well). Similarly, denoting by J" 41 and
J* the linear momentum of the finite element solution at ¢, and t,4; respectively (i.e.,
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formula (3.5) with the finite element fields) and using (3.9), we arrive after some algebraic
manipulations at the relation

(Jv’wl+1 - Jg) ‘e = /Ba Po(Prt1 X Vnt1 — P X v,) dB

—_ T . A ~ .
= BFn+%SFn+%' a dB+ At Mg -a
———

symmetric skew

= At ege-a  Va € R™m (3.19)

where @ denotes the skew-symmetric tensor with axial vector a, and Mgz is the moment
of the external loading, given by

where B and T denotes the temporal discretization assumed for the external loads, the
later consisting of all the surface loads on the boundary 0B, including the reactions at the
boundary 9,B with imposed displacements at the mid-configuration ¢,,; /2. Therefore,
the conservation of the angular momentum for Mm.;; = 0 (including no imposed boundary

displacements as well) is concluded.

The above developments follow the same arguments as the ones presented in Part I
of this work (hence the conciseness in the presentation) for the analysis of similar time-
stepping schemes but in combination with a lumped form of the mass matrix M and
dissipation function in the velocities. In the same way, we can prove that the relative
equilibria of the discrete system (3.7) (now involving a consistent form of the centrifugal
body forces in the equilibrium configurations) are also conserved by the time-stepping
scheme. We refer the reader to this reference for a proof and further details. We summarize
these properties in the following proposition.

Proposition 3.1 The numerical scheme (3.9), with (3.10) and (3.15), possesses the fol-
lowing conservation/dissipation properties for the Neumann problem of nonlinear elasto-
dynamics (i.e. fezt =0 with 0,B=0):

1. The discrete I* linear and angular momenta J" are conserved. That is, we have

=1 and Jt, =Jh (3.21)

unconditionally in the time step At.

2. The total energy evolves as

HF - H=- / [Dy + Dw] dB. (3.22)
B
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Hence the scheme is dissipative unconditionally in At and the elastic potential W (-)
if D:=Dy+Dw > 0. ' ’

3. The discrete dynamical system preserves the relative equilibria.

The numerical scheme is then totally determined once the dissipation functions Dy
and D, are defined at the quadrature points. In this context, a first-order energy-dissipative
momentum-conserving scheme was presented in Part I of this work, with the dissipation

functions N
DW = X1 % (Cn+1 - Cn) : le'(cn (Cn+1 - Cn) 2 0
(3.23)

[+

Dy =X, 5 Po ([lonall = ”vn”)2 >0

for two algorithmic parameters x, > 0 and x, > 0, and a positive (semi-)definite tensor
Cn, e.g. Cp = 48%:W |, (or its convexification; see e.g. DACOROGNA [1989], page 35),
leading a first-order scheme, referred to as EDMC-1. More precisely, we presented in this
reference a variant involving a lumped mass matrix with an equivalent nodally-based defi-
nition of the dissipation function D, that leads to a very efficient numerical implementation
of the final discrete equations, involving the solution of a system of ng4,f equations with
independent nodal updates for the nodal velocities corresponding to equation (3.9);. The
expressions (3.23) are analogous to (2.18). In this way, the resulting scheme can be consid-
ered the extension to the nonlinear case of the energy-dissipative ED-1 scheme described
in Section 2.1.1 for linear elastodynamics. We develop in the next section a second-order
energy-dissipative momentum-conserving scheme, denoted by EDMC-2, extending the en-
ergy dissipative ED-2 schemes formulated in Section 2.1.2 for the linear problem.

3.2.1. A second-order energy decaying scheme (EDMC-2)

As noted in the beginning of this section, one of the challenges in the formulation of
efficient time-stepping algorithms is to avoid multi-stage formulas like the ED-2 scheme
developed in Section 2.1.2 for linear elastodynamics, thus avoiding the doubling of the
number of unknowns (i.e., nodal displacements and velocities) for each additional stage.
The key observation is again that the dissipation functions D, and Dw (see e.g. (3.22))
need to be defined locally at the quadrature points of the finite element implementation
only. Therefore, and motivated by the developments of Section 2.1.2 for the linear case,
we introduce the definitions

Dw =1 (Cn— Cpn): 3Cp (Cny1 - Cy) (3.24)

for an intermediate “strain measure” C,, second-order approximation in time of C,,, and,
introducing the notation vy, := ||v,|| and vap41 = ||vnt1]|s

Dy =2 (Vn — Vn) Po (Vnt1 = Va) , (3.25)
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for an intermediate scalar value ¥,, second-order approximation in time of v, := |lv,||.
That is, we require

C.=C,+0A?) and ¥, = v, + O(AL). (3.26)

We note that the use of the intermediate values é’n and ¥,, does not require the introduction
of new nodal displacements and velocities (say d, and ¥p,) as in the linear case. These
quantities are to be understood as numerical terms that through the definitions introduced
next lead to a dissipative numerical approximation being second-order in time.

Similarly, the only property required to the fourth-order tensor (C introduced in (3.24)
is its positive definiteness. The consideration of a constant (Cn in the time step simplifies
considerably the final numerical implementation, espec1ally the consistent linearization of
the resulting equations. In this way, we consider Cn = = 40%-W |y, (or its convexification)
or simply (C = K, for a scalar parameter £, > 0 and the fourth-order identity matrix
I. A value of k, = 2pu (the initial shear modulus) has been assumed in the simulations
presented in Section 4 involving a compressible Neo-Hookean finite elastic model. We note
the residual character of the definitions (3.24) and (3.25) (through the proper definition of
the intermediate values é’n and ¥,, as developed below), and conclude the consistency of
these different alternatives in the definition of @n.

A simple definition of the intermediate tensor C,, is given in the form
Cr=Cn+ B (Cry1 - Chr), (3.27)

for an unknown scalar parameter ,én. We note that both C,, and C,,4; are known in a
typical iterative procedure (e.g. Newton-Raphson) when solving the nonlinear system of
equations (3.9). The requirement (3.26); for a second-order scheme translates then to

B = O(AL) (3.28)
since Cp4+1 — C, = O(At). The numerical scheme reduces then to the definition of the
two scalars 3, and V,, at each quadrature point.

Motivated by the developments in Section 2.1.2 for the linear case, equations (2.21)
in particular, we introduce the definitions

At

B =« T (Vat1 — Vn),
N ) (3.29)
Vn=Vp—« T c? “Cn+1 Cn”2(1 = Br)

for an algorithmic parameter «, a length scale h (e.g. h =*"%/quadrature point volume =
"din/jy, for j = determinant of isoparametric mapping x quadrature weight) and

(Cnt1 = Chr) : 1T (Cpy1 - Cn)
[Crt1 — Chull?

R -
c?:= =, where &:=
P

(3.30)
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The dimensional consistency of the final equations (3.29) can be verified. We also observe
that the required order conditions (3.26) and (3.28) are satisfied. In fact, we even have

~ - 2 At

B=0Acr. At) and ¥V, = vy + O(AcrL At?) for AgpL = CT (3.31)
that is, a “Courant parameter” in terms of the speed value ¢ defined in (3.30). The
expressions (3.30) are simple linear equations in the two unknown scalars 3, and ¥,, with
the closed-form solution

~ 1 At At
:Bn = Z— (,YT [Vn+1 n + Q T CZ “Cn+1 Cn”2:| s (332)
and 1 At At
(’n = -Z [Vn - <1 - — A Vn+1) T C “Cn+1 - C “2] (333)
for :
A=1+a /\20FL [Crt1 — C’n“2
with 8, = 0 and ¥, = v, for ||Cpy1 — Cyrll = 0 and ||vp41|| = ||vn].

The motivation behind the definitions (3.30) is the non-negative character of the
combination Dw + D, appearing in the final expression (3.22) of the total dissipation,
as in the linear case considered in Section 2.1.2 for the ED-2 scheme. This property is
achieved through the cross-type definitions of B, and ¥, appearing in expressions (3.30).
In fact, we have

- % (Vn = va) Po (Vn = Vat1) — 3 (C -Cy) % (én — Cnt1)
= ﬁn(Cn+l‘Cn) = —(I—Bn)(Cn+1_Cn)

Vn”Vn)z'*'%(én_Cn):%@ (C C)
- % (f’n - Vn) Po ({"n - Vn+1) - % B’n (1 - Bn) Czpo “Cn+1 - Cn”2

= ‘éh‘( nt+1—0n) by (3 29)1

H
N
B}
Q
~—~

=1 pp (Tn=va)2+ 1 (Cn—Cp): L1Cph (Cn - Cy)
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- ~ At |~ -
- % [(Vn - Vn) + o (1 - :Bn) c T “Cn+1 - Cnnz] Po .(Vn - Vn+1) .

.

—0 by (3.29),

=1 po (Ta—va)?+1(Cn~Cn): 1C, (Cn—Cp) >0, (3.34)

since p, > 0 and C,, is positive semi-definite. Furthermore, the relation (3.34) holds uncon-
ditionally in At and, perhaps more importantly, unconditionally on the elastic potential
wWi(.).

We emphasize once more that the final numerical scheme reduces to the evaluation
of proper dissipation functions at the quadrature points. This is simply accomplished
through the (linear) evaluation (3.32)-(3.33) of two scalar parameters. The implementation
involves then the solution of a 2 - ng,; algebraic system of equations in d,4; and v,y
only, and not 4 - ngo¢ equations as it would be the case in a two-stage scheme. Appendix
I describes the details of the final numerical implementation of the proposed scheme. The
dissipation/conservation properties summarized in Proposition 3.1, as well as the second-
order accuracy in time of the resulting scheme, is confirmed in the numerical simulations
presented in the following section.

Remark 3.1. We note that the need to introduce the length scale parameter h in (3.29)
is a consequence of the definition of the dissipation functions at the level of the quadrature
points, with temporal relations involving strains and velocities (thus the need of the length
parameter for dimensional consistency). This situation does not apply to other nonlinear
Hamiltonian systems, where the developments presented above for the system of nonlinear
elastodynamics generalize. For example, for the simpler model problem of a nonlinear
spring with elastic potential V' (I) (I = spring length), fixed at one end and with a point
mass m at the other end free of other external forces, as considered in Part I of this work,
the EDMC-2 scheme reads

1 Dk VUn4+1 + Uy

1
ZZ(QTH-I_Qn):v 1+m

"’+§ Vn-l-l — Vn Vn+1 + Vn ’
(3.35)
m ~ V(ln41) = V() + DV gus1 + dn
— (Vpy1 —vp) = - ;
At ln+1 - l‘n. ln+1 + ln

that is, as the EDMC-1 scheme presented in this reference, but with the dissipation func-
tions

Dy =1 Kl —1)(lnt1—1n), and D =1m (n—va)(Vat1— ), (3.36)
where K, :== V"(l,) > 0 (or its convexification) and, similar to (3.29),

ln=lp+a At (Vh — Vpt1), (3.37)
mvp=mv,—a At K, (I, —lhy1), (3.38)
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with no need to introduce additional length parameters. Here, we have used the nota-
tion of q; € R? for the position vector at time ¢ of the mass m from the fixed end and
v; € R? for the velocity vector of the mass at time ¢, with I, = llg:|| and v; = ||vs||. The
scheme (3.35)-(3.38) exhibits the same dissipation/conservation properties as summarized
in Proposition 3.1 for nonlinear elastodynamics. In particular, similar arguments show un-
conditional energy dissipation (the energy being H = m v2/2 + V(1)) and conservation of
the angular momentum around the center (the angular momentum being J = m v [ sin¢
for the angle ¢ between the vectors g and v), while being second-order accurate in time.
We refer again to Part I of this work for details on this model problem as well as for a
related simplified model of thin beams. Similar arguments apply in the construction of
second-order energy-dissipative, momentum-conserving schemes for this and similar non-
linear Hamiltonian systems; details are omitted. O

4. Representative Numerical Simulations

The spectral analyses presented in Section 2.2 characterize completely the numerical
properties of the new ED-1 and ED-2 schemes presented in this paper for linear elas-
todynamics. To evaluate the performance of the newly proposed EDMC-2 scheme for
nonlinear elastodynamics, we consider in this section several representative numerical sim-
ulations that verify numerically the accuracy and dissipation/conservation properties of
the new scheme shown in Section 3.2.

To this purpose, we consider the finite elastic solid depicted in Figure 4.1 in its initial
configuration (¢ = 0). As seen in this figure, the solid consists of a central ring with three
equally spaced blades resembling a propeller. The ring has an inner radius of 0.4, outer
radius of 0.5 and depth of 0.2, and it is discretized in 15 equally spaced groups of 6 8-
node bricks each. The distance from the the center of the ring to the tip of the blades is
2.5, having a twisted reference shape in between, with linearly varying thickness along its
height. We have included in Figure 4.2 the coordinates of the nodes at the tip and at the
base of one of the blades. A total of 12 8-node bricks are used for each blade.

The compressible Neo-Hookean model given by the stored energy function

A
wW(C) = Elog2 J+ 3 p(I—3)—plogJd, (4.1)

for J = Vdet C and I; = tr C, and material parameters A and g (the Lamé constants), is
considered. As indicated in the previous section, the numerical properties of the proposed
schemes generalize to any elastic potential. The parameters A\ = 57.70 and u, = 38.46 are
assumed for the blades. The inner ring is assumed stiffer, with A, = 8- Ap and u, = 8- up.
The reference density is taken to be p, = 8.93 throughout.
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a torque is initially )«
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FIGURE 4.1. Three-dimensional, Neo-Hookean solid: problem defi-
nition. The solid consists of a ring of inner radius 0.4, outer radius 0.5,
and depth 0.2, discretized with 90 8-node bricks. Three equally spaced
blades, with a linearly varying thickness, are discretized with 12 fi-
nite elements each. The coordinates shown are given in the depicted
z — y — z Cartesian system, with the axis of the ring corresponding to
the z—axis.

A volumetric body force is applied initially to the inner ring only, with the form
poB(X,t) = 7(t) [es x (X ,1)] , (4.2)

where e3 is the unit vector in the direction of the undeformed ring axis (the z-axis in
Figure 4.1), and ¢(X,t) is the current position of the material particle X. No boundary
loading nor displacements are imposed. Different loading functions 7(¢) are considered
in the sections that follow. The mid-point approximation of the forcing term in (3.9) is
considered.

With this problem at hand, we verify first in Section 4.1 the second-order accuracy of
the proposed scheme. Section 4.2 focuses on the evaluation of the dissipation/conservation
properties of the proposed scheme summarized in Proposition 3.1. Section 4.3 assesses in
more detail the performance of the numerical schemes under study for a complex forced
motion.
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4.1. Evaluation of the numerical accuracy in time

We verify in this section that the theoretical second-order accuracy in time of the new
EDMC-2 is actually observed in numerical simulations. A triangular loading function 7(t)
in (4.2) is considered, with values

507t 0<t<75,
T(t) = ¢ 5012 ¢ 7T5<t<15, (4.3)
0, t> 15

Therefore, the solid is in free motion after ¢ > 15 (7(t) = 0 thereafter). We run the
simulations for a fixed period of time [0, 30], different steps sizes At and different values
of the algorithmic parameter a.

We report in Figure 4.2 the Euclidean norm of the errors in the nodal displacements
and nodal velocities, that is,

nnode 1/2 nnOde 1/2
e = [ > llat - 2 } and e = { 2 lo? =il } o (44

where the “limit” solution, approximating the exact solution, is taken to be the solution
computed with a very small time step (At = 1-1072) and the conserving scheme (a = 0).
The results for @ = 0 (energy-momentum conserving scheme), @ = 1/8 and a = 1/6 are
depicted in this figure. The spatial discretization is kept fixed. The results presented in
Figure 4.2 verify the second-order accuracy of the EDMC-2 scheme for all cases. In fact,
we observe that the introduction of the numerical dissipation through the algorithmic
parameter o # 0 leads to numerical errors of the same order as in the conserving scheme
a = 0. Figure 4.3 depicts the final deformed configuration of the solid, computed with the
EDMC-2 for @ = 1/8 and At = 1-1072. The significant amount of straining of the solid
is apparent.

We note that, in contrast with its linear counterpart (the ED-2 scheme of Section
2.1.2), the case @ = 1/6 does not lead to a third-order scheme in time, but second-order
only. This result can be traced back to the forms of the dissipative stress and velocity
terms in (3.10) and (3.15), respectively, irrespective of the order of the dissipation func-
tions Dw and D,. Remember that the particular form employed in these expressions was
motivated by the need to conserve angular momenta and corresponding relative equilibria
(a feature much more important that the added extra degree of accuracy, we would say),
thus leading to a numerical scheme that shows the right qualitative dynamics while still
showing the desired controlled numerical dissipation in the internal modes of the motion.
These dissipation/conservation properties are evaluated in the following section.
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FIGURE 4.2. Three-dimensional, Neo-Hookean solid. Convergence
plots for the Euclidean norm of the nodal errors of the displacements
and velocities. The second-order accuracy of the EDMC-2 scheme is
verified.

.001 ) ) e *

.01 .1 1
Time step, At
Velocity error
10 f; T T T T T T T T [ T T T ' ! ! N :
1 a=1/6 —o—

.Ol L L L MU S SR T | s 1 " PR W S T

.01 1 1



F. Armero & I. Romero 32

FIGURE 4.3. Three-dimensional, Neo-Hookean solid. Deformed con-
figuration at ¢ = 30, computed with the EDMC-2 scheme, witha = 1/8
and At =1-1072.

4.2. Evaluation of the dissipation/conservation properties

To verify the dissipation/conservation properties summarized in Proportion 3.1, we
compute the long-term solution of the same problem considered in the previous section
under the loading function (4.3). We carry out the numerical simulation with the EDMC-2
scheme with an algorithmic parameter of & = 1/8, and constant step-size of At = 0.2 for
a final time of ¢ = 1510.

Figure 4.4 shows the configuration of the deforming solid during the initial stages of
the simulation. The varying deformation of the blades and the inner ring is apparent. In
particular, we can observe the twisting and bending of the blades, characteristic of the
existing high-frequency modes in the short-term solution. Figure 4.5 depicts the configu-
ration of the solid in the final stages of the very same simulation. In particular, the absence
of these high-frequency modes is apparent. In contrast, the solution is (asymptotically)
closed to the relative equilibrium of the system, consisting of rigid rotation around the
axis of symmetry of the solid with a fixed deformation of the blades and inner ring. No
translation is involved due to the symmetry in the problem.

Figure 4.6 depicts this relative equilibrium configuration, but computed directly from
the equilibrium equation for the imposed angular momentum (the angular momentum
after the initial loading phase). That is, we solve the system of finite element equations

/ Nya po [£2e X (£2e X pe)] d8+/ BY S(pe) dB=0, A=1,n30d, (4.5)
B B
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Time = 0.00E+00 Time = 6.00E-01 Time = 1.20E+00

Time = 1.80E+00 Time = 2.40E+00 Time = 3.00E+00

Time = 3.60E+00 Time = 4.20E+00 Time = 4.80E+00

Time = 5.40E+00 Time = 6.00E+00 Time = 6.60E+00

FIGURE 4.4. Three-dimensional, Neo-Hookean solid. Solu-
tion obtained with the new energy-dissipative, momentum-conserving
(EDMC-2) time-stepping scheme. Initial stages (short-term solu-
tion).
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Time = 1.50E+03 Time = 1.50E+03 Time = 1.50E+03

Time = 1.50E+03 Time = 1.50E+03 Time = 1.50E+03

Time = 1.50E+03 Time = 1.50E+03 Time = 1.50E+03

Time = 1.51E+03 Time = 1.51E+03 Time = 1.51E+03

FIGURE 4.5. Three-dimensional, Neo-Hookean solid. Solu-
tion obtained with the new energy-dissipative, momentum-conserving
(EDMC-2) time-stepping scheme. Final stages (long-term solution).
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FIGURE 4.6. Three-dimensional, Neo-Hookean solid. Relative equi-
librium configuration computed by solving directly the equilibrium
equation (4.5).

for the equilibrium configuration ¢.. Here, the equilibrium angular velocity §2. has the
same axis as the imposed angular momentum J,, and it is incremented until the known
value of the angular momentum ||J.|| is obtained. We note that the equilibrium velocity
field at the relative equilibrium is given by

Ve = Qe X ‘Pe ] (46)

with the corresponding angular momentum given by the expression (3.5). The imposed
boundary conditions when solving the equations (4.5) for ¢, restrict the translations along
the axis defined by §2. as well as the rotations around this same axis. Physically, equation
(4.5) corresponds to the balance between the internal stresses at the equilibrium configu-
ration S(e.) and the centrifugal forces associated to the rigid rotation —#2, x (£2. X ).
Note that a consistent approximation has been assumed for this forcing term, as reflected
by the integral involving the shape function N4 in the first term of (4.5), in accordance
with the consistent approximation of the transient term assumed in the EDMC-2 scheme.

We observe that the computed long-term solution in the dynamic simulation with the
newly proposed EDMC-2 agrees with this equilibrium position. Figure 4.7 includes the
evolution of the three components of the angular momenta J" and the total energy H"
(kinetic plus strain energies). After the initial loading stages, we can observe the conser-
vation of the angular momentum and the monotonic decay of the total energy, as shown in
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FIGURE 4.7. Three-dimensional, Neo-Hookean solid. Solu-
tion obtained with the new energy-dissipative, momentum-conserving
(EDMC-2) time-stepping scheme. Evolution of the three components
of the angular momentum J" and total energy H".

Proposition 3.1 above. In particular, we observe that the evolution of the energy converges
asymptotically to a non-zero value. In fact, to the energy of the aforementioned relative
equilibrium. Moreover, further analyses show that the consideration of this equilibrium
configuration with the initial velocity given by (4.6) as initial conditions leads to a nu-
merical solution corresponding to this relative equilibrium (i.e., a rigid rotation), when
computed with the proposed second-order EDMC-2 scheme. At the relative equilibrium,
the EDMC-2 scheme reduces to the energy-momentum conserving scheme which leads to
a second-order approximation of the equilibrium rotation, as shown in Part I of this work
for general numerical schemes of the form (3.9). We refer to this reference and references
therein for further details on the relative equilibria in nonlinear elastodynamics and their
numerical approximation.

Therefore, we conclude that the EDMC-2 proposed in this work accomplishes then the
desired high-frequency energy dissipation of the internal modes of the motion while pre-
serving the momenta and relative equilibria of the system, and exhibiting at the same time
a second-order accuracy in time. This situation is to be contrasted with the performance
of traditional “dissipative” numerical schemes like the HHT «-method, as illustrated in
detail in Part I of this work.

4.3. Evaluation of the numerical performance in forced motions

To conclude with the assessment of the numerical schemes under investigation, we
consider in this section a problem involving a more complex forced motion. The goal is to
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o 3 & 8 3

g 5 8 & 3

FIGURE 4.8. Three-dimensional, Neo-Hookean solid. Loading func-
tion 7(¢) = 50 sin(6t) + 15 sin(27t) with At = 0.02.

evaluate the numerical performance of the schemes when different frequencies are excited
in an extended period of time. To this purpose, we consider the same solid as employed
in the previous sections, subjected to same torque distribution (4.2), but with the loading
function )

(t) = { 50 sin(6t) + 15 sin(27t) for t < 8w,

(4.7)
0 for t > 8n ,

consisting of two sine functions with angular frequencies of 6 and 27, respectively. The
solid is then released at the time ¢ ~ 25. A constant time step of At = 0.02 is considered,
resolving correctly the function 7(t) in (4.7). This function has been depicted in Figure 4.8.
This specific loading has been chosen after carrying out a modal analysis of the solid in the
initial undeformed configuration, consisting of a total of 828 modes. The lowest natural
frequency in this configuration is wy = 0.3 with the 26" natural frequency being wog = 6.0
and the 98" frequency being wgg = 27.0. A cluster of modes can also be observed around
the latter value, with a total of 12 modes in the frequency range [26.0,28.0]. Obviously
the natural frequencies associated with the linearized problem change in time given the
general large deformation framework considered herein.

Figure 4.9 (top row) depicts the solution obtained with the conserving scheme o = 0.
We have included the evolution of the total energy of the solid and the quantity

hi . Un4+1 — Un
Jati= | [ [P

2 1/2
dB ] , (4.8)
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approximating the Ly-norm of the acceleration field. The high-frequency content of the
solution is apparent in the acceleration plot, which is observed to increase in time. This
increase is observed not only during the period of time [0, 87] of application of the exter-
nal force, but also after the solid is released. Even though the energy is conserved after
this instant, no convergence is obtained for this step size at time ¢ ~ 39. This example
illustrates the lack of control on the acceleration by conserving schemes, leading to the ob-
served difficulties in resolving motions with a high-frequency content. Additional examples
involving simpler Hamiltonian systems can be found in Part I of this work.

Figure 4.9 depicts also the solutions obtained by different EDMC-2 dissipative schemes.
The two values of & = 1/8 and 1/4 are considered. In contrast with the previous con-
serving scheme, the numerical acceleration can be observed to be under control, at the
price of a dissipated energy upon release. No lack of convergence has been observed in
these cases for this time step. The total energy and the acceleration norm (4.8) is depicted
versus time for the different values of the algorithmic parameter . The comparison of
these solutions illustrates the role of this algorithmic parameter in the control of the per-
formance (the numerical dissipation, in particular) of the numerical scheme. The presence
of this parameter allows then to obtain the numerical solution in the complex motions
where conserving schemes show clear difficulties in the resolution of all the components
of the motion. We note that the one-step nature of the proposed scheme allows for the
perfect control of the numerical dissipation introduced in the simulations by adapting the
value of this algorithmic parameter, if desired, while maintaining a reasonable time step
based only on accuracy considerations.

5. Concluding Remarks

We have presented in this paper a new second-order time-stepping algorithm for non-
linear elastodynamics (the EDMC-2 scheme) that exhibits rigorously the energy dissipation
properties needed for the solution of stiff problems of interest, while preserving the conser-
vation laws of linear and angular momenta and as well as the associated relative equilibria.
The spectral properties of the new schemes have also been studied in detail for the system
of linear elastodynamics. The ideas presented here lead to new numerical schemes even in
this linear range, being second-order in time and exhibiting controlled energy dissipation
in the high-frequency range. In fact, the new second-order scheme ED-2 has been shown to
be L-stable, extending in this way some existing multi-stage (Runge-Kutta type) schemes.

As discussed and shown rigorously in Part I of this work, traditional “dissipative”
numerical schemes, like the HHT a—method, not only loose this dissipativity property
in the nonlinear range (exhibiting numerical instabilities in the form of an uncontrollable
energy growth in time), but they do not preserve either other features of the phase dynamics
like relative equilibria. In contrast, the newly proposed EDMC schemes (the first-order
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FIGURE 4.9. Three-dimensional, Neo-Hookean solid. Evolution
of the total energy H" and the La-norm of the numerical accelera-
tion during forced motion, obtained with the new energy-dissipative,
momentum-conserving (EDMC-2) time-stepping scheme for a = 0
(conserving), 1/8 and 1/4.
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EDMC-1 or the second-order EDMC-2) show these dissipation properties at the internal
modes of the motion, as illustrated in the example of Section 4.2. We emphasize the
controlled character of the numerical dissipation introduced in the numerical simulation.
In particular, this numerical dissipation may be turned off at any time, if desired, while
keeping it when difficulties appear with conserving approximations of the problem, as
illustrated in the example presented in Section 4.3, following the standard philosophy for
the use of dissipative schemes in the linear range. The limit situation presented in Section
4.2 of obtaining asymptotically the relative equilibrium illustrates the long-term properties
of the proposed numerical scheme and the nature of the introduced numerical dissipation,
even though we may not be interested in damping all the internal modes of the motion in
particular applications. On the other hand, the proposed schemes appear as an efficient
tool for obtaining these equilibrium solutions.

In this respect, and based on our experience, we find fundamental that the numerical
scheme preserves the conservation law of angular momentum at all times, an intrinsically
nonlinear property as indicated in the introduction, and hence absent in standard high-
frequency “dissipative” schemes. The need to assure this property leads necessarily to
complex nonlinear formulae when compared, for example, to the ideas presented herein
for the linear range. Nonetheless, the construction of the energy dissipative properties
in nonlinear elastodynamics has been shown in this paper to follow the same arguments
presented for the linear problem, but at the level of the quadrature points of a typical
finite element implementation of these methods. This strategy avoids the additional large
computational cost associated with the doubling of the number of unknowns in each time
step for each stage of a globally defined multi-stage formula (typical, for example, of dis-
continuous Galerkin-type approaches), with a fully coupled algebraic system of equations
between all these stages. Still, the new scheme requires the coupled solution for the nodal
displacements and velocities of the single stage, as described in detail in Appendix I. We
presented in Part I of this work how a lumped implementation of these ideas led to a more
standard implementation for the first-order EDMC-1 scheme, involving the solution of
an algebraic system of equations for the nodal displacements combined with independent
(nonlinear) nodal updates. The development of efficient strategies for the solution of the
extended systems associated to the second-order EDMC-2 scheme proposed herein is one
of the focus of our current work. Similarly, the ideas presented in this paper can be applied
to time-stepping algorithms in the rotation group, with applications in the stable integra-
tion of geometrically exact rod and shell theories, as we plan to present in a forthcoming
publication.

Acknowledgments: Financial support for this research was provided by the AFOSR
under contract no. F49620-97-1-0196 with UC Berkeley. This support is gratefully ac-
knowledged.



On the formulation of high-frequency dissipative schemes 41

References

ARMERO, F. & PETOCZ, E. [1996] “Formulation and Analysis of Conserving Algorithms
for Fricitonless Dynamic Contact/Impact Problems,” Comp. Meth. Appl. Mech. Engr.,
158, 269-300.

ARMERO, F. & ROMERO, I. [1999] “On the Formulation of High-Frequency Dissipative
Time-Stepping Algorithms for Nonlinear Dynamics, Part I: Low Order Methods for Two
Model Problems and Nonlinear Elastodynamics,” UCB/SEMM Rep. 99-05 (submitted
to Comp. Meth. App. Mech. Eng.)

BauchHau, O.A., DaMILANO, G. & THERON, N.J. [1995] “Numerical Integration of
Nonlinear Elastic Multi-Body Systems,” Int. J. Num. Meth. Eng., 38, 2727-2751.

BaucHAU, O.A. & THERON, N.J. [1996] “Energy Decaying Scheme for Non-linear Beam
Models,” Comp. Meth. Appl. Mech. Engr., 134, 37-56.

BaucuAu, O.A. & Joo, T. [1999] “Computational Schemes for Non-linear Elasto-Dynamics,”
Int. J. Num. Meth. Eng., 45, 693-719.

BoTasso, C. & BORRI, M. [1998] “Integrating Rotations,” Comp. Meth. Appl. Mech.
Engr., 164, 307-331.

CRISFIELD, M.A.; GALVANETTO, U. & JELENIC, G. [1997] “Dynamics of 3-D Co-
Rotational Beams,” Computational Mechanics, 20, 507-519.

CRISFIELD, M. & SHI, J. [1994] “A Co-Rotational Element/Time-Integration Strategy
for Non-Linear Dynamics,” Int. J. Num. Meth. Eng., 37, 1897-1913.

DACOROGNA, B. [1989] Direct Methods in the Calculus of Variations, Springer-Verlag,
New York.

GONZALEZ, O. & S1mMo, J.C. [1996] “On the Stability of Symplectic and Energy-Momentum
Algorithms for Nonlinear Hamiltonian Systems with Symmetry,” Comp. Meth. Appl.
Mech. Eng., 134, p 197-222.

GONZALEZ, O. & J.C. Simo [1995] “Exact Energy-Momentum Conserving Algorithms for
General Models in Nonlinear Elasticity,” Comp. Meth Appl. Mech. Eng., to appear.

HAIRER, E. & WANNER, G. [1991] Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Springer-Verlag, Berlin.

HiLBER, H.M; HUGHES, T.J.R.; TAYLOR, R.L. [1977] “Improved numerical dissipation
for time integration algorithms in structural dynamics”, Earthquake engineering and
Structural Dynamics 5, 283-292.



F. Armero & I. Romero 42

HuGHES, T.J.R. [1987] The Finite Element Method, Prentice-Hall,

HugHEs, T.J.R. [1983] “Analysis of transient algorithms with particular reference to
stability behaviour,” Computational methods for transient analysis, Ed. T. Belytschko,
T.J.R. Hughes, North-Holland

HucgHes, T.J.R. & HULBERT, M. [1988] “Space-time Finite Element Methods for Elas-
todynamics: Formulation and Error Estimates,” Comp. Meth. App. Mech. Engr. 66,
339-363.

JOHNSON, C.; NAVERT, U. & PITKARANTA, J. [1984] “Finite Element Methods for Linear
Hyperbolic Problems,” Comp. Meth. App. Mech. Engr., 45, 285-312.

KuHL, D. & CRISFIELD, M.A. [1997] “Energy Conserving and Decaying Algorithms in
Non-Linear Structural Dynamics”, Int. J. Num. Meth. Eng., 45, 569-599.

Kunr, D. & Ramm, E. [1996] “Constraint Energy Momentum Algorithm and its Ap-
plication to Non-Linear Dynamics of Shells,” Comp. Meth. App. Mech. Engr., 136,
293-315. :

KuHL, D. & Ramm, E. [1999] “Generalized Energy-Momentum Method for Non-linear
Adaptive Shell Dynamics,” Comp. Meth. App. Mech. Engr., 178, 343-366.

MARSDEN, J.E. [1992] Lectures on Mechanics, London Mathematical Society Lecture Note
Series, 174, Cambridge University Press.

NEWMARK, N.M. [1959] “A Method of Computation for Structural Dynamics,” Journal
of the Engineering Mechanics Division ASCE, 67-94.

Smmo, J.C. & GoNzALEzZ, O. [1994] “Recent Results on the Numerical Integration of

Infinite-Dimensional Hamiltonian Systems,” in Recent Developments in Finite Element
Analysis, ed. by T.J.R. Hughes, O. Onate, and O.C. Zienkiewicz, CIMNE, Barcelona.

Smmo, J.C. & TArRNOW, N. [1992] “The Discrete Energy—-Momentum Method. Conserving
Algorithms for Nonlinear Elastodynamics,” ZAMP, 43, 757-793.

Woobp, W.L. [1990] Practical Time-Stepping Schemes, Clarendon Press, Oxford.



On the formulation of high-frequency dissipative schemes 43

Appendix I. Implementation of the EDMC-2 scheme

We summarize in this appendix the numerical implementation of the newly proposed
second-order energy-dissipative, momentum-conserving EDMC-2 scheme. We begin by
writing the discrete finite element equations (3.9) in the following residual form

Rl
R? : 4 [RA
R(dpt1,0n41) = : with R® = {R(‘i‘l } , A=1,Nn04e (L.1)
Rnnode

where the nodal residuals are given

Ry =fé“xt—/po Ny dB—/BATlS dB
B B "t3

o (1.2)
A _ Zntl = % )
R = L Po N4 ( N (1 +gdzss) vn_’_%) dB

for each node A = 1,7np04e. Here, the stress tensor S is given by (3.10), which can be
written for the EDMC-2 scheme of interest as

S = Scons + fdiss N 3 for fdiss =k ,Bn”Cn+1 - Cn” ’ (13)

with Scons given by (3.11) and (3.15), N by (3.10), Bn by (3.29); and & by (3.30)2. The
scalar gg;ss in (I1.2) denotes the combination

Gdiss = Vi1 + Vn ) (14)
for v, given by (3.29)2, vi, = ||vs|| and vp41 = ||vp41]|- The integrals in (I.2), and

similar ones appearing below, are computed through the standard assembly of element
contributions computed through a quadrature rule.

The nonlinear system of equations R = 0 is solved iteratively through a Newton
scheme, leading to the algebraic system of equations

(k)
k od,,
Kf(;-zl {5'0(’31 } = R(dﬁ+1s”r’§+1) ) (1.5)
n+1

with d+1) = 4 4 6dg:)_1 and v+D) = &) 4 sv) . The tangent matrix K®),
is computed as a function of the nodal vectors d,(f_zl and v,(:le through the standard

finite element assembly of element contributions, each contribution consisting of block
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components K48 for nodes A and B (the indices (k) and n+ 1 have been dropped to ease
the notation). We can write :

(L6)

KAB _ [deB Ké4dB:|

AB
de K;ﬁuB
with each sub-block being the square ngjy, X ngim matrices

Kdd - / BAT— Ccons Bn+1 dB'l‘/ B 1 Cdzss n+1 dB+/ %GAB 1 dB,(I.?)
B +2 B

1 AT
Kdv AtMAB 1+ BBn+% D dB, (1.8)
K;f = A—tMAB 1 +/ Po Y6 Na v _ 1 NT Bj,, dB, (1.9)
B
KiP=1Mup1 +/ ¥s NANpv_ 1® Intl g, (I.10)
nt3  Unyl

where the scalar M sp is given by (3.8); and we have introduced the notation

n Cn W n - n
Ceons = "N® Sn+1 + - [N 13) W(C +12+ )_ (C +1)V W(C )] N®N
v 2 v 2
n CTI. Cn C
208 w(EHED) e (2 a&m%—-)zv) (L11)
Caiss = 2 Rv 11 N®@ N + 1 & Bl (L12)
 ONs , ONp .
= D= 9 N n 9 .
GaB P 8X S11 27 %7 3 Y2 N ®vni1 (L.13)
N = (N1, Nz, N33, N12, Nog, N13) (L.14)
2022 A2 v (1-3 aAthvki
m= = i-b ) Y= (I.15)
A A VUn+1
h2 2ac?Atv
Y3=1-— X y V4 = -—A——(h"i' a At(V, = Vn41)) » (L.16)
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Y3 — Gdiss Y4
_ 3 Gdiss M . S | (117
v=2|Cpns1—CLl , A=h+ac® At? 2, 7 (I.18)

which simplify for the limit case ||Cp41—Chrl|| = 0 to the values Ceons = 2 82cW ((Crg1+
Cr)/2), Caiss = 0 and D = 0. The values h and c in these expressions are defined in (3.30).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



