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Abstract

Data-driven Planning For Food and Forest Supply Chains under Disruptions

By

Marie Pelagie Elimbi Moudio

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

Global disruptions such as the Covid-19 pandemic emphasize the fragile nature of connected
supply chains and the impact of these interruptions on our daily lives. The alarming growth
in the type and number of disruptions complicates planning efforts and will lead to increased
losses in the absence of efficient systems that reduce complexity for policy makers. We
investigate food and forestry supply chains, key systems for human survival. In the context of
food and agricultural supply chains, disruptions have not only caused bottlenecks in different
stages of food supply chains but also exposed the need for holistic solutions to food supply
and allocation. To tackle this challenge, we model a two-stage stochastic resource allocation
problem with non-linear connectivity costs to capture trade dynamics between countries.
We compare model recommendations to historical trade flow data including coffee trade
between countries, unveiling the value of centralized planning under potential disruption
scenarios against the current practices. In another chapter, we design and incrementally
update a data-driven network risk measure that focuses on including the downstream impact
of nodes. starting with a hand crafted intuitive risk measure then the Downstream Protection
Value (DPV) and finally proposing the Downstream Supply Risk Measure (DSRM). The
consistency in results between DPV and DSRM measures is investigated and their limitations
are discussed.

Additionally, the existence of a large variety of food products that are exchanged within and
across countries renders the creation of separate policies for each product impractical. To
aid this problem, we develop a framework to systematically group different food product
supply chains by identifying their structure using world bank trade data between countries
for 53 different products over a period of 25 years. Decision makers can thus create policies
for food networks at the group level instead of individual policies for the large variety of food
and agricultural products. In the context of Forestry systems, we extend an existing fuel
treatment allocation model to include socio-environmental costs to the objective function.
We investigate how to develop efficient action to mitigate future fires (fuel treatment plans)
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so as to mitigate risk in Forestry supply chains. In the long run, developing an understanding
of the impacts of risk and how they can be mitigated will be essential in resolving their lasting
and usually devastating impacts to the world ecosystem.



i

To my friends and family, to God that directs my life , to my support circle: every is a
blessing day because of you



ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Challenges Facing Food and Forest Supply Chains 1

2 Global Food Allocation Model 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Global Agricultural Supply Chains Definitions . . . . . . . . . . . . . . . . . 8
2.3 Single-stage Stochastic Allocation Model . . . . . . . . . . . . . . . . . . . . 9
2.4 Two Stage Stochastic Allocation Model . . . . . . . . . . . . . . . . . . . . . 14
2.5 Results and Discussion - Two Stage Model . . . . . . . . . . . . . . . . . . . 17
2.6 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 A global risk and network health measure 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Risk Measures and Numerical Analysis . . . . . . . . . . . . . . . . . . . . . 27
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Framework for categorizing supply chains(food) using structure. 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Results and Discussion: Globalization Trends . . . . . . . . . . . . . . . . . 44
4.4 Clustering Global Food Networks by Structure - Full Analysis . . . . . . . . 50
4.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Quantifying the socio-environmental Impact of WildFire disruption to
forest supply chains 56
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



iii

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Conclusion 77

Bibliography 79

A Global Allocation Model Extended 89
A.1 Appendix: Two-stage Problem Extended Results . . . . . . . . . . . . . . . . 89

B Agricultural Network Health Measure Extended 92
B.1 Distribution of risk measures (DPV ) through time across all products. . . . 92
B.2 DSRM Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C Network Clustering Extended Analysis 95
C.1 Clustering Networks based on structure - Summary . . . . . . . . . . . . . . 95
C.2 Graph2Vec Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C.3 Selecting Number of Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C.4 Silhouette Plots for number of clusters = 6 and 7 . . . . . . . . . . . . . . . 97
C.5 Using dendrogram for Selecting Number of Clusters . . . . . . . . . . . . . . 98

D Detailed Results of Extended Wildfire Framework 101
D.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



iv

List of Figures

2.1 Panel (A) illustrates the world map with countries coded by supplier category.
They are classified into four categories: no supply, high, medium, and low volume
suppliers. Countries with missing data are represented by the missing values
category. Panels (B) and (C), show a table summarizing the 2019 global coffee
supply chain network characteristics and a pie chart highlights the top five coffee
supplying countries and their corresponding market share, respectively. . . . . . 10

2.2 Boxplot denoting Changes in objective costs distribution with increasing number
of scenarios. The orange line represents the objective value for each instance. . . 13

2.3 Average historical supply quantities from 2009 - 2018 versus supply values in
2019 for the six largest and smallest suppliers historically in panels (A) and (B),
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Evolution of relative inventory with increasing number of scenarios. In each case
we, include minimum, average, and maximum inventory levels. Increasing the
number of scenarios results in lower inventory levels as the objective function
(expected cost) is diluted by less impactful scenarios. . . . . . . . . . . . . . . 20

2.5 Proportion of excess relative inventory from baseline (no disruption scenario) for
single three country disruption scenarios: Brazil, Colombia, and Cameroon (left
to right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Boxplot denoting changes in objective costs distribution with increasing number
of scenarios. We select the two most disruptive scenarios initially and the rest
of the scenarios are added randomly in pairs. The orange line within the boxes
represents the objective value for each instance. As the number of scenarios rise,
there is a decline in objective values due to the dilution of probability of high
impact scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Evolution of expected objective cost for different β values using top 5 scenarios.
There is a linear decrease in objective value with increase in depreciation factor
due to the rise in available increase in inventory. . . . . . . . . . . . . . . . . . . 24

3.1 Evolution of the probability that node risk measure greater than threshold values
(1%, 5%, 10%, 20% ) for beans. Significance level, the cutoff for which probability
values are significant is set to 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . 29



v

3.2 Evolution of the probability that risk measure greater than threshold values: 1%,
5%, 10%, 20%, for various products ( cocoa,coffee, oats and rice) with Significance
level at 0.05. The products are listed from left to right and top to bottom. . . . 30

3.3 Evolution of the probability that risk measure greater than threshold values: 1%,
5%, 10%, 20%, for grains ( corn, rye, millet and barley) with Significance level at
0.05. The products are listed from left to right and top to bottom. . . . . . . . 31

3.4 DPV calculation on a sample shortest path tree of node A shown on the left side
of the figure by summing the downstream flow. The table to the right reflects
the DPV value for each node in the tree . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Violin plots showing the distribution of the Downstream Protection Value (DPV)
risk metric across selected products ( coffee, cocoa, oats, rice, beans). Corn and
beans have relatively high risk values in general whereas cocoa networks tend to
have pretty low risk values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Sample significance tree for Node 1.1 obtained from Definition 2 with detailed an-
notations around how each stage of computation for the DSRM measure of Node
1.1. Below the significance tree is a summary table detailing DSRM computation
steps for node 1.1 using all its "significant" downstream nodes . . . . . . . . . . 36

3.7 Comparing distribution of DSRM ( left) vs DPV (right) across a subset of prod-
ucts. In the top panel, we compare difference between a general set of products
(Coffee, Cocoa, Oats, Rice, Beans) while in the bottom panel we focus specifically
on grains (Corn, Barley, Oats, Rice , Rye and Millet) . . . . . . . . . . . . . . . 37

3.8 Scatter plot of the median values across products for of the log(DSRM) versus
Downstream Protection Value (DPV) metric for the values. The median values
are used to reduce noise from the product networks through time. There is a trend
to the top right corner indicating positive correlation between the two metrics.
The orange dots indicate 2 groups of outliers, the high DSRM and low DPV
group (top left quadrant) and the low DSRM and high DPV group (bottom right
quadrant). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 Box-plot showing the distribution of log of Normalized DSRM values across all
Products between 1996 and 2020.Between 1996 and 2001, the time series has a
negative slope. For the most part there are no trends between 2002 and 2015.
After 2015, there is a slight positive trend towards risk with time potentially
signally overall increasing vulnerability of networks globally in the recent years. 40

4.1 Framework for clustering Agricultural supply chain networks based on structure
and vulnerability levels. For each product and year, trade data between countries
is converted to a network. These networks are then converted into embeddings
and clustered using convolution graph neural networks. . . . . . . . . . . . . . 43



vi

4.2 Evolution of beans networks in a twenty year time-span between 2008 (discovery
period) and 2018 (stable period). The left image represents beans network in
2008 has fewer connection and less nodes. To the right we see the effects of
globalization with beans network in 2018 having denser connections network with
a large number of small and medium sized suppliers. . . . . . . . . . . . . . . . 46

4.3 Left figure shows the distribution of risk levels for products in 2 separate groups.
The first containing mango and banana have overlapping risk distributions that
are quite similar. Whereas, the products in the second group ( apple and yeast)
have very different risk distribution. The right figure shows the vector represen-
tations of the different networks in 2D space. networks in the former group with
similar DPV distributions have no clear separation in space, whereas those in the
second group show clear separation between networks from both products. . . . 48

4.4 silhouette plots for number of clusters ranging between 4 and 5 and their corre-
sponding 2D visualization on the top and bottom respectively. The clusters are
generated obtained from spectral clustering. . . . . . . . . . . . . . . . . . . . . 49

4.5 Two dimensional projection with TSNE of 128 dimensional GCN embeddings
(attributed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Two dimensional projection with TSNE of 128 dimensional GCV embeddings
(attributed) with each color representing a different cluster from the community
detection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Scatter plot of product versus year with clusters denoted by different colors
across the three periods: Discovery (1996 − 2000), Growing (2001 − 2014) and
Stable(2015− 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Example of layers included visualized in GEE. All layers are obtained for Cali-
fornia and consolidated into a 30 by 30 m. multi-band raster. . . . . . . . . . . 60

5.2 Framework schematic. Data is retrieved from cloud services and local user inputs.
Decision-makers define relevant objectives by analyzing the trade-off between
multiple variables. Once the data is processed, multiple simulations are performed
to estimate the impact of future wildfires in the landscape. An optimization model
is fed with the outputs from the utility mapping and simulation models. Finally,
results are evaluated by estimating the average expected losses due to wildfire, as
well as analyzing the sensitivity of the optimal treatment plan. . . . . . . . . . . 60

5.3 Utility mapper application. (a) The original values of the population density layer
(x-axis, popDens) are mapped to the [0,1] interval following an exponential func-
tion (y-axis). (b) Density plot for the original variable values. (c) Distribution of
the mapped [0,1] feature (called utility) following the applied transformation. . . 63

5.4 Land cover representations. The three case studies areas are depicted with a
hill shade effect where different colors represent the fuel types characterizing the
instances following the Scott & Burgan [107] classification system. . . . . . . . . 66



vii

5.5 Utility heatmaps for all proposed convex combinations of the main four categories
for each instance (columns). The first row represents a balanced combination of
all four categories (µi = 0.25 ∀i). The suffix dom indicates that the dominant
category was weighted by µdom = 0.7 and the remaining three categories with
µj = 0.1, ∀j ̸= dom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Raw (left) and smoothed (using a Gaussian kernel - right) DPV heatmaps cal-
culated for Napa valley, Getty center, and Paradise instances using the Access,
Forest, and Population density layers as the dominant layers for the NV function,
respectively. Lighter cells increasingly highlight the nodes playing a fundamental
role in propagating the fire to the rest of the landscape. . . . . . . . . . . . . . . 71

5.7 (a) Napa valley instance raw utility (blue) U(λ) weighting all categories by
identical weights and average discounted utility (orange) ∆tfU(λ) = U∗(λ) −
E [Losses(X∗(λ, tf))] including future expected losses due to wildfire events as a
function of λ. Treatment fraction is set to 25%. (b) Distribution of the optimal
utility discounted by future expected wildfire losses (γ = 0.9) for different λ levels
when protecting 25% of the landscape. Average values are highlighted with red
dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 (a) Paradise instance raw utility (blue) U(λ) with carbon as the dominant cate-
gory and average discounted utility (orange) ∆tfU(λ) = U∗(λ)−E [Losses(X∗(λ, tf))]
including future expected losses due to wildfire events as a function of λ. Treat-
ment fraction is set to 50%. (b) Distribution of the optimal utility discounted
by future expected wildfire losses (γ = 0.9) for different λ levels when protecting
50% of the landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.9 (a) Getty center instance raw utility (blue) U(λ) with accessibility as the domi-
nant category and average discounted utility (orange) ∆tfU(λ) = U∗(λ)−E [Losses(X∗(λ, tf))]
including future expected losses due to wildfire events as a function of λ. Treat-
ment fraction is set to 15%. (b) Distribution of the optimal utility discounted
by future expected wildfire losses (γ = 0.9) for different λ levels when protecting
15% of landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1 Bar plot shows the percentage (%) deviation of Objective from deterministic
baseline. The baseline is set to be the case in which no country experiences a
capacity disruption, representing the most basic planning situation. . . . . . . . 89

A.2 Evolution of Risk Neutral Solving time versus the number of scenarios. Non-linear
relationship between solving time and number of scenarios with an explosion after
incorporating 36 scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.1 Box-plot showing the distribution of Normalized DPV values across all Products
between 1996 and 2020. There is a slight positive trend towards risk with time
potentially signally overall increasing vulnerability of networks globally. . . . . . 92



viii

C.1 Two dimensional projection with TSNE of 64 dimensional Graph2Vec embeddings
(non-attributed). This 2D projection does not reveal clear separations in data . 96

C.2 Two dimensional projection with TSNE of 64 dimensional Graph2Vec embeddings
(attributed). This 2D projection does not reveal clear separations in data . . . . 97

C.3 silhouette plots for number of clusters ranging between 2 and 3 and their cor-
responding 2D cluster visualization on the top and bottom respectively. The
clusters are generated obtained from spectral clustering. . . . . . . . . . . . . . 98

C.4 silhouette plots for number of clusters ranging between 6 and 7 and their corre-
sponding 2D visualization on the top and bottom respectively. The clusters are
generated obtained from spectral clustering. . . . . . . . . . . . . . . . . . . . . 99

C.5 Observing the dendrogram from the top to bottom, we note that the big difference
between clusters is between the components of the orange cluster versus the red
and green clusters as the vertical height (blue line) is longer for the former . . . 100

D.1 Resource allocation sample plans for Napa valley, Getty center, and Paradise
(columns) instances for different λ weights (rows) to account for the expected
losses due to future wildfires, at a specific treatment fraction tf . Significant
variations in the optimal plans can be observed as the λ values are modified
to include future wildfire risk into the objective function. Original land cover
colors have been modified for better contrast and non-flammable nodes have been
removed (white space). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



ix

List of Tables

2.1 Summary statistics of coffee demand and supply data in Kilotons[kt] in 2019 . . 9
2.2 Summary statistics of the stochastic solutions including mean expected costs

(objective), mean deviations of objective from baseline deterministic case, and
standard deviations as we increase the number of scenarios considered in the
optimization model. We start with the top two most relevant disruptions with
highest expected objective value. This decreases as the probability of experienc-
ing disruptions in top suppliers is diluted when including scenarios affecting less
relevant countries for the coffee network. . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Summary table for products (Beans, Cocoa, Coffeee, Oats and Rice) including the
slope and corresponding standard error of the risk time series plots. In addition,
the table also details the position of the curve relative to the significance line and
a final column that provides an inferred risk label. . . . . . . . . . . . . . . . . . 32

3.2 Summary table including for each product average DPV values with the cor-
responding standard deviation and an inferred relative risk label based on the
average DPV values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Break down of 53 agricultural and food products representative of all groups
in the food pyramid and across 25 years (1996 - 2020). This resulted in 1325
Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Summary statistics including predominant products, size, average number of
nodes and connections with data grouped into 7 clusters using hierarchical clus-
tering. Groups vary slightly between different clustering algorithms and start
points but overall group composition is relatively consistent. . . . . . . . . . . . 47

4.3 Summary statistics including top representative products by cluster time period,
median network density and relative cluster size (%) with data separated into
11 groups(10 clusters + 1 group of non-clustered data points) using community
detection clustering algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



x

5.1 Summary of instances’ main characteristics. For each instance, we provide the
total area in hectares, the average elevation and its range in meters, the domi-
nant flammable fuel of the terrain following the fuel type layer characterization,
the total number of different fuels available in the region, and the number of
edges conforming the network used for the optimization model connecting the
flammable cells (in any direction). . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 The expected area burned and expected losses for all utility functions as a per-
centage of the total instance area and the total utility available (heatmaps) per
instance, respectively. Expected values are calculated from R = 100 independent
wildfire replications, weighting all simulations equally, and without any interven-
tion of the landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.1 presents for single country disruption scenarios the Objective values, relative in-
ventory for the disrupted values and the average inventory for the top 20 suppliers
when that country is disrupted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.1 Summary table - Combinations of Hyperparameters for clustering framework.
The cells highlighted in green indicate models (predominantly GCN models) that
are expressive enough to identify clustering. The cells in red used the Graph2Vec
model which was not expressive enough to capture distinctive clustering behavior
in 2 dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

D.1 Average discounted utility results for Napa instance evaluated from 100 simula-
tions. Results for all λ combinations between the DPV heatmap and NV layers
are presented by dominating utility category (column 1) and treatment fraction
level (column 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

D.2 Average discounted utility results for the Paradise instance evaluated from 100
simulations. Results for all λ value combinations between the DPV heatmap
and the NV layer are presented by dominating utility category (column 1) and
treatment fraction level (column 2). . . . . . . . . . . . . . . . . . . . . . . . . . 104

D.3 Average discounted utility results for the Getty center instance evaluated from
100 simulations. Results for all λ value combinations between the DPV heatmap
and the NV layer are presented by dominating utility category (column 1) and
treatment fraction level (column 2). . . . . . . . . . . . . . . . . . . . . . . . . . 105



xi

Acknowledgments

First I would like to express my deepest gratitude to my advisor, Professor Zuo-Jun Max
Shen. From the very beginning he has been my strongest supporter and has guided my
projects and academic journey. He has advocated for me during all the various stages of
my journey. I would like to thank my dissertation committee members Professor Marta
C. Gonzalez, Professor Anil Aswani, and Professor Phil Kaminsky for their great support
starting from my qualifying exam and being very flexible and generous with their time and
suggestions. In addition, many thanks to all the Professors of the IEOR department for the
great learning experience I had through the program and to the IEOR staff, for their daily
support and continuous help. My deepest thanks to all my co-authors and collaborators:
Cristobal Pais, Marta C. Gonzalez, Arman Shehabi, Prakash Rao . Working with such
amazing researchers, and most importantly, great people has been an incredibly gratifying
experience.

To my beloved writing group: Cara H. and Emily G., I would never have made it through
the writing stage without your keen insights and unwavering support. Finally, to my family
and support circle. I want to especially thank my sisters Agnes Elimbi Moudio and Claudia
Ndenge for literally holding my hand though this journey from day 1. I am also very grateful
to my parents ( Samuel and Anne Elimbi Moudio) and siblings ( Ida and Francis) for their
support even when we were separated by thousand of miles and even an ocean.



1

Chapter 1

Challenges Facing Food and Forest
Supply Chains

Global disruptions such as the Covid-19 pandemic have emphasized the fragile nature of
connected supply chains and the impact of these interruptions on our daily lives. While the
pandemic’s effects are devastating, supply chain vulnerability to disruptions have been on a
rise for a long time. According to the National Oceanic and Atmospheric Administration,
over 332 natural disasters since 1980 resulting in approximately $2.275 trillion in overall
damages to the United States [84]. In addition, the Centre for Research on the Epidemiology
of Disasters has reported less than 200 global disasters per year in the 1980s and over 300
in the 2010s. Natural disasters alone in the United states have quadrupled in the last 40
years, moving from 2.7/yr to 10.5/yr [100]. These disruptions have wide range negative
impacts including financial, social, and environmental impacts, among others. The Federal
Emergency Management Agency (FEMA) report that roughly 40% of businesses impacted
by disasters do not reopen and 90% fail within two years of the event [67, 2]. The alarming
growth in the type and number of disruptions complicates planning efforts and will lead to
increased losses in the absence of efficient systems that reduce complexity for policy makers.

These problems are only worsening as the world’s supply chains are increasingly complex,
extended and fragile to all kinds of interruptions such as weather events (e.g., hurricanes,
flooding), climate change (fires, droughts), interruptions to shipping, cyberattacks, and in-
dustrial accidents [114, 77]. In this work, we focus on food and forest supply chains because
we believe these are critical to long term survival and sustainability of our global ecosystem.
Humanity constantly faces challenges around feeding its ever growing population despite
the earth’s limited resources and with increasingly complex Food supply chains that are
more susceptible to disruption. [48] The Covid-19 pandemic for instance has highlighted the
vulnerability of food supply chains to disruptions and exposed an increasing number of com-
munities globally to food insecurity. [125] These disruptions have not only caused bottlenecks
in different stages of food supply chains but also exposed the need for a holistic solutions
to food supply and allocation. [23] Planning around food and agricultural supply chains is
particularly challenging because of a number of factors including (1) the large product space
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on the country scale. (2) Different storage and transport requirements for food and agricul-
tural products. The existence of a large variety of food products that are exchanged within
and across countries renders the creation of separate policies for each product impractical.

Additionally, the origin of most food and agricultural products is very constricted by
factors such as soil, climate, topology etc. As such, many food products can only be grown
in specific regions and climates. Unexpected shocks to these production heavy regions could
entirely crippled the Agricultural supply networks and reduce food access globally. [123]
Certain economies, especially regions with low agricultural yield, rely on imports for food
and are susceptible to food insecurity and negative disruptions to the global food network.
On the African continent, roughly half of the population faces food insecurity presently with
more than 250 million people considered to be severely food insecure. [80, 93] According to
reports from the world bank, a rising number of households are experiencing food insecu-
rity due to the supply chain disruptions and reduced salaries resulting from the COVID-19
pandemic. [125] This is just one of the many instances where disruptions to food supply
chains have directly impacted food insecurity. Understanding the global movement of differ-
ent agricultural products and their vulnerability to disruptions is crucial in ensuring global
accessibility to these food products.

When looking at Forest resources supply chains, the implementation of strategic and
efficient fuel treatment plans can modify fire behavior and greatly help with fire suppression
efforts [86, 57, 43, 42]. Fuel treatments include actions and procedures such as cutting and
clearing wood, prescribed burns, commercial harvesting, and thinning, that can promote
fire hazard reduction [5]. In [105], the authors discuss strategies to define treatments using
burning probability maps, the area burned, or the flame length. Other research in this
area focuses on finding the optimal spatial allocation of prescribed burning activities [6,
79], and designing fire breaks to control fire spreading [104]. Decision-makers that carry
out these fuel treatments face questions about how to make such decisions. However, the
problem of optimal fuel allocation is challenging due to various sources of uncertainties.
In [34], the authors discuss challenges surrounding fuel treatment methods, timing, and
the high uncertainty levels in climate and ignition areas over multiple time periods. As a
result, deterministic fire simulators such as FARSITE, Prometheus, and Wildfire Analyst
[42, 115, 99], which can reproduce fires with and without treatment activities are popular in
practice. The main critique to using fuel treatment methods is that due to the difficulty in
predicting wildfire occurrence and propagation, the allocation of these treatments generally
do not match areas in which future fires occur, leading to wasted investments coupled with
economic, human, and environmental losses [11].

In order to address the mismatch between fuel treatment allocation and fire occurrence,
the authors in [90, 24] develop a framework that integrates fire spread, optimization, and
simulation models. The study highlights an adaptable metric known as the Downstream
Protection Value (DPV), that ranks the impact of treating a unit of the landscape, by
modeling a forest as a network and the fire propagation as a tree graph. The framework
requires weather and topography inputs of the forest to run and can be modified by users to
incorporate region-specific forest data so as to provide more effective and targeted treatments.
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Results from the first version of the model value the equivalent volumes of subsets of the
forest equally. However, such an assumption is limited in real settings. Different parcels
of a landscape may have different values based on multiple factors such as the existence of
animal migration corridors, the amount of biodiversity hosted in that region, the presence
of human settlements and infrastructure, or the amount of carbon sequestered.

In the long term, understanding the impacts of risk and how they can be mitigated will be
essential in tackling their lasting and sometimes devastating impacts to the world ecosystem.
This dissertation investigates quantifying and mitigating risk on food and forestry supply
chains by answering the following questions:

1. How can we effectively distribute food resources at the global scale (at a country level)
under supply disruption?

2. Can we develop a data-driven measure that captures downstream risk propagation
effects global food networks?

3. Can we facilitate the development of scalable food supply chain policies and obtain
new insights using their structural representations?

4. Can we quantify the socio-environmental costs of supply chain systems facing risk?

The rest of the dissertation is organised to answer these questions. In chapter 2, we pro-
pose a stochastic global food allocation model for planning under supply side disruptions.
First we present a single stage allocation model, which aims to minimize expected trans-
portation, lost demand and connections costs. The we follow up with a two-stage extension
model that includes inventory and depreciation, factors that are prolific within agricultural
and food supply chains.

In the previous chapter, we used a simplistic definition of disruption by only considering
a disruption as the loss in supply of a single node. our second research question attempt
relax this assumption by attempting to define a risk measure that captures the propagation
of risk downstream of the supply chain, We present different and improved iterations of a
data-driven risk measure for food supply chains in chapter 3. We propose three risk metrics
starting with a hand crafted intuitive risk measure then the Downstream Protection Value
(DPV) and finally proposing the Downstream Supply Risk Measure (DSRM) focusing in
including downstream impact of nodes. Developing data-driven food regulation and policy
at the global scale, while essential to ensure food access and limiting waste is still very
challenging. In chapter 4, we propose a framework to support the development of scalable
policies by aggregating the wide number and variety of food and agricultural supply chains
based on the supply chain structure and characteristics.

More so, we find in the literature that risk when quantifies usually considers only economic
costs, as such we were interested in quantifying the socio-environmental costs of supply
chains facing disruptions. In Chapter 5, expands the integrated framework proposed by
[90] to aid decision making under wildfire uncertainty by evaluating the sensitivity of the
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objective function to key environmental and economic factors. We compare unweighted
treatment plans against versions including environmental and demographic factors such as
carbon sequestration, canopy height and density, population density, and accessibility of the
area, as well as expected future fire behavior and discuss impact on proposed treatment
policies. Finally chapter 6 covers our conclusions and future work .
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Chapter 2

Global Food Allocation Model

2.1 Introduction
In this chapter, we present a data-driven allocation model for planning global food alloca-
tion under supply side disruptions. As noted in previous chapters, disruptions to supply
chains have been on the rise in recent years and can have devastating effects on strategic
supply chains such as those involving food and agricultural products. Global food networks
have been growing in complexity with food dependencies between countries rendering the
overall network extremely vulnerable. Modelling and understanding the impact of different
disruptions at the country level on agricultural supply chains is thus essential. We propose
a two-stage stochastic resource allocation problem with non-linear connectivity costs to cap-
ture trade dynamics between countries. We compare model recommendations to historical
trade flow data including coffee trade between countries, unveiling the value of centralized
planning under potential disruption scenarios against the current practices.

Supply chains’ vulnerability to disruption has increased while demand has become in-
creasingly volatile in most sectors [31, 32]. These changes are especially relevant for agricul-
tural supply chains (ASCs) that already face high levels of stochasticity due to some their
inherent characteristics such as long lead-times, seasonality, perishability, and even sanitary
emergencies (e.g., diseases), among several others [17]. Many countries, especially regions
with low agricultural yield, rely on imports for food and are susceptible to food insecu-
rity and negative disruptions to the global food network. As such, unanticipated shocks
to supply-heavy regions could entirely paralyze the ASC networks and diminish food ac-
cess globally [123]. The COVID-19 pandemic, a disruption that impacted food systems and
its surrounding infrastructure on a global scale is a recent example of such disruptions. A
number of studies suggest that the impacts of this pandemic, highlight the importance of
creating centralised policies that allow world supply chains to be flexible enough to respond
to network interruptions, [3, 73].

The goal of this chapter is to investigate the effects of supply side disruptions at the
country level to global food access and distribution and how to create systems to mitigate
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these disruptions. In this work, we extend previous work by [81] detailed in Appendix B2,
that developed a single stage stochastic global food allocation model to a two-stage version
can be modeled by including inventory management of the commodities between periods.
The two-stage stochastic resource allocation problem has non-linear connectivity costs in the
objective accounting for the trade connections between countries. We use historical coffee
trade data from a World bank database to illustrate the use of the proposed framework. The
model provides recommendations to help decision-makers efficiently allocate their supply of
agricultural products and inventory levels to promote food networks that are more resilient
to disruption.

Agricultural Supply Chains and Risk

Robustness and resilience are prolific metrics in the supply chain community, especially
among researchers analyzing risk management strategies. Resilience is described as the
Supply Chain Network’s (SCN’s) ability to rapidly and effectively recover from disruption.
Robustness can be defined as the SCN’s ability to withstand disturbances, maintain its orig-
inal structure, and remain functional in uncertainties[15]. Several researchers have explored
these concepts in the context of industrial and manufacturing supply chains especially using
network science.[95]. A number of metrics and methods have been proposed to increase the
robustness of logistics networks with many researchers adopting a topological view when
characterizing the robustness of supply chain networks [96, 14, 110, 66, 4].

Previously, work has been done to create a methodology that supports decision making
by assessing the robustness of supply chain networks with different topologies when exposed
to disruptive events [128]. one of this method’s main limitations is its reliance on generic
network properties that exclude various properties specific to agricultural supply chains. In
[70], researchers look into methods for designing robust and sustainable fresh-food supply
chains by surveying many scientific methods such that the waste caused by shrinkage is
reduced. Overall, studies exploring agricultural supply chain risk have places emphasis on
separately obtaining measures of risk in agricultural supply chains. A limited number of
works have attempted to create measures that combine multiple and relevant uncertainty
metrics. Additionally, most studies on risk analysis does not include any measures distinctive
to the ASC’s when analyzing their risk management strategies. A few seminal papers have
combined the study of robustness and resilience in using an ASC as a case study[17]. In this
paper, the authors explore effectiveness of a mixed set of robust and resilient strategies for
managing rare high-impact harvest time and yield disruptions. They develop a two-stage
stochastic programming model, that incorporates an exponential perishability function, a
feature specific to ASC’s. The study suggests that a mixed combination of robust and re-
silient strategies are most effective for mitigating supply-side disruption risks.
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Inventory Models and Perishability

Items that through time become decayed, damaged, evaporated, expired, invalid, devaluated
and so are known as perishable or deteriorating items [121]. Some of the early comprehensive
literature reviews on deteriorating inventory items were made by Raafat [98] and Goyal
and Giri [52] in 1991 and 2001 respectively. In [75], the authors propose key factors that
should be considered in studies involving deteriorating inventory. They suggest that the
current literature on deteriorating inventories are distinguished into two categories: the
studies based on an enterprise and those based on supply chain. Several papers have explored
inventory models with perishable items under different conditions including deterministic
versus stochastic demand, supply uncertainty, lead times and batch orders among many
others [12, 38, 89]. The authors in [13], focus on a continuous review (s, S) model of perishable
items with lost sales analyzing the average cost criterion and finding the optimal re-order
level, s, and order up-to level, S. They show that the effectiveness of a heuristic that does not
include perishability decreases with the demand variability and that costs may either increase
or decrease with this variability. In [109], the authors propose and solve a inventory model
for perishable items with constant demand where holding cost is time dependent. A recent
in-depth review of inventory models for perishable products was done in [28], highlighting the
existence of many perishable inventory studies with divergent objectives and scope including
factors such as demand, perishable rate, price discount, allowing shortage or not, inflation,
time value of money and so.

While inventory perishability is an inherent characteristic of most ASCs, it has generally
been studied independently due to the added complexity of this consideration in ASCs. The
authors in [87] present a multi-period inventory routing problem with perishable products
that consists of a single fresh food supplier, who owns a central warehouse that serves sev-
eral retail centers. Another study focuses modeling the location of collection centers and
companies processing perishable foods in mountainous regions, based on a multi-product
and multi-echelon transport system [88]. Perishability in Agricultural Supply Chains has
also been studied by a number of researchers using simulation tools and including various
tracking technologies [18, 29, 116, 8, 74].

Modeling Disruption in Networks

Understanding network disruption and its propagation down the supply chain is an essen-
tial complementary analysis of the performance of supply chains. Several researchers have
analyzed supply chain network disruptions via simulations [50, 27]. A fraction of these
studies relies on topological network metrics for analyzing the impact of removing nodes
and/or edges from the network [83, 4]. Optimization models have also been employed by
researchers to study disruption and to design supply chains that are robust and/or resilient
to these disruptions [82, 58, 30, 20].In [128], the authors use a flow optimization model
coupled with network metrics in a framework that assesses the robustness of supply chain
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networks with different topologies when exposed to disruptive events informs decision mak-
ing. A recent study examines the structural relationships among entities in four fundamental
supply network structures to help understand supply network disruption and resilience. The
analysis shows that node and arc-level disruptions do not necessarily lead to network-level
disruptions, and indicate that network structure significantly determines the likelihood of
disruption [68]. In addition, in [85] the ripple effect of node disruption is evaluated using
metrics like fragility, service level, inventory cost and lost sales by researchers using bayesian
network theory to analyze the multi-echelon network faced with simultaneous disruptions.

2.2 Global Agricultural Supply Chains Definitions
The global Agricultural Supply Chains network consists of interactions and exchanges be-
tween aggregated farmers and wholesalers per country for single agricultural products. This
network is essential when analyzing the global impact of disruptions to agricultural supply
chains. The supply chain is abstracted into a graph, with vertices representing countries and
edges denoting the quantity of material (i.e., tons of products) moving between the nodes.

We generate a series of scenarios capturing potential disruptions in the global supply
chain at a node level in order to add uncertainty in our optimization framework. We define
a disruption as a fractional loss in the production/supply capacity of a node during a single
period. This is modeled by multiplying the production/supply capacity of each node by
a parameter γ ∈ [0, 1]. When γ = 1, no disruption is included while γ = 0 represents a
full disruption where all the node production capacity is lost. Perturbing the capacity will
have a linear effect on our model because the disruption is defined using a linear function
(see final section of Results and Discussion ). As a result, we focus on the extreme cases in
our experiments. We define Pj as the total capacity of node j without disruption. In the
full disruption state, the node loses all production capacity such that for node j we have
P full
j = Pj. Similarly, the no disruption state is defined by P none

j = 0 for every node j in the
network. Therefore, a scenario consists of a vector of all the individual nodes with a selected
capacity state. For our analysis, we assume that at most one node can experience a capacity
disruption in each scenario. This leaves us with a number of scenarios upper bounded by
the total number of nodes in the network + 1.

Not all nodes (countries) in our global supply chain have the capacity to produce and
supply food products. It is essential to only include nodes with significant supply quantities
such that their disruption can influence the performance of the ASC. To ensure this, we run
our model using scenarios where a single country on the top 25th production percentile is
fully disrupted. This analysis results in a set of 46 different scenarios, allowing us to quantify
the impact on the costs compared to the baseline (deterministic, no disruptions) case. In
this initial study, all scenarios are treated as equally probable.
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Data: Global Agricultural Network

The data used for this analysis consists of global coffee trade data between countries from
2009− 2019 obtained from the the World Integrated Trade Solution database [10, 78] . We
focus on the coffee trade data, because there is a long history of reliable and available open
source data for coffee trade. In addition, at the global scale, Coffee is an interesting product
because its network has a clear subset of of relevant suppliers with multiple customers. We
use data from recent years (2015 –> single stage model and 2019 –> two stage model)
before the COVID-19 pandemic so as to not capture irregular patterns from the COVID-19
pandemic starting in 2020. A summary the statistics for coffee demand and supply data in
Kilotons[kt] in 2019 can be found in Table 2.1. In Figure 2.1-(A), we highlight four supplier
classes on a world map. Using statistics from the network (Table 2.1), we divide the suppliers
into high, medium, and low capacity based on their relative supply capacities. We use the
following definitions: high capacity is considered greater than the 75th percentile values,
medium-capacity is close to the 50th percentile (median) values, and finally, low capacity
is less than the 25th percentile values. This, excluding the zero supply countries which are
grouped in a separate category (no supply). In addition, we create a special category for
countries with missing supply information. A summary table characterizing the 2019 coffee
network is shown in panel (B). In Figure 2.1-(C), we present the top five coffee-supplying
countries and their corresponding market share for reference.

Table 2.1: Summary statistics of coffee demand and supply data in Kilotons[kt] in 2019

Characteristic Demand [kt] Supply [kt]
Min 0 0

25th percentile 0.378 0.008
Median 9.076 7.419

75th percentile 303.9 142.6
Max 31,070 27,700

Mean 754.6 754.6
Standard dev. 3,041 3,187

2.3 Single-stage Stochastic Allocation Model
We introduce the formulation of the global agricultural allocation model for one commodity
under disruption uncertainty. Some key structural assumptions for our model include (1) Use
a single product with deterministic demand at each node. (2) We do not allow self loops in
the network. i.e we ignore demand of nodes satisfied locally and (3) Unmet demands are lost
and assigned to dummy node,k We define a directed graph, G = (N ,A) with nodes i ∈ N
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Figure 2.1: Panel (A) illustrates the world map with countries coded by supplier category.
They are classified into four categories: no supply, high, medium, and low volume suppliers.
Countries with missing data are represented by the missing values category. Panels (B) and
(C), show a table summarizing the 2019 global coffee supply chain network characteristics
and a pie chart highlights the top five coffee supplying countries and their corresponding
market share, respectively.

representing countries and the arcs (i, j) ∈ A denoting the flow of agricultural products from
node i to node j.
Sets

• I: set of nodes (countries)

• S: set of scenarios (disruptions)

Decision Variables

• Xs
ij = Fraction of demand node j allocated to node i under scenario s
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Parameters

• P s
j : Production capacity of node j under scenario s

• Di: Demand at node i

• cij: Transportation costs from node i to node j

• π: Penalty cost for lost demand

• N = |I|: Total number of nodes

• ps: Probability of scenario s (ps = 1/|S|).

• fi,j(X
s
ij): non-linear function (connectivity costs)

Then, we define the stochastic allocation problem SAP (X) including node disruption
(scenarios s ∈ S) as follows:

min
x

∑
s

ps

(∑
i,j

(fij(X
s
ij) + cijX

s
ijDi) +

∑
i

πDiX
s
ik̄

)
(∗∗)

s.t
∑
i

Xs
ijDi ≤ Pj,s ∀j ∈ I, s ∈ S (2.1)∑

j

Xs
ij +Xs

ik̄ = 1 ∀i ∈ I, s ∈ S (2.2)

Xs
ij ∈ {0, 1} ∀i, j ∈ I, s ∈ S (2.3)

In Eq. (**), the objective is to minimize i) connectivity costs associated with each node
which is a function of allocation variables, Xs

ij (see Section D) and ii) penalty costs resulting
from lost demand allocated to the dummy node k̄. Eq. (1) ensures that we do not allocate
beyond the production capacity of each node. In Eq. (2) we ensure that for each node, either
demand is allocated to another node or lost (sent to the dummy node k̄). Binary constraints
are imposed in Eq. (3).

Results and Discussion - Single Stage Model

First, we run a baseline case in which no country experiences a capacity disruption, repre-
senting the most basic planning situation. Thus, we obtain a solution (lower bound) that
will allow us to measure the impact and value of incorporating uncertainty in the planning
process. In order to set the different components of our objective function on an equal scale,
we normalize the demand and supply quantities, in the [0, 1] interval. As such, we obtain
relative expected cost values for comparative purposes.
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Solving the baseline case, we find an optimal objective equals 154.74 using π = 10
(deduced empirically from data; can be modified by decision-makers) and assuming there
are no adjusted edge maintenance and transport costs, i.e. setting αij = 0. Since we
assume no transport or maintenance costs (subject of future studies), the model focuses
on the trade-off between minimizing loss demand while ensuring that allocations are made
with as few connections as possible. From the results, we observe how Brazil, Colombia,
and Indonesia act as the main suppliers in the network, covering 35.3% of the total global
demand. On average, each source supplies coffee to 23 countries, with negligible deviation
from this number between suppliers. On the other hand, coffee-demanding countries tend to
absorb an almost equal percentage of the total coffee demand (0.8%) while being connected
to 8.6 suppliers on average with a standard deviation of 16.7 countries. From the results, we
note a complex supplier assignment structure where some countries are connected to as little
as 1 supplier whereas others are connected to multiple suppliers. This pattern differs from
the more uniform distribution we observe for the number of customers each coffee supplier
can access.

We compare our model suggestions to real demand and supply allocations. The top three
suppliers (Brazil, Colombia, and Indonesia) in our model correspond with the data. However,
it underestimates the total contributions of the top coffee suppliers, with real contributions
accounting for 63% of the total supply versus the 35.3% suggested by our model. We find
greater diversity in allocations (both on the demand and supply side) within the real data
with the top supplier (Brazil) having as many as 43 customers and Canada, the top importer,
having being connected to 63 suppliers. The lack of diversity in supply allocations in our
results suggest that the current connection function does not fully capture the intricacies of
trade relationships between countries. Overall, we observe that our model is demand-driven.
This can be a limitation as it prioritizes satisfying high-demand countries and would rather
not allocate supply to countries with small demands.

Disrupted network: the value of information

When including uncertainty, we randomly select subsets of scenarios, incrementally increas-
ing their number from 2 to 30. This procedure allows us to observe (Figure 2.6) the evolution
and distribution of the objective costs as the number of scenarios increase. From the results
(without including the two major outliers, Brazil and Colombia, to facilitate the visualiza-
tion), we find that these high-impact countries coincide with the high-capacity suppliers
(Figure 2.1), as expected. We note from this analysis that there exists a small set of very
high-impact countries, such as Brazil and Colombia, that are responsible for providing a huge
volume of coffee supply globally. As such, any disruption to the capacity of these nodes is
translated into major cost increments. This unbalanced network structure makes the coffee
supply chain network significantly vulnerable to disruptions, as any attacks on these critical
nodes can severely reduce the overall coffee availability worldwide, significantly altering the
market (the supply, demand, and price of the product, its substitutes, and complementary
goods).
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In Table 2.2, we present the expected objective values, their mean deviations from the
baseline (deterministic) case, and the standard deviation of the solutions as a function of
the number of scenarios. We note that there is a spike in the expected objective (due to the
disruptions of Brazil and Colombia) before the expected solutions begin to converge towards
163 (a 5% deviation above the baseline) as we increase the number of scenarios. We also
observe similar patterns in the standard deviation values. From the data, we observe that
the peak in the results is the consequence of the successive addition of the two extreme cases
(Brazil and Colombia), translated in significantly higher values.

Figure 2.2: Boxplot denoting Changes in objective costs distribution with increasing number
of scenarios. The orange line represents the objective value for each instance.

At this point, we also note major differences between the deterministic and stochastic
solutions. The limitations of the deterministic solution to adjust the allocation plan when
dealing with uncertainty are translated into complex decision-making scenarios. For example,
costly distribution alternatives would need to be explored to satisfy the demand and supply
contracts of specific sections of the ASC. Moreover, countries could require to increase the
consumption of substitute products to cover the existing demand. These situations are
translated into a higher vulnerability and poor efficiency of the whole network when facing
unexpected disruptions, significantly impacting multiple actors of the ASC. The inclusion of
scenarios allows the planner to explore potential effects of disruption and make more robust
and risk-sensitive allocation decisions.
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2.4 Two Stage Stochastic Allocation Model
We introduce the formulation of the global agricultural allocation model for one commod-
ity under disruption uncertainty with the following key structural assumptions (1) use a
single product with deterministic demand at each node; (2) demand can be satisfied by
external and/or local production, with no special incentive of covering it locally; and (3)
unmet demands are lost and assigned to a dummy sink node, k. We define a directed graph,
G = (N ,A) with nodes i ∈ N representing countries and the arcs (i, j) ∈ A denoting the
flow of agricultural products from node i to node j.

Decision Variables

• Xij = Fraction of demand node i satisfied by node j in first stage

• Ii = Inventory held at node i in first stage

• W s
ij = Fraction of demand node i allocated to node j under scenario s in second stage

Sets

• I: set of nodes (countries: i, j)

• S: set of scenarios (disruptions: s)

Parameters

• Pj: Historical production capacity of node j

• Pj: Production capacity of node j

• P s
j = γ ∗ Pj: Production capacity of node j under scenario s

• Di: Demand at node i in period t

• cij: Transportation costs from node i to node j

• π: Penalty cost for lost demand

• N = |I|: Total number of nodes

• ps: Probability of scenario s (ps = 1/|S|).

• CI
i : per unit inventory holding cost at node I

• f(Xij), f(W
s
ij): non-linear function (connectivity costs)

• β ∈ [0, 1] : depreciation parameter
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• ζ ∈ [0, 1] : Inventory Level Multiplier

• Ins
i = ζPj Inventory held at node i under scenario s in second stage

Then, we define the extensive form of our two-stage stochastic allocation problem SAP (X)
including node disruption (scenarios s ∈ S) as follows:

min
X,W,I,In

F (Xij) +
∑
j

CI
j (Ij) + E[F (W s

ij) +
∑
j

CI
j (In

s
j)] (2.4)

s.t
∑
i

W s
ijDi + Ins

j = P s
j + βIj ∀j ∈ I, s ∈ S (2.5)∑

i

XijDi + Ij = Pj ∀j ∈ I, s ∈ S (2.6)∑
j

W s
ij +W s

ik̄ = 1 ∀i ∈ I, s ∈ S (2.7)∑
j

Xij +Xik̄ = 1 ∀i ∈ I (2.8)

Ins
j = ζPj ∀j ∈ I, s ∈ S (2.9)
Ij ≥ 0 ∀j ∈ I, s ∈ S (2.10)

0 ≤ Xij,W
s
ij ≤ 1 ∀i, j ∈ I, s ∈ S (2.11)

In Eq. (1), the objective is to minimize the inventory and non-linear connectivity costs
across the ASC network. In the first stage, we solve for inventory levels, Ii and quantity
flows Xij for a system with no disruptions. For the second stage variables, given previous
stage inventory levels, Ii we minimize the expected costs for different disruption scenarios.
Eqs. (2) and (3) represent inventory balancing equations that ensure that the total allocated
quantities and inventory from previous stage equals to total production values and current
inventory for each node in each scenario, for both stages. We note that Eq. (2) includes the
presence of inventory at the end of the second stage for each scenario (Ins

j). In Eq. (4) and
(5), we ensure that for each node, either demand is allocated to another node or lost (sent
to the dummy node k̄) for the first and second stage variables. Eq. (5) defines the inventory
required at the end of the second stage by the decision maker for each node and scenario.
By default, this is set as a proportion – controlled by parameter zeta – of the expected
production level of the node. Non-negativity and upper bound constraints are imposed in
Eq. (7) and (8).

Connectivity Function

To estimate the connectivity costs we use a function f(.), inspired by the Connections Model
from social and economic theory [61]. In our model, making the value of each node derived
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from the other proportional to shortest paths makes no sense because all nodes are assumed
to be directly connected. Instead, we want to capture the added value of a new connection.
As such, we model δtij parameter of the original model in an alternative way. More so, we
are interested in costs instead of utility. Since we can think of costs as negative utilities, we
negate the utility form. Thus, our connectivity costs function between node i and node j,
under scenario s becomes:

fij(W
s
ij) = c̄ij − δsijwij − wii (2.12)

where,

• δsij: Relative value that node i derives from being connected to node j under scenario
s

• wij: quality (intrinsic value) product node i expects to receive from node j

• c̄ij: cost of maintaining edge (i, j)

The δsij parameter captures the variation in value that each connection has, associated
with scenario s. To estimate its value, we use the concept of degree centrality, Ci, that
measures the number of links incident to a node to assess the importance each node has
within a network:

Ci =
1

N − 1

N∑
j=1,i ̸=j

a(i, j) (2.13)

with a(i, j) = 1 if i is connected to j, 0 o/w.
In our setting, the value of node i will likely decrease as it becomes saturated with con-

nections. Thus, we estimate that node i will experience a lower value from being connected
with j as its degree centrality increases. Since we are solving for allocation, and thus, do not
know the values of a(i, j), we use the allocation variable Xs

ij, obtaining:

Cs
i = Cs

i (X
s
ij) =

1

N

N∑
j=1,i ̸=j

Xs
ij ∀s ∈ S (2.14)

δsij = (1− Cs
i ) ∀s ∈ S (2.15)

We define wij as the quality of product node i expects to receive from node j. We
assume that all nodes have the same constant intrinsic value: A = 1 to other nodes but 0 to
themselves (i.e, wij = A and wii = 0). We set wii = 0 ∀i ∈ I because our data do not have
information about demand fulfilled locally.
Replacing all the expressions in Eq. (5) and multiplying by Xs

ij to include only allocated
edges, we get:

fi,j(X
s
ij) = c̄ijX

s
ij − A(1− Cs

iX
s
ij) (2.16)
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Thus our (non-linear) objective function becomes:

min
x

∑
s

ps

(∑
i,j

(ACs
iX

s
ij + αijX

s
ij) +

∑
i

πDiX
s
ik̄

)
(2.17)

where αij := c̄ij + cijDi − A (interpreted as the adjusted edge maintenance and transport
cost).

2.5 Results and Discussion - Two Stage Model
First, we run a baseline case in which no country experiences a capacity disruption, repre-
senting the most basic planning situation. Thus, we obtain a solution (lower bound) that
will allow us to measure the impact and value of incorporating uncertainty in the planning
process. In order to set the different components of our objective function on an equal scale,
we normalize the demand and supply quantities in the [0, 1] interval. As such, we obtain
relative expected cost values for comparative purposes.

For the two stage analysis, we use different production values for each stage. In the first
stage, the goal is to get a representative baseline inventory level for the start of the year. For
this, we use historical average production values from the previous 10 years (2009 − 2018).
In the second stage we decide to use the production levels for the year of interest, 2019. In
Figure 2.3, we present the average and current (2019) supply for historically top and bottom
suppliers. For the 50 largest suppliers, the average historical supply trends and 2019 supply
values are consistent with an average deviation of less than 4%. For the bottom 30 suppliers,
we observe more variations between the average supply and the historical supply performance
(up to 105%). Therefore, we note that coffee production tends to follow the same historical
patterns i.e., the same countries dominate the production and supply of coffee with most of
the discrepancies appearing only in countries with relatively insignificant supply quantities
(e.g., Uzbekistan and Solomon Islands ). This consistency in supplier size is important to
validate the assumption that historical production as a the first stage production level is a
representative approximation for production levels in the coming year.

Solving the baseline case, we find an optimal objective equals to 162.07 using π = 10
(deduced empirically from data; can be modified by decision-makers). We also set out
depreciation factor to β = 0.75 to capture the average shelf life of coffee, about 6 − 9
months. In the final stage, as a simple inventory management rule, we aim to maintain a
base inventory level proportional to the amount of expected supply available by each supplier.
This inventory level is regulated by ζ parameter, which we set to 0.1 by default (i.e., 10%
of the expected production level). Later on, we explore the sensitivity of the solutions to
the perishability of the product, captured by the β parameter. We assume there are no
adjusted edge maintenance and transportation costs, i.e., we set αij = 0. The suppression of
transport or maintenance costs (subject of future studies) means that our model focuses on
the trade-off between minimizing loss demand while ensuring that allocations are made with
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Figure 2.3: Average historical supply quantities from 2009 - 2018 versus supply values in 2019
for the six largest and smallest suppliers historically in panels (A) and (B), respectively.

as few connections as possible. In addition, we observe how Brazil, Colombia, and Indonesia
act as the main suppliers in the network, covering 54.2% of the total global demand. On
average, each source supplies coffee to about 80 countries, with negligible deviation from this
number between suppliers. On the other hand, coffee-demanding countries tend to absorb
an almost equal percentage of the total coffee demand (0.55%±2.2% ) while being connected
to 37 suppliers on average with a standard deviation of 27 countries. From the results, we
note a complex supplier assignment structure where some countries are connected to as less
than 3 supplier (e.g.,Lesotho and Sao Tome and Principe) whereas others like Canada are
connected to multiple suppliers. This pattern differs from the more uniform distribution we
observe for the number of customers each coffee supplier can access.

We compare our model suggestions to real demand and supply allocations. The top
three suppliers (Brazil, Colombia, and Indonesia) in our model correspond with the data.
While there exists some degree of alignment between supplier allocations from our model
and reality, our results tend to have less diversity in supplier allocations. This is explained
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because the model underestimates contributions of the top suppliers, with real contributions
accounting for 54.2% of the total supply versus the 44.8% of allocated supply suggested
by our model. There is greater diversity in allocations (both on the demand and supply
side) within the real data. Italy and Canada have the most export/import diversity being
connected with as many as 126 customers and 112 suppliers, respectively, while our model
assigns, on average, a uniform number of 1 supplier and 40 customers. The lack of diversity in
supply allocations in our results suggests that the current connection function does not fully
capture the intricacies of trade relationships between countries. In practice, trade between
countries are usually influenced by several factors including custom free trade agreements
between countries, specified quotas and even environmental and regional agreements [118,
49]. As such, the simplistic view represented by our connections model is one limitation in
our model which we plan to improve in the future.

Inventory Analysis

In this section, we discuss the distribution on inventory and how the inventory allocation
changes from the deterministic baseline model under different disruption scenarios. For this
analysis, we use only single scenario cases so as to compare the impact of disruption on
inventory at the country level. In Figure 2.4, we plot the evolution of the average relative
inventory (normalized relative to demand and supply values) as the number of scenarios
rise. In addition, we also include the maximum and minimum inventory levels. The top
two disruption scenarios (Brazil and Colombia) are added first to observe their significant
impact on the optimal network allocation. The rest of the scenarios are randomly added
in increments of two. There is a massive drop (over 57%) in inventory values between the
first two and after including the next set of scenarios. This drop shows that a disruption of
the two largest suppliers has a significant impact on the coffee network’s ability to supply
coffee to other countries, i.e., the whole network is impacted by the absence of Brazil or
Colombia’s production. This results in large quantities of inventory during the first stage of
the planning required to make up for these missing production quantities. As the number
of scenarios increases, the range of inventory values converge to about the same levels with
minimal or negligible impact on the objective function and network allocations. Addition-
ally, inventory values tend towards smaller values as new scenarios (more information) with
negligible impact across the network are included into the formulation, diluting the prob-
ability of occurrence equally across all scenarios in this study. This decrease in inventory
values with increasing scenarios is due to the dilution of the objective with a larger number
of scenarios with countries have lower impact when disrupted.

To measure the impact of the disruption on inventory at an individual country level, we
compare single scenario disruptions to the deterministic baseline. In Figure 2.5, we observe
the proportion of excess relative inventory from three single scenario disruption cases (Brazil,
Colombia, and Cameroon) compared to the inventory needs during the baseline case with
no disruptions.
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Figure 2.4: Evolution of relative inventory with increasing number of scenarios. In each case
we, include minimum, average, and maximum inventory levels. Increasing the number of
scenarios results in lower inventory levels as the objective function (expected cost) is diluted
by less impactful scenarios.

We select large size suppliers because they have the strongest impact on the model results.
We note that the inventory level of the disrupted country is significantly increased to balance
the effect of the interruptions. For a small subset of top suppliers like Brazil and Colombia,
disruptions to their supply quantities results in these countries having to store as much as
18 and 25 times their required inventory levels respectively for the baseline case. We also
note in the case of a disruption in Brazil that the top 10− 20 suppliers almost double their
inventory needs from the baseline level. This is because on average, the relative proportion of
excess inventory needed is a factor of about one from the baseline value on average. There is
a similar pattern observed in the case when Colombia’s supply is disrupted. For disruptions
to a medium-to-large supplier like Cameroon, ranked 27 by supply quantity, the trend is
to observe a more localized effect on inventory levels. While Cameroon has its inventory
increased by a factor of 12 times from its baseline value, there are little to no change in
inventories of other countries.

Disrupted network: the value of information

When including uncertainty, we randomly select subsets of scenarios, incrementally increas-
ing their number from 2 to 46. This procedure allows us to observe (Figure 2.6) the evolution
and distribution of the ASC management expected costs as the number of scenarios increases,
as well as the impact of disrupting different sections of the network. We zoom into Figure
2.6 such that the two major outliers (i.e., Brazil and Colombia) are not shown in the image
to facilitate the visualization. From the results, we find that these high-impact countries



CHAPTER 2. GLOBAL FOOD ALLOCATION MODEL 21

Table 2.2: Summary statistics of the stochastic solutions including mean expected costs
(objective), mean deviations of objective from baseline deterministic case, and standard
deviations as we increase the number of scenarios considered in the optimization model.
We start with the top two most relevant disruptions with highest expected objective value.
This decreases as the probability of experiencing disruptions in top suppliers is diluted when
including scenarios affecting less relevant countries for the coffee network.

Number of Expected Standard Mean Relative
Scenarios Costs Deviation Deviation from Baseline

2 1325.2 514.4 7.18
4 772.3 663.0 3.77
6 571.1 615.7 2.52
8 469.6 561.4 1.90
10 422.6 511.9 1.61
12 379.1 477.3 1.34
14 362.0 445.4 1.23
16 337.0 421.8 1.08
18 317.6 401.5 0.96
20 302.0 383.7 0.86
22 289.3 368.1 0.78
24 279.0 354.0 0.72
26 274.0 340.9 0.69
28 270.5 329.1 0.67
30 263.6 319.0 0.63
32 258.8 309.5 0.60
34 257.1 300.5 0.59
36 251.9 292.8 0.55
38 247.1 285.7 0.52
40 252.9 281.7 0.56
42 248.6 275.6 0.53
44 244.7 269.8 0.51
46 244.8 264.5 0.51
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Figure 2.5: Proportion of excess relative inventory from baseline (no disruption scenario) for
single three country disruption scenarios: Brazil, Colombia, and Cameroon (left to right).

coincide with the high-capacity suppliers identified in Figure 2.1, as expected. We note from
this analysis that there exists a small set of high-impact countries, such as Brazil, Colom-
bia and Indonesia, that are responsible for providing over (50%) of coffee supply globally.
As such, any disruption to the capacity of these nodes is translated into major cost incre-
ments, triggering a chain of multiple demand re-allocations across the ASC network. This
unbalanced network structure makes the coffee supply chain network significantly vulnerable
to disruptions, as any attacks (or issue impacting production) on these critical nodes can
severely reduce the overall coffee availability worldwide triggering uncertainty and reduc-
ing the reliability of the network, significantly altering the market at all levels: its supply,
demand, price of the product, its substitutes, and even complementary goods.

In Figure 2.6, we note trends in the objective value which is the expected cost of the
stochastic allocation model as the number of scenarios increase. As previously mentioned,
the first two scenarios are intentionally selected to represent to top two most impactful
scenarios. The rest of the scenarios are randomly selected and incrementally added in pairs.
As expected, there is an attenuation in the objective values as the number of scenarios
increase (i.e., capturing more uncertainty) because the impact of the disruptions of the large
supply countries is diluted by the inclusion of low impact scenarios that have little or no
significant effect on global coffee supply allocations (e.g., a disruption in Cameroon as seen
in Figure 2.5).
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In Table 2.2, we present the expected objective values, their mean deviations from the
baseline (deterministic) case, and the standard deviation of the solutions as a function of the
number of scenarios. Starting with the two most costly disruptions (Brazil and Colombia)
having the highest expected objective value. There is a sharp drop in expected objective
before the expected solutions begin to converge after more than 30 scenarios towards 252.1 on
average (a 55% deviation above the baseline solution) as we increase the number of scenarios.
From the data, the peak in the initial scenario results is the consequence of the successive
addition of the two extreme cases (Brazil and Colombia), translated in significantly higher
objective values. We also find similar patterns in the standard deviation for the same reasons
previously mentioned.

Figure 2.6: Boxplot denoting changes in objective costs distribution with increasing number
of scenarios. We select the two most disruptive scenarios initially and the rest of the scenarios
are added randomly in pairs. The orange line within the boxes represents the objective value
for each instance. As the number of scenarios rise, there is a decline in objective values due
to the dilution of probability of high impact scenarios.

We also observe important differences between the deterministic and stochastic solutions.
The limitations of the deterministic solution to adjust the allocation plan when dealing with
uncertainty are translated into complex decision-making scenarios. For example, costly dis-
tribution alternatives would need to be explored to satisfy the demand and supply contracts
of specific sections of the ASC. Moreover, countries could require to increase the consump-
tion of substitute products to cover the existing demand, triggering modifications in the
whole system. These situations are translated into a higher vulnerability and poor efficiency
of the whole network when facing unexpected disruptions, significantly impacting multiple
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actors of the ASC. The inclusion of scenarios allows the planner to explore potential effects
of disruption and make more robust and risk-sensitive allocation decisions.

Model Sensitivity to Depreciation Factor

In this section, we discuss the effects of varying the depreciation parameter, β on the model
objective. We have noted from the single disruption analysis in previous sections that the
impact of disruption in proportional to the size of the supplier. As such, for this analysis,
we use a five scenario model, including disruptions to the five largest coffee suppliers: Brazil,
Colombia, Germany, Guatemala, and Indonesia. These high impact scenarios are selected
to enable us to better observe objective changes, if any, as we vary the β parameter. We

Figure 2.7: Evolution of expected objective cost for different β values using top 5 scenarios.
There is a linear decrease in objective value with increase in depreciation factor due to the
rise in available increase in inventory.

explore the changes in the depreciation parameter, β over a range of values between 0.75
and 1. These values are selected to mimic/represent the fact that coffee has a relatively long
shelf life and can sometimes last longer than a year, which is our time resolution. In Figure
2.7, we plot the evolution of the expected objective costs for β values in range between
0.75 and 1, for the model incorporating the selected scenarios. We note that, as expected,
a somewhat linear decrease in objective value as the depreciation factor, β, increases, as
less inventory is lost between the two stages. This parameter can be further perturbed to
provide insights to decision-makers about different optimal allocation policies according to
their storage capacity/resources and even incorporate an extra source of uncertainty in future
extensions of the model (e.g., it can be modeled as a random variable for specific products).
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2.6 Summary of Contributions
In this work, we developed a general product agnostic framework to analyze the performance
of global agricultural supply chains that can be easily applied to multi-commodity networks.
Our framework attempts to expand the scale of previous studies where, traditionally, pro-
duction disruptions (fractional or complete) are not included in the planning process for the
allocation of agricultural goods. Planners are now able to explicitly incorporate uncertainty
reflecting potential events that could affect the performance of the network by modifying the
capacity of the nodes. This analysis is crucial as certain agricultural networks, such as the
one analyzed in this study, present a significant dependency on a small subset of countries/n-
odes, being extremely vulnerable to perturbations depending on their location. Therefore,
the analysis of potential solutions and policies to, e.g., evaluate alternative transportation
systems, identify backup suppliers to cover their demand, or plan for substitute products,
among many other potential scenarios, could be done by planners and decision-makers while
including uncertainty.
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Chapter 3

A global risk and network health
measure

3.1 Introduction
As highlighted in previous chapters, the ever increasing frequency and severity of disruptions
can have lasting negative impacts on global supply chains. As such, it is important to
understand and assess how risk and its effects impact the supply chain and evolve over
time. In this chapter, we aim to develop a global network risk measure and ultimately
estimate a data-driven index to measure for health (risk trends) of global food networks.the
network health is defined as a measure of trends in the distribution of a network’s risk levels
over time. We incrementally update our network risk measure starting with a hand crafted
intuitive risk measure then the Downstream Protection Value (DPV) and finally proposing
the Downstream Supply Risk Measure (DSRM) focusing in including downstream impact of
nodes. The consistency in results between DPV and DSRM measures is investigated and
their limitations are discussed.

Several studies have been conducted to develop conceptual and mathematical frameworks
to identify and assess risk of food and agricultural supply chains. [16, 127, 112, 126, 62] A
literature review of various methodologies for identifying and assessing supply chain risk
specific to agri-food supply chain can be found in [108]. The authors in [117] suggest that
in Food Supply Chains uncertainty, which can be considered from aspects such as time,
location, quantity, quality, cost creates vulnerability in supply chains. In [94] the authors
investigate and mitigate supply chain risks associated with organic rice in Thailand, by
developing and implementing theBest-Worst method (BWM), a risk metric for ranking the
critically of different factors, used to establish a hierarchy of importance of the 26 identified
risk factors in the Thai rice supply chain. In [108],the authors provide a literature review
of various methodologies for identifying and assessing supply chain risk specific to agri-food
supply chain. While most of the work intersecting risk and food supply chains have been
focused on single products, a few studies have explored the evolution of multiple products.
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The Authors in [97] assess the evolution in fragility of 2 staple products (rice and wheat)
over a period of 18 years.

3.2 Risk Measures and Numerical Analysis
In this section, the following three different risk measures were proposed (1) Intuitive risk
measure (2) Downstream Protection Value (DPV), adapted from previous work (see chapter
6) and (3) Downstream Supply Risk Measure (DSRM). Each subsequent risk metric, is
created to improve upon its predecessor. The data for this analysis is obtained from the
World Integrated Trade Solution database, created by the World Bank in collaboration with
the United Nations Conference on Trade and Development (UNCTAD), International Trade
Center, United Nations Statistical Division (UNSD), and the World Trade Organization
(WTO) [10, 78]. This data set includes historical (2009 − 2019) trade data for various
agricultural and food products. A total of 53 different products were used for the analysis
and also focus on a 2 groupts of products. The first subset of products ( coffee, cocoa, oats,
rice, beans) and the second subset consisting mainly of grains (corn, barley, oats, rice, rye
and millet) were selected because their high consumption and utilization worldwide and long
history or recorded global trade.

Intuitive Risk Measure

First an intuitive risk measure obtained by hand crafting features from the supply chain
data that we believe capture the risk levels of each node and eventually the whole network
was explored. It was hypothesized that the effects disruptions to a country’s supply are
more important for countries with (1) large supply capacity and (2) having multiple trade
connections relying on their supply. To quantify these factors the following features defined
below were extracted:

Definitions

• Supply_fraction (SF): Percentage of total supply lost from network when node removed

• num_supply_dependents (Df): Percentage of countries depending on the node for
supply (out-degree)

• Network health threshold (beta): Cutoff value (%) for node risk measure

• Significance level: The probability that the event (risk level of network) could have
occurred by chance. Our analysis, focused on the value = 0.05.

• Single product network: This assumes that each supply chain ( movement of products
between countries) consists of only 1 agricultural product e.g. coffee, cocoa.
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For each node, the node risk measure is defined by finding the weighted average of the
supply_fraction) and num_supply_dependents.

node risk measure = 0.5(supply_fraction) + 0.5(num_supply _dependents)

In order to estimate a measure that captures the networks health, we want to move from
assessing risk at the individual node level to the whole single product network. We consider
the distribution of the node risk within a and set different node thresholds. We expect higher
risk networks to have a larger fraction of its nodes having high risk values. We define the
network risk of product i for each time period, t by the probability that the node risk is
greater than 1− β, where β is the cut off value decided prior to the analysis. This network
risk is denoted by the formula below:

Network risk(i,t) = Prob{node risk measure (x) >= (1-beta)}

In Figure 3.1, we examine the evolution of node risk for beans at different threshold values.
We set various threshold values: 1%, 5%, 10%, 20% but observe from the data that the red
curve provides most differentiation between products at 0.05 significance level. The large
proportion of curve above significance level line indicates higher risk. Based on the trends in
the red line, we consider beans to be moderate to high risk network with an overall increasing
supplier size and number of customers dependent on beans with time. We also look at the
trends in general products including coffee, cocoa, rice and oats and grains such as corn, rye,
millet and barley.

Figure 3.2 and figure 3.3 detail the trends in the intuitive risk measure for various products
( cocoa,coffee, oats, rice, corn, rye, millet and barley), we observe the following behaviors

• Cocoa and Oats (lower risk networks): mostly flat risk rates across thresholds with red
line sitting below significance lines. Increasing level of risk after 2015.

• Coffee (high risk network): Overall increasing supplier size and number of customers
over time.

• Rice (moderately risky network): Mostly flat risk rates for larger thresholds (green,
red) lines with red line sitting on significance lines.

• Rye, Barley and Millet (lower risk networks): mostly flat risk rates across thresholds
with red line sitting below significance lines.

• Corn (high risk network): Overall increasing supplier size and number of customers
over time.

From our definitions, trends in risk can serve also serve as proxy for network health. We
note that coffee and corn show curves above the line with steady increasing trends which
may lead us to believe that these supply chain is getting more risky with time and may be
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Figure 3.1: Evolution of the probability that node risk measure greater than threshold values
(1%, 5%, 10%, 20% ) for beans. Significance level, the cutoff for which probability values
are significant is set to 0.05

deteriorating in health. Other products such as barley, rye, cocoa and oats have relatively
flat lines below the threshold indicating more neutral or stable network health. Finally a
product like rice, has a relatively flat curve above the line indicating a high risk product
with stable network health ( neither deteriorating nor improving
In order to numerically qualify these trends,the slopes of the different curves over the whole
time period investigated are obtained. Table 3.1 below details the slopes of the red line with
threshold = 1% for the each product. The slope values do not provide enough differentiation
and thus we are unable to use this number to qualify the risk. As such we also consider
whether the curves lie above or below the significance line. We observe that cocoa and oats
are lower risk networks with mostly flat risk rates across thresholds with red line sitting
below significance lines. Increasing level of risk after 2015. Coffee on the other hand is a
high risk network with an overall increasing supplier size and number of customers over time.
Finally, rice is a moderately risky network similar to beans with with the red line sitting on
significance lines. bookstab
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Figure 3.2: Evolution of the probability that risk measure greater than threshold values: 1%,
5%, 10%, 20%, for various products ( cocoa,coffee, oats and rice) with Significance level at
0.05. The products are listed from left to right and top to bottom.

Overall, we present a rudimentary method for assessing risk trends and ultimately network
health of single product supply chains. This measure tries to capture the probability that
node risk is larger than predetermined cutoff values. Our node risk tries to capture how much
supply each node commands and how many nodes are dependent on this supply downstream.
Increasing trends usually signal a deterioration in the health of the network whereas constant
or decreasing trends signal healthier networks. From the five products we investigated, we
found that coffee and were considered higher risk (least healthy) , rice was moderately risky.
Finally products like cocoa and oats were lower risk thus more healthy. While this method
does not summarize the metric into a single number, the observed trends in our risk evolution
curves can provide us some insights about how well the network is doing.
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Figure 3.3: Evolution of the probability that risk measure greater than threshold values: 1%,
5%, 10%, 20%, for grains ( corn, rye, millet and barley) with Significance level at 0.05. The
products are listed from left to right and top to bottom.

Downstream Protection Value (DPV)

One limitation of the previous method is our inability to easily summarize our intuitive risk
measure into one numerical value. We attempt to use the slope but we find that this measure
is insufficient to provide enough differentiation between the different products. The down-
stream protection value (DPV) is a flexible metric that estimates the impact of disruption
to a country’s supply. [92, 41] In this analysis, countries are represented by nodes and the
edges indicate flow of material from country i to j (flow(i,j)). To calculate DPV, we use the
concept of the shortest path tree of each node, i, defined as the set of all the nodes accessible
from node i.

Definition 1 Let i ∈ N , and Ti = (Ni, Ei) its propagation tree with root node i. Then, the
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Table 3.1: Summary table for products (Beans, Cocoa, Coffeee, Oats and Rice) including
the slope and corresponding standard error of the risk time series plots. In addition, the
table also details the position of the curve relative to the significance line and a final column
that provides an inferred risk label.

Products Slope
(standard error)

Curve Position Relative
to significance line Risk Label

Beans 0.0031
(0.0012) Above High

Cocoa 0.0008
(0.0025) Below Low

Coffee 0.0037
(0.0008) Above High

Oats 0.0052
(0.0013) Below Low to Moderate

Rice 0.0053
(0.0015) Neutral Moderate

Corn 0.0036
(0.0012) Above High

Rye -0.0053
(0.0027) Below Low

Barley -0.001
(0.0011) Below Low

Millet 0.0026
(0.0016) Below Low

Downstream Protection Value, DPV (i) is defined as

DPV (i) =
∑
j∈Ni

V aRj

where V aRj is the allocated supply from parent node to node j and DPV (i) : Accounts for
dependence of nodes (countries) downstream of i represented by the shortest path tree of i.

In Figure 3.4 we illustrate an example of how the risk measure DPV is calculated for a node
A by summing the downstream flow from its shortest path tree. The shortest path tree of A
consists of four nodes downstream (B,C,D,E) plus itself. Each of these nodes receives a flow
from its parent node in the tree. We sum all these flows in the tree and that is considered
the dpv of A. In this example this leads us to a value of 26 kg.
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Figure 3.4: DPV calculation on a sample shortest path tree of node A shown on the left
side of the figure by summing the downstream flow. The table to the right reflects the DPV
value for each node in the tree

For each yearly product network, we compute the DPV values for each node. We also
generate the average DPV across all nodes within the network to summarize these values into
a singular metric. Figure 3.5 shows the distribution of DPV values across five products of
interest (coffee, cocoa, oats, rice, beans). Overall there are similar patterns in risk behaviours
between DPV and intuitive risk measure with coffee and beans having higher risk values
which cocoa and oats tend to have lower risk values. Figure B.1 in Appendix B.2 shows
increasing trends in risk Some limitations of the DPV risk measure include it is biased
towards large flows and prone to overestimating impact of downstream supply since these
are cycles within the network.
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Figure 3.5: Violin plots showing the distribution of the Downstream Protection Value (DPV)
risk metric across selected products ( coffee, cocoa, oats, rice, beans). Corn and beans have
relatively high risk values in general whereas cocoa networks tend to have pretty low risk
values.

Downstream Supply Risk Measure (DSRM)

While the DPV metric provides a more systematic and dynamic way to measure the risk
levels of our network. It still has a few limitations that need to be improved upon. Some
of DPV’s shortcomings include (1) its bias towards large flows, where countries with large
supplies have dis-proportionally large risk values that influence risk distribution and (2) the
method prone to overestimating impact of downstream supply as the downstream networks
can include cycles that lead to double counting. To tackle this, we propose an updated
metric Downstream Supply Risk Measure (DSRM) that solves challenges around including
propagation effects of supply disruption and normalizing between nodes and across networks.
We denote a directed graph, G = (N ,A) with nodes i ∈ N representing countries and the
arcs (i, j) ∈ A
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Table 3.2: Summary table including for each product average DPV values with the corre-
sponding standard deviation and an inferred relative risk label based on the average DPV
values.

Products Average Normalized DPV
(Standard Dev.)

Relative Risk
Label

Beans 0.187
(0.026)

High

Cocoa 0.121
(0.014)

Low

Coffee 0.211
(0.032)

High

Oats 0.156
(0.021)

Low to Moderate

Rice 0.178
(0.021)

Moderate

Corn 0.205
(0.025)

High

Rye 0.123
(0.033)

Low

Barley 0.155
(0.017)

Low to Moderate

Millet 0.152
(0.015)

Moderate

Definitions

Definition 2 We define the flow of products from node i to node j, Flow(i, j) and
define a measure of edge significance,

δ(j,k) = Flow(j, k)/max{Supply(k)−Demand(k), Demand(k)}

We say that j is accessible from i, denoted by (i→ j) if there exists a path, i1, i2, ..., ip ∈
N such that:

i→t(i1) i1 →t(i2) i2 → · · · → ip →t(j) j.

We say that the graph Ti = (Ni, Ei) is the “Significance Tree” of the cell i if:

• i ∈ Ni is the root of the tree Ti, where Ni = {j : i→ j} ∪ {i}.

• Ei = {(j, k) : j, k ∈ Ni, j ↔ k} where ↔ represents the existence of an edge rep-
resenting supply from j to k , given that k has not appeared previously in Ei and
δ(j,k) > ϵ, where ϵ is a threshold parameter.

• Each edge e = (j, k) ∈ Ei is associated with a weight, w(j,k) = δ(j,k)/
∑

i(δ(j,i))
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Figure 3.6: Sample significance tree for Node 1.1 obtained from Definition 2 with detailed
annotations around how each stage of computation for the DSRM measure of Node 1.1.
Below the significance tree is a summary table detailing DSRM computation steps for node
1.1 using all its "significant" downstream nodes

In figure 3.6, a sample significance tree for node 1.1 is shown. The significance tree is created
by following the steps detailed in definition 2 and eliminating nodes that are not significant
i.e. do not allow the and calculate the normalized measure for node 1.1. DSRM computed
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from bottom to top using significance tree. Levels are defined as the number of edges between
the downstream node and the root node. The table below the significance tree shows the
analysis starting with the leaf nodes. In each level, we combine all the weighted delta values
of each node and then add it to the next level. In our example, the furthest level is two and
consists of leaf nodes M and B. Node B is eliminated after failing the significance test. Then
we move up to level 1. Since node M is downstream of node A. The pseudocode capturing
the detailed implementation of DSRM is presented in Appendix B.3).

3.3 Results and Discussion
In this section the performance of the updated DSRM metric is compared to our previous
DPV measure. The goal of our new measure is to reduce double counting of downstream
effects in the network and also improve the process of normalizing between nodes and across
networks.

Figure 3.7: Comparing distribution of DSRM ( left) vs DPV (right) across a subset of
products. In the top panel, we compare difference between a general set of products (Coffee,
Cocoa, Oats, Rice, Beans) while in the bottom panel we focus specifically on grains (Corn,
Barley, Oats, Rice , Rye and Millet)
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Figure 3.7 shows comparisons between the distribution of DSRM and DPV for two sets
of products, a more general of commonly consumed foods and another set consisting mainly
of grains. Grains in particular are selected because of the high dependence of most of the
world’s diet on these products. As expected the total Average DSRM measures were much
lower than the normalised DPV because insignificant edges were removed. This result is
due to the removal of redundant and/or insignificant downstream connections as well as the
normalization at each level in DSRM compared to DPV. Overall there seems to be similar
patterns in relative behaviours between DSRM and DPV across products but there are some
products (e.g coffee and barley) that behave very differently between DPV and DSRM.

To further investigate the prevalence of outlier behaviors between the two metrics, we
explore correlations between DSRM and DPV. In figure 3.8, we present the scatter plot of
DSRM vs DPV. We re-scale the DSRM measure using the log scale for better visualization
since the relative values are very small. For the whole data set including median values
across all product we obtained a correlation of 0.13. The original data set contains multiple
products data points for every year, each with slightly different values. The noise in the
signal for correlation between 2 metrics across products is reduced by obtaining and using
the median values for each product instead of the whole distribution. From figure 3.8, two
sets of outliers groups are observed. The first group characterized by the high DSRM and
low DPV group consists of potatoes, lettuce, rye, pawpaws, and peas. The second group
which includes asparagus, dates and coffee is the low DSRM and high DPV group. Removing
these outliers increases the correlation between the two measures to 0.54.

A closer look at trends in risk behaviors in DSRM reveals surprising differences com-
pared to the DPV trends. The figure in Appendix B.2, shows increasing trends in the yearly
distribution of Normalized DPV Across all Products. However, the overestimation of down-
stream effects when using the DPV metric render these trends less reliable. In Figure 3.9, we
revisit risk trends, taking a closer look at boxplots showing the distribution of DSRM across
all products through time. This time we get more complex risk behavior, with decreasing
trends indicated ameliorating network health between 1996 and 2001. After 2015, reveals
mildly increasing risk trends signally overall increasing vulnerability of networks globally in
the more recent years. The period between 2002 and 2015 for the most part is relatively flat
indicating stable network health.

3.4 Summary of Contributions
We designed and incrementally improved a data-driven measure that quantifies the network
risk levels. We implemented DSRM, our most current measure on multiple products and
compare trends in risk values to our previous measures (DPV and Intuitive risk measure).
In general, the three metrics seem to capture similar relative behaviors. However, only
DPV and DSRM can use a unique number to capture the entire network’s performance. In
addition, DSRM solves two challenges faced by its predecessor, DPV. The first challenge of
overestimating impact of downstream supply due to double counting is solved by defining
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Figure 3.8: Scatter plot of the median values across products for of the log(DSRM) versus
Downstream Protection Value (DPV) metric for the values. The median values are used
to reduce noise from the product networks through time. There is a trend to the top right
corner indicating positive correlation between the two metrics. The orange dots indicate
2 groups of outliers, the high DSRM and low DPV group (top left quadrant) and the low
DSRM and high DPV group (bottom right quadrant).

the significance tree to better track impacted nodes downstream. The second issue with
DPV is the bias towards large flows which we combat by normalizing between the nodes in
the significance tree at each level. While we observed similar relative risk patterns between
DPV and DSRM for most products, there were some products (e.g coffee, rye) that had
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Figure 3.9: Box-plot showing the distribution of log of Normalized DSRM values across all
Products between 1996 and 2020.Between 1996 and 2001, the time series has a negative slope.
For the most part there are no trends between 2002 and 2015. After 2015, there is a slight
positive trend towards risk with time potentially signally overall increasing vulnerability of
networks globally in the recent years.

completely different relative behaviors between the two metrics. More so, results from our
measure align with our previous optimization work ( see chapter 2) where coffee was shown
to be a relatively high risk network due to its supply chain structure that was heavily reliant
on a small subset of suppliers.

One of the goals of this work is to attempt to quantify the network health, which we
define as trends in the risk levels through time. The DPV metric shows consistently rising
trends in risk with time potentially supporting that supply chain risk has been steadily rising
since 1996. However, these findings may not entirely correct due the double counting error
that occurs when using DPV on graphs instead of trees. On the other hand, the trends in
DSRM present more interesting results. Before 2001, the time series has a negative slope.
For the most part there are no trends between 2002 and 2015. After 2015, there is a slight
positive trend towards risk with time potentially signally overall increasing vulnerability of
networks globally in the recent years.
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Chapter 4

Framework for categorizing supply
chains(food) using structure.

4.1 Introduction
This chapter further explores the concept of supply chain risk and investigates methods
for grouping supply chains by using features that capture network structure to allow the
development of more scalabable policies. We develop a framework to systematically group
different food product supply chains by identifying their structural similarities and differences
and vulnerability using Graph Neural Networks. These vector embeddings obtained from
the graph neural network enable us to summarize the overall structure of the individual
networks. This method uses trade data between countries from a World bank database for
53 different products over a period of 25 years. Decision makers can thus create policies for
food networks at the group level instead of individual policies for the large variety of food
and agricultural products.

Providing global and equitable access to food and nutrients is a longstanding problem
that is important because food is a basic human right. This challenge requires the design
of effective systems that regulate the movement of food between countries and access to
nutrients by different populations. Studies suggest that global trade between countries is
necessary to enable nutrient access to all populations. This is especially essential for nutri-
ent poorer communities and countries thereby allowing them to nourish large proportions of
their population.[124] The increased exchange of food between countries have rendered food
supply chains increasingly complex. In addition, the need for many outsourced procedures
such as food product storage and transportation services and lack of communication between
stakeholders augment the already existing complexity in these supply chains.[60] In Agricul-
tural and food supply chains, highly perishable grocery foods constitute up to 50% of all sales
in retail food. [33] These products with widely varying life cycles make it difficult for decision
makers to manage perishable food products because of deterioration, wastage,spoilage, and
a short shelf life. [7, 120, 76] More so, the rising frequency and intensity of extreme climate
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events with projected continued temperature increases, and shifting rainfall patterns have
accentuated volatility of crop and livestock yields. All these factors contribute to rendering
global agricultural and food supply chains more vulnerable to external shocks such as natural
disasters, pandemic outbreaks etc.

In the long run, a country’s income is determined by its product variety and sophistica-
tion. [55, 56] As such, Food policy makers face the challenge of creating solutions for a large
number and type of food and agricultural products and varying life cycles. Usually, it is not
feasible to create solutions for individual products. As such products tend to be grouped
based on their origins and destinations, with little thought about the overall structure of the
products supply network and how it is affected by disruptions. Our study aims to present
a streamlined process of identifying grouping of products that are similar in network struc-
ture. This allows decision makers to create policies at the group level, where the groups are
developed without prior assumptions about the product type and its supplier locations.

4.2 Methods

Clustering food networks based on structure

Our method aims to group the product supply chains based on their structural similarity and
risk levels. The data consists of historical (1996−2020) trade data for various agricultural and
food products. The data is found in the World Integrated Trade Solution database, created
by the World Bank in collaboration with the United Nations Conference on Trade and
Development (UNCTAD), International Trade Center, United Nations Statistical Division
(UNSD), and the World Trade Organization (WTO) [10, 78]. Each data point consists of a
product supply chain for a specific year. We model each product supply chain as a network
with nodes consisting of countries and edges denoting the quantity of product flowing between
countries. The network measures such as number of edges, centralities (degree, closeness,
betweenness), average clustering coefficients and network density enable us to approximate
the structure of each product supply chain. We use the concept of downstream protection
value (DPV) introduced in [92, 41], to estimate the vulnerability of our networks. DPV is
a flexible metric that ranks the impact of disruption to a country’s supply. This measure of
risk Accounts for dependence of nodes (countries) downstream of each node i, represented
by the shortest path tree of i.

Extracting Network Embeddings

To better capture the network structure, we use graph neural networks (GNN) to create
graph embeddings, a vector representation based on the structure of a network. These deep
network models exploit information from the adjacency matrix (A), the vector of attributes
associated with the nodes (X) and potentially, the vector of attributes attached to the edges
(Y). This allows us to preserve the spatial structure and connectivity properties of the graph,
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Figure 4.1: Framework for clustering Agricultural supply chain networks based on structure
and vulnerability levels. For each product and year, trade data between countries is converted
to a network. These networks are then converted into embeddings and clustered using
convolution graph neural networks.

in contrast to traditional convolution neural networks (CNN) that could only process grid-
like planar graphs due to their homogeneous sliding window scan approach. We use two
methods to generate embeddings from our product networks.

First, the Graph2Vec algorithm is implemented to move from networks to embeddings.
This method consists of first sampling and relabeling all sub-graphs from the graph. The
skip-gram neural network consisting of an input layer, a hidden layer, and the output layer
is then trained to maximize the probability of predicting sub-graph that exist in the graph.
The network accepts the one-hot encoded words. The hidden layer has no activation func-
tion, its output presents an embedding of the word. The output layer is a softmax classifier
that predicts neighborhood words. Finally, using the aforementioned inputs the graph neural
network generates multidimensional embeddings of the original graph, summarizing its infor-
mation in P-dimensional vectors, with P an hyper-parameter to be determined empirically
during the research.

In the second method, we implement and train a three layer Graph Convolution Network
(GCN) with Pytorch Geometric. GCNs allow us to generalizing well-established neural
models like convolutional neural nets (CNNs) to work on arbitrarily structured graphs. The
Pytorch Geometric implementations of GCNs are based on work from authors in [69]. Given
a network, the goal of the GCN is to learn an underlying function that returns node-level
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output features, that can also be converted to graph level features using pooling operations
[39]. Our 3-layer GCN performs three propagation steps during the forward pass of the
algorithm. This allows the GCN to convolve the 3rd-order neighborhood of every node (all
nodes up to 3 "hops" away) generating embeddings that capture the structure individual
networks.

We use a number of clustering methods and alogorithms to group our product supply
chains and we perform a number of tests with different combinations of these algorithms
before finally designing a community detection algorithm. We use agglomerative hierarchical
clustering, an unsupervised clustering method that focuses on creating clusters that have
predominant ordering from top to bottom. The algorithm works by initializing every product
supply network in its own cluster, and then pairs of clusters are merged based on similarity
as one moves up the hierarchy. Using hierarchical clustering allows the decision maker
the flexibility to select the desired number of clusters which could be based on external
constraints. The main limitation of this clustering approach is that the results can change
based on how the clusters are initialized and changes to the data set ( e.g. adding new data).
We also validate our clusters by comparing with results from k-means clustering using the
same number of clusters. While we only present results from clusters generated using one
random state we also try different random start points and manually check approximately
the same clusters generated. Spectral clustering is a method that considers clustering a
graph partitioning problem, searching for nodes in a graph with a small distance between
them. Spectral clustering relies on the kernel trick to introduce additional dimensions to
the data thus overcoming the linear cluster boundary problem faced by the more common
k-means clustering method.

Finally, we propose the community detection cluster algorithm to bypass the problem of
selecting number of clusters using TSNE embeddings from the GCN embeddings to identify
different groups of networks. The community detection algorithm groups networks based on
their cosine similarity function. After generating graph embeddings for each network using
graph neural nets we apply the community detection algorithm to group these networks.
The method consists of first compute the cosine similarity between pairs of embeddings in an
iterative fashion . At each stage, there are thresholds for the minimum size and mininmum
level of similarity to be considered for group membership. The algorithm proceeds until
convergence, where no new samples gets added to clusters and the remaining samples are
clustered as noise.

4.3 Results and Discussion: Globalization Trends
We analyze of 53 food products across 25 years resulting in 1325 individual networks. Table
4.1 details the different product broken down by their food groups. In general, we observe an
increase in the number of nodes ( countries) and trade connections between these countries
for every product with time. This highlights the increasing globalization as the number of
countries in which products are traded and thus consumed have grown to include almost
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Table 4.1: Break down of 53 agricultural and food products representative of all groups in
the food pyramid and across 25 years (1996 - 2020). This resulted in 1325 Networks.

Food Groups Products

Animal Products Crab, Lobster, Sheep,
Goat, Butter, Honey,

Bread, Cereals and Pasta Rice* , Barley, Oats, Corn*, barley, Millet, Rye

Fruits
Apples, Strawberries, Bananas, Mangos, Oranges, Coffee,
Cocoa, Prunes, Pawpaws, Lemons, Grapefruits, Avocados,
Figs, Dates, Kiwi, Cherries, Coconuts

Spices and Nuts Ginger, Nutmeg, Cloves, Vanilla,
Pistachios, Hazelnuts, Walnuts, Chestnuts, Almonds,

Legumes and Vegetables Mushroom, Beans, Onions, Asparagus, Brussel sprouts,
Chickpeas, Lettuce, Sweet Potatoes, Potatoes, Peas, Garlic,

Tertiary Yeast, Chocolate
Milk , Yogurt and Cheese Dairy

the entire word. We loosely divide the time line into 3 main periods (Discovery, Growing,
Stable)based on the rate of change of the number of countries and their trade interactions.
The Discovery period which happens between 1996 and 2000 is characterized by the fastest
rise in number of nodes and connections. This period has a mean rate of change of 111.7±77.5
connections and about 41.5 ± 26.1 countries. The Discovery period set between 2001 and
2015 has a average rate of change of 12± 2.5 connections and about 1.5± 0.4 countries. The
Stable period after 2015, has average rate of change of −31.8 ± 98 connections and about
−2.9± 2.9 countries has almost no change as the errors are wider than the changes in slope
in both number of nodes or connections in the networks.

While the size of the networks grows, these changes happen differently for different classes
of products. Connections in chocolate networks overtake and eventually dominate Coffee
networks. Rice and Beans pretty much have the same growth in connections. Products
such as oats, barley, cocoa start off at similar levels but diverge during the growing period
with oats growing much faster. Figure 4.2, further highlights the effects of globalization
on network structures. Over a 20 year period, there are changes in the structure of the
beans network from 2008 and 2018. In 2018, a year in the stable period, beans has more
distributed supply controlled by large numbers of small and medium sized suppliers and
denser connections. While in 2008 , a year in the discovery period, there are much fewer
connections indicating less countries trading on the global scale.
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Figure 4.2: Evolution of beans networks in a twenty year time-span between 2008 (discovery
period) and 2018 (stable period). The left image represents beans network in 2008 has fewer
connection and less nodes. To the right we see the effects of globalization with beans network
in 2018 having denser connections network with a large number of small and medium sized
suppliers.

Preliminary Analysis using Graph2Vec

First we explored a subset of our data set to explore the feasibility of our approach. We used
16 products over a period of 25 years and using the Graph2Vec algorithm, which was the
simplest method we used to generate graph embeddings. From our hierarchical clustering
analysis we identify 7 separate groups. The breakdown of the products and the group
statistics ( mean vulnerability, number of networks ) are shown in table 4.2.

The embeddings generated from the Graph neural networks together with our vulnera-
bility measure (DPV) and other network topology metrics (e.g density, etc) are then passed
into clustering algorithms for grouping. We prioritize hierarchical clustering to allow flex-
ibility in selecting group size, but we also compared our results using clusters of the same
size generated from Kmeans clustering. We set the number of clusters to between 5 and 8
clusters inferring from our dendrogram. Table 4.2 presents a breakdown of the products and
the group statistics ( mean vulnerability, number of networks ) into 7 separate groups. We
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Table 4.2: Summary statistics including predominant products, size, average number of nodes
and connections with data grouped into 7 clusters using hierarchical clustering. Groups vary
slightly between different clustering algorithms and start points but overall group composi-
tion is relatively consistent.

Groups Predominant
Products

Relative
Size (%)

Average #
of Countries

Average
Connections

0 Corn, Oats,
Coffee 15.25 164 2,607

1 Orange, Rice 14.75 149 1,434

2 Dairy, strawberry,
beans 14.75 157 1,801

3 Banana, mango,
coffee 16.0 160 1,757

4 Barley, poultry 13.5 141 1,215
5 Apple, yeast 10.25 159 2,118

6 Chocolate,
beans 8.0 173 3,985

7 Cocoa 7.5 135 827

note that while the groups generated vary slightly between different clustering algorithms
and start points, the overall composition of the groups remained relatively consistent.

From preliminary analysis, the network structure of supply chain dominates during the
assignment of product supply chains to clusters. When investigating the clusters deduced
for our method, we find a few patterns in the groupings, some expected (eg. cocoa and
banana having similar supplies and being of predominantly tropical origins) while others are
counter intuitive(e.g. apple and yeast) which supports the need for such a framework in the
first place. In addition, we observe that the differences in risk within groups, levels become
important. When risk (DPV) values and distribution deviate significantly from each other,
the products are large within the same cluster. In Figure 4.3, the left figure denotes two sets of
products: banana and mango which fall in the same group have overlapping distributions for
risk (DPV) values while apple and yeast have very different DPV distributions. In the right
figure, which denotes the 2D representation of the product-year network embeddings color
coordinated by their group. The networks in the former group (banana and mango) with
similar DPV distributions have no clear separation in space. However, in the latter group (
apple and yeast) there is a distinct separation between networks from both products. In the
next steps, we want to expand the product network quantities and diversity.
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Figure 4.3: Left figure shows the distribution of risk levels for products in 2 separate groups.
The first containing mango and banana have overlapping risk distributions that are quite
similar. Whereas, the products in the second group ( apple and yeast) have very different risk
distribution. The right figure shows the vector representations of the different networks in 2D
space. networks in the former group with similar DPV distributions have no clear separation
in space, whereas those in the second group show clear separation between networks from
both products.

Selecting Number of clusters

In this section, we want to investigate how to select number of clusters using different clus-
tering algorithms (spectral and hierarchical clustering) for our clustering framework. In this
analysis we includes all 53 food products across 25 years using both. During our analysis, we
generated 4 dimensional vector embedding of each individual graph to capture its structure
using Graph2Vec. The embeddings generated from the Graph neural networks together with
our vulnerability measure (DPV) are then passed into clustering algorithms for grouping.
Hierarchical clustering allows the flexibility in selecting group size and we compare our re-
sults using clusters of the same size generated from spectral clustering. Using a combination
of Silhouette plots generated from the using clusters from spectral clustering and the dendro-
gram from hierarchical clustering, we investigate the best cluster size with the range of 2 and
7.The range of values for number of clusters was selected using the dendrogram empirically
to maximize difference between generated clusters.

The height of the dendrogram represents the distance between clusters. Appendix C.5
shows the dendrogram used for this analysis. Observing the dendrogram from the top to
bottom, we note that the big difference between clusters is between the components of the
orange cluster versus the red and green clusters the vertical height (blue line) is longer for
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the former.

Figure 4.4: silhouette plots for number of clusters ranging between 4 and 5 and their corre-
sponding 2D visualization on the top and bottom respectively. The clusters are generated
obtained from spectral clustering.

Our analysis using a combination of silhouette plots and a dendrogram suggests that
using 4 or 5 clusters seem to be the better selection. In Figure 4.4, we examine the different
silhouette plots for number of clusters equal to 4 and 5. From their silhouette profiles their
clusters have uniform behavior across the cutoff and each cluster have sizes in the same order
of magnitude ( no very skinny or extremely large clusters). The rest of silhouette plots for
number of clusters ranging between 2 and 7 can be found in Appendix C.

We note that increasing the number of products studies from 16 to 53 makes the embed-
dings generated using Graph2Vec less separable in 2D space. The two dimensional projec-
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tions on the right side of figure 4.4 present points that are relatively evenly distributed on the
space. These results led us to improve our graph representations (embeddings) by (1) using
higher dimension embeddings (64-256) to better capture individual network structure (2)
implement and train our own graph convolutional network (GCN). More so, to get around
pre-selecting the number of clusters, we implement a community detection algorithm which
allows us to run the algorithm without initially specifying the number of clusters.

4.4 Clustering Global Food Networks by Structure -
Full Analysis

Following the preliminary results, we the extend the analysis to include all 53 products and
graph embedding methods. During our analysis, we generate embeddings of sizes in the
range of 64 to 256 of each individual graph to capture its structure using Graph2Vec and
our trained GCN (more details on combination of parameters in Appendix D). With the
increase in number of products, we note immediately that the graph2Vec model becomes
much less expressive than the 3 layer GCN model. In Appendix D, we show figures of the
2D projection with TSNE of the Graph2Vec Emmbeddings ( with and without attributes).
The Graph2Vec embeddings (non-attributed) do not reveal any clear separations and the
addition of attributes do not help. Figure 4.5 shows two dimensional projection with TSNE
of 128 dimensional GCN embeddings (attributed). Each data point represents an individual
network with colors representing the year in which that network was created. From the
figure, we can already identify separations within the data indicating that some clustering
may be feasible. From the distribution of colors on the image, we see some indications that
yearly dependence is relevant for cluster formation. This suggests that the trained GCN
models are more capable of separating networks by structure.

Both models are trained to generate embeddings that capture structure but also include
certain node and edge attributes. The node attributes consist of our risk measure(DPV),
degree, demand, supply while the edge attributes include amount of flow, the presence of
a connection. We use t-distributed stochastic neighbor embedding (t-SNE), a statistical
method to project the high-dimensional embeddings to a two dimensional map. We focus on
the GCN model as it is more expressive than the Graph2Vec model. We expand on results
generated from a 128 dimensional embeddings generated from the trained GCN. The com-
munity detection cluster algorithm is then applied to the t-SNE embeddings and the number
of clusters are generated to ensure 99% coverage of the data. From our community detection
clustering analysis of 53 food products across 25 years, we identify 11 groups consisting of
10 clusters and one group of non-clustered points. The breakdown of the products and the
group statistics ( top representative products by cluster time period and relative cluster size
(%)) are shown in table 4.3 In figure 4.6, we present a two dimensional projection with TSNE
projection of the 128 dimensional embeddings from the graph convolutional networks after
the community detection algorithm has been implemented. The data points are color-labeled
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Figure 4.5: Two dimensional projection with TSNE of 128 dimensional GCN embeddings
(attributed).

representing individual clusters with an additional group denoting the non-clustered points
obtained after the algorithm converges.

We identify several factors that contribute to cluster formation including time period,
product group , climate ( eg tropical vs temperate) with high regional concentration of
suppliers products with shared function or use (complementary or substitute products) and
network density. There is a very strong effect of time on cluster formation as products in
same groups tended to fall within the same time periods (discovery, growing, stable). In
addition, similar products grouped together, even when not the dominant groups with the
cluster. For instance, staple products like rice, beans and corn were found in the same
groups. Regional concentration of suppliers is another important factor that influences the
cluster formation. We find that products such as with even demand across countries and
characterized by having a small subset of countries responsible for over 50% of global supply.

Different food products such as Grains(rice, corn, barley) and nuts(pistachios, almonds,
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Table 4.3: Summary statistics including top representative products by cluster time period,
median network density and relative cluster size (%) with data separated into 11 groups(10
clusters + 1 group of non-clustered data points) using community detection clustering algo-
rithm.

Cluster Top Percentile of Representative Networks by Time Period Buckets
Relative
Cluster
Size (%)

Discovery
(1996-2000)

Early Growing
(2001-2008)

Late Growing
(2009-2014)

Stable
(2015-2020)

0

banana ,
chocolate,
mango,
orange

cocoa 12.7

1
beans,
banana,
orange

barley barley Cocoa 10.3

2
dairy,
barley, oats,
strawberry

mango dairy, oats,
poultry 9.8

3 corn cocoa,
oats

barley,
oats 9.7

4 corn, beans,
chocolate

corn, beans,
chocolate 9.6

5 corn corn corn 8.8

6 corn, beans,
banana

corn, beans,
banana,
chocolate

8.6

7 corn, beans, ,
banana

corn,
beans,
banana

7.9

8
corn,
beans,
chocolate

cocoa ,
barley

cocoa,
barley 7.8

9

corn,
chocolate,
cocoa, oats ,
barley,
rice,
orange (1996)

7.7

10
(not grouped) 7.2



CHAPTER 4. FRAMEWORK FOR CATEGORIZING SUPPLY CHAINS(FOOD)
USING STRUCTURE. 53

Figure 4.6: Two dimensional projection with TSNE of 128 dimensional GCV embeddings
(attributed) with each color representing a different cluster from the community detection
algorithm.

walnuts etc) with longer shelf lives compared to fruits (orange, mango and strawberry) and
livestock (poultry, sheep) each require separate technologies for storage and transportation.
As such, we assume that these separate food categories would probably not be intuitively
grouped together. However, this assumption does not always reflect the reality of the group-
ings obtained from the community detection algorithms. We find unexpected groupings such
as strawberry, apple and yeast that tend to have the same functionalities and be used to-
gether for baking and desserts. These findings highlight the importance of the methodology
to group agricultural product networks using their structure to disturbances and without
making assumptions about the product type or suppliers.

In addition, we see evidence of network density on group formation in figure 4.7 which
shows the cluster dependencies across products and time periods that include Discovery
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Figure 4.7: Scatter plot of product versus year with clusters denoted by different colors across
the three periods: Discovery (1996− 2000), Growing (2001− 2014) and Stable(2015− 2020).

(1996 − 2000), Growing (2001 − 2014) and Stable(2015 − 2020) periods. We note from the
graph that several products are together in 1996 just because of topology, i.e., the differences
in flow are not that relevant as the graphs were sparse.

4.5 Summary of Contributions
We present a flexible problem-agnostic framework for clustering networks based on risk and
structure. The framework that allows stakeholders to group different food supply chains
based on their structural similarity. We identify some distinctive network structures includ-
ing those consisting of a small subset of high volume suppliers (e.g. cocoa, coffee ) and also
networks (e.g. chocolate) that have more distributed supply with a large number of medium
volume suppliers. Insights from this method also allows users to learn from product clusters
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and anticipate potential shifts which can facilitate the development of more time and cost ef-
fective policies. We find that seemingly unrelated products like apples and yeast are grouped
similarly whereas tropical fruits like mango and oranges overlap in production origins and
suppliers are structurally different. This reflects that our intuition about product groupings
are not always the most effective.
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Chapter 5

Quantifying the socio-environmental
Impact of WildFire disruption to forest
supply chains

5.1 Introduction
In the previous chapters, we focused on food supply chains and the impacts of disruption
on global planning. In this chapter we delve into risk management when planning for forest
supply chains. We specifically focus on wild fire risk as their frequency and severity have
risen in recent years due to various environmental factors. Studies show that the strategic
application of fuel treatments are effective at altering fire behavior and its spread patterns.
Efficient planning for mitigating future expected losses under wildfire risk is a complex
challenge that requires the integration of fire spread, simulation, and optimization models as
well as the inclusion of multiple objectives into a unified framework.This analysis has been
simplified in the past where researchers usually value the landscape regions using a unique
objective (e.g., minimize the average expected area burned) . However, in reality various
pieces of land have different values based on factors such as the presence of human settlements
and infrastructure, availability of environmental services, and forest health, among others.
We extend past research by developing an integrated framework that naturally includes and
weights multiple objectives and analyzes the trade-off between present objectives and future
protection against wildfire risk. We obtain treatment plans, focusing on three key regions
based on their recent fire history, landscape diversity, and demographic variety and using
various combinations of these layers reflecting how different priorities of the decision-makers
could affect treatment policies.

It is important to highlight the changes in intensity and recurrence of wildfires and their
relationship with climate change. Several studies provide clues suggesting that the ever
rising global surge in the number and intensity of fires in the last decade are caused by the
dehydrating effects of climate change [44, 65, 122, 1, 103]. Some of the largest and devastating
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fires leading to heavy human, financial, and infrastructural losses have occurred in the last
decade. A closer exploration of California reveals that despite a decrease in the total number
of fires within the state, the total area burned by these fires has increased. California has
experienced its most disastrous wildfires in the last ten years, [111]. The 2018 Camp Fire
is California’s most destructive fire recorded, where a single fire destroyed more structures
than any other in modern history. This fire is also the most expensive natural disaster in
the world in 2018 in terms of insured losses resulting in the loss of 13,696 and the death of
over 88 people [40, 9, 47]. Following in level of destructiveness is the 2017 Tubbs Fire in the
Napa and Sonoma counties, which destroyed thousands of structures leading to 46 human
fatalities [36] at the Wild-land urban interface (WUI) and in large areas of forest [22] to
protect human lives and maintain an adequate coexistence with nature. In [57], researchers
propose a paradigm that considers opportunities in three main dimensions: i) decrease of the
potential fire behavior of the landscape, ii) reduction of the potential impact of fire ignition,
decreasing the expected losses and number of escape wildfires in fire-prone areas, and iii)
increase the capability of fire suppression. The term Fire-Smart Forest Management (FSFM)
has emerged and includes the above concepts.

In this chapter, we present a study that expands the integrated framework proposed
by [90] to aid decision making under wildfire uncertainty by evaluating the sensitivity of
the objective function to key environmental and economic factors. Three key regions in
California (Napa Valley, Paradise, and Getty center) are chosen for analysis based on the
existence of documented catastrophic events in the last five years and significant variance
in vegetation types and demographic variables. We compare unweighted treatment plans
against versions including environmental and demographic factors such as carbon sequestra-
tion, canopy height and density, population density, and accessibility of the area, as well as
expected future fire behavior. Using multiple combinations of these layers, we generate dif-
ferent treatment plans that reflect how different priorities of the decision-makers could affect
the treatment policies. We then analyze the trade-off between maximizing the decision-
maker utility function and protecting the land against future expected losses due to wildfire
with the aim of finding robust treatment plans.

5.2 Material and Methods

Data Extraction and Processing

The California region with its established seasonal fires is the focus region in our study
because of the existence of documented and destructive fire events. The default framework
relies on weather and topographic data obtained from various sources. In addition, we discuss
how to generate the main layers that serve as weights for estimating the risk associated with
each unit of landscape in our optimization module. We group the layers extracted for the
objective function into Environmental factors (e.g., canopy density/height) and Demographic
characteristics (e.g., population density, accessibility). Additionally, we split the data into
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a training and test set. During training, we fine-tune key parameters in our model using
the training data set. The test set allows us to measure the performance of our model by
assessing how well our model results compare to real data.

The data consists of a combination of shapefiles and GeoTIFF files. For the most part,
these layers are already aligned and have the same resolution (30 x 30 m). We transform
the original data into a series of rasters to be ingested into our framework. Data enters
into the framework using two main approaches: (1) local data provided by the user and (2)
semi-automatic collection and processing of online assets (e.g., population density, climatic
conditions that can play a fundamental role in the propagation of the fire) available in Google
Earth Engine (GEE) [51], to easily generate a consolidated dataset (Fig. 5.1). This latter
method relies on Python scripts and can be used as an independent module for performing
any kind of query in GEE. Finally, the data is automatically processed and formatted to be
ingested into the different modules of the proposed framework.

Environmental factors
The building blocks for the data layers in this category are obtained from the Landscape
Fire and Resource Management Planning Tools (LANDFIRE) [102] open repository. This
data hub consists of a shared program involving the participation of the U.S. Department
of Agriculture Forest Service and the U.S. Department of the Interior, providing support
for fire and vegetation simulators created and used by the US Forest Service. The Canopy
bulk density (CBD) and the Canopy height (CH), each a grid with resolution (30x30 m)
are obtained directly from the database. CBD is a measure of the density of the landscape
canopy which is the portion of vegetation above ground. Canopy height as implied by its
name measures the height in meters of the landscape canopy.

Forest. We combine the CBD and CH layers in various manners to obtain the different
layers constituting the environmental factors category including estimating the area of green
vegetation in the forest (forest health) and carbon sequestration volume. The CBD and CH
layers are averaged together to form a new layer that serves as a proxy for forest health. The
CBD layer indicating vegetation density and the CH measuring vegetation height provide
insights about the health of the landscape vegetation.

Carbon Sequestration The carbon sequestration (CS) layer is estimated following the
simple method proposed in [46] for each unit in our landscape grid as follows:

1. Estimate the total (green) weight of the trees. Using the canopy density, we obtain
the canopy area by multiplying the density by the area of a unit cell. Then the canopy
area is multiplied by the canopy height to obtain a volume. Once we have the volume
of green in each cell, we use Huber’s formula [119] to estimate the weight using the
equation:

Weight = volume× green density
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where green density represents the total density of wood and bark combined (CBD).

2. According to previous research [37], the average dry weight for different temperate tree
species in the United States is about 72.5% of regular weight. We use these results to
approximate the average dry weight of green for each cell.

3. Next, we estimate the weight of carbon using findings from [19], which state that the
carbon weight is about 50% of regular tree weight.

4. Finally, we calculate the average weight of carbon dioxide sequestered in the tree per
cell using:

a) The atomic weight of CO2 is C + 2×O = 43.999915.

b) The ratio of CO2 to C is 43.999915/12.001115 = 3.6663

Therefore, to determine the weight of carbon dioxide sequestered in the tree, we multiply
the weight of carbon in the tree by a 3.6663 factor.

Fuel vegetation type. The fuel layer With a 30 by 30 m resolution that we require for
our simulations is obtained from the LANDFIRE [102] publicly available repository1. It
provides a categorical grid at a national level representing the forty Scott and Burgan fire
behavior fuel models lastly updated in 2014. For a comprehensive analysis and description of
all fuel types, their characteristics, and experimental parameters, see [107]. State-level data
(California) is locally extracted and uploaded into GEE to consolidate it with the additional
layers of the study. This is the main input for calculating the fire rate of spread in the
simulation model.

Weather and moisture scenarios. The rate of Spread (ROS) mainly depends on the
type of forest fuel that goes into combustion and the wind speed. However, another influ-
encing factor is the moisture content of dead and live vegetation present in the forest. This
variable is crucial for estimating the surface ROS as certain land-covers (e.g., grass types)
tend to significantly modify their propagation patterns depending on their humidity levels.
In order to capture and simulate interesting situations for the practitioners and researchers,
multiple value thresholds are empirically studied. According to Scott & Burgan [107], these
interesting humidity levels are represented by four scenarios: D1L1, D2L2, D3L3, and D4L4,
from the driest (D1L1), where the fire tends to propagate faster, to the wettest (D4L4), with
the opposite effect. Weather scenario files that describe the evolution of the temperature,
wind speed, and wind direction are obtained from the historical time series of the closest
weather station (with respect to the centroid of each instance) available for the simulated
fire duration. Each fire is simulated for 12 hours under the D1L1 scenario, to be able to
capture relevant propagation patterns.

1https://www.landfire.gov/bulk/downloadfile.php?FNAME=US_140_mosaic-US_140FBFM40_
20180618.zip&TYPE=landfire
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Figure 5.1: Example of layers included visualized in GEE. All layers are obtained for Cali-
fornia and consolidated into a 30 by 30 m. multi-band raster.

Demographics. The estimated population densities (number of persons per square kilo-
meter) for the years 2000, 2005, 2010, 2015, and 2020 are extracted from the Gridded
Population of World Version 4 (GPWv4), Revision 11 dataset (https://sedac.ciesin.
columbia.edu/data/collection/gpw-v4) at a resolution of 30 arc-second grid cell and av-
eraged. Accessibility to cities, which measures the land-based travel time (minutes) to the
nearest densely-populated areas with 1,500 or more inhabitants per square kilometer is ob-
tained from the Malaria Atlas Project (https://malariaatlas.org/research-project/
accessibility_to_cities/) at a 30 second-arc resolution for 2015.

Figure 5.2: Framework schematic. Data is retrieved from cloud services and local user in-
puts. Decision-makers define relevant objectives by analyzing the trade-off between multiple
variables. Once the data is processed, multiple simulations are performed to estimate the
impact of future wildfires in the landscape. An optimization model is fed with the outputs
from the utility mapping and simulation models. Finally, results are evaluated by estimating
the average expected losses due to wildfire, as well as analyzing the sensitivity of the optimal
treatment plan.
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Wildfire simulation

A region of interest is modeled as a two-dimensional lattice with an underlying network
structure to represent the connectivity between cells/nodes in the grid. Cells represent a
homogeneous area with similar characteristics, focusing on points of interest such as potential
propagation sources, densely populated areas, natural reservoirs, among others. Each cell
from the input data corresponds to a node in an undirected grid graph G = (V,E). Nodes
i ∈ V is associated with relevant attributes (e.g., population density, fuel type) included as
part of the risk evaluation and further optimization models. Nodes are connected by edges
e ∈ E with weights (the distance between cells) generated by the structure of the region. In
the current version of the study, each cell has at most 8 neighbors to simplify the analysis of
the framework. However, the model can be easily extended to a general case (graph) where
nodes can be connected with any other in the lattice as long as they share information or
are related by relevant variables for the model.

Adapting the simulation framework discussed in [90, 91], the fire spreads following a
messaging process between the cells of G. The intensity of these signals is represented
by the rate of spread (ROS) obtained from an independent fire spread model (BEHAVE)
integrated into the simulator [21] that models the fire behavior for static conditions in the
U.S. based on empirical studies. It is used to update the fire progress between neighboring
cells at every time-step t. From here, a directed tree graph – denoted as Propagation Tree
– is obtained, with a root at the ignition node i, Ti = (Vi, Ei) where Vi ⊆ V contains the
burned cells and Ei the directed edges representing the propagation trajectories of the fire
within the region.

Simulator parameters may need calibration in order to reproduce realistic propagation
patterns or capture the impact of previously unseen conditions. Multiple approximations
during the implementation of the spread models and inherent noise within the data may
inaccurately represent the expansion of the fire. To account for this situation, we propose
an automatic adjustment following the work in [24] of the main parameters of the model
via a hybrid AI-Optimization procedure that aims to minimize the differences between the
simulated and historical fire scars of the region of interest. Using this approach, we can
automatically adjust the ROS estimations to accurately represent observed fire perimeters.
Therefore, decision-makers are able to automatically adjust the fire spread model to ac-
count for variations in the fire behavior and conditions of the area, obtaining more accurate
simulation results.

Risk analysis

Relevant features are mapped onto a common scale and weighted to account for their relative
importance for the decision-maker. In order to condense their information into a single utility
function, each feature is mapped unto a common scale [0, 1] using an adequate function (e.g.,
linear) according to the expected impact of the feature in the landscape. Thus creating a
single matrix representing the original n × m grid containing the value for each node in
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landscape (NV ∈ Rn×m), different convex combinations of the relevant values-at-risk (raster
layers) are utilized. Let µk ∈ [0, 1] ∀k ∈ K,

∑
k∈K µk = 1 with K being the total number of

layers included in the study, we thus combine the layers as follows:

NV =
∑
k∈K

µkLk (5.1)

where Lk ∈ Rn×m is the matrix of dimensions n ×m containing the grid values of layer k.
Following this framework, we obtain a consistent risk function across the entire graph. The
detailed procedure is as follows:

1. Given a set of K features representing characteristics of the nodes, we map them into
a common scale between [0, 1]. The mapping function (e.g., linear) from raw feature
values to the [0, 1] interval is selected by the researcher according to the impact of
each feature in the construction of a global utility/cost function. For example, if the
protection of nodes with higher population density is prioritized, an increasing non-
linear function can be applied, where densely-populated nodes are associated with
values near to one, while sparsely populated areas are mapped to near-zero values (see
Fig. 5.3).

2. This procedure is repeated for all K features, obtaining a set of normalized variables.

3. Correlated and complementary variables are combined into meaningful categories by
weighting individual features with weights. As an example, canopy bulk density and
canopy height could be summarized into a Forest category that equally weights both
variables. Similarly, accessibility and population density layers could be condensed
into a Demography category.

4. Once all categories are generated and normalized, a global utility function is calculated
repeating the weighting procedure.

5. Gaussian kernels are applied to smooth the distribution over the landscape/grid. This
avoids abrupt changes in the utility function as well as accounts for the intrinsic cor-
relation of the cells in the landscape dynamics (Fig. 5.6).

Using this framework, decision-makers are able to condense any number of features into
unique values associated with each node of the graph (NV ), as well as generate a series
of scenarios to evaluate the impact of certain features and their weights. In this way, each
node of the grid is characterized by a unique value incorporating all variables. Using different
weight combinations allow us to control which factor we want to weight more in each instance
(see Fig. 5.5). Next, we utilize the downstream-protection-value (DPV ), a risk model that
aims to measure the value of what is affected downstream in the network given the risk of
a certain node [91]. This model captures the role of a node in propagating the risk through
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Figure 5.3: Utility mapper application. (a) The original values of the population density
layer (x-axis, popDens) are mapped to the [0,1] interval following an exponential function
(y-axis). (b) Density plot for the original variable values. (c) Distribution of the mapped
[0,1] feature (called utility) following the applied transformation.

the landscape based on the connectivity and relative influence of different nodes in the entire
system. We define the DPV of node i inside the landscape network as:

DPV (i) = αi

∑
j∈Si

NVj (5.2)

where αi is a weight factor for node i, e.g., the number of connections inside the region,
allowing the prioritization and management of different zones; Si is the set of nodes of the
network that are affected by fire propagation from node i, and NVj the value of node j incor-
porating all the relevant variables included to capture the potential losses caused by wildfire.
Researchers can represent and evaluate multiple scenarios by providing different weights to
the components of the risk function or to the final node value, thus obtaining variations of
DPV. For example, NV values of nodes playing a fundamental role in the connectivity of
the network could be weighted, among several options, by the degree of the node to high-
light its importance in the propagation of fire. In addition, thanks to the nodes’ additive
property, there exists a natural extension from nodes to larger units (e.g., stands). This
goes in hand with a practical implementation since authorities take decisions over certain
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areas with common characteristics instead of individual units, satisfying operational/logistic
constraints.

An optimized resource allocation plan

Formulating an explicit optimization model (See Appendix, Section 4.1), we solve the prob-
lem of finding the connected cells that maximize the total utility/protection value considered
under wildfire risk, subject to specific constraints provided by the decision-maker (e.g., bud-
get). The connectivity constraints are imposed to mimic realistic scenarios where the protec-
tion of the landscape must be performed within connected patches to account for operational
constraints. If needed, these constraints can easily be relaxed by the decision-maker, running
a simplified version of the optimization model, or even implement his/her own algorithms.
In this way, we obtain an optimized treatment plan that identifies the set of units that, once
protected, will significantly disrupt the fire propagation while taking into account the impact
on relevant features of each node via the provided NV values.

We introduce λ ∈ [0, 1] as the trade-off factor between the utility function defined by the
NV matrix and the DPV heatmap obtained after simulating R wildfires in the area. We
define the objective function as the convex combination U(λ) := λDPV +(1−λ)NV , where
larger values of λ indicate that wildfire risk becomes more relevant to the decision-maker
when allocating resources through the network (λ → 1) while smaller values represent the
case when the NV values play a more relevant role for prioritizing the treatments (λ→ 0).
Therefore, different optimized resource allocation plans are obtained depending on the ob-
jective and risk assessment of the decision-maker represented by the λ parameter, balancing
the maximization of the utility function and the protection of the region against the future
propagation events (See Appendix, Fig. D.1).

Solving scheme

Although the problem is NP-hard, being a variant of the maximum-weight connected sub-
graph problem (MWCSP), a known NP-hard combinatorial problem [63], we are able to
obtain optimal solutions in all the experiments using a two-stage solving approach. First,
we provide a warm-start to the exact MIP model obtained from a greedy algorithm that,
given an initial node, selects the adjacent nodes to the current solution with maximum val-
ues after sorting them by their Ui(λ) until the maximum number of nodes (Q) is satisfied.
Once the initial feasible solution is provided, we solve the optimization problem with CPLEX
v12.9 solver using its default configuration. The two-step solution method approach enables
the problem to converge faster because we start the second step with a high-quality feasi-
ble solution. This reduces the searching space of the method significantly (upper and lower
bounds), improving the convergence and memory usage of the optimization algorithm. Thus,
we obtain optimal solutions in reasonable (less than 1 minute on average) solving times in
all our experiments. Our solution is guaranteed to be globally optimal because we obtain
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0% optimality gap solutions from the exact MIP formulation. Although multiple solutions
can exist, these are extremely rare in practice.

Case study areas

The areas in California selected for the case study are chosen based on factors including
significant variation across fuel types, the existence of documented catastrophic fires in the
last five years, and the presence of strongly influencing demographic factors. The three areas
selected for this study are the Getty center, Napa Valley, and Paradise. Figure 5.4 denotes
the terrain of the three case studies areas. In addition, a summary of the key features of our
three study instances including area, mean elevation, dominating fuel types, and elevation
range are presented in Table 5.1.

Napa valley.
Napa County, also known as Napa valley is recognized worldwide as a premium wine region.
In addition, the region is also responsible for the production of many agricultural crops.
According to the U.S. Census Bureau, the county has a total land area of about 748 square
miles and a population of 137,744 as of 2019 [26]. However, this region has also suffered a
number of destructive fire events. A recent article mapping all fires in the region from 1950 to
2019 shows that the fires have been getting larger and more destructive [71]. Most notably
the 2017 “Tubbs” fire in the Napa and Sonoma counties is the second most destructive
fire recorded in California’s history [59]. The long fire history experienced by this region
coupled with its landscape being suitable for the farming of different agricultural products
particularly grapes from vineyards makes it a very relevant and interesting area to study
in California. The total number of nodes and edges conforming this instance are 9,309 and
72,272, respectively.

Paradise.
Paradise is a small town located in Butte County in California that has experienced the
most destructive fire in California’s history at the end of 2018. In 2018, the population of
Paradise was about 26,800 with a land area of about 18.31 square miles [26, 59]. However,
the population numbers after the fire event are unknown as over 9300 were displaced and
relocated during and after the fire [72]. We use population numbers before the fire as an
estimate for our analysis. This town is a unique region to study because of its high fire risk,
limited accessibility to, and relative isolation from neighboring towns. With a total number
of 11,477 nodes and 81,581 edges, it is the largest instance of the study.

Getty center. The Getty center, a campus of the Getty Museum and its surrounding
regions located in Los Angeles is selected due to its 2019 fire which forced the museum to
temporarily close its doors [25]. This region is different from the other regions of interest
because it is located in an area with a more built-up environment and less vegetation. We
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speculate that the demographic factors will have a stronger influence on our analysis of this
region. Modeling the instance as a network, it consists of 5,454 nodes connected by 41,166
edges.

Table 5.1: Summary of instances’ main characteristics. For each instance, we provide the
total area in hectares, the average elevation and its range in meters, the dominant flammable
fuel of the terrain following the fuel type layer characterization, the total number of different
fuels available in the region, and the number of edges conforming the network used for the
optimization model connecting the flammable cells (in any direction).

Instance Area [ha.] Mean elev. [m] Elev. range [m] Dominant flammable fuel # Fuel types # Edges

Napa Valley 9,540 376.74 [131, 724] SH2 is woody shrubs and shrub litter 16 72,272
Getty center 11,102 221.39 [39, 596] GS2 is grass and shrubs combined 11 41,166

Paradise 13,433 449.71 [0, 740] TL6 is moderate load broadleaf litter 17 81,581

Getty Center Napa Valley Paradise

Figure 5.4: Land cover representations. The three case studies areas are depicted with a
hill shade effect where different colors represent the fuel types characterizing the instances
following the Scott & Burgan [107] classification system.

Utility Mapping. For each of the three instances we study, we utilize four layers in our
utility function including forest, volume of carbon sequestered, accessibility, and population
density layers. We select mapping functions to highlight the priorities of the decision-maker
for every layer. These functions serve to map the values of our current layers to a range
between 0 and 1 using a pre-specified distribution. We Choose an exponential mapping
function for the population density layer because we want an increasingly high utility as
the number of people in a region increases. In addition, we use the inverse function to
map our accessibility values to the range between 0 and 1. This function is selected to
reflect increased utility for regions that are closest to densely populated areas. Finally, a
linear function is used to map the volume of carbon sequestered and forest layers to the
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appropriate ranges. Our framework allows provides the option to change the distribution of
the mapping functions and customize these functions based on the decision maker’s most
important considerations. In order to combine the different features into a single utility, we
select five convex combinations of our different layers for our experiments. First, we use
an average combination where all four layers are weighted equally. Then, we create four
feature dominant layers, where the selected dominant feature contributes 75% to the final
utility whereas the remaining three layers equally split the remaining. These five utility
combinations are created for each of our three instances (Napa valley, Paradise, and Getty
center).

Experiments

We model five different NV values for each instance by modifying the µ weights vector
associated with the different four categories following the procedure described in Section 5.2.
In this way, we obtain a balanced weight function NVequal =

∑
k∈K 0.25Lk where all layers

are weighted identically and four variations where a dominant layer is weighted by µdom = 0.7
and µj = 0.1 for j ̸= dom ∈ K obtaining NVforest, NVaccess, NVcarbon, and NVpopulation.

A total of R = 100 replications with random ignitions and defined D1L1 weather sce-
narios are performed in the simulation module to obtain the final DPV heatmaps using the
previously generated NV values as the node weights, multiplied by αi = number of neighbors
connected to node i. For each instance and NV value combinations, we generate utilities
U(λ) with λ ∈ {0, 0.25, 0.5, 0.75, 1}. Each combination is then solved in the optimization
module for all treatment levels tf ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.5}, solving a total of 450 op-
timization problems. Optimal solutions X∗(λ, tf) indicating the selected cells are recorded
for each combination.

Finally, we evaluate the average expected losses, E [Losses(X∗(λ, tf))], due to future
wildfire events in each instance, given the output of the resource allocation plan. For this,
we estimate the expected damage provoked by future fires – discounted by a γ ∈ (0, 1] factor
set to γ = 0.9 – using R = 100 simulations in a modified landscape where the selected cells
from the optimal solution of the ORAPλ(tf) model are transformed into non-flammable ones.
We use this as a simplified version of a more realistic setting where certain fuel treatment
actions (or resource allocation) will decrease the fire susceptibility (or effective ROS) of a
certain cell but it will be still flammable. The pseudo-code summarizing all the experimental
steps can be found in the Appendix (see Fig. 3).

Computational implementation

The Cell2Fire fire-growth simulator is implemented in C++ using the boost and omp li-
braries [106, 113] to allow shared memory parallel execution. The decision support system
which wraps the simulation module and processes all relevant outputs is programmed in
Python. Statistics and visualizations are processed using the known Pandas, Numpy, and
Seaborn libraries. Network structures are managed with the networkx package [53], generat-
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ing outputs such as propagation trees and providing the users a variety of complex network
metrics out-of-the-box such as betweenness centrality for developing their own fire risk in-
dexes. we implement derivative-free optimization algorithms [35] in our framework using
the NLOPT package [64]. Meta-Heuristics (e.g., genetic algorithms) follow the DEAP [45]
library framework. In addition, we rely on the PYOMO modeling language [54], a flexible
package to generate linear/non-linear models and solve them via an open-source or commer-
cial solver depending on the user needs to embed mathematical programming models in the
framework’s optimization module. The utility mapper standalone application and scripts
are programmed in Python using the PyQt5 package and compiled using the Pyinstaller
package.

Experiments are performed in a daily use laptop with I7-4200 2.1 GHz processor, RAM
Memory 8 GB DDR3, and Ubuntu 14.0 OS. All codes are available for public use at http:
//www.github.com/cpaismz89/DPV_Utility.

5.3 Results and Discussion
The utility functions in our experiments are obtained by combining raster layers as described
in Section 5.2 and the different utility combinations are explained in 5.2. We conceive these
different combinations to mimic decision-makers having multiple objectives, where one of
the goals is more important than the remaining ones in the decision-making process. In
Figure 5.5, we present the utility maps for all proposed combinations of the primary layers
for the three instances we explored. We observe that the combinations produce very different
heatmaps which we hypothesize will be translated into different optimal treatment decisions.

Utility and wildfire risk trade-off

DPV values are obtained for all the generated utility heatmaps following Eq. (5.2) with NVj

representing the value of cell j ∈ V from the calculated utility layer. Looking at the DPV
matrices (Fig. 5.6), we clearly observe the most likely wildfire propagation patterns after
performing R = 100 replications for each instance (first column) where lighter colors highlight
those sections of the landscape with higher DPV, i.e., the nodes that play a fundamental role
in propagating the fire between different areas of the land. As expected, the DPV matrix
obtained for the Napa Valley instance covers a significant portion of the landscape (88.63%)
since it is the one with the largest proportion of flammable fuel types, representing 97.5%
of its total composition. On the other hand, Paradise and Getty center instances include
a significant proportion of non-flammable nodes representing urban settlements/rocky areas
(14.56% and 50.87%, respectively) leading to more focused DPV heatmaps surrounding those
areas, covering 40.3% and 37.27% of their total size, respectively.

The expected area burned and expected utility losses under the current conditions, i.e.,
when no resource allocation plan is implemented, can be seen in Table 5.2. From the experi-
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Figure 5.5: Utility heatmaps for all proposed convex combinations of the main four categories
for each instance (columns). The first row represents a balanced combination of all four
categories (µi = 0.25 ∀i). The suffix dom indicates that the dominant category was weighted
by µdom = 0.7 and the remaining three categories with µj = 0.1, ∀j ̸= dom.

ments, we observe a significant impact on the Napa instance with an expected area burned of
2,055 ha. representing 22% of the landscape. This is translated into expected losses close to
20% among all utility functions with respect to the total value available. In the case of Getty
center, we expect a 19% of the area burned due to future wildfire events, with an impact on
the utility functions varying from 14.32% (Forest dominant utility) to 16.18% (Access dom-
inant utility). Finally, due to the characteristics of the Paradise instance – the distribution
of the non-flammable fuel types – a 7% of the total area of the landscape is expected to
be affected by future wildfire events under the tested conditions, leading to expected losses
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between 3.91% (Population layer) to 7.58% (Forest layer).

Table 5.2: The expected area burned and expected losses for all utility functions as a per-
centage of the total instance area and the total utility available (heatmaps) per instance,
respectively. Expected values are calculated from R = 100 independent wildfire replications,
weighting all simulations equally, and without any intervention of the landscape.

Instance E [Burned] % E [L(UEqual)]% E [L(UForest)]% E [L(UCarbon)]% E [L(UPop)]% E [L(UAccess)]%

Napa Valley 22.08% 20.73% 19.66% 20.06% 18.95% 21.75%
Getty center 18.97% 15.27% 14.32% 14.66% 14.43% 16.18%

Paradise 6.94% 6.33% 7.58% 6.83% 3.91% 6.94%

Analyzing the most common fuel types involved in the propagation patterns identified
when calculating the DPV, we observe grass and shrubs combined (GS2, 36.84%), grass
though small amounts of fine dead fuel (GR2, 27.18%), and woody shrubs and shrub litter
(SH7, 20.40%) for Napa Valley; woody shrubs and shrub litter (SH7, 50.73%) and grass and
shrubs combined (GS2, 46.14%) in the area near Getty center; and woody shrubs and shrub
litter (SH7-SH5, 62.49%) and grass and shrubs combined (GS2, 23.14%) for the Paradise
instance. This information allows the decision-maker to gather relevant insights about the
most dangerous sections of the landscape in terms of wildfire risk and identify the set of
potential actions to mitigate their impact when implementing the solution obtained from
the optimal resource allocation plan.

Resource allocation plans

As described in Section 5.2, we analyze the trade-off between the expected losses due to
future wildfires in the area after applying the optimal resource allocation plan – assuming
full protection of the selected nodes for simplicity – and the protected value due to the
implementation of this plan by combining the utility layer generated by the decision-maker
and the DPV matrix obtained from the simulations via the λ parameter. Depending on the
expectations of the decision-maker and his/her level of risk aversion, different λ values should
be tested and selected for a particular region and context. In the rest of this section, we will
focus our attention on three interesting results where the trade-off between present value
and future protection plays a crucial role in the decision-making process. This analysis can
be performed for all combinations of utilities, treatment fractions, and instances, providing
the decision-maker with a comprehensive set of results (see Tables D.1, D.2, and D.3 in
Appendix) and quantitative support for establishing the optimal point to balance the trade-
off between present utility and future protection of the landscape.

To illustrate and analyze the inherent trade-off between present utility and the future
protection of the landscape, we observe the results for the Napa valley instance when identical
weights are provided for all categories conforming the utility layer (Fig. 5.7-(a)) and a 25%
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Figure 5.6: Raw (left) and smoothed (using a Gaussian kernel - right) DPV heatmaps
calculated for Napa valley, Getty center, and Paradise instances using the Access, Forest,
and Population density layers as the dominant layers for the NV function, respectively.
Lighter cells increasingly highlight the nodes playing a fundamental role in propagating the
fire to the rest of the landscape.

of the landscape is protected. As expected, the present/raw utility tends to decrease as
λ → 1 since the decision-maker is sacrificing present utility by focusing more resources
in those locations where the fire will likely propagate, prioritizing the disruption of future
wildfire events instead of the original utility function. However, present utility values are
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overestimated when λ→ 0 as the decision-maker oversees the impact of future wildfires, not
accounting for this risk. From the graph, we can observe that the best performance in terms
of discounted utility is attained when λ = 0.5 (1017.39± 186.06), obtaining the best balance
between raw utility and expected wildfire losses using a discount factor of γ = 0.9.

Analyzing the gaps between the present utility and the discounted function, we observe a
clear decreasing pattern as λ→ 1 in terms of total utility value variations2, with differences
of 38.23%, 30.6%, 23.65%, 15.75%, and 7.41 %, respectively. This is aligned with our expec-
tations: as λ is increased, the lands are better prepared for future wildfires, minimizing the
gap between today’s total utility and the discounted function by sacrificing present value.
Looking at the distribution of the discounted utility as a function of λ (Fig. 5.7-(b)), we
observe that increasing the weight of the expected wildfire risk (λ → 1) results in a more
compact distribution of the discounted utility ∆U(λ), as seen in the graph. This is consistent
with the fact that higher λ values lead to better protection plans by sacrificing the value of
the utility function, a trade-off that the decision-maker will analyze to decide which resource
allocation plan is aligned with her expectations and goals.
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Figure 5.7: (a) Napa valley instance raw utility (blue) U(λ) weighting all categories by identi-
cal weights and average discounted utility (orange) ∆tfU(λ) = U∗(λ)−E [Losses(X∗(λ, tf))]
including future expected losses due to wildfire events as a function of λ. Treatment fraction
is set to 25%. (b) Distribution of the optimal utility discounted by future expected wildfire
losses (γ = 0.9) for different λ levels when protecting 25% of the landscape. Average values
are highlighted with red dots.

We then focus our attention on the results obtained for Paradise with a carbon dominated
utility when treating 50% of the total landscape. Visualizing the optimal plans for multiple λ
values (Appendix, Fig. D.1), we observe that the resource allocation plan is not as sensitive
as in the case of Napa Valley, but we can still observe differences across the different levels of

2Calculated as E [Losses(X∗(λ, tf))] /U∗(λ, tf)
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λ to analyze the trade-off between present value and the protection of the landscape. This
is mainly associated with three factors: (1) we are treating 50% of the land so there exists
a larger overlap between the optimal plan and the propagation patterns identified in the
DPV matrix, (2) the distribution of the carbon dominated utility matches the most relevant
DPV spread lines, and (3) the instance, similar to the results from Getty center, presents a
significant amount of non-flammable nodes, thus limiting the potential fire spread paths.

This is translated into significantly smaller gaps between the present/raw utility value
and the discounted one for all λ levels (3.15%, 2.45%, 0.86%, 0.4%, and 0.04%, respectively).
As seen in Fig. 5.8-(a), both functions converge to an almost identical value for λ ≥ 0.5.
This situation indicates that optimal plans giving at least 50% of weight to the DPV layer
are able to significantly control and mitigate the future expected losses due to wildfire events.
Observing the distribution of the discounted utilities in Fig. 5.8-(b), it can be seen that the
value and variation in the discounted utility (y-axis) are significantly affected by λ, obtaining
different levels of risk. From the results, the plan obtained when λ = 0.5 arises as a good
solution, balancing the raw utility and expected losses as well as being characterized by a
compact distribution (2250.25±17.58). Values of λ < 0.5 lead to greater average discounted
utility (red dots) but incur in more risk and potential negative outcomes (e.g., low discounted
utility value outliers in λ = 0.25). On the other hand, values with λ > 0.5 sacrifice a portion
of present utility to decrease the impact of expected future losses (5.1% and 14.5% w.r.t.
λ = 0.5, respectively).
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Figure 5.8: (a) Paradise instance raw utility (blue) U(λ) with carbon as the dominant
category and average discounted utility (orange) ∆tfU(λ) = U∗(λ) − E [Losses(X∗(λ, tf))]
including future expected losses due to wildfire events as a function of λ. Treatment fraction
is set to 50%. (b) Distribution of the optimal utility discounted by future expected wildfire
losses (γ = 0.9) for different λ levels when protecting 50% of the landscape.

Finally, we analyze the results obtained for the Getty center instance, when the utility
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function is dominated by the accessibility layer and only 15% of the landscape receives treat-
ment. Contrary to the previous results, we observe an increasing pattern in the discounted
utility (Fig. 5.9-(a)) as more weight is provided to the DPV matrix, this is, the optimal plan
is mainly aligned with the mitigation of future wildfire losses instead of the current benefit
(λ → 1). These results indicate that, for this particular experiment, focusing the attention
only on the present objective function value for selecting the nodes to be treated/protected
is not the most efficient solution as there is no significant intersection between the treatment
plan and the most likely propagation patterns experienced in the landscape, leading to larger
expected losses as λ→ 0. Analyzing the gap between both curves, we observe differences of
148.48%, 119.77%, 74.86%, 49.17%, and 31.64% as we increase the value of λ, respectively.
Therefore, λ = 1 arises as a robust option under the current experimental parameters.

Following the discussion, we observe how the distributions of the discounted utilities
(Fig. 5.9-(b)) with λ < 0.5 are particularly wide with a significant bias to the bottom
(−205.64 ± 434.12 and −75.1 ± 364.49 respectively). Even more, we can see that both
distributions reach negative values because of the larger expected losses, indicating higher
risk involved in those treatment plans as they do not prepare the landscape to disrupt future
wildfire events. Values of λ ≥ 0.5 lead to more compact distributions – still with negative
results – by sacrificing valuable outcomes but assuring the future protection of relevant
flammable areas detected by the DPV layer, mitigating the expected losses. This is reflected
in the distribution of the discounted utility when λ = 1, with an expected discounted utility
of 211.05 an a standard deviation of 103.45, contrasting the results above with λ ∈ {0, 0.25}.

1 1

Figure 5.9: (a) Getty center instance raw utility (blue) U(λ) with accessibility as
the dominant category and average discounted utility (orange) ∆tfU(λ) = U∗(λ) −
E [Losses(X∗(λ, tf))] including future expected losses due to wildfire events as a function
of λ. Treatment fraction is set to 15%. (b) Distribution of the optimal utility discounted
by future expected wildfire losses (γ = 0.9) for different λ levels when protecting 15% of
landscape.
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5.4 Conclusions
Decision-makers usually face multiple objectives when making decisions intersecting land-
scape and fire management. In our original approach, the different cells within the landscape
were given equal importance. We extend these previous analyses to include multiple objec-
tives into the optimization model and analyze the trade-off between current weighted objec-
tives and future protection against wildfire risk. Experiments were performed on three dis-
tinct regions using multiple utility functions obtained from the combination of demographic
and environmental raster layers, highlighting different priorities of the decision-maker.

The study areas are selected to illustrate the framework when dealing with different fuel
compositions and utility distributions. These differences are reflected in the Napa instance
with much higher proportions of flammable fuel types having a more expanded DPV matrix
compared to the other two instances presenting area-focused DPV because they are composed
of higher fractions of non-flammable landscape types. The DPV matrix provides insight
into high-risk areas within the landscape and informs actions to reduce expected wildfire
impacts. Regions with more compact matrices could suggest that fewer resources are needed
to mitigate the effects of future wildfires in these areas. As conjectured from the calculated
DPV, the expected area burned and expected losses for all utility functions as a percentage
of the total instance area and the total utility available (heatmaps) was highest in the Napa
instance. In addition, we observe that the fuel types commonly involved in fire propagation
patterns consist mainly of some combinations of grass, woody shrubs, and shrub litter across
all three instances.

In our analysis, the trade-off between present utility and the future protection of the
landscape based on the DPV is evaluated. As expected, in general, the present utility tends
to decrease as λ value rises as the decision-maker increasingly focuses more resources on
areas with higher fire spread risk. However, present utility values are overestimated when
λ drops, as the decision-maker emphasizes more the impact on the current utility function
and less the future wildfire risk. Despite these common trends, certain utility layers present
different patterns depending on the instance. For example, we can find that global maximum
∆U values can be obtained with λ = 0 (e.g., the forest utility layer in Napa) when the
most likely propagation patterns are not associated with the highest values of the utility
heatmap, reducing the risk at a very high cost of present utility. In other cases, a balanced
λ = 0.5 accounts for a good trade-off between minimizing expected losses and maximizing the
present utility as in the Napa UEqual scenario. In addition, some scenarios including certain
combinations of utility layers and instances characteristics are harder to balance with future
expected losses, mainly due to the fragmentation of the instance and the distribution of the
utility layer over the landscape, which can sometimes be too focused on a single point or
significantly sparse, focusing the treatment plan on areas that are not likely to match the
most relevant propagation patterns of the expected fires.

The results presented in this work are conditional upon the occurrence of fires within
specific time frames, meaning that the evaluation of the effectiveness of the fuel treatment
plans assumes that new wildfires occur during the period of time in which treatments are
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highly effective. This may not be the case in practice, where the temporal dimension (when
to apply the treatment) is crucial to implement effective plans.
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Chapter 6

Conclusion

Overall, the work presented in this dissertation has followed a data-driven methodology for
quantifying and mitigating risk focusing on food and forestry supply chains. The was done by
first developing a stochastic global allocation model to understand how to effectively allocate
food resources on the global scale. This model allows stakeholders to incorporate this risk
when analyzing potential solutions for decision making. In the future, several extensions
of this framework can be explored. A risk-averse version can be formulated by explicitly
including the risk of experiencing "bad" scenarios (i.e., with a strong impact on the perfor-
mance of the network). For this, risk-aware stochastic formulations including terms such as
the known conditional value-at-risk (CVAR, [101]) will be explored in future iterations of
the framework. In addition, the framework can be naturally extended to incorporate mul-
tiple products simultaneously, analyzing the performance of the whole agricultural supply
chain instead of focusing on one particular commodity. More so, we would like to better
model and include factors that influence trade relationships between countries into the cost
function and/or incentives between edges. Some possible implementations include incorpo-
rating quotas or minimum supply/demand constraints between countries and the addition
of stochasticity to random variables such as Beta that control the minimum inventory levels
at the end of each period.

The simplified representation of supply disruption in the previous chapter led us to de-
sign and incrementally updated a data-driven measure that quantifies the network risk levels
including downstream propagation effects in chapter 3. Our current risk measure, DSRM
solves two challenges around including propagation effects of supply disruption and nor-
malizing between nodes and across networks. Future work can still be done to improve
the normalization process as the distribution of DSRM values range from 0 to values much
smaller than 1 due to repeated normalization. In addition, when creating significance tree,
selecting when to cut out repeated nodes is not trivial as sometimes the may or may not be
its most significant/ impactful occurrence in the tree level.

In chapter 4, we present a methodology to support the development of scalable policies
by aggregating the different varieties of food supply chains into a manageable subset of
groups based on the supply chain structure and characteristics. In the future, we want to
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investigate changes in network structure as they shift between groups. In addition, we want
to expand the product quantity and diversity. Additionally, we are interested in predicting
risk levels given network structure: graph embeddings are used to capture the structure
of the network and can become more representative features for prediction (Graph ML)
both at the network level and at the node scale. More so, this framework can allow the
inclusion of socio-environmental metrics such as food access equity and emission levels into
the clustering algorithm. The addition of these measures could enable policy makers to
evaluate the trade-off when designing policies for groups based on different metrics.

Finally, we quantify the socio-environmental costs of supply chain systems facing risk by
extending these previous analyses to include multiple objectives into the optimization model
and analyze the trade-off between current weighted objectives and future protection against
wildfire risk. The results suggest that utility functions need to be carefully generated and an-
alyzed by the decision-maker in order to represent his/her expectations and concerns about
the landscape because they play a crucial role in generating adequate treatment plans. Some
extensions to this work would involve solving a multi-stage version integrating the current
framework with forest growth and the inclusion of an explicit multi-criteria optimization
model including the generated utility functions as the main objectives, analyzing the trade-
off of multiple feasible plans via useful techniques such as Pareto frontiers. In addition, we
can incorporate wildfire severity and frequency prediction model into the framework, devel-
oping and end-to-end solution for the decision-makers. Another future direction can involve
using future projected layer values (e.g., population) as model inputs to consider providing
solutions that include projected changes in different demographic and environmental factors
of interest.
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Appendix A

Global Allocation Model Extended

A.1 Appendix: Two-stage Problem Extended Results

Figure A.1: Bar plot shows the percentage (%) deviation of Objective from deterministic
baseline. The baseline is set to be the case in which no country experiences a capacity
disruption, representing the most basic planning situation.
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Figure A.2: Evolution of Risk Neutral Solving time versus the number of scenarios. Non-
linear relationship between solving time and number of scenarios with an explosion after
incorporating 36 scenarios.
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Table A.1: presents for single country disruption scenarios the Objective values, relative
inventory for the disrupted values and the average inventory for the top 20 suppliers when
that country is disrupted.

Country Objective Relative Average
Inventory Inventory

Brazil 1839.660 0.021 0.035
Colombia 810.800 0.027 0.034
Indonesia 509.959 0.022 0.034
Germany 402.228 0.023 0.034
Guatemala 350.534 0.023 0.034
Honduras 326.664 0.023 0.034
Peru 301.183 0.023 0.034
India 287.834 0.023 0.034
Italy 282.844 0.022 0.034
Ethiopia 266.253 0.022 0.034
Uganda 261.363 0.022 0.034
Mexico 254.843 0.022 0.034
Belgium 207.708 0.021 0.034
Costa Rica 207.708 0.021 0.034
Côte d’Ivoire 167.646 0.017 0.034
Nicaragua 192.284 0.020 0.034
El Salvador 182.976 0.019 0.034
United States 172.836 0.015 0.034
Papua New Guinea 168.476 0.014 0.034
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Appendix B

Agricultural Network Health Measure
Extended

B.1 Distribution of risk measures (DPV ) through time
across all products.

Figure B.1: Box-plot showing the distribution of Normalized DPV values across all Products
between 1996 and 2020. There is a slight positive trend towards risk with time potentially
signally overall increasing vulnerability of networks globally.
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B.2 DSRM Pseudocode

Algorithm 1 DSRM Single node Pseudo-code
1: procedure
2: Given a subtree, with root
3: for node ∈ leafNodes do:
4: metric[node]=0
5: while len(parents)>0 and some nodes unexplored: do
6: for parent ∈ parents do:
7: if parent = root then:
8: continue
9: temp = 0

10: for child ∈ children[parent] do:
11: if child not in metric then:
12: break
13: temp+=tree.edges[parent,child][’delta]
14: *tree.edges[parent,child][’delta weight’]
15: grandparent = getparents([parent],subtree)
16: if grandparent is not root then:
17: temp = 0.5*(temp +
18: tree.edges[grandparent[0],parent][’delta’])
19: metric[parent] = temp
20: leafNodes = list(parents)
21: parents = getparents(leafNodes,subtree)
22:
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Algorithm 2 DSRM Whole Network Proceduce Pseudo-code
1: procedure
2: Given a Digraph, G (V, E), with vertices, V and Edges, E
3: for node ∈ G.nodes do:
4: subtree = genSubtree(G, source=node, depthlimit=100)
5: subtree = addAttr(subtree, G,node)
6: subtree = treeEdgePrune(subtree, epsilon = 0.05, verbose = verbose)
7: subtree = addparents(subtree, node)
8: DSRM = dsrm(subtree,verbose = verbose)
9: DSRMs[node] = DSRM

10: if node ∈ DSRM then:
11: dsrmMaster[node] = DSRM[node]
12: else
13: dsrmMaster[node] =0
14: for node ∈ G.nodes do:
15: G.nodes[node][’dsrm’] = dsrmMaster[node]
16:
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Appendix C

Network Clustering Extended Analysis

C.1 Clustering Networks based on structure - Summary

Table C.1: Summary table - Combinations of Hyperparameters for clustering framework.
The cells highlighted in green indicate models (predominantly GCN models) that are ex-
pressive enough to identify clustering. The cells in red used the Graph2Vec model which was
not expressive enough to capture distinctive clustering behavior in 2 dimensions.

Model Dimensions Attributed
vs not

Clustering
algorithms

Number of
clusters

Dimension
reduction

GCN 64 Attributed Community
detection ∼11 TSNE &

UMAP

GCN 128 Attributed Community
detection 11 TSNE &

UMAP

GCN 128 Attributed k-means 10-30 TSNE &
UMAP

GCN 256 Attributed Community
detection – TSNE &

UMAP

Graph2Vec 64 Attributed Community
detection n/a n/a

Graph2Vec 64 not Attributed Community
detection n/a n/a

Graph2Vec 128 Attributed Community
detection n/a n/a

Graph2Vec 128 not Attributed Community
detection n/a n/a
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C.2 Graph2Vec Extension

Figure C.1: Two dimensional projection with TSNE of 64 dimensional Graph2Vec embed-
dings (non-attributed). This 2D projection does not reveal clear separations in data

C.3 Selecting Number of Clusters
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Figure C.2: Two dimensional projection with TSNE of 64 dimensional Graph2Vec embed-
dings (attributed). This 2D projection does not reveal clear separations in data

C.4 Silhouette Plots for number of clusters = 6 and 7
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Figure C.3: silhouette plots for number of clusters ranging between 2 and 3 and their cor-
responding 2D cluster visualization on the top and bottom respectively. The clusters are
generated obtained from spectral clustering.

C.5 Using dendrogram for Selecting Number of Clusters
.
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Figure C.4: silhouette plots for number of clusters ranging between 6 and 7 and their cor-
responding 2D visualization on the top and bottom respectively. The clusters are generated
obtained from spectral clustering.
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Figure C.5: Observing the dendrogram from the top to bottom, we note that the big differ-
ence between clusters is between the components of the orange cluster versus the red and
green clusters as the vertical height (blue line) is longer for the former
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Appendix D

Detailed Results of Extended Wildfire
Framework

D.1 Mathematical formulation
Based on the model applied in conrad2012wildlife,pais2020DPV, the λ-connected version
of the optimal resource allocation problem (ORAP λ) can be formulated as the following
Mixed-integer programming (MIP) model:

(ORAP λ) max
∑
i∈V

Ui(λ) =
∑
i∈V

(
λDPV (i) + (1− λ)NVi

)
xi (D.1)

s.t. z +
∑
j∈V

y(s,j) = Q (D.2)∑
i∈V

αi ≤ 1 (D.3)

y(s,j) ≤ Qαj ∀j ∈ V (D.4)
y(i,j) ≤ Qxj ∀ (i, j) ∈ Es (D.5)∑

i∈V :(i,j) ∈ Es

y(i,j) =
∑

l∈V :(j,l) ∈ Ẽ

y(j,l) + xj ∀j ∈ Vs (D.6)

∑
i∈V

bixi = B (D.7)∑
i∈V

cixi = C (D.8)

xi, αi ∈ {0, 1} ∀i ∈ V (D.9)
y(i,j) ∈ R+ ∀(i, j) ∈ Es (D.10)

z ∈ R+ (D.11)

In this formulation, an extra cell s acts as the source of all flow of the network obtaining
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a new set of nodes Vs = V ∪ {s}. The source is then connected to each node inside V by a
set of directed edges Es = Ẽ ∪ {(s, i) | i ∈ V }. Flow from the source s is sent to the original
network or absorbed by an auxiliary variable z ∈ [0, Q] with Q the maximum number of
nodes to be selected (eq. (4)). Adjacency constraints are enforced by eqs. (5)-(8). In eq.
(5), at most one cell i ∈ V is acting as a link between the source s and the original network
using the binary variable αi, equal to 1 if the cell i gets the flow from the source. To force
the connectivity of the solution, the remaining cells do not get any flow from the source,
setting those flow variables to zero (eq. (6)). Constraint (7) ensures that cells not included
as part of the solution cannot receive flow from any adjacent node i ∈ V . Flow conservation
is modeled by eq. (8), where each node i ∈ V with a positive flow consumes one unit of flow
and any remaining one is sent to adjacent cells l if an edge (j, l) exists.

Equations (9)-(10) keep track of the total economic benefit (B) and cost (C) of the
optimal resource allocation plan, if provided, to account for extra constraints such as budget
restrictions. We force the optimal solution to include the desired amount of cells Q to be
selected by adding the following equation:∑

i∈V

xi = Q (D.12)

In this way, the optimal connected subgraph S will include exactly Q cells.

Experiments Pseudo-code

Algorithm 3 Experiments Pseudo-code
1: procedure Experiments
2: for dom ∈ {forest, access, carbon, population, equal} do
3: if dom == equal then
4: Calculate NVdom = 0.7Ldom +

∑
k∈K:k ̸=dom 0.1Lk

5: else
6: Calculate NVdom = 0.25

∑
k∈K Lk

7: Calculate DPV (i) = αi

∑
j∈Ti

NV (j), ∀i ∈ V
8: for λ ∈ {0, 0.25, 0.5, 0.75, 1} do
9: Calculate utility Ui(λ) = λDPV (i) + (1− λ)NV (i), ∀i ∈ V

10: for tf ∈ {0.15, 0.25, 0.5} do
11: Get optimal solution X∗(λ, tf)← Solve(ORAP λ(tf))
12: Calculate E [Losses(X∗(λ, tf))]← Simulation(X∗(λ, tf), R = 100)
13: Calculate ∆tfU(X∗(λ, tf)) := U(X∗(λ, tf))− γE [Losses(X∗(λ, tf))]
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Detailed results

Table D.1: Average discounted utility results for Napa instance evaluated from 100 simula-
tions. Results for all λ combinations between the DPV heatmap and NV layers are presented
by dominating utility category (column 1) and treatment fraction level (column 2).

Utility tf ∆U(0) ∆U(0.25) ∆U(0.5) ∆U(0.75) ∆U(1)

0.05 −630.36± 697.47 −719.95± 733.02 −212.01± 343.35 −2.29± 217.35 168.94± 123.13
0.10 −204.23± 680.14 −222.66± 685.27 275.49± 260.19 444.88± 165.37 567.69± 86.51

Access 0.15 76.93± 725.53 482.08± 431.61 731.61± 220.05 800.39± 151.74 903.39± 65.42
0.20 747.88± 539.28 939.52± 371.53 1143.22± 213.7 1134.43± 147.12 1216.88± 57.02
0.25 1218.59± 453.58 1373.17± 344.61 1533.92± 213.11 1552.99± 132.53 1508.5± 53.91
0.5 3298.82± 198.32 3324.25± 169.89 3423.14± 99.82 3352.41± 42.74 3097.83± 13.78

0.05 −98.88± 264.17 −236.28± 369.97 −388.85± 298.23 −217.91± 196.83 −119.62± 146.07
0.10 126.69± 258.7 15.7± 339.87 −155.04± 217.61 −8.59± 137.88 60.61± 103.34

Carbon 0.15 330.78± 231.39 345.71± 214.09 172.81± 178.55 154.35± 118.93 209.04± 75.63
0.20 496.06± 199.97 520.36± 183.79 438.15± 161.36 404.96± 109.03 339.83± 59.88
0.25 759.32± 167.12 822.89± 151.53 715.74± 139.45 608.36± 79.46 494.92± 46.97
0.5 1661.86± 113.59 1623.56± 116.32 1559.84± 132.09 1533.92± 78.67 1170.72± 25.24

0.05 −393.71± 441.85 −471.49± 519.2 −346.28± 325.8 −139.49± 204.77 −1.67± 132.82
0.10 −49.04± 430.45 −100.32± 480.92 19.05± 243.76 154.46± 151.34 262.15± 94.0

Equal 0.15 272.19± 389.96 347.36± 302.84 356.9± 203.05 403.82± 135.65 491.04± 70.41
0.20 563.05± 337.88 626.91± 260.67 692.6± 191.55 635.5± 129.05 694.99± 59.39
0.25 827.96± 284.05 966.14± 236.93 1017.39± 186.06 958.71± 108.22 934.82± 52.73
0.5 2373.07± 197.32 2251.69± 195.28 2237.53± 174.00 2288.82± 56.59 1980.16± 18.02

0.05 −29.83± 222.46 −151.18± 304.25 −367.75± 267.31 −267.42± 203.46 −181.82± 163.4
0.10 196.82± 198.16 51.23± 275.67 −198.23± 206.55 −71.48± 134.11 −11.37± 95.93

Forest 0.15 355.85± 184.95 231.59± 249.27 −38.34± 177.71 53.45± 107.85 105.97± 72.67
0.20 523.46± 165.59 482.76± 179.07 242.87± 164.76 307.56± 107.06 229.7± 50.59
0.25 756.43± 156.15 751.86± 162.06 573.52± 156.47 493.94± 78.28 350.95± 43.45
0.5 1437.75± 119.00 1485.83± 83.09 1366.29± 102.55 1244.37± 69.88 957.45± 25.99

0.05 −54.52± 145.67 −122.11± 201.67 −215.18± 282.34 −202.21± 166.13 −154.92± 139.03
0.10 47.22± 142.73 10.4± 147.42 −7.44± 149.98 −82.36± 139.5 −40.6± 110.42

Population 0.15 126.16± 136.79 129.71± 112.21 99.94± 121.06 7.84± 116.75 48.0± 84.91
0.20 213.52± 121.23 213.94± 107.48 172.36± 125.59 150.56± 103.08 185.98± 70.19
0.25 288.26± 105.29 285.93± 118.84 241.63± 125.67 250.5± 99.98 273.0± 52.72
0.5 681.34± 103.15 645.12± 127.37 856.13± 30.42 817.33± 26.46 748.70± 17.05
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Table D.2: Average discounted utility results for the Paradise instance evaluated from 100
simulations. Results for all λ value combinations between the DPV heatmap and the NV
layer are presented by dominating utility category (column 1) and treatment fraction level
(column 2).

Utility tf ∆U(0) ∆U(0.25) ∆U(0.5) ∆U(0.75) ∆U(1)
0.05 178.43± 318.39 219.03± 277.09 271.39± 171.98 314.29± 106.98 351.16± 69.99
0.10 709.31± 257.46 713.05± 247.5 772.21± 135.73 763.92± 94.98 770.0± 65.49

Access 0.15 1170.32± 257.5 1182.01± 235.67 1236.91± 133.02 1201.7± 94.7 1188.84± 66.45
0.20 1628.9± 254.39 1647.97± 215.35 1666.09± 131.14 1639.13± 95.41 1585.71± 72.64
0.25 2074.37± 243.06 2096.7± 200.28 2079.68± 128.94 2046.8± 89.94 1981.67± 74.27
0.5 4107.38± 142.12 4121.74± 152.96 4139.48± 51.61 3974.30± 15.38 3440.25± 0.93
0.05 170.0± 167.37 119.33± 212.13 112.99± 202.85 79.86± 169.74 92.99± 144.35
0.10 501.83± 154.96 395.71± 203.75 406.94± 205.52 377.67± 163.68 326.32± 146.97

Carbon 0.15 880.92± 119.85 829.95± 143.02 749.78± 139.05 621.85± 66.66 594.98± 62.37
0.20 1136.25± 115.12 1111.82± 140.39 1000.25± 82.06 851.37± 35.68 770.77± 30.33
0.25 1366.23± 118.15 1322.46± 141.34 1267.54± 79.92 1079.41± 23.32 930.57± 13.21
0.5 2325.86± 75.56 2263.15± 73.76 2242.70± 17.81 2128.67± 8.69 1917.48± 1.24
0.05 146.99± 253.0 96.19± 298.17 126.65± 192.1 139.03± 133.54 163.79± 96.69
0.10 517.53± 254.44 463.82± 299.69 454.8± 188.2 430.92± 131.2 402.6± 97.28

Equal 0.15 869.89± 250.2 814.78± 293.29 846.11± 114.27 716.38± 133.36 658.84± 98.7
0.20 1338.95± 210.91 1296.81± 237.16 1148.0± 85.11 1026.82± 31.18 906.99± 103.73
0.25 1740.49± 207.27 1744.59± 192.15 1516.46± 71.49 1302.24± 21.32 1154.24± 107.06
0.5 3295.83± 103.08 3286.24± 104.47 3190.06± 45.89 2953.84± 13.94 2390.28± 1.29
0.05 216.81± 202.38 249.91± 204.67 213.87± 184.86 198.49± 157.21 190.93± 134.61
0.10 683.54± 154.58 694.02± 161.88 624.48± 165.31 545.56± 150.06 479.31± 137.23

Forest 0.15 1024.93± 150.04 1017.27± 141.46 990.61± 110.4 848.03± 62.04 778.14± 56.25
0.20 1298.57± 148.71 1296.31± 142.27 1250.72± 69.61 1115.27± 37.33 991.0± 28.6
0.25 1528.34± 140.52 1562.9± 106.9 1500.39± 60.08 1395.67± 31.94 1192.01± 12.08
0.5 2598.65± 64.54 2566.28± 63.29 2551.14± 17.53 2452.89± 8.03 2296.49± 0.90
0.05 324.29± 70.44 268.57± 125.4 −26.16± 106.26 −12.03± 91.99 −0.25± 86.53
0.10 695.32± 71.5 630.53± 129.06 354.47± 104.33 91.32± 87.87 93.99± 82.53

Population 0.15 955.1± 73.52 889.47± 127.92 707.54± 105.29 183.65± 88.69 173.49± 85.17
0.20 1164.93± 72.59 1101.32± 123.66 928.23± 102.43 418.05± 93.16 241.01± 90.85
0.25 1333.8± 69.21 1279.45± 69.42 1106.89± 103.3 811.5± 93.61 319.53± 93.13
0.5 2007.73± 35.38 1958.83± 62.23 1852.77± 114.98 1741.65± 78.41 708.24± 3.74
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Table D.3: Average discounted utility results for the Getty center instance evaluated from
100 simulations. Results for all λ value combinations between the DPV heatmap and the
NV layer are presented by dominating utility category (column 1) and treatment fraction
level (column 2).

Utility tf ∆U(0) ∆U(0.25) ∆U(0.5) ∆U(0.75) ∆U(1)
0.05 −472.96± 453.7 −392.1± 417.92 −262.43± 303.32 −139.59± 230.58 −80.92± 201.81
0.10 −353.71± 443.07 −227.01± 375.65 −72.71± 266.06 4.14± 189.54 69.61± 150.55

Access 0.15 −205.64± 434.12 −75.1± 364.49 82.81± 213.83 160.22± 136.52 211.05± 103.45
0.20 −64.41± 431.02 82.69± 350.25 225.15± 184.66 284.95± 120.86 330.84± 74.25
0.25 125.28± 407.03 211.91± 338.75 355.09± 159.94 406.88± 97.7 445.96± 51.63
0.5 905.18± 291.65 949.64± 256.68 971.89± 138.03 967.81± 70.83 988.54± 24.95
0.05 −205.02± 215.85 −252.35± 283.41 −250.66± 255.97 −177.37± 220.13 −151.03± 213.97
0.10 −95.77± 205.28 −131.89± 259.1 −85.9± 175.91 −83.15± 171.28 −47.19± 142.25

Carbon 0.15 10.27± 191.77 −48.71± 245.27 7.7± 146.14 33.27± 111.25 50.12± 103.33
0.20 106.72± 176.78 51.74± 222.78 112.5± 140.3 104.59± 82.4 114.97± 82.65
0.25 183.74± 174.64 121.02± 217.3 187.24± 118.38 170.12± 69.47 178.04± 51.78
0.5 578.29± 149.24 569.52± 136.31 514.78± 94.54 492.50± 48.50 467.99± 28.17
0.05 −291.81± 270.13 −340.11± 348.64 −267.66± 274.53 −156.46± 214.39 −121.35± 200.53
0.10 −182.42± 264.34 −238.24± 329.64 −127.19± 229.6 −52.0± 168.74 −18.22± 153.08

Equal 0.15 −77.81± 262.55 −137.06± 321.14 10.99± 165.64 64.96± 117.05 82.66± 107.17
0.20 11.86± 255.07 −37.58± 311.16 96.22± 150.43 146.98± 100.09 170.95± 82.78
0.25 96.76± 246.77 31.2± 307.0 203.37± 136.78 225.95± 82.37 244.5± 52.99
0.5 636.70± 186.57 633.69± 165.57 589.46± 112.89 600.49± 54.09 599.59± 26.80
0.05 −154.77± 168.04 −216.76± 232.17 −285.57± 288.36 −226.0± 244.0 −164.97± 214.63
0.10 −56.82± 156.05 −114.55± 208.5 −133.43± 205.9 −115.09± 178.6 −72.47± 144.47

Forest 0.15 19.91± 144.58 −26.92± 189.24 −45.63± 158.45 −11.54± 119.47 15.09± 103.73
0.20 96.95± 133.05 36.43± 176.55 38.2± 128.73 48.1± 96.83 67.37± 77.59
0.25 147.82± 131.6 110.52± 165.47 115.68± 120.95 108.12± 77.0 125.16± 53.59
0.5 474.79± 99.54 474.01± 102.52 390.05± 94.46 369.58± 54.05 359.10± 28.73
0.05 −70.86± 65.58 −112.05± 109.7 −193.76± 204.4 −173.36± 196.66 −170.81± 198.96
0.10 −43.46± 64.26 −70.31± 89.42 −136.47± 160.56 −115.5± 150.06 −112.4± 151.19

Population 0.15 −16.44± 64.65 −27.52± 66.72 −75.13± 113.62 −59.41± 105.36 −56.56± 105.75
0.20 7.38± 61.85 −4.0± 59.09 −38.04± 93.7 −21.94± 85.87 −19.29± 84.26
0.25 35.15± 59.66 22.34± 55.45 −2.93± 74.14 14.77± 55.57 18.24± 53.49
0.5 158.55± 43.87 123.64± 43.91 106.78± 48.59 119.83± 32.95 123.32± 28.41
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Figure D.1: Resource allocation sample plans for Napa valley, Getty center, and Paradise
(columns) instances for different λ weights (rows) to account for the expected losses due
to future wildfires, at a specific treatment fraction tf . Significant variations in the optimal
plans can be observed as the λ values are modified to include future wildfire risk into the
objective function. Original land cover colors have been modified for better contrast and
non-flammable nodes have been removed (white space).




