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There is considerable debate about the most efficient way to interrogate rare coding variants in association stud-
ies. The options include direct genotyping of specific known coding variants in genes or, alternatively, sequencing
across the entire exome to capture known as well as novel variants. Each strategy has advantages and disadvan-
tages, but the availability of cost-efficient exome arrays has made the former appealing. Here we consider the
utility of a direct genotyping chip, the Illumina HumanExome array (HE), by evaluating its content based on:
1. functionality; and 2. amenability to imputation. We explored these issues by genotyping a large, ethnically
diverse cohort on the HumanOmniExpressExome array (HOEE) which combines the HE with content from the
GWAS array (HOE). We find that the use of the HE is likely to be a cost-effective way of expanding GWAS, but
does have some drawbacks that deserve consideration when planning studies.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Methods to extend genome-wide association studies (GWAS) have
recently become a topic of high interest. Despite a large number of no-
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various traits, including disease via GWAS, the variants identified to
date collectively only explain a small fraction of the estimated heritabil-
ity of most common, chronic diseases (Manolio et al., 2009). Unknown
genetic factors, including polymorphisms that have yet to be identified
through GWAS studies, likely account for the ‘missing heritability’ asso-
ciated with complex traits (Visscher et al., 2012; Yang et al., 2011). One
explanation for this missing heritability is that widely-used genotyping
platforms for GWAS are designed to directly interrogate only common
single nucleotide polymorphisms (SNPs). Therefore, rare coding
variants, which have been shown to play a role in the etiology of
many diseases, tend to be entirely omitted by most genotyping
platforms used in GWAS as they are not in linkage disequilibrium
(hence not imputable) with SNPs interrogated on these arrays (Evans
et al., 2008; Sun et al., 2011). Thus, the examination of rare coding
variants requires either sequencing technology or the direct genotyping
of variants which have previously been identified. While the former
may lead to a more comprehensive assessment of all forms of variation
in coding regions, including the discovery of extremely rare and/or de
novo variants, the latter provides an efficient, cost-effective alternative
for interrogating a subset of known variants in coding regions
(Flannick et al., 2012; Pasaniuc et al., 2012).

The value of direct genotyping of previously identified coding vari-
ants, as opposed to de novo sequencing of coding regions, is dependent
on a few key issues. First, if one can identify known functionally relevant
variants in coding regions it might be more expedient to focus on them
in cost-effective direct genotyping studies than pursuing more costly
yping of coding variants in genome wide association studies: Utility,
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sequencing studies that may identify many likely neutral variants. Sec-
ond, if coding variants identified via sequencing are easily imputable
from variants genotyped on standard GWAS platforms, then the need
for directly genotyping these coding regions would be minimized and
greater attention could be given to more reliable imputation strategies.
Third, many coding variants, whether they are functional or amenable
to imputation or not, are very rare and hence likely to be absent in
many global populations. Thus, direct genotyping certain coding
variants may only be useful for specific populations.

Here we assessed the potential benefits of directly genotyping rare
coding variants on the IlluminaHuman Exome (HE) array by addressing
these issues. As such, our assessment includes an examination of the
functional content of variants included on the array. We also evaluated
the amenability of the HE markers to imputation from the Illumina
Human Omni Express (HOE). And lastly, we evaluated the allele
frequency spectrum of the variants included on the HE chip. We find
that, overall, the HE chip does not suffer severe drawbacks in the
context of these issues, but of course is limited to assessments of
known (i.e., previously identified) variants. Our analyses and results
have important implications for future studies seeking to identify
associations with coding variants.

2. Material and methods

2.1. Subjects and genotyping

Participants were recruited from two southern Californian military
personnel cohorts: 1. the Marine Resiliency Study (MRS), a prospective
study of post-traumatic stress disorder (PTSD) involving United States
Marines bound for deployment to Iraq or Afghanistan (Baker et al.,
2012); and 2. a cross-sectional study of active duty service members
and veterans of Operation Enduring Freedom/Operation Iraqi Freedom
(OEF/OIF) (Pittman et al., 2012). The protocols for these studies were
approved by the University of California-San Diego Institutional Review
Board (IRB Protocols #110770, #070533, and#080851), and all subjects
provided written informed consent to participate.

DNA samples from 2585 study participants were acquired, and
genotyping was carried out by Illumina (http://www.illumina.com/)
using the HOEE version 12v1.0. Initial allele calling was performed by
Illumina in Genome Studio (http://www.illumina.com) and the overall
data quality was high: sample success rate was 99.95% (9 samples
failed), locus success rate was 99.86%, and genotype call rate was
99.88%. Twenty-eight replicate pairs of samples undergoing genotyping
were assessed for consistency and ultimately reproducibility of the
assay and agreement of genotyping calls was achieved for N99.99%
over all genotypes across these 28 pairs. Additional data cleaning was
performed in PLINK v1.07 (Purcell et al., 2007) and included the remov-
al of 224 markers with heterozygous haploid genotypes on the X, Y, or
mitochondrial chromosome. The final dataset included 949,469
markers genotyped in 2548 individuals (2538 males and 10 females)
with a genotyping rate greater than 99.8%.

2.2. Ancestry determination

We estimated each individual's degree of European, African, Native
American, Central Asian, East Asian and Oceanic admixture by compar-
ing the individual's genotypes to allele frequencies of 10,079 SNPs in
common with a large set of reference individuals (Libiger and Schork,
2013). In short, the reference sample consisted of genotype data for
2513 individuals of known ancestry who originated from 83 popula-
tions from around the world. These data were assembled from publicly
available sources including the Human Genome Diversity Project
(HGDP) (Cann et al., 2002), the Population Reference (POPRES)
(Nelson et al., 2008), HapMap3 (Altshuler et al., 2010), and the
University of Utah dataset (Xing et al., 2009). Admixture estimates
were obtained in two steps using a supervised analysis implemented
Please cite this article as: Nievergelt, C.M., et al., Chip-based direct genot
issues and prospects, Gene (2014), http://dx.doi.org/10.1016/j.gene.2014.
in the ADMIXTURE software (Alexander et al., 2009). In the first step,
we computed initial admixture estimates for all individuals associated
with eachworld population using the entire set of reference individuals
and determined the estimates' standard errors via bootstrapping. A
subset of reference individuals from populations that exhibited
evidence of contributing to an individual's ancestry based on 95%
confidence intervals was then used to refine the initial admixture
estimates in a subsequent supervised ADMIXTURE analysis.

Final ancestry calling was based first on self-reported race and eth-
nicity information and second within each of these main population
groups. Essentially, subjects were placed into 5 groups: European
Americans (subjects with N95% European ancestry; N =1476), Asian
Americans (N95% East Asian ancestry;N=43); African–American (sub-
jectswith N5%African ancestry and b5%Native American, Central Asian,
East Asian and Oceanic ancestry; N = 109), Hispanic Americans (sub-
jects with N5% Native American and b10% African, Central Asian, East
Asian and Oceanic ancestry; N = 321), and Other (all others; N =
599). Thus, our ancestry assignments provide initial assignments con-
sistent with the often-used admixture program except that they have
been refined by removing noise and leveraging comparisons to self-
reported ancestries.

2.3. Genotype imputations

Imputations were conducted using markers available on the HOE
platform. Prior to imputation, mitochondrial and unmapped SNPs were
removed fromeach set.Markers thatwere individually rare (minor allele
frequency MAF b 0.0002), showed a large number of missing genotypes
(N5%), or failed Hardy–Weinberg equilibrium (p b 1 × 10−6) were also
removed (Supplemental Table 1). Imputations were performed using
the default parameters in IMPUTE2 v2.2.2, using 1000 Genomes Phase
1 integrated variant set haplotypes for the autosomes and the interim
set for the X chromosome (Howie et al., 2009). IMPUTE2 is well suited
for imputations on genetically diverse and admixed populations such
as that of the present study as the algorithm is robust to ancestral genetic
variation within the reference panel and study datasets (Howie et al.,
2011). Genomes were divided into approximately 5 Mb segments (min-
imum 2.5 Mb, maximum 7.5 Mb to avoid chromosome and centromere
boundaries), and phasing and imputed genotypes were calculated for
each. Imputed markers with low imputation quality values (Info ≤ 0.5)
were dropped. GTOOL v0.7.0 was used to convert genotype probabilities
into calls. Individual genotype probabilities exceeding 90%were assigned
genotype calls and probabilities ≤90% were treated as missing geno-
types. Agreement between the imputation results andmarkers exclusive
to HOEE (i.e., HE markers) was examined by calculating the correlation
coefficient, r2, between calls on a per marker level. Missing genotypes
were assigned an allelic dosage representing the mean genotype at
that particular locus for all calculations. Imputation was also performed
based on genotype data from the HOEE platform. A comparison of the
agreement between the HOE and HOEE to impute markers that were
not genotyped on either platform was, likewise, conducted.

2.4. Variant functional annotations

We mapped all variants to the closest gene from the UCSC Genome
Browser known gene database (Fujita et al., 2011). Full details of our an-
notation pipeline are described in a previous publication (Torkamani
et al., 2012) and the SupplementalMethods. In brief, variantswere asso-
ciatedwith all transcripts of the nearest gene(s), with functional impact
predictions made independently for each transcript. If the variant fell
within a known gene, its position within gene elements (e.g. exons,
introns, untranslated regions, etc.) was recorded for functional impact
predictions depending on the impacted gene element. All variants
falling within an exon were analyzed for their impact on the amino
acid sequence (e.g. synonymous, nonsynonymous, nonsense, frame-
shift, in-frame, intercodon etc.).
yping of coding variants in genome wide association studies: Utility,
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3. Results

3.1. Characterization of the cohort

Table 1 provides a description of the cohort based on self-reported
race and ethnicity information and includes the number of subjects,
gender, and age of the subjects and the number of individuals removed
from the study because of failed genotyping quality control (see
Methods). Individual ancestry and admixture proportions were
assessed within these self-reported race and ethnicity groups using ge-
notype information (see also Methods) and a graphical representation
of the ancestry/admixture among the subjects in the study is provided
in Fig. 1. We ultimately identified 1476 individuals with predominantly
European ancestry, 109African–American individuals, 43with predom-
inantly East Asian ancestry, 321with predominantly Hispanic American
ancestry (i.e., with significant Native American admixture), and 599
with predominant ancestry from any other geoethnic population. We
used these combined self-reported and genetically-determined
ancestries in subsequent analyses.
3.2. Imputability of the HE markers

We explored the possibility that the markers which were exclusive
to the HOEE array (i.e., the HE content) could be imputed frommarkers
on theHOE array. If thesemarkers are amenable to imputation, it would
call into question the utility of the additional content on the HOEE chip.
Only a modest proportion of the markers exclusive to the HOEE array
were imputable from the HOE content and passed imputation quality
control thresholds (N = 80,205; 32.9%). Among these, markers with
common variants (MAF N 0.05; N = 27,250) were imputed accurately
across all ethnicities: 76.4% of common markers had r2 N 0.95 and
90.6% had r2 N 0.80. However, markers with moderately common
(0.01 ≤ MAF ≤ 0.05; N = 9777) and rare (MAF b 0.01; N = 43,178)
variants were imputedmore poorly: 46.8% and 22.9% with r2 N 0.80, re-
spectively. Overall, only 50.6% (N = 40,620) of all imputable markers
were accurately imputed across ethnicities (Fig. 2A). Considering the
HE included 158,878 non-monomorphic markers in this sample
(among 243,783 total genotyped markers), only approximately
one-quarter of variable HE content – and one-sixth of the total HE
content – could be recapitulated from imputation via the HOE content.
Note that we did not consider the small number of Y-chromosome
(N = 180) and mtDNA markers (N = 245) available on the HE chip.

Imputation accuracy was also assessed separately for European
Americans (N = 1476, Fig. 2B). We found a trend towards decreasing
imputation accuracy with decreasing minor allele frequency. The
proportion of markers which could be imputed accurately (r2 N 0.80)
was 65%. The small numbers of subjects in the other ancestry groups
precluded statistical comparisons.
Table 1
Descriptive statistics for the cohorts studied based on self-reported race and ethnicity.

Measure Number of subjects Ma

Self-reported race:
Black/African American 128 12
American Indian/Alaska 35 35
Asian 80 79
Pacific Island/Hawaiian 39 38
White 2104 20
Multiple races 125 12
Unknown 46 46

Self-reported ethnicity:
Non-Hispanic 1951 19
Hispanic 601 59
Unknown 5 5/0

Total: 2557 25

Please cite this article as: Nievergelt, C.M., et al., Chip-based direct genot
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Finally, the total number of markers that could be imputed based on
theHOE andHOEE, but not present on either platform,were considered.
A large number of markers were successfully imputed at an acceptable
quality (i.e., information threshold greater than 0.5) on both platforms
(Supplemental Table 2). The total counts and overlap between HOE
and HOEE were very similar. Only slightly more markers were imputed
accurately using HOEE compared to HOE (22,961,598 and 22,898,511,
respectively). Markers with rare variants (MAF b 0.01) accounted for
roughly 54% of the approximately 23 million accurately imputed
markers, whilemarkerswith common variants (MAF N 0.05) accounted
for 30%. In general, there was high concordance of imputed genotypes
between the HOE and HOEE (Supplemental Fig. S1). Approximately
17 million markers had r2 N 0.8. Thus, the performance of the HOE and
HOEE to impute markers not present on either platform was deter-
mined to be roughly equivalent.

3.3. Functional content for markers interrogated by the HE array

Of the 949,469 markers that passed genotyping QC (see Methods),
the known or likely functional significance of 931,570 markers could
be assessed using a suite of bioinformatics and computational proce-
dures as described in (Torkamani et al., 2012) (see Methods). Of the
237,627 markers interrogated on the HE chip, there were 237,489
single-nucleotide variants (SNVs), 43 insertions, and 95 deletions. The
classification of these markers into 9 functional groups is shown in
Table 2 (left columns). Overall, 117,678 variants (49.5%) on the HE
were predicted to be functional. When compared to the content on
the more comprehensive HOEE array, we found that of the 122,668
HOEE functional variants, 117,678 (95.9%) were contributed by the
HE. We also compared the contribution of functional content of the HE
to the HOEE array after imputation (HOEEi; N = 22,961,598 markers
amenable to imputation). We found that only approximately 0.7% of
all variants capable of interrogation were likely to be functional (right
columns of Table 2), suggesting that the HE chip is indeed substantially
adding to the functional content available when using the HOE array,
even after imputation. We note that some variants (N = 1143 or
0.12%) that were either interrogated on the HOEE chip or amenable to
imputation were not amenable to functional prediction based on our
computational procedures due to, for example, location inconsistencies
in relevant databases.

3.4. Overall and functional variant frequencies

The majority of markers interrogated on the HE platform have very
low minor allele frequencies. For example, 85% of markers exhibited
minor allele frequency of 0.01 or less in our multi-ethnic cohort and
similar trends were observed within each population. This observation
has obvious implications on the utility of the HE in GWAS initiatives
les/females Average age #Poor genotype QC

8/0 25.38 1
/0 22.66 0
/1 24.94 1
/1 22.96 0
96/8 23.25 7
5/0 22.50 0
/0 23.19 0

46/5 23.42 8
6/5 23.18 1

22.00 0
47/10 23.36 9

yping of coding variants in genome wide association studies: Utility,
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Fig. 1. Admixture proportion of individuals included in the study. Each individual is represented by a vertical bar divided into colored segments. The size of each colored segment reflects
the proportion of admixture from one of six major continental populations (red — European; Yellow — African; green — Native American; turquoise — East Asian; blue — Oceanic;
magenta — Central Asian). Individuals in each ancestral category are sorted by the degree of European admixture (i.e., size of red segments) (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.).
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which focus on singlemarker tests. Assuming a small ormoderate effect
of variants on disease, most of the markers on the HE array will only
provide sufficient power to detect associations between an allele and
a disease using singlemarker tests if information on a very large number
of case and control individuals is collected.

The mean (±s.d.) number of polymorphic markers per individual
interrogated on the HE array was 15,746 (±215), and included 2454
(±59) functional markers, 14.3 (±6.4) private markers, and 7.9
(±3.8) functional and private markers. Similar numbers were seen in
the European American subgroup (total: 15,528 ± 112; functional:
2420 ± 38; private: 10.1 ± 3.8, functional & private: 5.7 ± 2.6).

4. Discussion

As the genetics community learns about the limitations of contem-
porary approaches to discovering variants that influence phenotypic
expression, newer approaches will undoubtedly emerge. It is quite
Fig. 2. The proportion of imputable markers (N = 80,205) exclusive to the HOEE (i.e. HE con
across: A) all subjects (N = 2548); B) European Americans (N = 1476). Marker frequencie
red — rare (MAF b 0.01); and black dashed— all (For interpretation of the references to color

Please cite this article as: Nievergelt, C.M., et al., Chip-based direct genot
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clear that despite the spectacular and numerous successes in identifying
associated variants via GWAS initiatives focusing on common variants
and linkage disequilibrium phenomena, there is a large fraction of the
genetic basis ofmost diseases and traits that has yet to be characterized.
This could be due to one or more of the following factors: (1) rarity or
relatively small effect sizes of the remaining variants contributing to
those conditions; (2) forms of variation not hitherto explored in as
comprehensive a manner as SNPs and small indels in GWAS initiatives
(e.g., copynumber of variants and large structural variations); (3) compli-
cated gene x environment interactions; (4) epigenetic factors; and,
(5) other phenomena (Frazer et al., 2009; Manolio et al., 2009; Schork
et al., 2009).

The contribution of rare variants to phenotypic expression is getting
more and more attention given the availability of cost-efficient se-
quencing technologies (Bansal et al., 2010; Bodmer and Bonilla, 2008;
Frazer et al., 2009; Gibson, 2011; Malhotra and Sebat, 2012; Pasaniuc
et al., 2012; Schork et al., 2009). However, sequencing technologies
tent) covered by imputation, based on the HOE and 1000 Genomes reference haplotypes
s: blue — common (MAF N 0.05); green — moderately common (0.01 ≤ MAF ≤ 0.05);
in this figure legend, the reader is referred to the web version of this article.).

yping of coding variants in genome wide association studies: Utility,
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Table 2
Functional content of the variants on the Human Exome array (HE) and the Human Omni
ExpressExome plus imputable marker array (HOEEi) indicating the number of variants
and rate in each of nine functional classes (see Methods).

Functional group HE variants Rate HOEEi Rate

Splicing change variants 372 0.030 625 0.015
Probably damaging nscSNPs 54,970 0.267 67,328 0.272
Possibly damaging nscSNPs 39,144 0.190 46,290 0.187
Protein motif damaging variants 23,304 0.292 27,283 0.293
TFBS disrupting variants 0 0.000 10 0.004
pre-miRNA disrupting variants 6 0.000 201 0.000
miRNA-BS disrupting variants 236 0.062 1931 0.055
ESE-BS disrupting variants 17,500 0.117 27,058 0.117
ESS-BS disrupting variants 6439 0.114 9869 0.116
Total likely functional variants 117,678 0.495 150,035 0.007
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may still be cost-prohibitive for large-scale association studies.
Therefore, the genetics research community has considered the use of
genotyping platforms that can interrogate previously identified variants
that are not easily captured via linkage disequilibrium on standard
genotyping platforms used in GWAS initiatives. Choosing the markers
to be used on such arrays is crucial, but a focus on coding variants
(i.e., the exome) is a logical starting point (despite the fact that coding
variants tend to be rare) since it has been shown that they are likely
to be functional and have been implicated in a number of diseases and
phenotypes (Botstein and Risch, 2003; Gorlov et al., 2011; Jordan
et al., 2010; Sunyaev, 2012). However, designing a genotyping array
that would complement existing genotyping platforms is not necessar-
ily trivial. For example, imputation strategies are gaining sophistication
making it possible to avoid the use of newer assays by computationally
assigning variants to individuals based on linkage disequilibrium pat-
terns in the genome and available data sets (Flannick et al., 2012;
Marchini and Howie, 2010). Thus markers interrogated on newer
platforms should optimally contain those not amenable to imputation.
In addition, if markers are to be chosen for direct genotyping, then it
makes sense to bias them towards those likely to include functional
variants. Finally, many rare variants are likely to be population-
specific, including those likely to be functional (Kidd et al., 2012;
Torkamani et al., 2012), making the choice of which variants to include
on a genotyping array complicated. For example, a researcher may not
wish to invest in a genotyping platform if many of the markers being
interrogated are not likely to be found in the populations of interest.

We explored these issues with a newly available genotyping array
(the Illumina HE) designed to capture coding variants that are comple-
mentary to markers currently interrogated by other genotyping arrays.
We find that as much as 49.5% of the markers interrogated by the array
are likely to impact the function of genes. In addition, as only a small
proportion of the HE content was amenable to imputation, we feel the
addition of these markers provides an improvement over the previous
GWAS array design — although it is possible that larger imputation
reference panels may close this gap.

A limitation of our dataset is the unequal representation of different
racial/ethnic groupswith a relatively small number of Hispanics, African
Americans, and subjects of other race, which precluded a detailed
comparison of population-specific variants. In addition, our cohort
was almost exclusively male, which effectively reduced the number of
X chromosomes by half and did not allow for a comparison between
genders. However, since analyseswere based on the combined genomic
content of the array, this should not impact our conclusions.

Obviously, the choice of a genotyping platform will have to be based
on the goals of a study. For example, if a study requires the accommoda-
tion of de novo, very rare, or likely population-specific variants, then the
use of an array designed to interrogate variants that have been
previously identified is inappropriate. However, if the goal of a study is
to efficiently expand the search for likely causative variants that are
‘beneath the radar’ of standard GWAS genotyping platforms, then
Please cite this article as: Nievergelt, C.M., et al., Chip-based direct genot
issues and prospects, Gene (2014), http://dx.doi.org/10.1016/j.gene.2014.
genotyping arrays focusing on rare variants that are likely to be function-
al, such as coding variants, makes sense. The design of those arrays in
terms of the variants they interrogate, however, is crucial for their
success.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gene.2014.01.069.
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