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Abstract 

Meson loop corrections to baryon axial currents are computed in 
the 1/ N expansion. It is already known that the one-loop corrections 
are suppressed by a factor 1/ N; here it is shown that the two-loop cor
rections are suppressed by 1/N2 . To leading order, these corrections 
are exactly what would be calculated in the constituent quark model. 
Some applications are discussed. 

1This work was supported in part by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department 
of Energy under Contract DE-AC03-76SF00098. 



1 Introduction 

How are the baryons' properties renormalized by pion loops? This classic 
question gains renewed interest with the advent of each new calculational 
technique. 

Pion loop corrections to baryon properties have been studied using the 
non-linear sigma model with derivative couplings [1]. Later, Jenkins and 
Manohar [2, 3, 4] simplified the problem by invoking the heavy baryon ap
proximation [5]. Using a Lagrangian that included the baryon octet and 
Goldstone boson octet, they found that the one-loop correction to the baryon 
axial current was large--as much as 100% of the tree-level value. However, 
if the baryon decuplet is also included, the total one-loop corrections are 
smaller, on the order of 30% of the tree-level value. That is, the loops involv
ing decuplet states tend to cancel the loops involving only octet states. This 
was good news for perturbation theory, but it left unanswered the question, 
"What is the loop expansion parameter?" A seemingly coincidental cancel
lation of large corrections did not leave behind any obvious parameter that 
could justify, for example, the belief that the two-loop corrections should be 
any smaller than the one-loop corrections. 

This question can be addressed within the framework of large-N tech
niques for baryons [6, 7], which have recently been rediscovered and greatly 
expanded [8, 9, 10, 11, 12, 13, 14, 15]. One of the results is that the baryon 
coupling to the axial current is on the order of the number of colors, 

9A rv N (1) 

This also means that the baryon-pion coupling is"' 9Ak1_J f"' ffi. However, 
the renormalization graph of Fig. 1 (a) gives a contribution of order N 2 

to 9A, which if taken alone would violate Eq. (1) and doom perturbation 
theory (since the one-loop contribution would be much larger than the tree
level value). But there is another graph that must not be forgotten, the 
wavefunction renormalization of Fig. 1 (b). When both of these diagrams 
are included, it is found [8, 10, 14] that the leading order behaviour cancels, 
and the total one-loop correction is 0(1), or 1/N times the tree-level value. 
The one-loop corrections are therefore small in the 1/ N expansion and chiral 
perturbation theory seems to be valid. 

As encouraging as this result is, it leaves some questions open. If the one
loop results are to be fitted to the data and believed, one should show that 
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the two-loop contribution is small compared to the one-loop result. This is 
not obvious since, for example, the diagram of Fig. 2(a) is of order N 3 times 
the one-loop correction. However, once again there are several diagrams to 
be added together. This paper shows that when all of the two-loop diagrams 
are taken into account, the largest terms cancel, and the result is of order 
1/ N times the one-loop contribution. Evidently, the pion loop expansion 
parameter turns out to be 1/N. Although this has been suspected before 
[8, 10], it has not been previously demonstrated to two loops. 

One result of this analysis is a demonstration that when the pion-baryon 
vertex is taken to leading order in 1/ N, the chiral loop corrections follow 
exactly the same pattern as would have been calculated in the chiral quark 
model [16]. This is surprising because the chiral quark model is a constituent 
quark model where (to leading order) the pions interact with only one quark 
at a time. In the foregoing analysis, however, the pions interact coherently 
with all of the quarks in the baryon at once. Nevertheless, when all of the 
loop diagrams are taken into account, the cross terms where pions connect 
two or more quarks cancel exactly. All of the pions end up acting on only 
one quark at a time, and the chiral quark model results. It had already been 
noted that the constituent quark model fits the data as well as the usual 
baryon-pion theory [3]; the 1/ N expansion sheds some light on why this is 
so. 

The next section presents the two-loop calculation; this is followed by a 
discussion of possible applications of this formalism. 

2 Two-Loop Corrections 

What are the meson loop corrections to the baryon axial current? The spatial 
components of the axial current are written 

where ra is a generator of the flavor group. (The magnitude of xia is what 
was loosely called 9A in the introduction.) The axial current can be expressed 
in the 1/N expansion using perturbative baryon states IE > [12] (to be 
contrasted with physical states IB > ): 
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Here ata creates a quark with spin a and isospin r. The quarks are totally 
antisymmetric with respect to color; their color indices are suppressed, and 
the operators a and at are treated as bosonic, rather than fermionic [12]. 
Then the axial current can be written in a 1/N expansion 

(2) 

where g and h are constants of order 1 and Gia and Hia are the operators 
[12, 13, 15] 

The mesons are coupled derivatively to the baryon axial current. Some 
of the Feynman rules for the pion-baryon interactions are given in Fig. 3. 
The baryons are treated within the heavy fermion approximation [5, 2, 3], 
and the calculations are performed in the baryon's rest frame. The meson 
propagator uses the mass matrix m~b' a diagonal matrix that gives the masses 
of the pions, kaons, and eta under flavor symmetry breaking. For the N 
power counting, it is important to keep in mind that the pion decay constant 
f ex: VR. 

Now look at the vertex renormalization. The momentum integral for Fig. 
1( a) is 

The inner loop includes a counter-term. If this term (the 1/ q0 appearing 
above) is not included, the internal baryon acquires an additional mass, which 
must then be transformed away by the heavy baryon transformation. It is 
easier to simply include the counter-term explicitly. The mass differences 
between the various baryons are proportional to 1 j N and/ or to the flavor 
symmetry breaking, and will be ignored. 
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The integrals for Fig. 2(b),(d),(e), and (f) are (respectively) 

The vertex renormalization to two loops can then be written: 

v;ta (xia + _!_Tbb' Xib' xia Xib + _!_.;wee' Xib xia xke xke' Xib' 
B'B = J2 f4 1 

+..!__ --rbb'ee1 xjb xke xia xke' xjb' + ..!__ --rbb'ee' xjb xke xke' xia xjb' 
j4V2 j4v1 . 

+_!_JCbb'ee' xjb xia xke xjb' xke' + _!_JCbb'ee' xjb xke xia xjb' xke' 
f4 1 f4 2 

+ f14 JC~e'bb' xjb xke xjb' xia xke') (3) 
. B'B 

The operators Xia are treated as matrices with baryon indices; intermediate 
baryon states are summed over. 

The baryon wavefunction renormalization constant can be computed from 
the diagrams of Fig. 1 (b) and Fig. 4: 

(z-1) -
2 B'B -

Finally, the renormalized axial current is 

(5) 
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When Eqs. (3) and (4) are substituted into Eq. (5) and the result is 
multiplied out to order 1/ r (i.e. to two loops), the terms do not simplify in 
any obvious way. Some identities among the integrals must be used, 

as well as the identity 

qaa'bb' vaa'bb' _ vaa'bb' 
J2 + ""2 - ""I 

K~a'bb' + .Jta'bb' = 0 

K~a1bb1 + K_~b'aa' _ Iaa'Ibb' -:- 0 

Then after a few pages of algebra, Eq. (5) becomes 

< B'lq!i!sTaqiB >= Xia + 2~2Ibb'[Xib, [Xia, Xib']] 

+ ;
4 
K~b'cc' { l [xib, [[Xkc, [Xia, xkc']], Xib']] 

+ ~ [[xib,Xia], [Xkc, [Xib',xkc']]] 

+ l [xia, [xib, [Xkc, [Xib',xkc']]]]} 

+ 4~4 K~b'cc' [ [Xib, xkc], [Xia, [Xib', xkc']]] (6) 

This is the main result of the paper. From here it is possible to show that 
the one-loop corrections to the axial current are suppressed by 0(1/N) times 
the tree-level, and the two-loop contribution is suppressed by 0(1/N2

). 

For example, suppose we take xia to leading order in 1/N, 

(7) 

where Gia = ataT:p~13ast3· Since the operator Gia has one a and one at, it 
can count the number of quarks in the baryon once, and can therefore be of 
order N. No accidental cancellations occur, so the axial current is O(N) to 
tree level. Now using Eq. (7), the one-loop correction can be read off from 
Eq. (6): 

(8) 
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Each Gia has one a and one at, but each commutator eliminates an a-at pair 
due to the identity [a!a ~bff abiJ, a!-r W~ ado] = a!a[V, W]~abi3· The resultant 
operator in Eq. (8) has only one a and one at, so the matrix element is at 
most of order N. Since 11 P rv 1IN, the total one-loop correction is 0(1), 
or 1 IN times the tree-level value. 

The quadruple commutators, which give the two-loop corrections, also 
eliminate all but one a-at pair. Therefore these commutators are also of 
O(N), and when they are multiplied by a coefficient of 11 f 4

, the result is 
0( 1 IN). That is, the two-loop correction is 1 I N 2 times the tree-level value. 

This result has the following interpretation: since the loop corrections 
contain only one a and one at, the pion vertices and the current operator 
all act on the same quark; the vertex and wavefunction renormalization are 
carried out on each quark individually. Those diagrams which involve mesons 
connecting two different quarks evidently do not contribute. But this is 
exactly what is assumed to be true in the chiral quark model [16] as developed 
in Ref. [3]. Therefore the constituent quark emerges from the tangle of meson 
loops. 

There are two details that might complicate the above picture, but they 
do not turn out to be problematic. The first is that we have left out some 
diagrams. Figs. 5 (a) - (e) also contribute [2, 3]; they are most easily cal
culated using an effective Lagrangian [12, 13, 14]. It turns out that these 
diagrams follow the same pattern as above: !-loop diagrams are suppressed 
by factors'of (1IN) 1, and the result is just what would have been expected 
from the chiral quark model. One difference of the these diagrams, however, 
is that they are not necessarily suppressed by powers of the coupling constant 
g of Eq.(7). For example, Fig. 5(a) and Fig. 5(b) are both proportional tog 
(rather than g3 or g5

). This point does not affect the present discussion, but 
is important in the next section. 

The second technicality is that Eq. (7) is only an approximation to the 
axial vertex. When the vertex is expanded to the next order in 1 IN (as 
suggested by Eq. (2) ), a new operator Hia is introduced. Hia acts on 
two quarks at a time, so the simplest constituent quark picture receives 
corrections2 . However, the identities of Ref. [15] can be used to show that 

2 Actually such operators appear in the chiral quark model also; rather than being 
suppressed by 1/ N, though, they are suppressed [16] by a power of the wavefunction at 
the origin divided by the constituent quark mass, j7j;(0)! 213 fmc. 
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the one- and two-loop corrections are still suppressed by powers of 1/ N and 
1/ N 2 respectively. 

3 Discussion 

How does all this formalism apply to the real world? The double commu
tator in Eq. (6), which gives the one-loop correction, is of the order of the 
number of flavors N F, and the quadruple commutators giving the the two
loop corrections are of order Nj. The momentum integrals should be cut off 
at the chiral symmetry-breaking scale A. Let the pion decay constant f be 
factorized to show clearly its N-dependence: 

J=-./NJ 

where j is 0(1). As mentioned previously, some diagrams of Fig. 5 are not 
suppressed by powers of the axial coupling constants (g and h of Eq. (2) ). 
Therefore the chiral loop expansion parameter is 

This parameter is not small in any estimation [17). However, one can adopt 
the following approach: start with the bare coupling g (or for example h), 
assume that it can be renormalized to all orders in the flavor symmetric limit 
(m 77 = mK = m1f ~ 0), resulting in the renormalized constant 9R· This new 
constant 9R is to be used in computations, and the effects of virtual pions 
can be computed loop-by-loop, keeping only those terms that violate SU(NF) 
symmetry. In this case all terms involving A 2 jl61r2 }2 are to be thrown away, 
since their effects have already been included in 9R· The new loop expansion 
parameter then becomes 

NF mJ< l A2 

- A og-
2 N l61r2 J2 mK 

This procedure is equivalent to using dimensional regularization for all the 
integrals of Eq. (6). 

Such a program has already been carried out by Ref. [3). The one
loop corrections to the baryon axial current were computed in the chiral 

7 



quark model using dimensional regularization. This is exactly equivalent to 
a leading order 1/ N calculation. The model fits the data well; a best fit is 
obtained for 9R = 0.56. 

So far we have examined the corrections to the octet axial currents. 
What about the singlet current, the "spin content" of the baryon? When 
computing the renormalization of the singlet current, fewer diagrams ap
pear than for the octet current: Figs. 5 (a)-( c) do not exist for the sin
glet current. Therefore the one-loop contribution is suppressed by a factor 
g'k_(NpfN)(A2/167r2}2) compared to the tree value. The two-loop diagrams 
are suppressed by a factor of g'k_(NpfN)(A 2 /167r2 }2) (Figs. 2 and 4) or 

, (NpfN)(mJ< /167r2 }2)(log A2 /m'k) (Figs. 5( d) and (e)) compared to the one
loop diagrams. Therefore, the loop expansion parameter_ E for the singlet 
current is 

( 
2 Np A2 Np mJ< l A2

) c-max gR- - og-
- N 167r2 }2' N 167r2 }2 m'k 

If E is small enough, we do not have to go through the extra step of first do
ing the flavor-symmetric renormalization and then returning to the integrals 
using dimensional regularization. Cutoff regularization can be used from the 
outset. 

Using this approach, and the leading 1/ N baryon-pion vertex, the spin 
content of the proton turns out to be 

(9) 

(Here I used m; = 0 and m~ = ~mJ<·) Unfortunately, since neither g nor A 
is known, this equation has no predictive power.· It is comforting, however, 
that a reasonable choice of the parameters gives a reasonable result. For 
example, for g = 1 and A = 1 GeV, Eq. (9) yields a spin content of 0.57, 
which is within 0( c2

) of the experimental value [18] of 0.27 ± 0.11 . In this 
case the expansion parameter E is rather large, E ~ 0. 75, so the effects of 
chiral loops are estimated to be very important. 
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Figure Captions 

Fig. 1 The one loop vertex renormalization (a) and wavefunction renor
malization (b). The "x" represents the axial current operator. 

Fig. 2 Two loop vertex renormalization diagrams. 

Fig. 3 Some of the Feynman rules for baryon-meson interactions. 

Fig. 4 Two loop wavefunction renormalization diagrams. 

Fig. 5 Additional one and two loop diagrams that contribute to the 
renormalization of the axial current. 
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