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Abstract: The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates

with RNAPII to regulate both transcriptional elongation and co-transcriptional pre-mRNA process-
ing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the

human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We

demonstrate here that yeast Spt4/5 can bind in a sequence-specific manner to single stranded
RNA containing AAN repeats. Furthermore, we show that the major protein determinants for

RNA-binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not

required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that
associates directly with RNAPII, making significant steps towards elucidating the mechanism

behind transcriptional control by Spt4/5.

Keywords: Spt4/5; transcription elongation; RNA binding; SELEX; RNA polymerase; transcription
elongation factor

Introduction

Transcription is a highly dynamic and regulated pro-

cess, which in eukaryotes is carried out by three

multi-subunit RNA polymerases (RNAPI, II, and III)

to produce distinct classes of RNA. These RNAPs

are related through their common evolutionary his-

tories, their structures and the mechanisms by

which they transcribe RNA in a DNA-template-

dependent manner. The catalytic cores of multi-

subunit polymerases found in all living organisms

display deep conservation.1 In contrast, the general

regulatory proteins that assist and direct the activi-

ties of these RNAPs generally exhibit significant

variation in structure and function across the three

kingdoms of life and between functional classes of

polymerase. However, a single family of transcrip-

tional regulators displays the same degree of conser-

vation as seen in RNAP, namely the Spt5/NusG

family.1 These proteins are essential for life and are

known to regulate transcription elongation in eukar-

yotes, archaea and bacteria. Their strict conserva-

tion across all domains of life suggests that they

carry out an ancient, core function in transcription.

The details of that function are, however, largely

unknown.

Eukaryotic Spt5 is a large multi-domain protein

consisting of an N-terminal acidic domain, a NusG

Additional Supporting Information may be found in the online
version of this article.
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N-terminal (NGN) domain, several Kyprides, Ouzou-

nis, Woese (KOW) domains and a set of C-terminal

repeats (CTRs) whose sequence varies across spe-

cies2,3 [Fig. 1(A)]. The conserved core of Spt5, com-

prising the NGN domain and a single KOW domain,

is found in archaeal Spt5 and the bacterial homolog

NusG. In eukaryotes and archaea (but not bacteria),

Spt5 forms a noncovalent complex with a small zinc

finger protein, Spt4 (RpoE” in archaea), via its NGN

domain.4–6

The mechanism by which the Spt4/5 hetero-

dimer regulates elongation is not well understood;

however, recent structural studies have suggested

that the NGN domains of NusG and Spt4/5 bind

directly to RNAP, bridging its central cleft.7–10 This

arrangement effectively seals the DNA into the elon-

gation complex and may prevent the disengagement

of the DNA template from the transcribing RNAP,

enhancing the processivity of the elongating RNAP.

This model also places Spt4/5/NusG in a location

suitable for allosterically modulating the RNAP

active site and interacting with nucleic acids in the

transcription elongation complex (TEC). Supporting

this model, archaeal Spt4/5 has been shown to inter-

act with both ds- and ssDNA;11 NusG has recently

been shown to interact with T-rich nontemplate

DNA in the transcription bubble inducing pausing of

the elongation complex;12 and, Spt5 has been shown

to interact with nontemplate DNA in the transcrip-

tion bubble and upstream of the elongating RNAP

II, which appears to critical for the ability of Spt5 to

modulate transcription pausing or arrest.13

Several observations indicate that, in addition

to regulating elongation, Spt4/5 may couple the

activities of the TEC to pre-mRNA processing. The

CTR region of Spt5 is required for normal elongation

control14,15 and genetically interacts with the CTD

of RNAPII.16,17 Through its regulated phosphoryla-

tion, the CTR of Spt5 may serve as a scaffold for the

cooperative assembly of transcription and RNA proc-

essing factors.15,16,18–21 Biochemical and proteomic

studies show that Spt5 associates with a wide varie-

ty of 5’ and 3’ RNA processing factors including

RNA capping enzymes, polyadenylation factors and

RNA cleavage factors.22–27 Additionally, spt5 muta-

tions affect splicing, polyadenylation and nuclear

export of mRNA;26,28–31 Spt5 has also been shown to

facilitate splicing independently of transcription.32

Recent evidence suggests that Spt4/5 may exert

its effects on elongation or processing through direct

contacts with the nascent transcript. Both NusG

and Spt4/5 can interact with nucleic acids.11–13,33–36

Furthermore, in vitro transcription studies suggest

that Spt4/5 associates with nascent transcripts soon

after they emerge from the elongating polymerase,

leading to the model that efficient association of

Spt4/5 with RNAPII may depend on transcript bind-

ing.13,37,38 Several observations have led to the sug-

gestion that the KOW domains of Spt5 may mediate

RNA binding. KOW domains are found in RNA heli-

cases and ribosomal proteins,39 and in rRNA proc-

essing factor Mtr4 they have been observed to

directly contact RNA.39–41 In yeast Spt5, the first

KOW domain and sequences immediately

Figure 1. The organization of the Spt4/5 heterodimer and design of expression constructs. An updated Spt5 domain delinea-

tion has since been published.42 A: The domains of Spt4/5, including the zinc finger (Zn) of Spt4 and the acidic N-terminus, the

five Kyrpides, Ouzounis, and Woese (KOW) domains and C-terminal repeat (CTR) region of Spt5. B: The names and domain

truncations of the Spt4/5 constructs utilized in this study. The amino acid (aa) boundaries of each construct are shown.
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downstream of it bind RNA and DNA with micromo-

lar affinities.42 In contrast, the 2nd through 5th

KOW domains of Spt5 do not appear to bind nucleic

acids, and may instead help mediate binding to poly-

merase.42–44 As yet, it is not clear that KOW

domains 2-5 of Spt5 contribute to the nucleic acid

binding activity of Spt4/5.

We show here that Spt4/5 has sequence-specific

RNA-binding activity, and that the Spt4/5NGN heter-

odimer—but not the KOW domains—is responsible

for this functionality. We further show that Spt4/5

displays specificity for RNA bearing multiple AA

repeat elements, and discuss ways in which Spt4/5

may use this motif to exert its regulatory effects on

transcription elongation.

Results

Spt4/5 binds to ssRNA in vitro
To address the RNA-binding properties of Spt4/5, we

first tested the ability of a recombinant yeast Spt4/5

complex containing the Spt5 NGN and all five KOW

domains (Spt4/55K) [Fig. 1(B)] to bind double strand-

ed DNA (dsDNA), single stranded DNA (ssDNA)

and single stranded RNA (ssRNA) pentaprobes

using electrophoretic mobility shift assays (EMSAs).

Pentaprobes are overlapping 100-nt oligonucleotides

encompassing all possible 5-nt sequences.45,46 Spt4/

55K gave rise to a clear concentration dependent

shift in the ssRNA probe (Fig. 2), whereas no bind-

ing to the dsDNA probe was observed and only small

amounts of ssDNA shifting could be seen at the

highest protein concentrations. These data show

that the Spt4/5 complex binds preferentially to

ssRNA.

Spt4/5 is a sequence-specific ssRNA-binding

protein

To determine whether Spt4/5 recognizes ssRNA with

any sequence or structural specificity, we carried out

systematic evolution of ligands by exponential

enrichment (SELEX) experiment47,48 using a library

containing a random 24-nt region. Selection of the

library was performed against an Spt4/5 hetero-

dimer in which Spt5 comprised the NGN domain

and the first KOW domain (Spt4/51K), a version con-

taining the NGN domain and the first 2 KOW

domains (Spt4/52K) and Spt4/55K, in order to identify

any differences in binding specificity between the

constructs. Ubiquitin was used as a negative control.

Enrichment of the SELEX pool through the rounds

of selection was monitored following every second

round using RNA EMSA (REMSA) [Fig. 3(A)] with

the enrichment defined by the complete protein

dependent shift of the library for any given round.

In comparison to the negative control, the enrich-

ment of the Spt4/5 constructs was evident after two

to seven rounds of selection. The rate of library

enrichment was related to the number of KOW

domains in the Spt4/5 complexes; a significant pro-

portion of the library was enriched after round two

for Spt4/55K, round four for Spt4/52K and round sev-

en for Spt4/51K [Fig 3(A)].

For each multi-KOW construct, we found that

the most significantly enriched motif (5_AA) is 14 nt

long and consists of the sequence AANAANAANAA-

NAA, where N denotes any nucleotide [Fig. 3(B)].

Structure predictions carried out for sequences con-

taining this motif revealed a distinct lack of second-

ary structure (data not shown). To determine

whether the repetitive AA motif was selected for its

ability to bind Spt4/5 or as a result of PCR bias (or

some other bias), REMSAs and microscale thermo-

phoresis (MST) were carried out using ssRNA probes

lacking the AA repeats [Fig. 3(C), 3(D)]. Strong

selectivity for the AA repeat sequence was observed;

5_AA bound to Spt4 and a truncated form of Spt5

containing just the NGN domain (Spt4/5NGN; see

section below for details regarding this construct)

with a dissociation constant of 0.65 lM, whereas

there was no measurable binding to sequences lack-

ing the AA repeats. Thus, the specificity of Spt4/5

for ssRNA is sequence based.

The Spt4/5 NGN domain is sufficient for RNA
binding

Since there was no difference in the enriched

SELEX motif between the three Spt4/5 constructs,

we considered that some of the KOW domains may

be dispensable for RNA binding. To determine the

essential RNA-binding core of Spt4/5, we carried out

REMSAs using a 5_AA containing sequence obtained

from the SELEX experiment (AArich, Supporting

Information Table S1) as the target probe. We tested

the binding of a series of Spt4/5 complexes compris-

ing: (i) Spt4 with the just NGN domain of Spt5

(Spt4/5NGN) or (ii) Spt4/51K, Spt4/52K and Spt4/55K.

Surprisingly, the complex composed only of Spt4 and

the isolated NGN domain (Spt4/5NGN) bound RNA

Figure 2. Gel shifts showing that Spt4/5 binds ssRNA with

higher affinity than ssDNA or dsDNA. Increasing concentra-

tions of protein from 0-10 lM were electrophoresed with

approximately 3 nM 32P labeled dsDNA, ssDNA, and RNA

pentaprobes. The dotted line distinguishes lanes cut between

the probe alone and other samples for each gel.

1712 PROTEINSCIENCE.ORG Spt4/5 is an RNA-binding protein



Figure 3. Spt4/5 SELEX shows enrichment of RNA containing AA repeats. A: REMSAs of the initial library (0) and round 2, 4, 6,

and 7 for each multi-KOW domain Spt4/5 complex and for the ubiquitin control. 32P labeled probes were incubated with (1) or

without (-) 10 lM protein and electrophoresed on a polyacrylamide gel. The dashed lines delineate each round. B: The

sequence logo derived from MEME analysis of 2000 unique sequences obtained from a SELEX experiment of Spt4/55K. The

motif encompasses 86% of those sequences. C: REMSAs. Fluorescently labeled RNA probes 24nt in length were electrophor-

esed in the presence of increasing concentrations of Spt4/55K. AArich is a representative 24nt sequence obtained from SELEX;

it harbors 5 AA repeats each separated by a single nucleotide. AArichmut is similar to AArich with the AA repeats mutated to

non-A nucleotides. GGrich comprises the same sequence as AArich with the AA repeats replaced by GG. D: Microscale thermo-

phoresis (MST) data measuring the change in thermophoresis of fluorescently labeled RNA sequences in the presence of

increasing concentrations of Spt4/5NGN. A Kd of 0.65 6 0.2 lM was derived for the binding of Spt4/5 to AArich. No significant

change in thermophoresis was observed when Spt4/5 was incubated with either AArichmut or GGrich. Symbols show actual data

points while the curves represent a fit of the data to a simple 1:1 binding isotherm, yielding Kd estimates and the error associat-

ed with each fit. Each data point shown is the average of three independent measurements.
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with an affinity that was indistinguishable from the

affinities measured for the KOW-containing com-

plexes (Fig. 4). These data demonstrate that the

KOW domains are not required for sequence-specific

RNA binding. Multiple shifted species were observed

for Spt4/5NGN and Spt4/51K, suggesting that more

than one Spt4/5 monomer is able to bind a single

RNA molecule. In contrast, binding of the Spt4/52K

and Spt4/55K complexes resulted in a single stable

species [Fig. 4(B)], suggesting that the presence of

multiple KOW domains perhaps inhibits the binding

of multiple Spt4/5 complexes to the RNA probe.

Intriguingly, the shifted Spt4/52K and Spt4/55K com-

plexes showed greater mobility through the gel than

the smaller Spt4/5NGN and Spt4/51K complexes; how-

ever, the multiple species observed for these smaller

constructs suggests a mixture of protein:RNA com-

plexes with different stoichiometries. This situation

would result in an increase in the overall molecular

weight of the complexes and could thus account for

the greater retardation of migration through the gel.

Addition of Spt4 or Spt5NGN alone causes the disap-

pearance of the unbound probe, indicating that each

possesses a degree of RNA-binding activity [Fig.

4(A)]. However, there is no corresponding appear-

ance of a stable shifted species, suggesting that both

have a reduced affinity and/or a greater rate of dis-

sociation than the Spt4/5 heterodimer. Thus, both

Spt4 and Spt5 are required to make high-affinity

and sequence-specific interactions with RNA.

The role of KOW domains in the RNA binding of

Spt4/5

That Spt4/5NGN is the minimal RNA-binding region

of the complex contradicts the prevailing idea in the

literature that the KOW domains are responsible

for the nucleic acid binding capabilities of

Spt4/5.8,10,33,42 There appeared to be very weak

interactions between RNA and the tandem

KOW1 1 2, and KOW4 1 5 domains [Fig. 5(A)]. These

low affinity interaction (most likely of the order of

100 mM) are unlikely to be specific; however, the

KOW1 1 2 interaction may be related to the recently

described RNA binding activity of the Spt5

Kow1 1 linker region, which was reported to be

more than 10 fold weaker than the RNA binding

affinity of Spt4/5NGN reported here.42 These weak

interactions and the observation that no RNA inter-

actions were discernable for the purified KOW

domains alone or other tandem constructs [Fig. 5(A)]

suggests that the KOW domains do not make a sig-

nificant contribution to the high-affinity and

sequence-specific binding observed for the Spt4/5NGN

complex. However, it is notable that Spt4/5 com-

plexes with more than one KOW domain enriched

AA-bearing RNA sequences in the SELEX experi-

ment in fewer rounds of selection. Furthermore,

MST experiments on the different Spt4/5 hetero-

dimers binding to 5_AA RNA [Fig. 5(B)] show the

same microscopic Kd (�1 lM) along with a clear

increase in the calculated Hill coefficient as more

KOW domains are added. These measurements sug-

gest the existence of positive cooperativity; that is,

that a single full-length Spt4/5 heterodimer binds

AA-rich RNA with a micromolar affinity and that

the presence of this protein on the RNA increases

the affinity of a subsequent heterodimer for the

same RNA molecule. In this scenario, the single

REMSA band observed for Spt4/55K binding to RNA

would represent a single multimeric complex (i.e. 2:1

or more) that is formed cooperatively, whereas the

multiple bands observed for Spt4/5NGN represent a

mixture of multiple protein-RNA assemblies (i.e. 1:1

and 2:1 complexes) binding without cooperativity.

Spt4/5 heterodimer formation is associated with

conformational change

Since neither Spt4 nor Spt5 bound RNA strongly in

isolation, we considered the possibility that a confor-

mational change of one or both subunits is required

for high-affinity binding. We tested this hypothesis

by comparing far-UV circular dichroism (CD) spectra

Figure 4. The Spt4/5NGN domain is sufficient for RNA binding. A: 5 nM AArich RNA was electrophoresed in the presence of

increasing concentrations of Spt4, Spt5NGN the Spt4/5NGN complex. B: 5 nM AArich RNA was electrophoresed in the presence

of increasing concentrations of Spt4/5 complexes with one (Spt4/51K), two (Spt4/52K) or five (Spt4/55K) KOW domains. All

probes were fluorescently labeled.

1714 PROTEINSCIENCE.ORG Spt4/5 is an RNA-binding protein



for Spt4, Spt55K and Spt4/55K [Fig. 6(A)]. Spectra

characteristic of a structured protein (containing a

mixture of a-helices and b-strands) were obtained

for the individual Spt4 and Spt55K proteins, as

expected from the available domain/subcomplex

structures of the heterodimer.5 Interestingly the

spectrum of the Spt4/55K complex was distinct from

a concentration weighted average of the spectra of

Spt4 and Spt55K. Thus, the formation of the Spt4/5

heterodimer is associated with a conformational

change in one or both subunits and this change is

likely to promote RNA-binding activity.

The NGN domain of Spt4/5 contains a novel

heterodimeric RRM

In light of the RNA-binding activity seen for Spt4/

5NGN, the topology of the NGN domain of Spt5 was

compared to other RNA binding modules, revealing

a remarkable similarity to the well-established RNA

recognition motif (RRM) [Fig. 6(B)]. This similarity

was noted previously after the determination of the

crystal structure of the bacterial homologue NusG,33

but has eluded the descriptions of the eukaryotic

and archaeal complexes.4,5,10,44 The NGN domain of

yeast Spt5 contains the typical RRM arrangement of

four antiparallel b-strands packed against two a-

helices although its a1-helix is extended and it has an

additional C-terminal a-helix (a3) that partially

obscures what would be the RNA-binding surface of a

canonical RRM [Fig. 6(B)]. Spt4 interacts with the

NGN domain of Spt5 through the alignment of their

respective b-sheets.5 In the context of an RRM, this

effectively extends the b-sheet surface through an

additional two b-strands and brings in another a-helix

that further obscures the canonical RNA-binding sur-

face [Fig. 6(C)]. Most canonical RRMs interact with

ssRNA through three highly conserved aromatic rings

located within two RNP motifs on the b-sheet surface.

Spt5 NGN lacks these canonical RNP sequences and

conserved surface aromatics suggesting that Spt4/5

binds RNA in a noncanonical manner.

Discussion

Our in vitro data show that yeast Spt4/5 is a

sequence-specific RNA-binding protein that recog-

nizes multiple AA repeat sequences with an affinity

that is consistent with those observed for many oth-

er sequence-specific RNA-binding proteins.49 We

Figure 5. KOW domains are not involved in RNA binding in vitro A. 5 nM of fluorescently labeled AArich RNA was electrophor-

esed in the presence of increasing concentrations of single or tandem KOW domains. No significant RNA binding by either the

single or tandem KOW domains alone was observed. B. The interaction of AArich RNA with increasing concentrations of Spt4/

51K, Spt4/52K or Spt4/55K, as determined by MST. The presence of KOW domains does not affect the RNA-binding affinity of

Spt4/5. Symbols show actual data points while the curves represent a fit of the binding data giving Kd estimations and the error

associated with the fit. Each data point is the average of 3 independent measurements.
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were surprised to discover that Spt4/5 binds RNA in

a sequence-specific manner, given that the distribu-

tion of Spt4/5 on genes closely mirrors that of RNA-

PII.50 Intriguingly, a recent study demonstrated that

Spt4 is required for normal transcription of genes

containing trinucleotide repeats and that genes with

(AAA)N repeats showed the strongest dependence on

Spt4.51 Thus, the RNA binding activity of Spt4/5

may facilitate expression of genes with A-rich

sequence motifs in vivo.

The NusGNGN domain alone has recently been

shown to be sufficient for DNA binding;12 however,

we show that both Spt4 and Spt5 are required to

make significant RNA contacts. This raises the ques-

tion of whether the specific RNA-binding activity we

observed for yeast Spt4/5 is conserved in other Spt5

homologs, especially NusG, which lacks an Spt4

homolog. The recruitment of Drosophila mela-

nogaster and S. cerevisiae Spt5 to the RNAP elonga-

tion complex is dependent on the presence of a

Figure 6. Structural insight into the mechanism of RNA binding by Spt4/5. A: Far-UV CD spectra of Spt4, Spt55K, and Spt4/55K

compared to the theoretical sum of Spt4 1 Spt55K show that Spt4 modulates the structure of Spt5. B: Cartoon representation

of Human Fox 1 (PDB entry 2ERR; green) showing a canonical RRM topology, and of the NGN domain of Spt5 (PDB entry

2EXU;5 magenta) showing a similar RRM topolgy with an extended a1 helix and an additional C-terminal helix (a3). C: The

structure of the yeast Spt4/5NGN heterodimer (PDB entry 2EXU). Spt4 (blue) contributes two additional b-strands to the RRM of

Spt5 (magenta). D: A model of yeast Spt4/5NGN (PDB entry 2EXU) bound to yeast RNAPII (PDB entry 5C4X69) showing the

RRM surface (black arrow) is distinct from the surface/residues proposed to interact with both RNAPII and the upstream DNA

(cyan/violet dot representation). Spt4/5 is shown in cartoon representation. RNAPII (orange) and DNA (white) is shown in surface

representation and the nascent RNA (red) in cartoon representation. The model was made by superimposing the yeast Spt4/5

and RNAPII with the crystal structure of the archaeal Spt4/5:RNAPII complex.8.

1716 PROTEINSCIENCE.ORG Spt4/5 is an RNA-binding protein



nascent transcript longer than 18nt.13,37,38 This is in

direct contrast to NusG, which does not require

RNA interactions to associate with RNAP.12 There-

fore, we propose that RNA-binding by Spt4/5 may be

specific to the eukaryotic elongation complexes.

RNA binding activity has been suggested for

NusG33 and the yeast Sp4/534 although the interac-

tions were not biochemically characterized and the

studies did not delineate the specific domains

responsible for the interaction. The KOW domains of

NusG/Spt5 have previously been proposed to medi-

ate nucleic acid binding;8,10,33,42 however, we show

here that the NGN domain alone is sufficient to

bind RNA. Our binding data suggest that the KOW

domains promote the cooperative binding of multiple

Spt4/5 heterodimers to RNA but the biological rele-

vance of this cooperative binding is yet to be estab-

lished. It is also possible that the KOW domains

mediate interactions with other components of the

TEC. Consistent with this hypothesis, fragments of

Spt5 containing KOW domains but lacking the NGN

or CTR domains are capable of binding RNAPII in

pulldown assays,34,43,44 and the KOW 4-5 domains

have been shown to make extensive contacts with

the dissociable subunit of RNAP, Rpb4/7.13,52

The NGN domain of Spt5 can be considered a

variant RRM, one of the most common RNA-binding

domains. Interestingly, in archaea, humans and

yeast Spt5, the b-sheet of the Spt5 RRM is extended

by its heterodimerization interface with Spt4.5

Extension of the b-sheet has been previously

reported in proteins containing tandem RRMs,

including the poly(A)-binding protein53 and the poly-

pyrimidine tract binding protein;54 this extension is

thought to help accommodate longer RNA motifs

and achieve higher affinity for the RNA target. How-

ever, extension of the b-sheet by heterodimerization

as seen here with Spt4/5 has never before been

reported. Thus, the conformational change in either

Spt4 and/or Spt5 upon formation of the heterodimer

is likely mediated by this novel inter-protein RRM

and is consistent with our observations that both

Spt4 and Spt5 are required for the interaction with

RNA.

Sequence-specific DNA binding activity has

been observed for NusG12 and its homolog RfaH,55

and archaeal Spt4/5 has been shown to bind both

ssDNA and dsDNA.11 Although there is growing evi-

dence to suggest that Spt4/5 interacts with DNA in

the context of transcription elongation complexes,

we did not observe significant DNA-binding activity

for yeast Spt4/5. This suggests that in the absence

of RNAP, the primary nucleic acid binding activity

of Spt4/5 is directed toward RNA. The NGN domain

of RfaH is recruited to elongation complexes via its

recognition of the ops sequence element.56 Mutation-

al analysis of RfaH localized the DNA recognition to

a polar patch on the surface of the NGN domain56

that is analogous to the Spt4/5NGN surface proposed

to interact with the nontemplate DNA in the

TEC7,11,13 but distinct from the RRM binding surface

[Fig. 6(D)]. Thus while the modes are likely differ-

ent, the recruitment of Spt4/5 to the TEC via recog-

nition of A-rich sequences presents an attractive

model for the sequence-specific RNA-binding activity

of Spt4/5NGN. The specific RNA-interactions we

observed do not rule out the possibility that yeast

Spt4/5 can also interact nonspecifically with other

nucleic acids in the context of the elongation com-

plex; rather, it suggests that the complex regulation

of the eukaryotic transcription elongation machinery

by Spt4/5 is subject to multiple modes of nucleic acid

modulation.

Consistent with this idea, recent studies suggest

that the proposed DNA binding activities of Spt4/5

lie on distinct faces of the protein and are separate

to the Spt4/5 RRM surface [Fig. 6(D)]. The proposed

interaction site for DNA-binding by the archaeal,

yeast and human Spt4/5 complex is a highly con-

served basic patch on the] a1 helix of Spt5NGN [Fig.

6(D)].7,11,13 Homologous regions on the NGN

domains of NusG and its paralog RfaH have also

been proposed to contact the nontemplate strand in

the transcription bubble.12,56–59 Furthermore, Spt4

together with the first KOW domain of Spt5 and the

NGN-KOW1 linker are proposed to contact nucleic

acids upstream of the transcription bubble [Fig.

6(D)].42 Other published data show that additional

regions on Spt5, other than the ones already charac-

terized for the RNAP-Spt4/5 clamp interface, inter-

act with the surface of RNAPII.13,42,52,60,61 These

observations suggest multiple modes of interaction

with RNAPII, and it is becoming a common train of

thought that Spt4/5 is able to associate with multi-

ple regions of RNAPII and nucleic acids in the tran-

scription elongation complex.13,42 This may provide

a mechanism whereby nucleic acid binding by Spt4/

5 triggers allosteric modulation of RNAPII activity.

We suggest three possible nonexclusive models

for functions mediated by the sequence-specific

RNA-binding activity of Spt4/5. First, the binding of

A-rich RNA sequences by Spt4/5 might promote the

recruitment of the heterodimer to RNAP to stabilize

the transcription elongation complex [Fig. 7(A)].

Consistent with this idea, several prior in vitro stud-

ies have demonstrated increased association of Spt4/

5 with elongation complexes that contain RNA tran-

scripts long enough to protrude beyond the polymer-

ase37,38 and Spt5 has been shown to cross-link to

RNA near the exit channel.13 Second, because Spt4/

5 also associates with pre-mRNA processing and reg-

ulatory factors,22–26 sequence-specific RNA-binding

by Spt4/5 might facilitate pre-mRNA processing by

enhancing the recruitment of processing machinery

to their pre-mRNAs targets [Fig. 7(B)]. Such a func-

tion would explain observations of RNA processing

Blythe et al. PROTEIN SCIENCE VOL 25:1710—1721 1717



defects in spt4 and spt5 mutants (reviewed in Ref.

3). Finally, by binding A-rich tracts in nascent tran-

scripts Spt4/5 may directly or indirectly influence

formation or stability of extended RNA:DNA hybrids

or R-loops [Fig.7(C)]. Consistent with this idea, spt4

mutations show strong genetic interactions with a

number of mutations associated with R-loop forma-

tion62,63 and, recent evidence suggests that polyA

tracts are a major contributor to the formation of

hybrid regions in S. cerevisiae.64 Further experi-

ments to elucidate the cross-talk between RNA-

bound Sp4/5 and the rest of the TEC will allow these

possible mechanisms to be distinguished.

Materials and Methods

Cloning

The cloning of SPT4 and constructs of SPT5 encom-

passing the NGN domain plus one KOW domain

(residues 284-419), two KOW domains (residues 284-

567) and five KOW domains (residues 284-839) has

been described previously.65 All other constructs

were cloned using standard restriction based

techniques. Primer sequences are listed in Support-

ing Information Table S1.

Expression and purification

Spt4 and all Spt4/5 constructs were expressed and

purified as described previously.65 The KOW domain

constructs were transformed into E. coli Rosetta 2

(DE3) (Novagen) for expression. Transformants con-

taining the recombinant plasmids were incubated in

Luria-Bertani (LB) growth medium supplemented

with 50 lg mL21 ampicillin and 34 lg ml21 chloram-

phenicol at 378C. When the optical density at 600 nm

reached 0.6–0.8, protein expression was induced with

0.2 mM IPTG. The induced culture was incubated at

258C overnight, harvested by centrifugation (4000g,

48C, 15 min), the bacterial pellets resuspended in

50 mM Tris pH 8, 0.2 M NaCl, 20 mM imidazole, 1%

Triton-X and lysed using an Emulsiflex C5 high pres-

sure homogeniser (Avestin). The lysate was clarified

by centrifugation (20,000 x g, 48C, 45 min) before

loading onto a 1 ml GSTrap column (GE Healthcare)

and washing with 50 mM Tris pH 8, 300 mM NaCl,

10% glycerol. Affinity chromatography was performed

on an €AKTA purifier (GE Healthcare) and recombi-

nant protein eluted with a glutathione gradient

(50 mM Tris pH 8, 150 mM NaCl, 0.005% Triton-X,

20 mM glutathione).

Radiolabeled pentaprobe preparation
Pentaprobes were prepared as described.45 DNA

pentaprobes were 5’ end-labeled with [g-32P]

ATP (PerkinElmer) using T4 polynucleotide kinase.

[a-32P] UTP was incorporated into RNA pentaprobes

during in-vitro transcription. Unincorporated [32P]

nucleotides were removed from DNA pentaprobe

labeling reactions using SephadexVR G-25 Quick

SpinTM columns and gel purification for the RNA

pentaprobes. The reactions were diluted to a consis-

tent count-rate as measured by a Geiger counter

and then diluted 50-fold to give an optimal signal

for visualization on a Phosphor screen with a

Typhoon PhosphoImager
TM

FLA 9000 (GE Health-

care). Pentaprobe concentrations used for gel shift

reactions were estimated to be approximately

0.1 nM.

RNA electromobility shift assay
Radiolabeled nucleic acid pentaprobes (�0.1 nM)

were incubated with protein samples in gel shift

buffer (10 mM MOPS pH 7.0, 50 mM KCl, 5 mM

MgCl2, 10% glycerol and 0.03 mg mL21 heparin) at

48C for 30 min. The binding reactions were electro-

phoresed on a pre-equilibrated 6% native acrylam-

ide/bisacrylamide gel (19:1) in 0.5X Tris-borate

buffer at 200 V for 2 h at room temperature. Gels

were visualized on a Phosphor screen with a

Typhoon PhosphoImager
TM

FLA 9000 (GE

Healthcare).

Figure 7. Possible functions mediated by Spt4/5’s RNA-

binding activity. A: RNA binding by Spt4/5 may promote the

recruitment of the heterodimer to RNA polymerase II (RNAP)

to stabilize the transcription elongation complex. B: By bind-

ing over the central cleft of elongating RNAP, Spt4/5 may

effectively seal the DNA template into the elongation com-

plex, ensuring polymerase processivity. In addition, the KOW

domains and the Spt5 CTR may recruit additional accessory

factors that can interact with the elongating polymerase, RNA

transcript or DNA template as it enters or exits the polymer-

ase. C. In the absence of Spt4/5 and factors that associate

with it, R-loops—persistent DNA:RNA hybrids—may form

behind the elongating polymerase, leading to elongation

defects and DNA damage.
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5’ 56FAM (Integrated DNA Technologies) labeled

RNA probes (5 nM) were incubated with protein

samples in gel shift buffer at 48C for 30 min. The

binding reactions were electrophoresed on a pre-

equilibrated 6% native acrylamide/bisacrylamide gel

(19:1) in 0.5X Tris-Hepes buffer at 65 mA for 1 h at

48C. Gels were visualized with a Typhoon Trio Vari-

able Mode Imager (Amersham Biosciences) using

488 nm/520 nm excitation/emission wavelengths.

The sequences of the RNA probes are listed in Sup-

porting Information Table S1.

Selex

The initial SELEX library was prepared by treating

a synthetic oligonucleotide pool containing a 25-nt

random sequence flanked by two primer binding

sites with DNA polymerase I large (Klenow) frag-

ment (New England Biolabs) at 378C for 30 min and

purified using a PCR clean up kit (QIAGEN). The

library was transcribed using the T7-RiboMAX
TM

Large Scale RNA production system (Promega).

Unincorporated nucleotides were removed with

SephadexVR G-25 Quick Spin
TM

columns (Roche) and

RNA extracted by phenol/chloroform and ethanol-

precipitation. Binding reactions were carried out in

SELEX Buffer (40 mM MOPS pH 7.0, 20 mM KCl,

10 mM MgCl2, 10% glycerol, 0.2% Triton X-100,

0.2 mM PMSF, 2 mM DTT). Each 150 ll binding

reaction contained 5–80 pmol of protein i mM obi-

lized on MagneHis
TM

Ni-Particles (Promega) contain-

ing 0.06–1.6 mg mL21 heparin sulphate and 80 pmol

RNA, and mixed for 60 min at 48C. Unbound RNA

was removed and the beads were washed 5 times

with SELEX buffer (500 lL). Bound RNA was eluted

from the i mM obilized protein in water by vigorous

mixing at 958C for 15 min. The selected RNA was

ethanol precipitated and reverse-transcribed using a

complementary primer, then amplified by 10 or 15

cycles of PCR with Pfu DNA polymerase. The PCR

products were transcribed into RNA and applied to

fresh protein coupled MagneHis
TM

Ni-Particles and

the cycle was repeated. A total of seven rounds of

SELEX were completed. The primers and SELEX

oligonucleotide are listed in Supporting Information

Table S1.

High-throughput sequencing and analyses of
selected sequences

Purified PCR products from each round of SELEX

were re-amplified with barcoded primers and

sequenced on the HiSeq2000 (Illumina) sequencing

platform using a single-end, 50 nucleotide sequenc-

ing protocol at the University of California, Los

Angeles Bioengineering. The primers used for the

addition of the barcodes are listed in Supporting

Information Table S1. Each barcode contained

between 2.4 and 5.5 million reads. A workable data

set of 10,000 sequences per barcode was taken, and

barcodes and duplicate sequences removed. 2000 of

these unique sequences were randomly selected and

subjected to analysis with the MEME suite. RNA

secondary structure analysis was performed using

the online RNA secondary structure prediction tool

Context Fold.66

Circular dichroism spectroscopy and analysis
For Spt4, Spt55K and Spt4/55K analysis, far-UV spec-

tra were measured on a CD spectrophotometer

(AVIV 60DS, Lakewood, NJ) using a 200-mm path

length quartz cuvette. Data were collected every

1 nm with a 1 nm bandwidth in the 180–320 nm

wavelength region using an integration time of 8 s

per step. The far-UV CD spectra represent the aver-

age of 15 scans for Spt55K and Spt4/5 and 22 scans

for Spt4. The data sets were collected for three dif-

ferent sample preparations (�20 mM) each for Spt4,

Spt5, and Spt4/5. CD spectra were measured at

room temperature.

Microscale thermophoresis

MST experiments were performed on a Monolith

NT.115 system (NanoTemper Technologies) using

95% LED and 40% IR-laser power for wild-type

Spt4/5 constructs or 60% LED and 40% IR-laser

power for Spt4/5 mutants. Laser on and off times

were set at 30 s and 5 s respectively. Dilution series

were prepared for unlabeled protein in 50 mM

Hepes pH 7.4, 0.15 M KCl, 0.01% Tween-20 and

0.005% RNase inhibitor with 5’ 56-FAM labeled

RNA oligonucleotides (IDT) at a final concentration

of 50 nM. Measurements were performed in stan-

dard treated capillaries (NanoTemper Technologies)

and the data from three replicate measurements

were combined and analyzed using the implemented

fitting software NT Analysis (NanoTemper Technolo-

gies). Binding isotherms were fitted using the Hill

method.

Structure analysis

All structural figures were generated with

PyMOL.67
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