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ABSTRACT OF THE DISSERTATION

Overconvergent Families of p-adic Representations

By

James Upton

Doctor of Philosophy in Mathematics

University of California, Irvine, 2020

Professor Daqing Wan, Chair

Let X be a variety over a finite field of characteristic p. The purpose of this dissertation

is to extend many known results about p-adic representations of the fundamental group

π1(X) to families of p-adic representations. The notion of a family of p-adic representations

parameterized by a rigid analytic space arises naturally in many contexts, including geometric

Iwasawa theory and the theory of p-adic modular forms. In either context there is significant

interest in understanding the variation of the p-adic L-functions L(ρ, s) as ρ moves through

a given family. It seems unlikely that we can say much in general, as there are far too many

p-adic representations of the group π1(X). In this dissertation we restrict our attention

to so-called overconvergent representations, which have the property that the L-function

L(ρ, s) is always a p-adic meromorphic function in s. Thus for overconvergent families of

representations, the question of understanding the p-adic variation of the L(ρ, s) reduces to

the understanding of the variation of their zeroes and poles. Our main theorem is a relative

version of the Dwork-Monsky trace formula, which says that these zeroes and poles are are

naturally interpolated by rigid analytic objects which we call spectral varieties. In general,

the geometry of these spectral varieties is quite mysterious: in the context of p-adic modular

vi



forms, the question is the subject of Coleman’s well known spectral halo conjecture. For

a few specific examples of overconvergent families, analogues of Coleman’s conjecture have

been proven by studying suitable integral models of the parameter space. For this reason, we

choose to work primarily with formal schemes and their overconvergent analogues. We hope

that this paves the way to a greater understanding of the arithmetic of these overconvergent

families.
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Chapter 1

Introduction

Fix a prime number p > 0 and a finite field Fq of characteristic p. Let X be a smooth affine

curve over Fq and let X denote its projective completion. Choose a geometric point x̄ of

X, and consider the étale fundamental group π1(X, x̄). It is known that the maximal tame

quotient of this group is topologically finitely generated, and moreover admits an explicit

presentation ([11], XIII 2.12). Thus at least theoretically, the finite étale coverings of X

which are tamely ramified in X are well understood. In contrast, a pro-p quotient of the

fundamental group need not be finitely generated in general. Let us give some indication

of the complicated nature of this group: Consider the affine line X = Spec(Fq[t]) over Fq.

Choose a separable closure Fsq/Fq and let Xs denote the fiber of X at Fsq. For any c ∈ Fsq,

the Artin-Schreier equation

xp − x = ct (1.1)

determines an étale covering of Xs of degree p. Given a second c′ ∈ Fsq, the corresponding

coverings are isomorphic if and only if c− c′ ∈ Fp ([11], 1.10). It follows that the geometric

fundamental group π1(Xs, x̄) is a group of infinite p-rank.
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If we let S = Spec(Fq[c]), then the Artin-Schreier equations (1.1) may be regarded as a

family of “geometric coverings” of X parameterized by the geometric points Fq-scheme S.

This strongly suggests the approach of studying representations of π1(Xs, x̄) in families. As

the above example indicates, if the “parameter space” S is a scheme of characteristic p, then

the resulting theory can only describe the mod p representations of this group. One natural

solution to this problem is to lift S to a scheme of characteristic pn, or more generally to

a formal scheme S of characteristic 0. We thus obtain the notion of a family of p-adic

representations of π1(Xs, x̄) parameterized by the Cp-valued points of S. Such families of

representations will be our main objects of study.

Suppose for example that S is the formal spectrum of a Noetherian local ring R with residue

field Fq. Then a family of p-adic representations parameterized by S is nothing more than

a continuous representation

ρ : π1(X, x̄)→ GLn(R).

For any continuous map P : R → Cp, we obtain a corresponding p-adic representation ρP

of the fundamental group of X. One natural question is to understand how the p-adic L-

functions L(ρP , s) vary in the parameter P . For example, if ρP is a representation of finite

order, then it is known that L(ρP , s) is a rational function in s. The p-adic properties of

its zeroes and poles can be understood, at least theoretically, by the action of Frobenius

on a corresponding sequence of rigid cohomology groups. In contrast, Wan ([21], 1.2) has

constructed examples of p-adic representations whose Artin L-functions are not even mero-

morphic. It seems that we cannot say much about the variation of these L-functions unless

we impose some additional restrictions on ρ.

If ρ is a family for which L(ρP , s) is p-adic meromorphic for each p, then our question

regarding the p-adic variation of these functions reduces by Weierstrass factorization to
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understanding the p-adic variation of their zeroes and poles. The Monsky trace formula [18]

guarantees this fact for a class of p-adic representations which we will call overconvergent

representations. Let us call the family ρ overconvergent if each ρP is an overconvergent p-adic

representation. We now arrive at our main question:

Question 1.0.1. Suppose that ρ is an overconvergent family of p-adic representations. How

does the p-adic distribution of zeroes and poles of L(ρP , s) vary with P?

There is at least one non-trivial example of an overconvergent family of p-adic representations

for which Question 1.0.1 has a complete answer: Let X = Spec(Fq[t, t−1]) be the punctured

affine line over Fq. Let Zq denote the Witt ring of Fq, and let A = Zq[t, t−1] be the natural

lifting of X to characteristic 0. Fix a Laurent polynomial f(t) ∈ A. There is an obvious

lifting of the absolute Frobenius to an endomorphism σ : t 7→ tp of A. For every n ≥ 0, the

Artin-Schreier-Witt equation

σ(x)− x ≡ f(t) (mod pn)

defines an étale Z/pnZ-covering of A/pnA, which reduces to a finite étale covering Xn of X.

Thus we obtain an étale Zp-covering

· · · → X1 → X0 = X

which corresponds in a unique way to a continuous map π1(X, x̄) → Zp. Every Cp-valued

character of Zp thus pulls back a continuous p-adic character of π1(X, x̄).

The assignment χ 7→ πχ = χ(1)−1 gives a one-to-one correspondence between the Cp-valued

characters of Zp and the points in the open unit disk in Cp. Since the latter are precisely the

Cp-valued points of the ring R = Zp[[T ]], we see that the above construction gives a family

p-adic representations of π1(X, x̄) which we call the Artin-Schreier-Witt family associated
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to f . For this family, the main theorem of [6] gives the following answer to Question 1.0.1:

Theorem 1.0.2. (Davis, Wan, Xiao). There exists a power series C(T, s) ∈ 1 +R[[s]] with

the following properties:

1. For every Cp-valued character of Zp, the p-adic power series C(πχ, s) is entire in s.

Moreover, we have the meromorphic continuation

L(χ, s) =
C(πχ, s)

C(πχ, qs)

2. In some annulus r < |πχ| < 1, the πχ-adic Newton slopes of C(πχ, s) form a finite

union of arithmetic progressions which are independent of the character χ.

Statement (1) of this theorem may be regarded as a global meromorphic continuation for

the L-functions of the Artin-Schreier-Witt family. Statement (2) is a consequence of certain

precise estimates for the T -adic Newton polygon of the power series C(T, s). Our main

theorem indicates that Statement (1) holds in great generality: any overconvergent family

of p-adic representations over a smooth affine variety over Fq admits a similar global mero-

morphic continuation. We hope that this lays the foundation for future work on Question

1.0.1. In particular, it would be interesting to know to what extent the remarkable slope

uniformity displayed by the Artin-Schreier-Witt family holds for more general families, or

for more general varieties.

We now give an overview of the contents of this paper, and state our main results.
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1.1 Families of Representations

Suppose now that X is any variety over Fq. For the sake of this introduction, we define a

family of p-adic representations of π1(X, x̄) to be a continuous representation

ρ : π1(X, x̄)→ GLn(R), (1.2)

where R is a complete Noetherian local ring with residue field Fq. There is a canonical way

to attach a rigid analytic space to R, let us call this space S. For now, we will think of

S in terms of its underlying set of “rigid points” (2.4). Informally, a rigid point of R is a

continuous map

P : R→ RP .

where RP is a discrete valuation ring. The rigid points of R are analogous to closed points

in the rigid analytic space S. Let us write 〈R〉 or 〈S〉 for the set of all such points.

Given a family ρ as above, we can specialize along a rigid point P ∈ 〈R〉 to obtain a

representation

ρP : π1(X, x̄)→ GLn(RP ).

Thus ρ is truly a family of representations parameterized by the set 〈R〉. We remark that in

general, R may have rigid points of characteristic p, and so not every representation in this

family is “p-adic.” We can attach to ρ an Artin L-function in the usual way:

L(ρ, s) =
∏
x∈|X|

1

det (I − ρ(Frobx)sdeg(x))
∈ 1 + sR[[s]].

The essential property of this L-function is that its specialization L(ρ, s)P ∈ 1 + sRP [[s]] at
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a rigid point of R agrees with the L-function L(ρP , s) of the corresponding representation.

Thus L(ρ, s) becomes a convenient object for studying the variation of the L(ρP , s) as P

moves through the family of all rigid points of R.

Let’s assume that there is a “nice” lifting of X to a formal scheme X/R. In particular, we

assume that there is a lifting σ of the absolute Frobenius to an R-linear endomorphism of

X. In this case, there is a well known classification of our families of representations:

Theorem 1.1.1. (Katz [14]). The category of R-valued representations of the fundamental

group π1(X, x̄) is equivalent to the category of pairs (M,φ), where M is a locally free OX-

module, and φ : σ∗M →M is an isomorphism.

We refer to such a pair (M,φ) as a σ-module over X. In 4.2, we introduce a more general

category of σ-modules with relative Frobenius structure. These objects capture the notion

of a family of representations parameterized by a formal scheme S, including for example

the family of Artin-Schreier equations (1.1).

1.2 Weak Formal Geometry

Previously, we have said that the family ρ is overconvergent if, for every Cp-valued point P

of R, the corresponding p-adic representation ρP is overconvergent. One downside of this

definition is that it ignores the rigid points of R of characteristic p. More importantly, it

is not at all obvious that this fiber-by-fiber condition is sufficient to guarantee good global

behavior of the family ρ. For example, we would like to say that the fiber-wise meromorphic

continuations of L(ρP , s) glue to give a global meromorphic continuation of the L-function

L(ρ, s). For this purpose we will now introduce a more precise and slightly stronger notion

of overconvergence.

Our theory is essentially a relative version of that introduced by Monsky and Washnitzer [19]
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to construct their formal cohomology. The building blocks of this theory are certain “weakly

complete” algebras over a local ring R which they call w.c.f.g. algebras. Meredith [17] has

shown that w.c.f.g. algebras can be glued to construct a larger category of weak formal

schemes over R, which are the natural setting for our theory of overconvergent families

of representations. Recall that such a family is truly parameterized by rigid points of the

rigid analytic space S associated to R. In order to prove our analogue of the Monsky trace

formula, it will be necessary to work with other formal models of this space which are not

local in general. The constructions of Meredith no longer extend to this case, for the simple

reason that the property of being a w.c.f.g. algebra is not a local property on the base.

In Chapter 3, we introduce a much more general notion of weak formal schemes, which agrees

with that of Meredith in the case that R is a discrete valuation ring. The idea of our theory

is as follows: we replace the base ring R by a formal scheme S. A weak formal scheme in

our sense is a morphism of ringed spaces

X→ S

with the property that, for every “rigid point” P of the base S, the fiber XP is a weak formal

scheme in the sense of Meredith. Using a slight modification of the Monsky-Washnitzer

weak completion, we can construct these objects as gluings of w.c.f.g. algebras over a (not

necessarily local) topological ring.

Let’s assume now that there is a “nice” lifting of X to a weak formal scheme X/R. In

particular, we assume that there is a lifting σ of the absolute Frobenius to an R-linear

endomorphism of X. In light of Theorem 1.1.1, we define:

Definition 1.2.1. An overconvergent family of representations of π1(X, x̄) is a σ-module

defined over the weak formal scheme X/R.

Note that the lifting of Frobenius σ prolongs uniquely to the formal completion X∞ of X.
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The functor sending a σ-module (M,φ) over X to the completion (M∞, φ) over X∞ is fully

faithful. Thus every such σ-module corresponds to a family of representations in the previous

sense.

1.3 The Trace Formula

Suppose now that X is a smooth affine variety over Fq. In this case, there always exists

a “nice” lifting X/R of X to a weak formal scheme over R. Let ρ : π1(X, x̄) → GLn(R)

be an overconvergent family of representations, corresponding to a σ-module (M,φ) over X.

We will now formulate our main result on the meromorphic continuation of the L-function

L(ρ, s).

Let M∨ = HomOX
(M,OX) denote the dual module of M . For each i ≥ 0, we define

ΩiM∨ = Ω1
X/R ⊗OX

M∨.

In 4.3, we show that the operator φ induces R-linear operators θi : ΩiM∨ → ΩiM∨ which are

σ−1-linear, in the sense that θi(σ(a)m) = aθi(m) for any sections a of OX and m of ΩiM∨.

We will call such an operator a Dwork operator. In the classical case that R is a discrete

valuation ring of characteristic 0, Monsky [18] proves that every Dwork operator Θ on a

finite OX-module is an operator of trace class. The essential feature of these operators is the

existence of the Fredholm series

C(Θ, s) = det(I − sΘ) ∈ 1 + sR[[s]]

which is a p-adic power series with infinite radius of convergence. In 5.2, we prove the a

relative version of Monsky’s result:

8



Theorem 1.3.1. Let Θ be a Dwork operator on a finite OX-module. There is a unique power

series C(Θ, s) ∈ 1 + sR[[s]] with the interpolation property

C(Θ, s)P = C(ΘP , s)

for every rigid point P of R.

In other words, the Fredholm series of the classical Dwork operators ΘP can be glued to give a

power series which is entire, in a relative sense, over the rigid analytic space S associated to R.

Let us regard the power series C(Θ, s) as an analytic function on the relative multiplicative

group Gm,S .

Definition 1.3.2. Let Θ be a Dwork operator on a finite OX-module. The spectral variety

of Θ is the hypersurface E(Θ) cut out by the Fredholm series C(Θ, s).

The spectral variety of Θ is naturally equipped with a morphism E(Θ) → S. If Q is

a rigid point of E(Θ) lying over P ∈ 〈S〉, then Q corresponds uniquely to a non-zero

Gal(k(P )s/k(P ))-orbit of eigenvalues of the trace class operator ΘP . Thus E(Θ) becomes

the natural object for studying the variation of the spectral theory of ΘP with the param-

eter P . We can now state our main theorem on families of overconvergent representations,

which relates the problem of understanding the L-function L(ρ, s) to the understanding of

the associated sequence of spectral varieties:

Theorem 1.3.3. The L-function L(ρ, s) is meromorphic over S. More precisely, we have

the relation

L(ρ, s) =
∏
i

C(θi, s)
(−1)i−1

. (1.3)
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1.4 Further Questions

Let Γ be a compact abelian p-adic Lie group, and let Λ = Zp[[Γ]]. It would seem that the

natural source of families of p-adic representations of π1(X, x̄) are the étale Γ-coverings of

X studied in geometric Iwasawa theory. Let f : π1(X, x̄)→ Γ be such a covering, and let

ρf : π1(X, x̄)→ Λ×

be the corresponding rank-1 family of representations. When is such a family overconvergent?

The question is not entirely well posed, as it depends on our chosen lifting of X and its

Frobenius structure to characteristic 0. For now, suppose that we have a fixed lifting of

X to a weak formal scheme over Zp, and a Zp-linear endomorphism σ : X → X lifting the

absolute Frobenius. Let XΛ denote the weak base change (3.5) of X along Zp → Λ. Then the

representation ρf corresponds uniquely to a σ-module (Mf , φf ) over the formal completion

X∞Λ .

It would be interesting to characterize the overconvergence of the pair (Mf , φf ) in terms

of the “convergence” properties of the map f . Suppose for example that X is affine, and

X is the weak formal spectrum of a weakly complete algebra A. When Γ = Zp, the map

f corresponds via Artin-Schreier-Witt theory to a section of A∞ [15]. In 5.4, we show in

a special case that if this section is “overconvergent” (i.e. it is an element of A), then so

is the corresponding σ-module. More generally, suppose that G is a commutative formal

group over Zp and that Γ = G(Zp) is its group of Zp-points. Then an analogue of Katz’

correspondence shows that f corresponds to a pair (P, φ), where P is an étale G-torsor over

X∞ and φ is a “Frobenius structure” on P . In this case we conjecture the following:

Conjecture 1.4.1. Suppose that (P, φ) is overconvergent, i.e. that this pair can be defined

over X. Then ρf is an overconvergent family of representations.
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Is there a more natural class of “well behaved” families of representations than the over-

convergent families? In particular, such a class should not depend on our chosen lifting of

X and its Frobenius structure to characteristic 0. Let us describe one possible candidate:

Suppose for simplicity that X is a curve, and let

η : π1(X, x̄)→ GLn(Zp)

be an abelian p-adic representation. Then Γ = im(η) is a compact abelian p-adic Lie group,

and therefore corresponds to a rank-1 family of p-adic representations ρ as above. Every open

subgroup H ≤ Γ corresponds uniquely to a finite étale covering XH → X with Galois group

Γ/H. Our question regarding the p-adic variation of the L-functions L(ρP , s) is closely

connected with the question of understanding the p-adic variation of the zeta functions

Z(XH , s) as [Γ : H]→∞. First, let us mention that without hypotheses on ρ, we have the

following theorem regarding the analytic continuation of L(ρ, s):

Theorem 1.4.2. (Crew [5]). The L-function L(ρ, s) ∈ Λ[[s]] continues analytically to the

closed disk |s| ≤ 1 over Λ.

In a recent article [23], Wan has shown that this analytic continuation guarantees a p-adic

formula for the class numbers in Γ-extensions of the function field of X, generalizing the

celebrated theorem of Iwasawa. Wan has posed a series of conjectures describing the variation

of the Z(XH , s) under the additional hypothesis that η comes from algebraic geometry. More

precisely, this means that η is the unit-root part of an ordinary overconvergent F -crystal on

X. In particular, Theorem 1.0.2 says precisely that the Artin-Schreier-Witt families of [6]

satisfy Wan’s slope-stability conjecture.

It would seem that the trace formula (1.3) is the natural means by which to approach Wan’s

conjectures. Thus we are led to ask: what is the relationship between overconvergent families

and families coming from algebraic geometry? A partial answer is provided Große-Klönne
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[10], who proves that all rank-1 families coming from algebraic geometry admit a global

meromorphic continuation analogous to Theorem 1.3.3.

We should remark that a fundamental example of an overconvergent family is provided by

the theory of p-adic modular forms: Suppose that N ≥ 3 is prime to p, and let q ≡ 1

(mod N). Let X denote the ordinary locus of the (compactified) modular curve of level N

over Fq. Let f : E → X denote the universal generalized elliptic curve of level N . The first

p-adic étale cohomology R1f∗Zp affords a continuous representation

η : π1(X, x̄)→ Z×p .

By a theorem of Igusa [12], this map is surjective. As above, this corresponds uniquely to a

family of representations ρ which we call the Igusa family.

In this setting, the curve X and its Frobenius structure admit a canonical lifting (X, σ) to

characteristic 0. As above, let (M,φ) be the σ-module over XΛ corresponding to the Igusa

family. Let χ : Z×p → C×p be a continuous character, which corresponds uniquely to a rigid

point P : Λ → Cp. It has been known for some time that if χ is algebraic, then the σ-

module (MP , φP ) is overconvergent with respect to the canonical lifting of Frobenius [14].

The overconvergent sections of the module Q⊗MP are precisely the overconvergent modular

forms of level N and weight χ. This result was extended to all p-adic characters by the

work of Coleman [4], who showed that these modules are naturally interpolated by families

of modular forms of arbitrary p-adic weight.

More recently, Andreatta, Iovita, and Pilloni [2] have extended these results to the rigid

points of characteristic p. Using the σ-module (M,φ), those authors construct integral

models of Coleman’s families of overconvergent modular forms. This strongly suggests that

the Igusa family is overconvergent in our sense. For this family, our trace formula specializes

to a theorem of Coleman ([4], I2) relating the L-function L(ρ, s) to the spectral theory of
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the compact operator Up acting on overconvergent modular forms:

det(I − sUp) =
∏
r≥0

L(ρ⊗ η⊗(−2r−2), prs).

The spectral theory of Up is the subject of a number of conjectures, perhaps the most well

known being Coleman’s spectral halo conjecture. One weaker form of this conjecture states

that the (suitably normalized) Newton polygon of L(ρP , s) is independent of P near the

boundary of p-adic weight space. Theorem 1.0.2 can be regarded as an analogue of this

statement for certain Artin-Schreier-Witt families. The methods of Davis et al. have since

been adapted by Liu, Wan, and Xiao to prove an analogue of Coleman’s conjecture for

overconvergent automorphic forms for a definite quaternion algebra over Q [16]. We hope

that a suitable understanding of overconvergent families of representations will shed some

additional light on Coleman’s conjecture.
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Chapter 2

Preliminaries

In this chapter we outline our conventions on topological rings, formal schemes, and their

associated rigid analytic spaces. We use [1] as a reference throughout.

2.1 Topological Algebra

Definition 2.1.1. We say that a topological ring R is an adic ring if there is an ideal I ⊂ R

such that {In : n ∈ N} is a fundamental system of neighborhoods of 0. We refer to such an

I as an ideal of definition of R.

Our definition of an “adic ring” coincides with that of a “pre-adic ring” in [7], in particular

we do not assume a priori that an adic ring is separated and complete. For the purposes of

weak formal geometry, the category of adic rings is far too large, but we cannot in general

restrict our attention to Noetherian adic rings. We will instead work with the following class

of topological rings, which share many good properties of Noetherian adic rings:

Definition 2.1.2. We will say that an adic ring R is admissible if R admits an ideal of
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definition I ⊂ R such that:

1. I is finitely generated

2. R is I-separated, i.e.
⋂
n I

n = 0

3. The quotient R/I is a Noetherian Jacobson ring.

Let R be an admissible ring. We will denote by N(R) the ideal of topologically nilpotent

elements of R. By ([7], 7.1.6), N(R) is the maximal ideal of definition of R. In general, we

will write Rn = R/N(R)n+1. We will often refer to R0 as the reduction of R.

Let M be a topological R-module. We will say that M is adic if for some (hence any) ideal

of definition I ⊂ R, the set {InM : n ∈ N} is a fundamental system of neighborhoods of 0

in M . If M is adic, then we define its completion to be the inverse limit

M∞ = lim←−
n

M/InM.

There is a natural map M →M∞, which is injective if and only if M is I-separated. We will

say that M is complete if M →M∞ is an isomorphism. Since R admits a finitely generated

ideal of definition, M∞ is always complete. In general, completion defines a functor from

the category of adic R-modules to the category of adic R∞-modules.

Let us write AdRing+ for the category of admissible rings, the morphisms being continuous

maps. We say that a morphism h : R→ R′ in AdRing+ is adic if R′ is adic when viewed as

an R-module. Consider the corresponding diagram of reductions:

R R′

R0 (R′)0

h

h0

We say that h is of finite presentation if h0 is of finite presentation. Let us write AdRing

15



for the subcategory of AdRing+ with the same objects, but whose morphisms are adic

morphisms of finite presentation. For any object R of AdRing, we write AdRingR for the

category of admissible rings over R, i.e. the category of maps R → R′ which are adic of

finite presentation.

Definition 2.1.3. Let R be a Noetherian adic ring, and M an adic R-module. We define

the topological torsion of M the submodule Mtor ⊆M consisting of elements m ∈M which

are annihilated by an ideal of definition of M .

Let R be an admissible ring, and let S = Spec(R). If M is an R-module, let M̃ denote the

sheaf on S associated to M . Now let U ⊆ S be the complement of the closed subscheme

defined by some ideal of definition. By ([7], I 6.8.4), Mtor is the kernel of the natural map

M → Γ(U, M̃).

Lemma 2.1.4. In the above setting, suppose that R is Noetherian and that M is a finite

R-module. Let I be an ideal of definition of R. The natural map

lim−→
n

HomR(In,M)→ Γ(U, M̃)

is an isomorphism.

Proof. This is ([1], 1.8.34).

2.2 Formal Schemes

Let S be a topological space. We define a sheaf of admissible rings on S to be a sheaf O

valued in the category AdRing. A morphism of sheaves of admissible rings is defined in the

16



evident manner. We will say that an ideal I ⊂ O is an ideal of definition if, for every open

U ⊆ S, Γ(U, I) is an ideal of definition of the admissible ring Γ(U,O). Note that the ideal

N(O) of topologically nilpotent sections is the maximal ideal of definition of O.

We say that a topological O-module F is adic if for each open U ⊆ S, F(U) is an adic O(U)-

module. Given an adic O-module F , we write Fn for the reduction of F mod N(O)n+1. If

F is adic, then we define its completion to be the inverse limit

F∞ = lim←−
n

F/N(O)nF .

As before, there is a natural map F → F∞, which is injective if and only if F is separated.

We will say that F is complete if F → F∞ is an isomorphism. Note that F∞ is always

complete. In general, completion defines a functor from the category of O-modules to the

category of O∞-modules.

Definition 2.2.1. Let (S,OS) be a locally ringed space. We say that S is an admissibly

ringed space if OS is a sheaf of admissible rings.

We define a morphism of admissibly ringed spaces to be a morphism h : S′ → S of locally

ringed spaces for which the map h−1OS → OS′ is a morphism of sheaves of admissible

rings. We can associate to any Noetherian adic ring R an adic ringed space as follows: Let

S = Spec(R), and let S ⊂ S be the closed subset cut out by the ideal N(R). The structure

sheaf OS is naturally a sheaf of adic rings, and we define

OS = O∞S .

The sheaf OS is supported in the closed subset S. We refer to the pair (S,OS) as the

formal spectrum of R, and denote we will denote it by Spf(R). Note that there is a natural

isomorphism Spf(R) ∼= Spf(R∞). It will be convenient nonetheless to assume that R is not
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complete in general.

Definition 2.2.2. A formal scheme is an admissibly ringed space locally of the form Spf(R)

for some Noetherian adic ring R.

We will generally use Gothic font to denote formal schemes. It will be convenient to denote

the reduction of S by the same letter in Latin font. For example, if S = Spf(R), then

S = Spec(R0). Let us write FS+ for the category of quasi-compact and quasi-separated

formal schemes. We say that a morphism h : S′ → S is adic if OS′ is adic when regarded

as a h−1OS-module. Consider the corresponding diagram of reductions:

S′ S

S ′ S

h

h0

We say that h is locally of finite presentation if h0 is locally of finite presentation. Let us

write FS for the subcategory of FS+ with the same objects, but whose morphisms are adic

morphisms locally of finite presentation. For any object S of FS, we write FSS for the

category of formal schemes over S, i.e. the category of morphisms S′ → S which are adic

of finite presentation.

Let R be a Noetherian admissible ring, and M be a finite R-module. Let S = Spec(R) and

S = Spf(R). The sheaf M̃∞ is supported on the closed subset S, and is naturally equipped

with the structure of a OS-module.

Lemma 2.2.3. Suppose that R is complete. The functor M 7→ M̃∞ defines an equivalence

between the category of finite R-modules and the category of coherent OS-modules.

Proof. This is ([1], 2.7.2).

Now let S be any object of FS, and let F be a coherent OS-module. If I is an ideal of

18



definition of OS, we define the rig-closure of F to be the sheaf

H0(F) = lim−→
n

HomOS
(In,F).

Note that H0 is independent of the choice of ideal of definition I. The sheaf H0(OS) is

naturally a sheaf of OS-algebras, and we may regard F 7→ H0(F) as a functor from the

category of OS-algebras to the category of H0(OS)-algebras. In light of Lemmas 2.1.4 and

2.2.3, we make the following definition:

Definition 2.2.4. Let S be a formal scheme, and F a coherent OS-module. We define the

topological torsion of F the kernel Ftor of the natural map

F → H0(F).

2.3 Rigid Analytic Spaces

For our purposes we will work with rigid analytic spaces in the sense of Raynaud [20]. Here

we give a brief overview of the general theory.

Let S be a formal scheme, and let I ⊆ OS be a coherent open ideal. There is a universal

morphism in FS

ϕ : SI → S

with the property that ϕ−1IOSI is an effective Cartier divisor on SI ([1], 3.1.9). We refer

to the formal scheme SI as the admissible blow-up of S in I. Admissible blow-ups in the

category of formal schemes are well behaved with respect to a number of operations, for

example the composition of two admissible blow-ups is again an admissible blow-up.
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Definition 2.3.1. The category Rig of rigid analytic spaces is defined to be the localization

of FS at the class of admissible blow-ups.

We will denote the canonical localization functor FS→ Rig by S 7→ Srig. If S is an object

of Rig, then we will say that S is a formal model of S if there is an isomorphism Srig ∼= S.

If h : S ′ → S is a morphism in Rig, then we will say that a morphism S′ → S is a model of

h if there is a commutative diagram

(S′)rig Srig

S ′ Sh

where the vertical arrows are isomorphisms.

The category Rig has a natural topology defined as follows: a morphism U → S is an

open immersion if it admits a model which is an open immersion in FS. A family of open

immersions {hi : Ui → S}i is an admissible covering if there is a model S of S and models

Ui → S of hi which form a Zariski covering of S. Thus by construction, every object of Rig

is a quasi-compact and quasi-separated with respect to the admissible topology.

Let S be a formal scheme, and let F be a coherent OS-module. Let ϕ : S′ → S be an

admissible blow-up. Then there is a natural isomorphism ([1], 3.5.5)

ϕ∗H0(F)→ H0(ϕ∗F).

Let S = Srig, and let U → S be an open immersion. Then U admits a model of the form

U → X′ for some admissible blow-up ϕ : X′ → X. The above isomorphism guarantees

that the assignment U 7→ H0(ϕ∗F) is independent of the choice of model of U → S. This

assignment defines a sheaf on S which we denote by F rig. In particular, we set OS = Orig
S ,

which is independent of the choice of model S. The pair (S,OS) is a locally ringed topos
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([1], 4.8.6), which we will call a (quasi-compact, quasi-separated) rigid analytic space. If we

identify S with its Zariski topos, then there is a natural morphism of locally ringed topoi

S → S.

Example 2.3.2. Suppose that R is a Noetherian admissible ring and I ⊆ R is a coherent

open ideal. Let S = Spec(R) and S = Spf(R). The admissible blow-up SI is the formal

completion of the ordinary blow-up SI , viewed as an adic ringed space via the I-adic topology.

More explicitly, choose a set of generators I = (r1, ..., rd). Then SI admits a covering by

spaces of the form Spf(Ri), where

Ri = R
[
rj
ri

: j 6= i
]/

(ri−tor)

If S = Srig, then it follows that S admits a covering by rigid analytic spaces of the form Si,

where the topology on OSi coincides with the πi-adic topology. If M is a finite R-module,

then we have the following explicit description of the functor M 7→M rig:

Γ(Si,M rig) = Ri[
1
πi

]⊗RM.

In the classical case that R is equipped with the p-adic topology, this functor is given globally

by M 7→ Q⊗M

Occasionally we will need to work with rigid analytic spaces which are not necessarily quasi-

compact. For this purpose, we define more generally a (quasi-separated) rigid analytic space

to be an ind-object in Rig, where the transition maps are all open immersions. For our

purposes, the fundamental example of such a space is the following:

Example 2.3.3. Let R be a Noetherian adic ring admitting a principal ideal of definition

πR ⊂ R. Let S = Spf(R)rig. For each n ≥ 0, consider the adic R-algebra

An = R[πns, πns−1],
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and let Xn = Spf(An)rig. Then the natural maps Xn → Xn+1 are open immersions in Rig.

We define the relative multiplicative group over S to be the ind-object

Gm,S : X0 → X1 → · · · .

A global section of the structure sheaf of Gm,S is a power series

∞∑
j=−∞

rjs
j ∈ R[ 1

π
][[s, s−1]]

satisfying the convergence property

vπ(rj)

|j|
→ ∞ as j → ±∞.

In general, a rigid analytic space admits an admissible covering by spaces of the above form.

By a natural gluing construction we may speak more generally of the multiplicative group

Gm,S for any rigid analytic space S.

2.4 Rigid Points

Definition 2.4.1. Let P be an object of FS. We say that P is a rigid point if P = Spf(Ω),

where Ω is a complete Noetherian 1-dimensional local domain such that Ωtor = 0.

If P = Spf(Ω) is a rigid point, then we define the residue field of P to be the field of fractions

k(P ) = Q(Ω). The integral closure of Ω in k(P ) is a discrete valuation ring ([1], 1.11.4). We

will write vP for the valuation, normalized so that the value group of k(P ) equals Z.

Definition 2.4.2. Let S be an object of FS. A rigid point of S is an isomorphism class of

immersions P → S, where P is a rigid point.
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We denote the set of rigid points of S by 〈S〉. Since the reduction S is a Jacobson scheme,

every rigid point of S is a closed immersion ([1], 3.3.1). Suppose that S = Spf(R), where

R is an admissible ring ring. Then we may write 〈R〉 = 〈S〉, and speak of the set of rigid

points of R. Note in particular that 〈R〉 = 〈R∞〉. In this setting, it will be convenient to

identify P with the corresponding ring map, and let RP denote the image of P .

Many of the rings we encounter are naturally Zariski rings. In this setting, we have the

following interpretation of the rigid points of R:

Lemma 2.4.3. Let R be a Zariski ring. Let I be an ideal of definition, and let U be the

complement of Spec(R/I) in Spec(R). For a prime ideal p ⊂ R, the following are equivalent:

1. Spf(R/p) is a rigid point

2. I 6⊆ p and dim(R/p) = 1

3. p determines a closed point of U .

Proof. If Spf(R/p) is a rigid point, then (R/p)tor = 0. It follows that (I + p)/p = J(R/p) 6=

0, so I 6⊆ p. Since R is a Zariski ring, R/p and (R/p)∞ have the same dimension, so

dim(R/p) = 1. Thus 1 =⇒ 2. To see 2 =⇒ 3, note if dim(A/p) = 1 and f ∈ I is not in p,

then (R/p)f is a zero-dimensional domain, hence a field. Thus p determines a closed point

of U .

Assume then that p determines a closed point of U . Since U is covered by affine open schemes

of the form Spec(Rf ), where f ∈ I, it follows that (R/p)f is a field. By ([7], IV.0.16.3.3),

R/p is a semi-local domain of dimension ≤ 1. Since the Jacobson radical of R/p is non-zero,

we have dim(R/p) = 1. It remains only to show that R/p is local. Let m1, ...,mn be the

distinct maximal ideals of R/p. By ([3], III. Cor. to 2.3.19), we have an isomorphism

(R/p)∞ ∼=
∏
i

(R/p)∞i ,
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where (R/p)i denotes a copy of R/p equipped with the mi-adic topology. But (R/p)∞ is a

domain, so we must have that n = 1, i.e. R/p is local.

Proposition 2.4.4. Let f : P → S be a morphism in FS, where P is a rigid point. Then

f factors uniquely through a rigid point of S.

Proof. See ([1], 3.3.4).

As a consequence of Proposition 2.4.4, we see that for every morphism S′ → S in FS, there

is a corresponding map 〈S′〉 → 〈S〉. In particular, taking rigid points defines a functor

FS → Set. By ([1], 3.3.8), if S′ → S is an admissible blow-up, then the induced map on

rigid points is an isomorphism. By the universal property of localization, we see that the

functor S 7→ 〈S〉 factors uniquely through FS → Rig. Thus is makes sense to speak of the

rigid points of a rigid analytic space S in Rig. Again, we will denote this set by 〈S〉. The

rigid points of a rigid analytic space are analogous to the closed points of a variety, as the

following results indicate:

Proposition 2.4.5. Let F be a coherent OS-module. If FP = 0 for all P ∈ 〈S〉, then

F = Ftor.

Proof. The problem is local on S, so we may assume that S = Spf(R), where R is some

complete Noetherian adic ring. Let M = Γ(S,F), and let U be as in Lemma 2.4.3. Then

M̃ |U is a coherent OU -module, which by assumption vanishes at each closed point of U .

By Nakayama’s lemma, M̃ |U = 0, and by the definition of U we see that M = Mtor, as

desired.

Corollary 2.4.6. Let S be an object of Rig, and let F be a coherent OS-module. If FP = 0

for all P ∈ 〈S〉, then F = 0.
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Chapter 3

Weak Formal Geometry

3.1 Theory of Monsky and Washnitzer

Let R be an admissible ring, and let A be an adic R-algebra. For any ideal of definition

I ⊂ R, we define a pseudo-valuation on R by letting

vI(r) = sup{n ∈ N : r ∈ In}.

Let R〈X1, ..., Xn〉 denote the ring of convergent power series in n variables with coefficients

in R. In multi-index notation, this is the R-algebra of all power series

f(X1, ..., Xn) =
∑
u

ruX
u

such that vI(ru)→∞ as |u| → ∞. We say that f is overconvergent if moreover

lim
k→∞

inf
|u|>k

vI(ru)

|u|
> 0.
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Note that this condition depends only on the topology of R, and not on the choice of ideal

of definition. The overconvergent power series in n variables form an R-algebra which we

denote by R[X1, ..., Xn]mw. It is well known that this ring is Noetherian whenever R is

Noetherian [9].

Definition 3.1.1. Let A be an adic R-algebra. The Monsky-Washnitzer weak completion

of A is the R-subalgebra Amw ⊆ A∞ consisting of elements of the form

f(a1, ..., an) (3.1)

where f is an overconvergent power series and a1, ..., an ∈ A. We say that A is mw-weakly

complete if the natural map A→ Amw is an isomorphism

The Monsky-Washnitzer weak completion of an adicR-algebra is always mw-weakly complete

([19], 1.2). If A is an admissible adic R-algebra, then there are natural inclusions

A ⊆ A† ⊆ A∞.

It follows easily that A† is separated and that the reduction of A† agrees with A0. In

particular, A† is an admissible adic R-algebra which is of finite presentation if and only if

A is of finite presentation. If f : A → B is a continuous map of adic R-algebras, then f

prolongs uniquely to a map of Monsky-Washnitzer weak completions Amw → Bmw ([19], 1.5).

Note in particular that Rmw = R∞. In general, we will regard the Monsky-Washnitzer weak

completion as a functor

AdRingR → AdRingR∞ .

Let h : R → R′ be morphism in AdRing. Let A′ be an adic R′-algebra, and let A denote

A′ regarded as an adic algebra over R. Since h is an adic ring map, we see that h induces a
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map

R[X1, ..., Xn]mw → R′[X1, ..., Xn]mw.

It follows that there is an injective ring map

Amw → (A′)mw (3.2)

which fails to be surjective in general. In particular, the failure of this map to be surjective

when h is a localization tells us that the property of being mw-weakly complete is not a local

property on the base.

3.2 Weak Completion

Let R be an admissible ring, and let A be an adic R-algebra. In this section we introduce a

modification of the Monsky-Washnitzer weak completion, which has better local properties

on the “base” ring R. Informally, the weak completion of A includes all of those elements of

A∞ which overconverge at every rigid point of R.

For any rigid point P of R, let AP denote the base change of A along the map R → RP .

The completion of the natural map A→ AP gives a commutative diagram:

A A∞

AP A∞P

Recall that the Monsky-Washnitzer weak completion of AP is by definition an RP -subalgebra

of A∞P . For every element a ∈ A∞, let ap denote the image of a in A∞P .
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Definition 3.2.1. The weak completion of A is the R-algebra

A† = {a ∈ A∞ : aP ∈ Amw
P for all P ∈ 〈R〉}.

We say that A is weakly complete if the natural map A→ A† is an isomorphism.

Remark 3.2.2. In general, we have a containment Amw ⊆ A†. The two weak completions

evidently coincide when R is a rigid point, but for a general base R the containment may be

strict: consider for example the localization Rf at some f ∈ R. Then R†f coincides with the

full completion R∞f .

Proposition 3.2.3. If A is admissible, then A† is admissible and weakly complete.

Proof. If A is admissible then there are natural inclusions A ⊆ A† ⊆ A∞, and the first

statement follows easily. If P is a rigid point of R, there is commutative diagram:

A† A∞

(A†)P A∞P

By the definition of weak completion, the elements of A† are precisely those elements of A∞

for which aP ∈ A†P for every rigid point P of R. It follows that the image of the bottom

arrow lies in the weakly complete algebra A†P , and consequently (A†)†P = A†P .

Proposition 3.2.4. Every map f : A → B of adic R-algebras prolongs uniquely to a map

A† → B†.

Proof. Note that f prolongs uniquely to a map A∞ → B∞. Let a ∈ A†. By definition,

aP ∈ A†P for every rigid point P of R. Thus aP has an expression of the form

F̄ (ā1, ..., ān),
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where F̄ ∈ RP [X1, ..., Xn]† is an overconvergent power series, and ā1, ..., ān ∈ AP . Clearly

the fiber fP of f maps AP → BP , so

fP (a) = F̄ (fP (ā1), ..., fP (ān)) ∈ B†P .

Applying Proposition 3.2.4 to the map R→ A, we see that there is a natural map R∞ → A†.

If A is admissible of finite presentation over R, then the same is true of A†. In general, we

will regard weak completion as a functor

AdRingR → AdRingR∞ .

Unlike the Monsky-Washnitzer weak completion, it is not true that the homomorphic image

of a weakly complete R-algebra is weakly complete in general. However, we do have the

following:

Lemma 3.2.5. If A is weakly complete, then AP is weakly complete for every rigid point P

of R.

Proof. Let P be a rigid point of R. There are inclusions

AP ⊆ A†P ⊆ A∞P .

It suffices to prove that the map A → A†P is surjective. Let π ∈ R be any element for

which πPRP is an ideal of definition of RP . Let aP ∈ AP . By definition, there are elements

a1,P , ..., an,P ∈ A such that aP = fP (a1,P , ..., an,P ), where

fP =
∑
u

ru,Pπ
n(u)
P Xu,
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with ru,P ∈ RP and

lim
k→∞

inf
|u|>k

n(u)

|u|
> 0.

Choose elements ru ∈ R and ai ∈ A lifting ru,P and ai,P , respectively. Define

f =
∑
u

ruπ
n(u)Xu ∈ R[X1, ..., Xn]mw.

Then a = f(a1, ..., an) is an element of A lifting aP .

Let h : R→ R′ be morphism in AdRing. Let A′ be an adic R′-algebra, and let A denote A′

regarded as an adic algebra over R. Recall that there is an injective map (3.2)

Amw → (A′)mw.

Now, suppose that P ′ is a rigid point of R′, which factors uniquely through a rigid point

P of R. If a ∈ A†, then by definition a is congruent modulo ker(P ) to an element of Amw.

But h(ker(P )) ⊆ ker(P ′), and thus we see that aP ∈ (A′)†P . It follows that the above map

extends to an injective ring map

A† → (A′)†. (3.3)

In contrast to the Monsky-Washnitzer weak completion, we have:

Proposition 3.2.6. Suppose that h : R → R′ induces an injection 〈R′〉 → 〈R〉. Then the

map (3.3) is an isomorphism.

Proof. Let a ∈ (A′)†. We must show that for every rigid point P : R→ RP , the image aP of
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a in A∞P lies in A†P . Let us write R′P = RP ⊗R R′. We consider the fiber

AP = RP ⊗R A = R′P ⊗R′ A′. (3.4)

First, if 〈R′P 〉 = ∅, then R′P = (R′P )tor. In this case, AP = A†P = A∞P and the result is

immediate. Suppose then that R′P has a rigid point Q : R′P → Ω. Then the composition

P ′ : R′ → R′P
Q−→ Ω

is surjective, and therefore is a rigid point of R. By construction, P ′ is a rigid point lying

above P , and by assumption it is the unique such point.

We claim that Q is an isomorphism, in which case it follows from (3.4) that aP ∈ AP , since

A′ is weakly complete. Since Q is surjective, the result will follow from ([1], 1.11.5(ii)) if we

can show that R′P is a one-dimensional local domain. Since R′P has a unique rigid point, it

follows from ([1], 3.3.10) that Spf(R′P ) is a one-point formal scheme, and consequently that

R′P is a Noetherian local domain. The natural map RP → R′P is adic, and therefore R′P

admits a principal ideal of definition. It follows that R′P is one-dimensional, completing the

proof.

3.3 w.c.f.g. Algebras

In this section we fix Noetherian admissible ring R. We will now introduce a suitable class

of admissible R-algebras for constructing our weak formal schemes over R.

Definition 3.3.1. Let A be an adic R-algebra, and let S ⊆ A. We say that S weakly

generates A if:

1. The R-subalgebra of A generated by S is dense in A
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2. For every a ∈ A and every rigid point P of R, aP is of the form

F (s1, ..., sn)

where si ∈ S, and F ∈ RP [X1, ..., Xn]† for some n.

We say that A is weakly finitely generated if A admits a finite set of weak generators. We

say that A is a w.c.f.g. algebra if A is weakly complete and weakly finitely generated.

Let A be a weakly finitely generated algebra over R. Then A is an adic R-algebra of finite

presentation, and the weak completion A† is a w.c.f.g. algebra over R. In particular, we see

that A is admissible. Every homomorphic image of A is weakly finitely generated over R,

although we remark again that the homomorphic image of a w.c.f.g. algebra need not be

weakly complete in general.

Lemma 3.3.2. Let A be a weakly finitely generated algebra over R. For every morphism

h : R→ R′ in AdRing, Ah = R′ ⊗R A is weakly finitely generated over R′.

Proof. Choose a finite set s1, ..., sn of weak generators for A. Recall that every element of

Ah is a finite R′-linear combination elements of the form r ⊗ a, where r ∈ R′ and a ∈ A.

Follows easily that the R′ algebra generated by s1, ..., sn is dense in Ah. Now let P ′ be a

rigid point of R′. Then P ′ factors uniquely through a rigid point P of R. By assumption,

for any a ∈ A there is an overconvergent power series f =
∑

u ruX
u ∈ RP [X1, ..., Xn]† such

that

aP = f(s1, ..., sn).
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Then for any r ∈ R′ we have (r ⊗ a)P ′ = f ′(s1, ..., sn), where

f ′ =
∑
u

(r ⊗ ru)Xu ∈ RP ′ [X1, ..., Xn].

For the remainder of this section, we fix a weakly finitely generated algebra A/R. Let

X = Spec(A0). For any f ∈ A, let Xf denote the distinguished open subset of X on which

f0 ∈ A0 is invertible.

Lemma 3.3.3. Every inclusion Xg → Xf lifts to a unique A-algebra homomorphism A†f →

A†g.

Proof. The proof of ([17], 2.3) adapts verbatim to our case.

Definition 3.3.4. Let M be a finite A-module. We define the weak completion of M to be

the A-module

M † = {m ∈M∞ : mP ∈MP for all P ∈ 〈R〉}.

To any finite A-module M , we associate a presheaf M̃ † on the distinguished open sets of X

via

M̃ †(Xf ) = M †
f

Note that M̃ † is well defined by Lemma 3.3.3.

Theorem 3.3.5. M̃ † is a sheaf on the distinguished open sets of X.

Proof. Let f1, ..., fn ∈ A, Ui = Xfi , and U = U1 ∪ · · · ∪ Un. For each i, let mi ∈M †
fi

be such
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that

mi|Ui∩Uj −mj|Ui∩Uj = 0. (3.5)

Note that the presheaf M̃∞ defined by

Xf 7→M∞
f

is a sheaf on the distinguished open subsets of X. Indeed it is the coherent sheaf associated

to M on the formal scheme Spf(A) ([1], 2.7.2). In particular, there is a unique section

m ∈ M̃∞(U) such that m|Ui = mi for each i. The restriction M̃ †|U is the presheaf associated

to the finite Γ(U,OU)-module Mf1,...,fn . Therefore we only need to show that m ∈ M †
f1,...,fn

,

i.e. that for every rigid point P of R, mP lies in (Mf1,...,fn)P .

Fix a rigid point P of R and let XP = Spec(AP ). Note that the distinguished open subsets

of XP are all of the form Xf ∩XP , where f is some element of A. Consider the presheaf M̃ †
P

associated to the finite AP -module MP . By ([17], 2.8), M̃ †
P is a sheaf on the distinguished

open subsets of XP . For each i, there is a restriction map

M̃ †(Ui)→ M̃ †
P (Ui ∩XP ).

The cocycle condition (3.5) implies that

mi|Ui∩Uj∩XP −mj|Ui∩Uj∩XP = 0.

Therefore these sections glue to a unique section m′ ∈ Γ(U ∩XP , M̃
†
P ) = (Mf1,...,fn)P . Now

M̃ †
P is a subsheaf of the sheaf M̃∞

P , and clearly we have

m|Ui∩XP = mi|Ui∩XP ,
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so necessarily m = m′.

Definition 3.3.6. The weak formal spectrum of A is the admissibly ringed space with

underlying topological space X, and whose sheaf of adic rings is Ã†.

We will denote the weak formal spectrum of A by Spwf(A). If B → A is a continuous

map of weakly finitely generated R-algebras, then there is an induced map Spwf(B) →

Spwf(A) of admissibly ringed spaces. In particular, the map A→ A† induces an isomorphism

Spwf(A†) → Spwf(A), but in general it will be convenient not to require that A be weakly

complete. Note that Spwf(R) = Spf(R), and consequently there is a natural structure map

p : Spwf(A)→ Spf(R).

For every finite A-module M , the sheaf M̃ is naturally an OSpwf(A)-module.

Question 3.3.7. Let M be a finite A-module. By a theorem of Meredith [17], for every rigid

point P of R the sheaf M̃ †
P is acyclic. It would be interesting to know if more generally, the

modules

Rip∗M̃
†

vanish for i > 0. In contrast to the classical case, the sheaf M̃ † need not be coherent. Can

coherent sheaves on Spwf(A) be characterized in terms of their global sections?

3.4 Weak Formal Schemes

We are now ready to introduce weak formal schemes, which will be our main objects of study.

Informally, these are admissibly ringed spaces which can be obtained by gluing weak formal

spectra along the base. Throughout, we fix a formal scheme S in FS+.
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Definition 3.4.1. Let p : X→ S be a morphism of admissibly ringed spaces.

1. We say that p is an affine weak formal scheme if S admits a covering {Si → S} with

Si = Spf(Ri) such that for each i, Xi = p−1(Si) is of the form Spwf(Ai) for some

w.c.f.g. algebra Ai over Ri.

2. We say that p is a weak formal scheme if X admits a S-covering by affine weak formal

schemes over S.

When the base is understood, it will be convenient to refer to a weak formal scheme p : X→ S

simply by X. A morphism of weak formal schemes over S is defined to be a morphism in

the category of admissibly ringed spaces over S. Note that p is always adic and locally of

finite presentation, in the sense that p0 : X → S is a morphism of schemes locally of finite

presentation. We say that p is of finite presentation if in addition it is quasi-compact and

quasi-separated. If X is affine over S, then p0 is an affine morphism and so p is always a

morphism of finite presentation. Let us write FS†S for the category of weak formal schemes

of finite presentation over S

The following result indicates that the property of being a weak formal scheme is local on

the base. This fact was our main motivation for modifying the weak completion of Monsky

and Washnitzer:

Proposition 3.4.2. Let S′ → S be an open immersion. For every weak formal scheme

p : X→ S, X′ = p−1(S′) is a weak formal scheme over S′. If X is affine over S, then X′ is

affine over S′.

Proof. The problem is local on X, so we may assume that X is affine over S. Choose a

covering {Si → S} with Si = Spf(Ri) such that for each i, Xi = p−1(Si) is a space of the

form Spwf(Ai) for some w.c.f.g. algebra Ai over Ri. Let S′i = Si ∩S′, and X′i = p−1(S′i).
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Then {X′i → X′} is a covering in the category of adic ringed spaces over S′. Since S′i is an

open subset of Spf(Ri), there exist fi,j ∈ Ri such that

S′i =
⋃
j

Spf(Ri,j),

where Ri,j = (Ri)fi,j . Let Ai,j = (Ai)
†
fi,j

. Then each Ai,j is a w.c.f.g. algebra over Ri,j. But

{Spwf(Ai,j)→ X′}(i,j) is a covering of X′ and consequently X′ is a weak formal scheme over

S′.

Our next goal is to characterize the affine weak formal schemes over S = Spf(R), where R

is a Noetherian adic ring. First we require the following:

Lemma 3.4.3. Suppose that S = Spf(R) is affine, and let p : X → S be a weak formal

scheme of finite presentation. For every f ∈ Γ(X,OX), the canonical map

Γ(X,OX)†f → Γ(Xf ,OX)

is an isomorphism.

Proof. By the definition of a weak formal scheme, S admits a covering by open immersions

Spf(R′) → S such that p−1(Spf(R′)) admits a covering by spaces of the form Spwf(A′),

where A′ is a w.c.f.g. algebra over R′. By assumption, X is quasi-compact over S and hence

quasi-compact. Thus we may choose a finite number of diagrams

Spwf(Ai) X

Spwf(Ri) S

where the horizontal arrows are open immersions, Ai is a w.c.f.g. algebra Ai/Ri, and the

Spwf(Ai) jointly cover X. We will write Si = Spf(Ri), Xi = Spwf(Ai).
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Let Xi,j = Xi ∩ Xj. Then Xi,j is an affine weak formal scheme over Si,j = Si ∩ Sj. By

definition, Si,j admits a finite covering of the form Si,j,k = Spf(Ri,j,k) such that p−1(Si,j,k)

is of the form Spwf(Ai,j,k) for some w.c.f.g. algebra Ai,j,k/Ri,j,k. Then A = Γ(X,OX) is the

equalizer of the diagram

∏
i

Ai
∏
i,j

Γ(Xi,j,OX)
∏
i,j,k

Ai,j,k ,

where the last map is given by restriction and all products are finite. Since localization is

exact and commutes with finite direct products, it follows that Af is the equalizer of the

diagram

∏
i

(Ai)f
∏
i,j,k

(Ai,j,k)f .

Now, each Ai,j,k may be regarded as a w.c.f.g. algebra over R, by Proposition 3.2.6. Thus

we may pass to weak completions to obtain a diagram

∏
i

(Ai)
†
f

∏
i,j,k

(Ai,j,k)
†
f .

whose equalizer is A†f . On the other hand, Xf admits a covering by the open subsets (Xi)f =

Spwf((Ai)
†
f ), and each of these is covered by the Spwf((Ai,j,k)

†
f ). The sheaf exact sequence

shows Γ(Xf ,OX) is the equalizer of the above diagram, and consequently A†f → Γ(Xf ,OX)

is an isomorphism.

Proposition 3.4.4. Let π : X→ S be a morphism of admissibly ringed spaces. The following

are equivalent:

1. X→ S is an affine weak formal scheme

2. For every affine open S′ = Spf(R) of S, X′ = π−1(S′) is of the form Spwf(A) for
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some w.c.f.g. algebra A over R.

Proof. Evidently (2) implies (1). Conversely, if X → S is affine then by Lemma 3.4.2,

X′ → S′ is affine. Let A = Γ(X′,OX′). Then by Lemma 3.4.3, X′ = Spwf(A), completing

the proof.

It follows that every affine weak formal scheme over S = Spf(R) is of the form Spwf(A),

where A is a w.c.f.g. algebra over R. In A.1, we show more generally that every affine weak

formal scheme X→ S is the weak formal spectrum of a sheaf of w.c.f.g. algebras over S.

We will now prove general theorem on representable Set-valued functors on FS†S, which is

useful for giving basic constructions of weak formal schemes. Let us embed the category FS†S

into its category of presheaves in the usual way. We will identify each weak formal scheme

over S with its associated representable functor.

Lemma 3.4.5. Every representable functor on FS†S is a sheaf.

Proof. The statement means that morphisms Y → X can be glued locally on the source,

which follows from the analogous statement in the category of admissibly ringed spaces.

Definition 3.4.6. Let F be a presheaf on FS†S. We say that a sub-presheaf H ⊆ F is open

if for every weak formal scheme X over S, there is an open immersion Y→ X for which the

following diagram is Cartesian:

Y H

X F

Theorem 3.4.7. Let F be a sheaf on FS†S. Suppose that F admits an open covering by weak

formal schemes Xi. Then F is representable.
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Proof. By definition, for each i, j there is an open immersion Xi,j → Xi for which the diagram

Xi,j Xj

Xi F

is Cartesian. Swapping the roles of i, j, we see that there are unique isomorphisms ϕi,j :

Xi,j → Xj,i compatible with the respective diagrams. By forming the evident cube involving

Xi, Xj, and Xk, it follows that ϕi,j restricts to an isomorphism

Xi,j ∩ Xi,k → Xj,i ∩ Xj,k.

Moreover, by uniqueness of the ϕi,j, we see that these maps satisfy the cocycle condition

ϕi,k|Xi,j∩Xi,k = ϕj,k|Xj,i∩Xj,k ◦ ϕi,k|Xi,j∩Xi,k .

By descent, we see that there is a unique admissibly ringed space X obtained by gluing the

Xi. Since this space admits an S-covering by weak formal schemes over S, it follows that X

is also a weak formal scheme over S.

It remains only to show that X represents the functor F . Let X′ be a weak formal scheme

over S. Recall that a section of F (X′) is naturally identified with a morphism of sheaves

X′ → F . By definition, for each i there is an open immersion X′i → X′ for which the diagram

X′i Xi

X′ F

is Cartesian. By considering the analogous diagram with Xi,j in place of Xi, we see that the

maps X′i → Xi agree on double intersections. By Lemma 3.4.5, these morphisms glue to a

unique morphism X′ → X.
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3.5 Weak Base Change

Let us define an “absolute” category FS†+ of weak formal schemes as follows: the objects of

FS†+ are weak formal schemes X→ S of finite presentation, where S is an object of FS+. A

morphism f from X′ → S′ to X→ S is defined to be a commutative square

X′ X

S′ S

f

f̄

(3.6)

where the horizontal arrows are morphisms of admissibly ringed spaces. Occasionally, we

will say that f is a morphism covering the morphism f̄ . We say that f is adic if f̄ is adic.

In this case, consider the induced diagram of reduced schemes:

X ′ X

S ′ S

f0

f̄0

We say that f is of locally of finite presentation if f0 and f̄0 are locally of finite presentation.

As usual, we say that f is of finite presentation if it is locally of finite presentation, quasi-

compact, and quasi-separated. Let us write FS† for the subcategory of FS†+ with the same

objects, but whose morphisms are adic morphisms of finite presentation.

There is a natural forgetful functor

FS†+ → FS+ (3.7)

which sends each weak formal scheme to its base. The fiber of this functor over any formal

scheme S is naturally identified with the category FS†S introduced in the previous section.

We will now apply Theorem 3.4.7 to show that the functor (3.7) is a fibration:
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Proposition 3.5.1. Let X→ S be an object of FS†+, and let h : S′ → S be a morphism in

FS+. There is a unique weak formal scheme Xh over S′ equipped with a morphism Xh → X

covering h with the following universal property: For every solid commutative diagram

X′

Xh X

S′ S

u

h

where X′ is a weak formal scheme over S′, there exists a unique dashed morphism u : X′ → Xh

of weak formal schemes making the diagram commute.

Proof. Let F be the functor which sends a formal S′-scheme X′ to the set of morphisms

f : X′ → X covering h. Choose an open cover {Si → S}i with Si = Spf(Ri). For each

i, choose open covers {S′i,j → h−1(Si)}j and {Xi,k → π−1(Si)}k with S′i,j = Spf(R′i,j) and

Xi,k = Spwf(Ai,k) where each Ai,k is a w.c.f.g. algebra over Ri. Define Xi,j,k = Spwf(Ai,j,k),

where

Ai,j,k = (R′i,j ⊗Ri Ai,k)†.

is a w.c.f.g. algebra over R′i,j. Regarded as a weak formal scheme over S′i,j, Xi,j,k represents

the functor which sends X′ to the set of f ∈ F (X′) whose image lies in Xi,k. Regarded as

Set-valued functors on FS†S′ , we see that the Xi,j,k collectively cover F .

To see that each Xi,j,k is open, suppose that we have a map X′ → F . Let X′i,j be the fiber

of X′ over S′i,j. Composing with the natural map F → X, we obtain a map f : X′i,j → X
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covering h. Let X′i,j,k = f−1(Xi,k). Then there is a Cartesian diagram:

X′i,j,k Xi,j,k

X′ F

By Theorem 3.4.7, it follows that F is representable.

Definition 3.5.2. In the notion of Proposition 3.5.1, we refer to Xh as the weak base change

of X along h.

From the universal property it follows that (3.7) is a fibration, with the Cartesian arrows

being given by weak base change. By construction, if X is an affine weak formal scheme over

S, then for every h : S′ → S, the weak base change Xh is an affine weak formal scheme over

S′.
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Chapter 4

Frobenius Structures

We now turn to arithmetic applications of the theory developed above. Let p be a prime

number, and fix a power q = pa. Let us call a formal scheme S q-typical if its reduction S is

a scheme over Fq. In this case, we let F denote the absolute q-Frobenius endomorphism of

S. Recall that there is a canonical lifting of F to an endomorphism of the ring Zq = W (Fq).

In this chapter we will work with weak formal schemes and ordinary formal schemes over a

formal base S. To parallel our notation for weak formal schemes, let FS∞+ denote the category

of adic morphisms of finite presentation X→ S in FS. A morphism in this category is defined

exactly as for FS†+, and as always we write FS∞ for the subcategory of FS†+ with the same

objects, but whose morphisms are adic morphisms of finite presentation. The superscript is

meant to indicate that FS∞+ is the “completion” of FS†+. Often, we will write FS∗+ for either

FS∞+ or FS†+.
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4.1 Formal F -Schemes

Let S′, S be q-typical formal schemes. Given an Fq-morphism h0 : S ′ → S, we define a

lifting of h0 to be a Zq-linear map h : S′ → S whose reduction is h0.

Definition 4.1.1. A formal F -scheme is a pair (S, σ), where S is a q-typical formal scheme,

and σ : S→ S is a lifting of the q-Frobenius endomorphism F : S → S.

When the lifting of Frobenius σ is understood, we may refer to a formal F -scheme (S, σ)

simply by S. A morphism of formal F -schemes (S′, σ′)→ (S, σ) is defined to be a morphism

h : S′ → S for which the following square commutes:

S′ S

S′ S

σ′

h

σ

h

Let us write F -FS+ for the category of formal F -schemes. As usual, we will denote by F -FS

the subcategory with the same objects, but whose morphisms are adic morphisms of finite

presentation.

We will mainly be interested in relative Frobenius structures, in both the convergent and

overconvergent settings. For now, we will work over a fixed formal F -scheme (S0, σ0). Let

g : S→ S0 be any morphism in FS, and let X0 be a (weak) formal scheme over S0. In this

setting, we will write X = (X0)g for the (weak) base change of X0 along g. Let Xσ denote the

(weak) base change of (X0)σ0 along g. Then the reduction of Xσ is precisely the base change

XF of X along the q-Frobenius F : S → S. Recall that the endomorphism F : X → X
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factors uniquely through an S-morphism FX/S : X → XF :

X

XF X

S S

FX/S

F

F

Definition 4.1.2. Let (S0, σ0) be a formal F -scheme. A (weak) formal F -scheme is a triple

(S,X0, σ), where

1. S→ S0 is a morphism in FS

2. X0 is an object of FS∗S0

3. σ : X→ Xσ is a lifting of the relative Frobenius FX/S : X → XF .

We will be most interested in the case S = S0. In this case, to give X the structure of a

(weak) formal F -scheme is equivalent to giving an extension of the endomorphism σ0 to an

endomorphism of X. Our general definition of a (weak) formal F -scheme is to allow for base

change along a morphism which is not necessarily a morphism of formal F -schemes. If the

base S is understood, we may refer to the triple (S,X0, σ) simply by (X, σ) or by X, and

say that X is a (weak) formal F -scheme over S with Frobenius structure σ.

Leaving (S0, σ0) fixed, we define a morphism of (weak) formal F -schemes

(S′,X′0, σ
′)→ (S,X0, σ)

to be a morphism f : X′/S′ → X/S in FS∗ for which f̄ is an S0-morphism, and which

is compatible with the Frobenius structures σ′, σ. In particular, we define a morphism

(X′, σ′) → (X, σ) of (weak) formal F -schemes over S to be an S-morphism f : X′ → X
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making the diagram

X′ X

X′σ′ Xσ

σ′

f

σ

f

commute. Let us write F -FS∗S for the resulting category of (weak) formal F -schemes over

S.

Suppose that (S′0, σ
′) is a second formal F -scheme, and h̄ : S′0 → S0 is a morphism in

F -FS+. Let S′ be a formal scheme over S′0, and suppose we are given a morphism h : S′ → S

covering h̄. Then there is a (weak) base change functor

F -FS∗S → F -FS∗S′

sending (X0, σ) 7→ (X′0, σh), where X′0 is the base change of X0 along h̄, and σh is the inverse

image of σ along h.

Situation 4.1.3. In applications, we will almost always restrict our attention to the following

special case: S0 = Spf(R), where R is a Noetherian local ring with maximal ideal m and

residue field Fq. In this setting, if (X, σ) is a (weak) formal F -scheme over S, then σ is an

OS-linear endomorphism of X.

For the remainder of this section, we restrict our attention to Situation 4.1.3 and suppose

moreover that X0 is a formal F -scheme over S0. Let x be a closed point of X0, with

residue field k(x). Recall that the q-Frobenius endomorphism of k(x) lifts canonically to a

Zq-endomorphism of the Witt ring W (k(x)). Define

S0(x) = Spf(R(x)),

where R(x) = W (k(x))⊗Zq R. Then S0(x) is a formal F -scheme over S0. We define S(x)
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to be the base change of S0(x) to a formal F -scheme over S. Observe that we have a map

of reductions

x : S(x)→ X

given by base change of the map x : Spec(k(x))→ X0.

Theorem 4.1.4. Every closed point x ∈ |X0| lifts uniquely to a closed immersion of formal

F -schemes over S

x̂ : S(x)→ X.

Proof. Recall that the relative Frobenius σ induces the identity map on the topological space

X, and therefore may be regarded as an endomorphism of OX. Let I denote the ideal of OX

generated by sections of the form σ(a)− a, where a is a section of OX. We define X(1) to be

the closed (weak) formal subscheme cut out by the ideal I. Note that the reduction X(1) is

affine over S: explicitly, it is the disjoint union of sections

x : S → X

given by base change of the Fq-valued points x : Fq → X0. It follows that X(1) is affine over

S, and is is a disjoint union of sections

x̂ : S→ X.

This gives the lifting for Fq-rational points of X0. For points of degree d > 1, we base change

along R→ Zqd ⊗Zq R and apply the above construction to the iterate σd.

Definition 4.1.5. For every closed point x ∈ |X0|, we refer to the closed immersion x̂ as

the Teichmüller lifting of x.
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4.2 Frobenius Modules

In this section, we fix a formal F -scheme (S0, σ0), a formal scheme S over S0, and a (weak)

formal F -scheme (X, σ) over S. Suppose that M0 is a coherent OX0-module, and let M

denote its inverse image along X→ X0. We write Mσ for the inverse image of M along the

natural map Xσ → X.

Definition 4.2.1. A σ-module over X/S is a pair (M0, φ), where M0 is a locally free OX0-

module, and φ : σ∗Mσ → M is an OX-linear map. We say that (M0, φ) is a unit-root

σ-module if φ is an isomorphism.

Often, we will refer to a σ-module (M0, φ) simply by (M,φ), leaving the module M0 implicit.

A morphism (M,φ) → (M ′, φ′) of σ-modules over X/S is defined to an OX-linear map

f : M →M ′ for which the diagram

σ∗M M

σ∗M ′ M ′

σ∗f

φ

f

φ′

commutes. We will write σ-Mod(X/S) for the the category of σ-modules over X, and

σ-Mod0(X/S) for the full subcategory consisting of unit-root σ-modules.

Suppose that f : (S′,X′0, σ
′) → (S,X0, σ) is a morphism of (weak) formal F -schemes. If

(M,φ) is a σ-module over X/S, then f ∗M is naturally a σ′-module over X′/S′ with Frobenius

structure σ′ ⊗ φ. Thus we have an inverse image functor

f ∗ : σ-Mod(X/S)→ σ-Mod(X′/S′)

which restricts to a functor of the unit-root subcategories.

For the remainder of this section, suppose that we are in Situation 4.1.3. Let x̄ be a geometric
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point of the Fq-scheme X0. Our primary interest in σ-modules is their connection to (families

of) representations of π1(X0, x̄). In this direction we recall a theorem of Katz:

Theorem 4.2.2. (Katz [14], 4.1.1) The category σ-Mod(X0/S0) is equivalent to the category

of continuous representations in a finite free R-module

ρ : π1(X0, x̄)→ GL(V ). (4.1)

The equivalence of Theorem 4.2.2 is functorial in the following sense: Suppose that f : Y0 →

X0 is a morphism of (weak) formal F -schemes over S0, and that ȳ is a geometric point of

Y0 lying over x̄. Let ρ (4.1) be a representation of π1(X, x̄) corresponding to a unit-root

σ-module (M,φ). Then f ∗(M,φ) is the unit-root σ-module over Y0/S0 corresponding to

the pullback

f ∗ρ : π1(Y0, ȳ)→ GL(V ).

Assume that X0 is a formal F -scheme over S0. We will now define the L-function of a

σ-module (M,φ) over X/S. We will be most interested in the case S = S0, but it will be

convenient to define L-functions more abstractly. For each closed point x ∈ |X|, let (Mx, φx)

denote the inverse image of (M,φ) along the Teichmüller lifting x̂ : S(x) → X. Then by

definition, the module Mx is a free OS(x)-module of finite rank. Choose a basis of global

sections, and let E(x) denote the “matrix” of φx regarded as a global section of GLnOS(x).

The map φx is only OS-linear, but the iterate φ
deg(x)
x is OS(x)-linear, with “matrix”

Nk(x)/FqE(x) = E(x)E(x)σ · · ·E(x)σ
deg(x)

.

In particular, the characteristic polynomial of φ
deg(x)
x is σ-invariant, and therefore has coef-

ficients in Γ(S,OS).
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Definition 4.2.3. The L-function of the σ-module (M,φ) is defined to be

L(φ, s) =
∏
x∈|X|

1

det
(
I − φdeg(x)

x sdeg(x)
) ∈ Γ(S,OS)[[s]].

The important point is that our abstract L-functions are compatible with base change of

σ-modules. Concretely, these L-functions generalize the Artin L-functions of (families of)

representations: Suppose that (M,φ) is a unit-root σ-module over X0/S0. Let x ∈ |X0| and

let x̄ → x be a geometric point. Then (M,φ) corresponds to a representation ρ (4.1), and

the fiber (Mx, φx) corresponds to the representation

ρx : π1(x, x̄)→ π1(X0, x̄)→ GL(V ).

Note that ρx sends the canonical generator F deg(x) to the action of Frobx. It follows that

ρ(Frobx) = φ
deg(x)
x , and consequently L(φ, s) agrees with the L-function L(ρ, s).

Question 4.2.4. Since they appear naturally in our theory, it would be interesting to have

an interpretation of σ-modules over X/S in terms of families of representations. Is there a

characterization of these objects in terms of a “relative fundamental group” of X/S, as in

([11], XIII)?

4.3 Differentials

In this section, we work over a fixed Noetherian local ring R. Let A be a w.c.f.g. algebra

over R, and fix a finite set s1, ..., sn of weak generators for A. There is a corresponding

“presentation”

p : R[X1, ..., Xn]mw → A
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which sends Xi 7→ si. Let A0 denote the image of the above map, which is a Noetherian R-

algebra for whichA = A†0. In [19], Monsky and Washnitzer define anA0-module of continuous

differentials ΩA0/R of the map R→ A0. There is a universal continuous derivation

d : A0 → ΩA0/R.

The module ΩA0/R is finite and generated by the ds1, ..., dsn ([19], 4.5).

Lemma 4.3.1. Let M(A0) = A ⊗A0 ΩA0/R. Then M(A0)/M(A0)tor is independent of the

choice of generators s1, ..., sn.

Proof. Choose another finite set of generators s′1, ..., s
′
m of A. Without loss of generality, we

may assume that n ≤ m and that si = s′i for 1 ≤ i ≤ n. Define A′0 to be the image of the

map

R[X1, ..., Xm]mw → A

which sends Xi 7→ s′i. Then we have an inclusion A0 → A′0, and there is a corresponding

inclusion of A0-modules.

ΩA0/R → ΩA′0/R

which sends dsi 7→ ds′i. Now for any ideal of definition I ⊂ R, we have an isomorphism

A0/IA0 → A′0/IA
′
0. By ([19], 2.1), we see that A0 → A′0 is flat. Therefore we have an

inclusion of A′0-modules

A′0 ⊗A0 ΩA0/R → ΩA′0/R

It suffices to show that this map is surjective. We recall that for every rigid point P of R,
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the map (A0)P → (A′0)P is an isomorphism. The relative differentials ΩA0/R are compatible

with base change along any quotient map R → R′. Thus we see that the fibers of f at

the rigid points of R are surjective. Since both modules are finite A′0-modules, and A′0 is a

Zariski ring, the result follows.

Definition 4.3.2. The module of continuous differentials of A/R is defined to be the finite

A-module ΩA/R = M(A0)/M(A0)tor.

We will denote by Ω•A/R the free exterior algebra on ΩA/R. We remark that for every rigid

point P of R, the fiber of Ω•A/R over P agrees with the complex Ω•AP /RP of continuous

differentials of AP/RP , as defined by Monsky and Washnitzer. If A is formally smooth over

R, then we see that for every ideal of definition I ⊂ R, A0/IA0 = A/IA is smooth over R/I.

It follows from ([19], 2.5) that A0 is formally smooth over R, and from ([19], 4.6) that ΩA/R

is locally free of rank d = dim(A0).

We now restrict our attention to a special case: Let R be a Noetherian local ring with

maximal ideal m and residue field Fq. We assume moreover that A/R is formally smooth,

that A0 = A/mA is integral, and that A0 is equipped with a lifting σ : A0 → A0 of the

q-Frobenius endomorphism of A0. Our next goal will be to construct canonical Frobenius

operators on the exterior algebra Ω•A/R.

Lemma 4.3.3. σ is injective.

Proof. This is ([19], 3.2).

For brevity, let us write ΩiA = Ωi
A/R. Let B = σ(A), which is a formally smooth w.c.f.g.

subalgebra of A, and let B0 = σ(A0) ⊆ A0.

Lemma 4.3.4. The canonical map Ω•B0 → Ω•A0 induces an isomorphism

Ω•B0 ⊗B0 Q(A0)→ Ω•A0 ⊗A0 Q(A0)
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Proof. This is ([19], 8.1).

Let α• denote the inverse of the isomorphism (4.3.4). We define a trace map

Tr• : Ω•A0 ⊗A0 Q(A0)
α•−→ Ω•B0 ⊗B0 Q(A0)

1⊗Tr−−−→ Ω•B0 ⊗B0 Q(A0). (4.2)

This map extends to a map

Ω•A⊗B Q(A)→ Ω•B ⊗B Q(A) (4.3)

Lemma 4.3.5. The map Tr• sends Ω•A→ Ω•B.

Proof. By ([19], 8.1) the map Tr• restricts to a map Ω•A0 → Ω•B0, from which the result

follows.

Definition 4.3.6. The canonical Dwork operators on Ω•A are defined via

θ• = σ−1 ◦ Tr• : Ω•A→ Ω•A.

Now, let S = Spf(R) and X0 = Spwf(A). Suppose that g : S → S0 is a morphism in FS,

and let X denote the weak base change of X0 along g. Then σ pulls back to an OS-linear

endomorphism of X, and the triple (S,X, σ) is a weak formal F -scheme. We define ΩX/S to

be the inverse image of Ω̃A/R, and let Ω•X/S denote the free exterior algebra on ΩX/S. Then

by inverse image we have canonical Dwork operators

θ• : Ω•X/S → Ω•X/S.

Suppose that we have a σ-module (M,φ) on X/S. Let M∨ denote the OX-dual of M , and
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let us abbreviate ΩiM∨ = Ωi
X/S ⊗OX

M∨. The exterior product defines a perfect pairing

Ωi
X/S × Ωd−i

X/S → Ωd
X/S,

via which we identify the dual (Ωi
X/S)∨ with Ωd−i

X/S. This gives an identification

Ωd−iM∨ = Hom(ΩiM,Ωd
X/S).

Definition 4.3.7. Given (M,φ) as above, we define the associated Dwork operators on

Ωd−iM∨ by sending f : ΩiM → Ωd
X/S to the composition

ΩiM
σ⊗φ−−→ ΩiM

f−→ Ωd
X/S

θd−→ Ωd
X/S.
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Chapter 5

Spectral Varieties

Let K be a field equipped with a discrete valuation, and let V be a K-vector space. Fix

a separable closure Ks of K. Following Monsky [18], we say that a K-linear operator

ψ : V → V is nuclear if

1. The set E(ψ) of non-zero eigenvalues of ψ forms a summable sequence in Ks.

2. For every λ ∈ E(ψ), the generalized eigenspace Vλ is finite-dimensional.

For each n > 0, let Vn denote the sum of the Vλ for all v(λ) < n. It follows easily from the

definition that the limit

C(ψ, s) = lim
n→∞

det(I − ψs|Vn)

exists, and moreover is an entire function on K. We refer to C(ψ, s) as the Fredholm

determinant of ψ. We regard C(ψ, s) as an analytic function on the rigid analytic space

Gm,K . If E(ψ) denotes its zero-locus, then the set of rigid points of E(ψ) is naturally

identified with the set of Gal(Ks/K)-orbits in E(ψ).
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Our goal in this final chapter is to construct an analogous spectral theory for families of

nuclear operators, parameterized by some rigid analytic space S. To each such operator ψ

we associate an analytic function C(ψ, s) on the relative multiplicative group Gm,S (2.3.3).

Its zero locus E(ψ) is naturally a rigid analytic variety over S, whose fiber over a rigid

point P ∈ 〈S〉 becomes the set E(ψP ) described above. Our nuclear operators are a mild

generalization of Coleman’s families of completely continuous operators acting on a Banach

module [4].

In 5.2, we show that if M is a coherent module over an affine weak formal F -scheme, and

if Θ is a Dwork operator on M , then Θ is a nuclear operator. In 5.3 we prove our main

theorem, relating the L-function of an overconvergent σ-module to the spectral theory of the

associated Dwork operators. Finally, in 5.4 we give a concrete examples of overconvergent

families over the punctured affine line.

5.1 Nuclear Operators

Let S be a formal scheme, and let S = Srig denote the rigid analytic space associated to S.

Throughout, we fix a OS-module M .

Definition 5.1.1. Let U → S be an open immersion. We say that an OS-linear operator

ψ : M →M is nuclear over U if:

1. For every rigid point P of U , the induced operator ψP on the vector space VP =

k(P )⊗MP is a nuclear operator, in the sense of Monsky [18].

2. There is an analytic function C(ψ, s) on Gm,U with the interpolation property

C(ψ|U , s)P = C(ψP , s) ∈ k(P )[[s]].
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In this case, the function C(ψ|U , s) is unique and we refer to it as the Fredholm determinant

of ψ over U .

The property of being a nuclear operator is evidently local on S. We will say that an operator

ψ : M → M is nuclear if ψ is nuclear over all of S. In this case, we will denote by C(ψ, s)

its Fredholm determinant over S.

Definition 5.1.2. Let ψ : M → M be a nuclear operator. The spectral variety of ψ is the

hypersurface E(ψ) in Gm,S cut out by the Fredholm determinant C(ψ, s).

Let ψ : M → M be a nuclear operator. The spectral variety E(ψ) is a closed rigid analytic

subspace of Gm,S ([1], 4.8.29). In particular there is a morphism of rigid analytic spaces

E(ψ) → S. Let Q be a rigid point of E(ψ), and let P denote its image in S. Then Q

corresponds uniquely to an element in E(ψP ). We define the slope of Q to be −vP (λ), where

λ is any eigenvalue of ψP representing Q. If P is any rigid point of S, let SP (ψ) denote the

set of slopes of the operator ψP . Here is our main question:

Question 5.1.3. How does the slope set SP (ψ) vary with P?

Let us conclude this section with an elementary slope estimate. Suppose that S = Spf(R),

where R is a Noetherian adic ring admitting a principal ideal of definition πR. Let M be an

OS-module and ψ : M → M a nuclear operator. The Fredholm determinant C(ψ, s) has a

unique representation as a power series

C(ψ, s) =
∑
j

rjs
j ∈ R[ 1

π
][[s]].

Proposition 5.1.4. For every rigid point P of R, the vP -adic Newton polygon of C(ψP , s)

lies above vP (π) times the π-adic Newton polygon of C(ψ, s).
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5.2 Dwork Operators

Let (p : X → S, σ) be an affine weak formal F -scheme. Let M be a finite OX-module, and

let Θ be a Dwork operator on M . Our goal in this section is to prove that Θ induces a

nuclear operator on the OS-module p∗M . As the question is local on S = Srig, we may

assume that S = Spf(R), where R is a Noetherian adic ring admitting a principal ideal of

definition πR ⊂ R. By Proposition 3.4.4, we have X = Spwf(A) for some w.c.f.g. algebra

A/R.

Our first step will be to replace A with a suitable Monsky-Washnitzer algebra. Let s1, ..., sn

be weak generators for A, and let B = R[X1, ..., Xn]. Then we have a natural map

B† → A

sending Xi 7→ si, which is surjective on rigid points. Thus if we regard M as a B†-module,

there is a finite B†-submodule M0 ⊆M which is dense in M . Moreover, for every rigid point

P the map (M0)P →MP is surjective. Choose a finite free resolution

F • →M0.

Note that σ : B† → B† is affine, and consequently σ∗ is an exact functor. It follows that Θ

prolongs to a map of complexes Θ• : F • → F •. In this case, we have:

Lemma 5.2.1. Suppose that for each i, Θi is nuclear. Then Θ is nuclear, and

C(Θ, s) =
∏
i

C(Θi, s)
(−1)i−1

.
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Proof. We need only check that for every rigid point P of R, that there is an equality

C(ΘP , s) =
∏
i

C((Θi)P , s)
(−1)i−1

.

But this follows immediately from ([18], 1.4(2)).

In light of the lemma, we may assume that B = A and that M is a finite free A-module.

The remainder of this section will closely follow Monsky’s proof that Dwork operators over a

discrete valuation ring are nuclear [18]. Write M =
⊕

iA, and let qi : A→M and pj : M →

A denote the ith canonical injection and that jth canonical projection, respectively. Note

that M is a free R-module, with basis eu,i = qi(X
u). For each c > 0, let e

(c)
u,i = πbc/|u|ceu,i, and

let M (c) denote the free R-submodule of M with basis given by the e
(c)
u,i. Then M =

⋃
cM

(c).

We claim that for c� 0, Θ restricts to an endomorphism of M (c). Let us first decompose Θ

as follows: for each 1 ≤ i ≤ n, define

Θi,j = pj ◦Θ ◦ qj.

Then Θi,j is a Dwork operator on A. For positive integer m and c, define the R-module

Am,c =

{∑
j

ruX
u : |u| ≤ m+ cvπ(ru)

}
.

Observe that the Frobenius map σ defines an embedding Am,c → Aqm,qc. Moreover, we have

the relations

Am,c · Am′,c ⊆ Am+m′,c

πjAm,c ⊆ Am−cj,c.

Lemma 5.2.2. There exist positive integers r and c0 such that for all c ≥ c0, and all i, j,
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and m, Θi,j(A
qm,qc) ⊆ Am+r,c.

Proof. Recall that A is a finite free σ(A)-module, a basis being given by the monomials Xv

where 0 ≤ vi < q for all i. It follows that for such v, we may define Dwork operators Θv on

A via the relation

f =
∑
v

σ(Θv(f))Xv.

Note that for any f ∈ A, we have

Θi,j(f) =
∑
v

Θv(f)Θi,j(X
v).

Since the sum is finite, there exist r, c such that all Θi,j(X
v) lie in Ar,c. It suffices then to

prove that for c� 0, we have Θv(A
qm,qc) ⊆ Am,c.

Suppose then that f =
∑

u ruX
u ∈ Aqm,qc, so that |u| ≤ qm+ qcvπ(ru) for all u. For each u,

write

u = qw(u) + v(u),

where w(u) and v(u) are multi-indices and each component of v(u) is less than q. Now

Xu = σ(Xw(u))Xv(u) + (Xqw(u) − σ(Xw(u)))Xv(u)

Let c be such that σ(Xi) ∈ Aq,qc. Then σ(Xw(u)) ∈ Aq|w(u)|,qc ⊆ Aqm+qcvπ(ru),qc, so that

σ(ruX
w(u)) ∈ Aqm,qc and thus Xw(u) ∈ Am,c. Similarly, we have that

ru(X
qw(u) − σ(Xw(u)))Xv(u) ∈ Aq(m+c),qc.
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Thus we obtain a decomposition f =
∑

v σ(fv,0)+πf ′, where fv,0 ∈ Am,c and f ′ ∈ Aq(m+c),qc.

Replacing m with m+ c and applying the above procedure repeatedly, we obtain

f =
∑
v

∞∑
j=0

σ(fv,j)π
jXv,

where each fv,j ∈ Am+cj,c. Thus

Θv(f) =
∞∑
j=0

fv,jπ
j ∈ Am,c.

Lemma 5.2.3. For all c > c0, Θ restricts to an endomorphism of V (c).

Proof. For any multi-index u, expand

Θi,j(X
u) =

∑
v

rvX
v.

By Lemma 5.2.2, we have Θi,j(X
u) ∈ A|u|/q+r,d for all d ≥ c0. Consequently

vπ(ru) ≥
|v| − |u|/q − r

d
.

Now for any c > c0, the coefficient of e
(c)
v,j in Θ(e

(c)
u,i) is simply π(|u|−|v|)/crv, which has π-adic

valuation

x ≥ |v| − |u|/q − r
d

+
|u| − |v|

c
.

Letting d = c− 1, we have c/q ≤ d < c. Thus we see that

x ≥ (q − 1)|v| − qr
q(c− 1)

. (5.1)
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Now x ≥ 0 for all but finitely many v, and consequently we see that Θ restricts to an

endomorphism of V (c).

Theorem 5.2.4. Θ is a nuclear operator on M .

Proof. For each k > 0 and each c0 < c ≤ ∞, let M
(c)
k denote the reduction of M (c) modulo

πk. If Θk denotes the operator induced by Θ on M
(c)
k , then by the estimate (5.1) we see that

Θk has finite image. If N is any finite direct summand of M
(c)
k containing the image of Θk,

then we may define the Fredholm determinant of Θk acting on M
(c)
k to be the polynomial

C(Θk|M (c)
k , s) = det(I − sΘk|N) ∈ 1 + sR/πkR[s],

which is easily seen to be independent of the choice of N . It follows that the polynomials

C(Θk|M (c)
k , s) are compatible with the projection maps M

(c)
k+1 → M

(c)
k . Taking the inverse

limit, we obtain power series

C(Θ|M (c), s) ∈ 1 + sR[[s]].

By ([13], §5), the above power series has an expansion

C(Θ|M (c), s) =
∑
j

cjs
j,

where the coefficients cj can be constructed explicitly as follows: Let I denote the set of

pairs (i, u), where 1 ≤ i ≤ rankA(M), and u is a multi-index. For c > c0, let Q(c) denote the

matrix of Θ acting on V (c) with respect to the chosen basis B(c) = {e(c)
i,u : (i, u) ∈ I}. Then

we have

cj = (−1)j
∑
S⊆I
|S|=j

det(Q
(c)
S )
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where Q
(c)
S is the finite submatrix of Q(c) corresponding to S. But for a fixed S, the Q

(c)
S are

similar, and so the power series

C(Θ, s) = C(Θ|M (c), s)

is independent of the choice of c.

To conclude the proof, note that all of the above holds after base change along a rigid point

P of R. Thus for each rigid point P of R, the operator ΘP acts as a nuclear operator on

VP = k(P ) ⊗R V , and the power series C(Θ, s) interpolates the individual Fredholm series

C(ΘP , s).

Let Q(∞) denote the matrix of Θ acting on M , with respect to the chosen basis {ei,u : (i, u) ∈

I}. Then for every finite set S ⊆ I, the matrix Q
(∞)
S is similar to Q

(c)
S for c � 0. It follows

that the power series C(Θ, s) lies in 1 + sR[[s]]. We define the trace of Θ to be −1 times the

coefficient of s in C(Θ, s). Note that for each i ≥ 1, the operator Θi is nuclear and that we

have the usual relation

C(Θ, s) = exp

(
−
∞∑
i=1

Tr(Θi)
si

i

)
.

5.3 The Trace Formula

Suppose again that we are in Situation 4.1.3 and that X0/Fq is a smooth affine variety.

Let (M,φ) be a σ-module over X/S, and recall that we have constructed a sequence of

Dwork operators θi(φ) on the de Rham complex ΩiM∨ (5.2). According to the results of the

previous section, each θi(φ) is a nuclear operator, and so we may consider the characteristic

series C(θi(φ), s), which is a global analytic function on Gm,S .
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Theorem 5.3.1. For any σ-module as above, we have a meromorphic continuation

L(φ, s) =
∏
i

C(θi(φ), s)(−1)i−1

. (5.2)

Proof. Suppose that P is a rigid point of R and that RP is a ring of characteristic 0. The

Monsky trace formula ([22], 3.1) says precisely that we have an equality

L(φ, s)P =
∏
i

C(θi(φ), s)
(−1)i−1

P .

Thus the theorem holds over any admissible open subset of S which does not intersect the

closed rigid subspace cut out by the global section p.

Suppose then that P is a rigid point of characteristic p, and choose an admissible open

neighborhood U of P of the form Spf(R)rig, where R is a Noetherian adic ring admitting a

principal ideal of definition (π) ⊂ R. Let F denote the difference of the two sides of (5.2).

Then the restriction of F over U has an expression of the form

F (s) =
∞∑

i=−∞

ris
i ∈ R[ 1

π
][[s, s−1]].

It suffices to show that each coefficient of F (s) vanishes. But we have already shown that

each coefficient vanishes on the open subscheme of Spec(R[ 1
π
]) on which p is invertible. It

follows that each coefficient must be identically zero, completing the proof.

Suppose for example that R is a rigid point. Then Theorem 5.3.1 reduces simply to Monsky’s

trace formula. If (M,φ) is a unit-root σ-module, then it is known that the completion M∞

is equipped with a natural convergent connection ∇ commuting with φ. Suppose moreover

that ∇ descends to a connection on M . Then the cohomology of this connection is the rigid

cohomology with coefficients in M . In this case, Theorem 5.3.1 reduces to the well known

Lefschetz trace formula for the rigid cohomology of an affine variety [8]. In general, we
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cannot expect that our families of representations are equipped with such an overconvergent

connection. However, it would be interesting to know if there exists a similar chain-level

trace formula generalizing Theorem 5.3.1 to non-affine weak formal schemes. Such a formula

should take into account the action of θi(φ) on the higher cohomology Rjp∗Ω
iM∨ and should

induce—via the degeneration of the Hodge-de Rham spectral sequence—the Lefschetz trace

formula for rigid cohomology in the above special case.

5.4 Example: Artin-Schreier-Witt Families

We now give a concrete application of the theory to the study the Artin-Schreier-Witt families

of representations over the punctured line X = Spec(Fq[t, t−1]). In particular, we construct

a much larger class of overconvergent examples than those considered by Davis, Wan, and

Xiao [6]. This section may be regarded as a “preview” of forthcoming work with Joe Kramer-

Miller, where we study overconvergent Artin-Schreier-Witt families over an arbitrary smooth

affine curve.

Let A = Zq[t, t−1], and let X = Spec(A) denote the “obvious” lifting of X to characteristic

0. We choose the lifting σ of the absolute Frobenius defined by t 7→ tp. The pair (X∞, σ) is

therefore a formal F -scheme over Zp. Define the Zp-module endomorphism

℘ = σ − id : A∞ → A∞.

In this setting, we have the following analogue of Katz’ correspondence for étale Zp-coverings

of X:

Theorem 5.4.1. There is an isomorphism of Zp-modules

A∞/℘A∞ → Hom(π1(X, x̄),Zp).

66



Proof. Let K = Fq(t) denote the function field of X, and let G be the maximal pro-p

quotient of the absolute Galois group of K. Recall that the Witt ring W (K) is equipped

with a canonical lifting of Frobenius F . For any element a ∈ K, let [a] denote its Teichmüller

representative in W (K). Fix an element α ∈ Fq with NFq/Fp(α) = 1. Consider the Zp-module

endomorphism ℘ = F − id of W (K). There is a canonical isomorphism of Zp-modules ([15],

2.2)

W (K)/℘W (K)→ Hom(G,Zp).

Recall that the Zp-module Hom(π1(X, x̄),Zp) is the submodule of Hom(G,Zp) consisting

of those homomorphisms which ramify only at t and t−1. Let H denote the corresponding

submodule of W (K)/℘W (K). By ([15], 4.8), each element of H has a unique representative

in W (K) of the form

∞∑
i=−∞

ci[t]
i,

where ci ∈ Zq tend to 0 as |i| → ∞, and c0 is of the form c[α] for some c ∈ Zp.

It is straightforward to see that every element of A∞ has a unique representative modulo

℘A∞ of the form

∞∑
i=−∞

cit
i,

where ci ∈ Zq tend to 0 as |i| → ∞, and c0 is of the form c[α] for some c ∈ Zp. Our choice

of σ determines a unique Frobenius-compatible homomorphism

A∞ → W (K),

which is given explicitly by t 7→ [t]. But by the above discussion, we see that the induced
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map

A∞/℘A∞ → W (K)/℘W (K)

is injective, and its image is precisely H.

For an element f ∈ A∞, we will let αf : π1(X, x̄)→ Zp denote the corresponding map. Let

Λ = Zp[[T ]], which is a 2-dimensional local ring with maximal ideal m = (p, T ) and residue

field Fp. We regard Λ as the completed group algebra of Zp via the continuous character

Zp → R× sending 1 7→ 1 + T . The composition

ρf : π1(X, x̄)
αf−→ Zp → Λ×

is therefore a family of representations which we refer to as the Artin-Schreier-Witt family

associated to f . Let W = Spf(Λ)rig denote the “parameter space” for this family. Our goal

in this section is to prove that for any f ∈ A†, the family ρf becomes overconvergent after

removing a sufficiently large disk around the rigid point T = 0.

Let XΛ denote the base change of X along Zp → Λ, and let (Mf , φf ) denote the σ-module

on X∞Λ corresponding to ρf . We will begin by determining explicitly the σ-module structure

of (Mf , φf ). Recall that the Artin-Hasse exponential series is the power series

E(s) = exp

(
∞∑
i=0

tp
i

pi

)
∈ 1 + s+ s2Zp[[s]].

One sees easily that E(s) defines a bijection m → 1 + m. In particular, there is a unique

π ∈ m such that E(π) = 1 + T .

Definition 5.4.2. The Artin-Hasse exponential map is the unique Zp-module homomor-
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phism

A∞ → 1 + πA∞Λ [[π]] ⊆ A∞Λ

sending [c]ti 7→ E([c]πti).

For any f ∈ A∞, let Ef denote the Artin-Hasse exponential of f . We regard Ef as an

endomorphism of A∞Λ by left multiplication.

Proposition 5.4.3. There is an isomorphism of σ-modules

(Mf , φf ) ∼= (A∞Λ , Ef ◦ σ).

Let f ∈ A∞. Note that f admits a decomposition of the form f = f0(t) + f∞(t−1), where

f0, f∞ ∈ Zq〈t〉. Since the Artin-Hasse exponential is additive, we see that Ef ∈ A†R if both

Ef0 , Ef∞ ∈ A
†
R. Thus for notational convenience, we will assume that f = f0 is of the form

f(t) =
∞∑
i=0

fit
i.

where fi ∈ Zq tend to 0 as i → ∞. For each i, consider the Teichmüller expansion fi =∑∞
j=0[fi,j]p

j, where fi,j ∈ Fq. Since f is a convergent power series in t, we can uniquely write

f =
∞∑
j=0

Fj(t)p
j,

where the coefficients are polynomials

Fj(t) =

dj∑
i=0

[fi,j]t
i
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with fdj ,j 6= 0. Now suppose that f ∈ A†. In other words,

δf = lim
k→∞

inf
i>k

vp(fi)

i
> 0.

Our first step will be to relate the rate of overconvergence to the integers dj.

Lemma 5.4.4. For j � 0, dj ≤ j/δj.

Proof. Note that (dj) is bounded above by the increasing sequence

qj = max{i : vp(fi) < j}.

Clearly we have vp(fqj) < j for all j. If (qj) is bounded, then we are done. Otherwise, choose

some 0 < δ < δf . By the definition of δf , there exists some i0 > 0 such that for all i > i0,

vp(fi) > iδ.

Since (qj) is not bounded, there exists some j0 such that for all j > j0, we have qj > i0.

Thus we have

j > vp(fqj) > qjδ ≥ djδ.

Letting δ → δ−f , we obtain the result.

Now for each j ≥ 0, there exists a unique πj ∈ m such that E(πj) = (1 + T )p
j
. One easily

sees that πj ∈ pjπ(1 + πR). By definition, we have

Ef (t) =
∞∏
j=0

dj∏
i=0

E([fi,j]πjt
i).
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For a fixed value of j, expand

dj∏
i=0

E([fi,j]πjt
i) =

∞∑
i=0

ci,jt
i.

Then by a standard argument, for i > 0 we have vπj(ci,j) ≥ i/dj.

Theorem 5.4.5. The family ρf is overconvergent.

Proof. First, observe that the specialization of ρf along the rigid point T = 0 is the trivial

representation, which is overconvergent since σ is an overconvergent lifting of Frobenius.

It suffices to prove that ρf is overconvergent over the “punctured” space W◦ obtained by

removing this point. Explicitly, W◦ is a quasi-separated rigid analytic space admitting an

admissible covering by spaces Wn, where Wn is the rigid analytic space associated to the

adic R-algebra

Rn = R[pnT−1].

Note in particular that mRn = TRn, and vT (p) = 1/n in this ring. We will show that the

restriction ρf |Wn is overconvergent for all n. In the above notation, we have for a fixed j

that

vT (ci,j) = vT (πj)vπj(ci,j) ≥ (1 + jvT (p))
i

dj
≥
(

1 +
j

n

)
iδf
j
>
iδf
n
.

Taking the product over all j, we see that Ef is overconvergent over Wn, thus proving the

theorem.
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Appendix A

Constructions for Weak Formal

Schemes

In this appendix we give various applications of Theorem 3.4.7 to basic constructions for

weak formal schemes.

A.1 Relative Spwf

For applications it will be convenient to have a description of affine weak formal schemes

analogous to the relative Spec construction for ordinary schemes. Let R be a Noetherian

adic ring, and let A be a Noetherian weakly finitely generated algebra over R. Define a sheaf

Ã† on the distinguished open subsets of S = Spf(R) via

Ã†(Sf ) = A†f .
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Note that Ã† is a sheaf: it agrees with the pushforward of the structure sheaf of Spwf(A)

along the natural map Spwf(A)→ Spf(R).

Definition A.1.1. Let S be a formal scheme, and let A be an OS-algebra. We say that A

is a w.c.f.g. algebra if S admits a covering {Si → S} with Si = Spf(Ri) such that for each

i, A|Si = Ã†i for some w.c.f.g. algebra Ai over Ri.

By Proposition 3.4.2, if π : X → S is an affine weak formal scheme then π∗OX is a w.c.f.g.

algebra. As the following lemma indicates, the property of being a w.c.f.g. algebra is local

on the base:

Lemma A.1.2. Let A be a w.c.f.g. algebra over S, and let S′ → S be an open immersion.

Then A|S′ is a w.c.f.g. algebra over S′.

Proof. We proceed as in Lemma 3.4.2. Choose a covering {Si → S} with Si = Spf(Ri)

such that for each i, Ai = A|Xi is of the form Ã†i for some w.c.f.g. algebra Ai over Ri. Let

S′i = Si ∩ S′, and A′i = A|S′i . Since S′i is an open subset of Spf(Ri), there exist fj ∈ Ri

such that

S′i =
⋃
j

Spf(Ri,j),

where Ri,j = (Ri)fj . Let Ai,j = (Ai)
†
fj

. Then each Ai,j is a w.c.f.g. algebra over Ri,j, and

moreover A|Spf(Ri,j) = Ã†i,j, completing the proof.

Proposition A.1.3. Let A be an OS-algebra. The following are equivalent:

1. A is a w.c.f.g. algebra

2. For every affine open S′ = Spf(R) of S, A|S′ = Ã† for some w.c.f.g. algebra A over

R.
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Proof. Evidently (2) implies (1). Suppose then that A is a w.c.f.g. algebra over S, and let

S′ = Spf(R) be an open affine in S. Let A = Γ(S′,A), and define B = Ã†. Note that

there is a natural map B → A|S′ . Arguing as in Lemma A.1, we see that this map is an

isomorphism on some affine open cover of S′, hence B ∼= A|S′ as desired.

Theorem A.1.4. Let S be an object of FS+, and let A be a w.c.f.g. algebra on S. Consider

the functor F : FS†S → Set which assigns to a weak formal scheme π : X → S the set of

OX-algebra maps

π∗A → OX.

Then F is representable by a weak formal scheme over S which we denote by Spwf(A).

Proof. Choose an affine open covering {Spf(Ri) → S}i, so that A|Spf(Ri) = Ã†i for some

w.c.f.g. algebra Ai/Ri. Define Xi = Spwf(Ai). Then we have a natural map π∗A → OX,

which correspond to maps Xi → F collectively covering F . We must show that Xi → F is

open. Suppose then that we have a weak formal scheme X′ over S and a map π∗A → O′X.

Define X′i = p−1Spf(Ri). Then we see easily that the diagram

X′i Xi

X′ F

is Cartesian, completing the proof.
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A.2 Weak Completion

Let S be an adic Noetherian scheme, and let S = S∞. Suppose that X is a scheme of finite

presentation over S. We will now use Theorem 3.4.7 to construct a weak formal scheme

X†/S which we call the weak completion of X.

Consider the functor F on FS†S which sends a weak formal scheme X to the set of S-morphisms

of adic ringed spaces X→ X. Choose a covering {Xi → X} where Xi = Spec(Ai) is affine over

S. Then A† is a w.c.f.g. algebra over S, and we define X†i = Spwf(Ai). Then X†i represents

the functor which sends a weak formal scheme X to the set of S-morphisms X → Xi. In

particular, each X†i is a subfunctor of F and the X†i collectively cover F .

To see that X†i is open in F , suppose that we have a map X → F . Composing with the

natural S-morphism F → X, we obtain an S-morphism f : X → X. Define Xi = f−1(Xi).

Then we have a Cartesian square

Xi X†i

X F

.

Thus Xi is open in F , and by Theorem 3.4.7 we obtain the following:

Theorem A.2.1. There exists a unique weak formal scheme X†/S with the following uni-

versal property: For every S-morphism X → S, where X is a weak formal scheme over S,

there exists a unique S-morphism X→ X† making the following diagram commute:

X X†

X

.
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