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ABSTRACT 

Understanding how mutant KRAS signaling tunes the non-coding 

transcriptome and induces stemness in lung cancer 

David Andrew Robert Carrillo 

Cancer remains a chief health concern across the developed world. 

With the expansion of life extending technologies, the aging population is set 

only to increase drastically in the coming years. As a result, novel modes of 

treating and identifying cancer early in its development is a goal held by 

researchers across the globe. This thesis focuses on one of the most 

common oncogenes and cancer drivers, Kirsten rat sarcoma virus oncogene, 

also known as KRAS. KRAS is a small GTPase responsible for relaying 

proliferative, differentiation and cell survival signals to the cell. Mutations in 

the RAS family of GTPases are present in almost a third of all cancers and 

are frequently overrepresented in lung and pancreatic cancers. However, 

RAS driven cancers have only until very recently been able to treated with 

single molecule inhibitors. Furthermore, not much is known about how the 

KRAS signaling pathway may interact with other established cellular 

pathways to remodel the transcriptome, an area that remains largely 

uninvestigated. Resolving these interconnected relationships holds much 

promise for the development of combinatorial therapies targeting these 

pathways as well as unlocking the potential for the identification of novel 

biomarkers. Here we aim to understand how KRAS signaling may coordinate 
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with the hypoxia response pathway to induce a cellular phenotype similar to 

that of a stem cell, i.e., a cancer stem cell, as it is widely believed that such 

phenotypes confer a survival advantage. We also investigate the modes in 

which KRAS (G12C) signaling tunes the non-coding transcriptome and how 

this may be exploited for the development of novel biomarkers. Our findings 

indicate an inconclusive relationship between hypoxia gene signatures and 

“stemness,” a gene signature score as determined by a machine learning 

algorithm. We also find that KRAS (G12C) signaling tightly regulates the 

expression of key transposable elements (TEs) known as Alus, and that these 

TE’s may serve as suitable biomarkers. Taken together, our findings 

challenge conventional dogma regarding the formation of cancer stem cells 

and reveal novel interconnected relationships between KRAS signaling and 

TE regulation and expression.  
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CHAPTER 1 (OVERVIEW): KRAS signaling tunes both the protein-

coding and non-coding transcriptome 

 

Cancer remains a global health issue 

Cancer remains a chief health concern in the western world. 

Approximately 1.9M people in the US are expected to get cancer in their 

lifetime, and approximately 600k are expected to die1. While advances are 

being made in the treatment of many cancers, recurrence and drug evasion 

remain a seemingly insurmountable obstacle2. This is in part due to the 

stochastic nature of cancer mutation accumulation via unstable genomes, but 

also novel cancer phenotypes that arise in individual cells as a result of global 

transcriptional changes2. Indeed, for a future free of cancer to exist, a proper 

understanding of these phenomena is paramount. This dissertation aims to 

unveil new knowledge regarding the aforementioned biological phenomena. 

To do so, a number of new technologies were implemented such as bulk 

RNAseq library preparation containing unique molecular identifiers and 

machine learning algorithms that score gene expression signatures for 

“stemness”. The findings of these studies are described in the following 

pages.  
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The cancer Stem Cell Hypothesis 

One theory on cancer resistance and metastasis is highlighted by the 

concept of a cancer stem cell (CSC). These specialized cancer cells often 

possess a higher degree of “stemness,” i.e., a dedifferentiated state that 

distinguishes them from other surrounding cancer cells within the tumor3. In 

addition to being able to repopulate a tumor, these dedifferentiated cells are 

able to resist chemo and radiation therapies due in part to their quiescent 

nature, and they often express pluripotency-related genes such as OCT4 and 

SOX24. In induced pluripotent stem cell (iPSC) reprogramming models, 

expression of these factors in differentiated cells results in the acquisition and 

maintenance of stem cell identity5. However, whether comparable 

mechanisms of epigenetic reprogramming contribute to the acquisition and 

maintenance of stemness in lung cancers has yet to be determined. 

 

Mutant KRAS signaling, the non-coding transcriptome and stemness 

Another avenue of interest that lies within the same vein of 

understanding cancer survival is unraveling the modes in which the RAS 

signaling pathway remodels the transcriptome in a manner beneficial to 

cancer survival and metastasis. RAS proteins are membrane bound GTPases 

that work to influence a number of proliferative signals to maintain a mode of 

tumorigenesis and growth when inappropriately executed (Figure 1)6. The 

primary isoforms are KRAS4A, KRAS4B, HRAS, and NRAS genes, and are 
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amongst the most frequently mutated in a wide array of cancers7. Previous 

studies in our lab found KRAS mutation variants G12V and G12D regulate the 

non-coding transcriptome and interferon genes in unique ways8. The work in 

this dissertation seeks to highlight and identify unique differences in non-

coding RNA expression in lung cancer cells harboring the G12C mutation. We 

believe a proper understanding of how mutant KRAS remodels the non-

coding transcriptome holds the potential for the development of novel 

therapeutic strategies. One other avenue we feel holds promise in this regard, 

is the identification of novel cancer biomarkers. We believe leveraging the 

non-coding transcriptional changes prescribed by aberrant KRAS signaling 

may pave the way for identifying these markers.  

 

Cancer Biomarkers and the KRAS connection 

The National Cancer Institute (NCI) defines a biomarker as “a 

biological molecule found in blood, other body fluids, or tissues that is a sign 

of a normal or abnormal process, or of a condition or disease9”. Biomarkers 

are useful as they are able to delineate who has the disease vs. those who do 

not have said disease. The differences exploited by a biomarker can range 

from somatic mutations, to abnormal post-transcriptional changes. As far as 

physical biomarkers go, these can span everything from protein to nucleic 

acid, but a biomarker can also be a collection of events such as altered gene 

expression signatures or changes in a cell’s metabolic preferences9. 
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Biomarkers can also readily be sampled from blood and or any other bodily 

fluid or excretion. For these reasons, identifying novel biomarkers represents 

a promising mode for cancer treatment and prevention. Recently, exploitation 

of the non-coding RNA transcriptome for identification of new biomarkers has 

become a subject of interest10.  

To study the role of KRAS signaling mediated transcriptome 

remodeling, we implemented the use of human cancer cell lines and lung 

airway cells harboring mutant KRAS (either G12V, G12D or G12C). First, we 

investigated the role of mutant KRAS signaling for transcriptome remodeling 

in a lung airway epithelial cell line. These cells were transformed with a KRAS 

(G12V) construct, and subsequent transcription changes assessed via 

RNAseq. The primary goal of this study was to elucidate early transformation 

events in a lung cancer model. My role was to investigate and confirm 

previously established KRAS gene targets for their altered expression. A 

number of key dysregulated proteins and non-coding RNAs such as XIST and 

MALAT were investigated using an array of molecular biological techniques 

including microscopy.  

 

Tools to investigate the CSC hypothesis  

To investigate of the CSC hypothesis, we first questioned if the hypoxia 

signaling network worked in concert with the KRAS signaling pathway to 

induce stemness. This is because many of the downstream targets are 
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shared between the two networks11. Additionally, we aimed to utilize a 3D 

spheroid model to investigate these questions. The spheroid model provides 

both a hypoxic environment at its core, and better recapitulates the tumor 

microenvironment12. Stemness, or a dedifferentiated state was assessed 

using a machine learning tool developed by Malta et. al13. This tool relies on 

training data of both stem cell and non-stem cell sample. The tool is 

compatible with both bulk RNAseq data sets as well as single cell RNAseq 

data sets. Upon acquisition of the necessary tool sets, I first set out to see if 

hypoxic cells could be readily identified from embryoid bodies derived from 

CRISPR dcas9 iPSCs. These cells have been induced to knockdown KRAS 

and have a subsequent scramble control. Additionally, a publicly available 

glioma single cell RNAseq data set was also analyzed in a similar manner14. I 

then scored all cells for stemness to see which cell clusters (hypoxic vs. not 

hypoxic) correlated for having a higher overall stemness score.  

Results indicated no correlation between hypoxic cells and increased 

stemness (chapter 3) in both iPSCs grown in 3D conditions (embryoid bodies) 

as well as in a disassociated glioma. Furthermore, the cluster identified as 

being most enriched for stemness was also most active with entry to the cell 

cycle for the glioma dataset, as determined via Seurat (chapter 3). This 

stands in contrast with current dogma regarding CSC, whereas they evade 

cancer therapy by virtue of their quiescent state15. These findings 
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subsequently influenced the direction for alternative studies, highlighted in 

this thesis. 

 

A new class of KRAS (G12C) inhibitors to identify uniquely regulated 

transposable element RNA 

Another avenue of interest was understanding how a new class of 

KRAS G12C inhibitors act to ablate RAS signaling and contribute to 

transcriptome remodeling. To do this, experiments in the wet lab utilized a 

new class of KRAS (G12C) inhibitors16 in conjunction with a 3D spheroid 

model. Spheroid models are believed to better recapitulate the tumor 

microenvironment and also provide a hypoxic core, the likes of which was 

necessary to address the aforementioned questions in previous chapters. We 

found treatment of spheroids with this class of drugs resulted in a severely 

compromised spheroid morphology. Because of this, hypoxic cores were 

rendered negligible and subsequent experimental strategies were 

implemented. Retaining the previous 3D model, we exposed spheroids for 

approximately 3 days at an ARS-1620 concentration of 500 nM.  

We found these conditions to be most ideal for the retainment of 

spheroid viability and sustained KRAS signaling ablation. Subsequent 

analysis consisted of RNAseq using approximately 100 spheroids (from each 

experimental condition) using a new cDNA library synthesis protocol referred 

to as smartseq3. This library preparation method differs from its predecessors 
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in that it makes use of unique molecular identifiers to control for PCR 

duplications, a common issue in modern RNAseq analysis. Computational 

analysis found a wide variety of differentially expressed protein-coding and 

non-coding genes.  

Perhaps most interestingly, we found a specific subclass of 

transposable elements known as Alus to be preferentially upregulated in 

spheroids with drug induced KRAS signaling ablation. Specifically, we found 

the youngest subfamily AluY elements to be upregulated following KRAS 

(G12C) inhibition. We believe Alus hold promise for serving as a novel and 

effective biomarker. Both in part to their specificity but also their abundance. 

Future studies may support Alu expression as being a mode for assessing 

drug efficacy and tumor response in patients with cancers harboring KRAS 

G12C mutations. Indeed, additional work done in our lab indicates some 

fraction of these Alu transcripts may be excreted in microvesicles from cells 

exposed to the KRAS G12C inhibitor AMG-51017. However, further studies 

are needed to assess the viability of such a process using human blood 

samples and additional computational datasets.  
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Figure 1: Schematic demonstrating KRAS signaling roles in numerous 

cellular pathways and behaviors. RAS signaling has a wide number of 

roles in cellular processes.  
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CHAPTER 2 (Cell Reports): Differential Expression of protein-coding 

and non-coding genes in lung airway epithelial cells harboring the 

KRAS G12V mutation 

 

Introduction 

Mutations in the small GTPase RAS are one of the most frequent 

drivers of cancer, particularly lung cancer18. Indeed, mutations in KRAS are 

represented in approximately one third of all lung cancers19. Additionally, 

mutations in RAS are known to be effective drivers of cancer initiation and 

metastasis20. In addition to being able to trigger entry into the cell cycle, RAS 

is also known to regulate the protein-coding transcriptome to control a wide 

array of cell behaviors including: differentiation, cell growth and metabolism21. 

However, not much is known about how RAS signaling reprograms the non-

coding transcriptome in the context of cancer. This is of key interest because 

emerging studies suggest non-coding RNAs, particularly non-coding RNAs 

play important roles in the regulation of a wide variety of cellular processes22.  

This study first aimed to investigate the transcriptomes of human 

airway and bronchial epithelial cells transformed with a KRAS G12V construct 

to assess the broad effects on KRAS regulated noncoding RNAs. Ultimate 

findings reveal KRAS signaling increases the expression of many non-coding 

RNAs, and many these non-coding RNAs originate from transposable 

elements (TEs). We found that these TE’s are differentially expressed, are 
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exported in microvesicles and are widely regulated by KRAB zinc- finger 

(KZNF) genes, the likes of which are largely downregulated in cells harboring 

mutant KRAS and many adenocarcinomas in vivo. We also observed mutant 

KRAS inducing an intrinsic IFN-stimulated gene (ISG) signature which is 

consistent in a large number of cancers8. The results of this paper suggest 

mutant KRAS is responsible for the remodeling of the non-coding 

transcriptome, having broad implications for intracellular and extracellular 

RNAs regulated by the KRAS signaling pathway.  

Here, I identify and confirm the differential expression of key proteins 

and non-coding RNAs believed to be regulated by the KRAS signaling 

pathway. Of the targets, a number of these genes are believed to be 

important for cancer cell evasion from the immune system as well as the 

regulation of stem cell identity and cancer progression. Initial investigations 

into these targets sought to identify key proteins and transcription factors that 

would provide KRAS driven cancers with a cell survival advantage. To 

investigate these factors, I utilized fluorescent light microscopy and a lung 

airway cell model possessing stable expression of KRAS G12V. Targets of 

interest include the likes of: PDL1, DDX60, MALAT, XIST and more. I also 

utilized a number of other techniques such as qPCR and immunoblot (data 

not shown) to validate previous observations pertaining to these protein 

targets in primary literature23. My findings indicate and validate KRAS 

regulation of some previously established targets. In particular, MALAT, XIST 
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and NEAT1 demonstrate a strong regulatory effect via KRAS signaling. And 

all of these non-coding RNAs have significant relevance for the progression 

and spread of numerous cancers24,25,26. Protein coding targets of interest 

were PDL1 and DDX60. Immunofluorescence microscopy found a potential 

regulatory effect on PDL1s cellular location, from that of extracellular to 

intracellular, though further studies would need to be performed to validate 

this.  

 

Results 

Protein-Coding Targets Regulated by mutant KRAS signaling 

 To validate the effects of expressing oncogenic KRAS on global gene 

expression, we first sought to confirm the altered expression of known or 

hypothesized targets. One target of interest in particular was the programmed 

death ligand 1 (PDL-1). PDL-1 serves to modulate the adaptive immune 

response by binding to the PD1 receptor on activated T-cells to inhibit their 

activity27. In the context of cancer, this is particularly important as immune 

system evasion is a common occurrence in drug resistant cancers. Prior to 

these experiments, bulk RNAseq was implemented to identify potential 

targets and key dysregulated genes. PDL-1 was one notable finding, where 

data would indicate marginal changes in mRNA content for this gene (not 

published).  
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 To assess the expression pattern of this transmembrane protein, I 

employed fluorescent light microscopy and immunofluorescent methods to 

compare the physical expression of PDL-1 between KRAS transformed cells 

and control cells (Figure 2.1). Interestingly, PDL-1 appeared to have an 

intracellular local in contrast with its predominantly transmembrane 

localization, potentially due to mutant KRAS signaling. Further experiments to 

validate this observation were attempted via the use of flow cytometry, but 

were inconclusive (data not shown).  

 In addition to PDL-1, we also found increased expression of DDX60 

(Figure 2.2), which we believe pertains to the viral mimicry phenotype 

prescribed by aberrant KRAS signaling. DDX60 is an RNA helicase with 

antiviral properties. It is widely implicated in a number of cellular processes, 

such as translation initiation and splicing28. These early findings would go on 

to aid in the formation of a hypothesis aimed at understanding how KRAS 

signaling induces an interferon response in lung airway cells, as evident by 

the produced Cell Reports paper. Investigation into the localization and 

expression of DDX60 was carried out in the same manner described for PDL-

1.  
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Figure 2.1: PDL1 protein expression between mutant KRAS vs. control 
AALE cells. Left panel, wild type AALE cells immune-stained for PDL-1, right 
panel, mutant KRAS containing AALE cells immune-stained for PDL-1.  
 

 

Figure 2.2: DDX60 protein expression between mutant KRAS vs. control 
AALE cells. Left panel, wild type AALE cells stained for DDX60, right panel, 
mutant KRAS containing AALE cells stained for DDX60. Matched exposures 
were carried out between experimental conditions to control for staining 
variability.  
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Non-Coding RNAs Regulated by mutant KRAS 

 Our next primary focus was to validate the expression and localization 

of some long non-coding RNAs known or hypothesized to be regulated by 

KRAS signaling, via primary literature and preliminary results respectively. 

The targets observed were XIST, MALAT, NEAT1 and a novel long non-

coding RNA known as lnc00707, nick named SPECTER. We observed 

defined patterns of gene expression and localization for the aforementioned 

non-coding RNAs. Specifically, we found XIST to be downregulated in cells 

possessing mutant KRAS and MALAT, NEAT1 and SPECTER to be 

upregulated. XIST, NEAT1 and MALAT demonstrated nuclear localization as 

per previous literature24–26 and SPECTER appeared to have both nuclear and 

cytosolic localization (Figure 2.3) in both experimental conditions. Taken 

together, these results reaffirm previously recorded data from the literature 

and shed light on the expression and localization of novel long non-coding 

RNAs that appear to be regulated via oncogenic KRAS signaling.  
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.  
 

 
Figure 2.3: Differential expression of the non-coding RNAs XIST, MALAT, 
NEAT1 and SPECTER via RNA FISH in AALE Cells. Top to bottom, left 
column is RNA FISH for NEAT1, MALAT, XIST and SPECTER. Right column 
represents AALE cells harboring mutant KRAS stained in same order via RNA 
FISH. Matched exposures were used between conditions to control for 
staining variability.  
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Materials and Methods 
 
Cell Lines  
 
Immortalized lung epithelial cells (AALE) were obtained from the laboratory of 

Eric Collison (University of California, San Francisco). The AALE stable cell 

lines pBABE-mCherry Puro (control) (Lu et al., 2017) and pBABE-FLAG-

KRAS(G12D) Zeo (mutant KRAS) were generated using retroviral 

transduction, followed by selection in puromycin or zeocin. Cells were 

cultured at 37C and 5% CO2 in SABM Basal Medium (Lonza SABM basal 

medium, CC-3119) with supplements and growth factors (Lonza SAGM 

SingleQuots Kit Suppl. & Growth Factors, CC- 4124).  

 
 
Single Molecule RNA FISH 
 
Complementary fluorescent oligos for MALAT-1, NEAT-1, XIST and 

SPECTER were obtained from Biosearch Technologies. The protocol for 

single molecule RNA FISH is derived from the Biosearch Technologies 

Stellaris recommended guidelines. Briefly, cells were grown in 6 well plates on 

acid washed 18mm round coverslips. Media was aspirated and cells were 

rinsed twice with PBS. Cells were then fixed in 1ml of 3.7% formaldehyde and 

incubated for 10 minutes at room temperature. Formaldehyde was removed 

and cells were rinsed twice with PBS. Cells were then permeabilized for 1 

hour at 4 degrees Celsius in 70% ethanol. Next, ethanol was aspirated and 

1ml of wash buffer A was applied to the cells for 5 minutes. After the wash, 
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100ul of hybridization buffer containing 1ul of probe was applied to the cells 

by placing the cell side of the coverslip face down into 100ul of hybridization 

buffer containing appropriate probe on paraffin. Coverslips were then placed 

in a humidified chamber (150mm cell culture dish with moist paper towel) and 

sealed with paraffin and incubated at 37 Celsius for 4 hours. After the 

incubation cells were transferred to a new well plate and washed with wash 

buffer A for 30 minutes at 37 Celsius. Wash buffer A was aspirated and 1ml of 

DAPI stain was applied and incubated again at 37 Celsius for 30 minutes. 

After, DAPI solution was aspirated and wash buffer B was applied for 5 

minutes. Slides were mounted using vectashield medium cell side down. Nail 

polish was used to seal coverslips to the microscope slide and allowed to dry 

for 10 minutes in the dark.  

 

Immunofluorescence 

Briefly, cells were grown on acid washed coverslips (or sectioned spheroids 

on microscope slides) were rinsed with PBS. Fixation was then performed 

using 4% PFA for 10 minutes. PFA was then aspirated and 3 washes with 

PBST followed, each for 5 minutes. Slips and or slides were then blocked 

using 3% BSA in PBST for 1 hour at room temperature. An additional 3 

washes followed. Primary antibody (see table) was incubated in blocking 

buffer (5% BSA in PBST) overnight with slips or slides at 4C. The following 

day, blocking buffer and primary antibody were washed away with PBST each 
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for 5 minutes. Secondary antibody in blocking buffer was added to the slides 

and slips and allowed to incubate 1 hour at room temperature. 3 additional 

washes proceeded, each for 5 minutes. DAPI was added at a dilution of 

1:10,000 and allowed to incubate in the dark for 5 minutes. Lastly, DAPI was 

removed using 3 washes of PBST, 5 minutes each. Slides and slips were 

mounted using vectashield anti-fade mounting medium and sealed with clear 

nail polish.  

  

 
Microscope Imaging 
 
All images were taken on a Zeiss Axioimager. Exposures were matched 

between experimental and control conditions to ensure validity of results. 

Multiple color channels were used in the case of multiplex experiments. 

Unless otherwise noted, all images were taken at 60x magnification. Multiple 

images were taken per sample for the production of a 3D stack and 

subsequent image processing. Stack numbers were matched between 

samples. 
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Image processing 
 
Image processing was performed first by utilizing the imaging software 

Autoquant to execute 3D deconvolution on czi. Image stacks. Following 3D 

deconvolution, fully processed image stacks were exported to Imaris. In 

imaris, image processing consisted of the placement of scale bars and color 

coordination. Images were matched for their changes in adjusted color 

contrast and brightness to maintain experimental integrity. In the cases imaris 

was unavailable, similar adjustments were made in FIJI.  
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Discussion 
 
 My findings indicate a strong regulatory effect via KRAS G12V 

signaling on the long non-coding RNAs: XIST, MALAT1 and NEAT 1. A 

marginal effect on the long non-coding RNA dubbed “specter,” and an 

inconclusive effect on the cellular localization of PDL-1. Each of the above 

targets are known to play key roles in cancer progression and metastasis. 

Combined with the aberrant proliferative signals prescribed by oncogenic 

KRAS signaling, uncoupling of each cellular process becomes a significant 

issue worthy of future study.  

 One such study may be uncovering which cancers harboring abnormal 

expression of the above genes in a similar pattern to that seen in this study, 

also have mutations in KRAS. The question of whether mutant KRAS 

signaling is necessary for the pattern observed above is also of interest, and 

loss of function studies in the form of new KRAS inhibitors or small interfering 

RNA studies may be implemented to address these questions.  
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CHAPTER 3: Hypoxia and KRAS signaling work in concert to drive 
“Stemness” in a lung cancer model 
 
Introduction 

This work aimed to determine how properties of the intratumoral 

microenvironment can confer stem cell properties to lung cancers with 

oncogenic KRAS. Recent advances in the treatment of many cancers have 

led to improved survival rates over the past decade. However, cancer 

metastasis and tumor recurrence remain the chief cause of cancer-related 

mortality4. Cancer recurrence is believed to be a result of the propagation and 

migration of a subset of specialized cancer cells within a tumor2. These 

specialized cancer cells often possess a higher degree of “stemness,” i.e., a 

dedifferentiated state that distinguishes them from other surrounding cancer 

cells within the tumor2. 

 In addition to being able to repopulate a tumor, these dedifferentiated 

cells are able to resist chemo and radiation therapies due in part to their 

quiescent nature, and they often express pluripotency-related genes such as 

OCT4 and SOX24. In induced pluripotent stem cell (iPSC) reprogramming 

models, expression of these factors in differentiated cells results in the 

acquisition and maintenance of stem cell identity5. However, whether 

comparable mechanisms of epigenetic reprogramming contribute to the 

acquisition and maintenance of stemness in lung cancers has yet to be 

determined. 
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Recent evidence suggests that cancer cells can express the pluripotency-

related factors SOX2 and OCT4 when exposed to conditions arising within 

the intratumoral microenvironment, such as hypoxia29. The hypoxia regulatory 

network depends on the expression and stabilization of hypoxia-inducible 

factors (HIFs). In the absence of oxygen, prolyl hydroxylase domain 

containing protein 2 (PHD2) is unable to hydroxylate two proline residues on 

HIFs, preventing them from entering a von Hippel–Lindau tumor suppressor 

(pVHL)-mediated degradation pathway30. 

Likewise, lactic acid can interfere with the PHD2 reaction in a similar 

manner. Following lactate import into the cell via monocarboxylate transporter 

1, lactate is converted to pyruvate via lactate dehydrogenase. Accumulation 

of lactate derived pyruvate results in pyruvate acting as a competitive inhibitor 

with 2-oxoglutarate for the PHD2 reaction30,31.  

Stabilization of HIF via lactic acidosis and hypoxia results in its 

accumulation and dimerization with the HIFb subunit, allowing them to 

translocate to the nucleus, where they are believed to have more than 200 

transcriptional targets32. However, how readily this hypoxia response can elicit 

the expression of stem cell pathways may depend on the mutational 

background of lung cancers. 
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One of the more frequently mutated genes associated with tumorigenesis is 

the protooncogene KRAS. In lung cancer, the presence of mutant KRAS is 

often associated with poor clinical outcome20 and may also be 

overrepresented in people who smoke compared to never-smokers33. KRAS 

signaling also shares many of the same downstream gene targets with the 

hypoxia response pathway34. Shared gene targets include pathways that 

control proliferation, metabolism and differentiation. Furthermore, current 

studies have demonstrated that oncogenic KRAS can facilitate increased 

expression of HIFs and vice versa, suggesting a positive feedback loop when 

both are present35.  

For these reasons, I am interested in understanding how oncogenic 

KRAS signaling may coordinate synergistically with the hypoxia response 

pathway to reprogram lung cancer cells to obtain a more stem cell-like state. 

To address these questions, I used a 3D in vitro cell culture systems to derive 

TS from A549 lung cancer cells with oncogenic KRAS. These TS recapitulate 

the intratumoral conditions of hypoxia and acidosis observed in solid tumors. I 

then used single cell RNA sequencing and functional assays to characterize 

and identify subpopulations that possess hypoxia-driven stemness. I believe 

this study has significant implications for the potential development of novel 

therapies associated with lung cancer progression and metastasis, as very 

little is known as to how oncogenic drivers interact with the intratumoral 

microenvironment to elicit the ability to resist conventional therapies.  
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Results 

Oncogenic KRAS can induce the expression of non-coding RNAs 

involved in stem cell maintenance and cancer metastasis 

To determine if oncogenic KRAS is capable of inducing the 

expression of genes associated with stemness and cancer resistance, we did 

the following: first, we transfected non-cancerous lung airway epithelial cells 

(AALE) with a mutant KRAS plasmid and compared these cells to control 

AALE cells. We found that the long non-coding RNA MALAT-1 was 

upregulated 3-fold in mutant KRAS cells. MALAT-1 has been shown to be 

involved in the maintenance of stem cell properties and is often associated 

with cancer metastasis and cancer stem cell formation when highly 

expressed13. To validate these results, I performed single-molecule RNA 

fluorescence in situ hybridization (FISH) for MALAT-1 (Figure 3.1). 

 

 



 

 25 

 

 

 

 

 

 

 

 

Figure 3.1: MALAT mRNA localization and expression in AALE Cells. Left 
image is control AALE cells and right is AALE cells harboring mutant KRAS, 
both stained via single molecule RNA FISH.  
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A machine learning pipeline can be applied to single cell RNAseq data 

to characterize stemness 

The machine learning pipeline used relies on a linear regression model 

to derive a stemness index (mRNAsi) based off gene expression data derived 

from RNAseq. Because of this, a large number of samples are required to get 

a reliable result. Single cell RNAseq data is ideally suited for the use of this 

algorithm as each cell is a data point for the described linear regression. To 

prepare for the use of this model in aim 1, I derived the stemness index for 

each single cell from a 

publicly available (NCBI GEO)14 glioma single cell RNAseq data set (figure 

2b), using the stem cell signature produced from training the model on 

RNAseq samples derived from stem cell RNAseq datasets (figure 2a). 
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Figure 3.2: Machine learning model and application. A) flowchart 
describing the machine learning tool and procedure to derive mRNAsi using 
one class linear regression (OCLR). B) Box plot of mRNAsi for a single cell 
RNAseq experiment involving a disassociated glioma tumor.  
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Knocking down endogenous KRAS in human iPSCs results in distinct 

subpopulations and differential gene expression 

As mentioned in earlier chapters, KRAS is the only embryonic lethal 

RAS isoform. As such, we hypothesized that KRAS signaling may be crucial 

for lineage commitment in iPSC differentiation models. To determine if 

knocking down endogenous KRAS results in a diminished pool of pluripotent 

stem cells or specific lineage commitments, we took advantage of a CRISPRi 

Gen1c induced pluripotent stem cell line14. We then transfected a KRAS 

guide RNA and performed single cell RNAseq for assessment of lineage 

commitments after 5 days of growth under KRAS knockdown conditions 

(>90% KRAS 

knockdown). These experiments were compared to control cells transfected 

with a scramble control guide RNA. I then performed clustering and 

differential expression analysis in R. The results of this experiment are shown 

in figure 3. Results reveal distinct subpopulations and altered gene 

expression in cells with KRAS knockdown compared to control. Genes that 

play roles in differentiation and metabolism (S100A11 and PHGDH) are some 

of the more notable upregulated targets in KRAS knockdown iPSCs (figure 

3b). 
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Figure 3.3: Knocking down endogenous KRAS results in distinct 
subpopulations with altered gene expression. A) TSNE plots of 
aggregated KRAS knockdown and scramble control samples. Left panel 
demonstrates 5 distinct subpopulations. Right panel highlights the cells from 
each sample; ID 1 is KRAS knockdown and ID 2 is scramble control. B) 
Heatmap demonstrating the most differentially expressed genes for each of 
the 5 clusters: S100A11, GSTP1, DAD1, LPCAT1, TUBA1B, TUBA1A, 
PHGDH.  
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Embryoid bodies derived from iPSCs demonstrate a hypoxic signature 

when compared to iPSCs grown in 2D conditions with or without 

endogenous KRAS 

To investigate if a hypoxic signature can be ascertained in the 3D 

conditions prescribed by embryoid bodies, I utilized single cell RNAseq from 

disassociated EBs derived from iPSCs with KRAS knocked down (compared 

to control). The hypoxic signature was derived from the GSEA hypoxia 

hallmark dataset. This gene set consist of more than 200 genes known to be 

regulated by hypoxia. Due to low sequencing depth, we did not discriminate 

on gene set composition. I then carried out this same analysis on iPSCs 

grown in a monolayer to assess if any hypoxic signature is diminished or not 

present. Embryoid bodies should theoretically possess a hypoxic and necrotic 

center as with spheroids when grown in 3D conditions, therefore it was 

prudent that any detected hypoxic signature also be contrasted to that of cells 

that should possess no hypoxic signature (cells grown in 2D).  

Single cell gene expression analysis indicates that a hypoxic signature 

is detectable only in iPSC embryoid bodies (figure 3.3b), and not iPSCs 

grown in monolayer (figure 3.3a), supporting the notion of 3D growth 

conditions being conducive to hypoxic physiology.  
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Figure 3.4: Single cell RNAseq iPSC clusters in 2D conditions via    
Seurat. Violin plots for clustered 2D iPSCs. Y axis is overall hypoxic score 
and X axis is cluster number.  
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Embryoid bodies demonstrate no statistical significance between KRAS 

knockdown and control cells for clusters scoring highest for hypoxia 

To assess if there was a statistical significance between single cell 

iPSCs isolated from embryoid bodies (control vs. KRAS knockdown), I subset 

cells scoring highest for hypoxia and compared their individual stemness via 

boxplot (SEM) and corresponding regressions via scatter plot in R. We found 

there to be no statistical significance between KRAS knockdown cells and 

control cells in the cluster scoring highest for hypoxia (figure 3.5 ). There were 

dramatically less KRAS knockdown cells in hypoxia positive clusters, but it is 

hypothesized that the reason for this is the overlap in KRAS and hypoxia 

regulated genes, specifically the MAPK targets within the RAS pathway 

(figure 3.5).  
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Figure 3.5: Box plot comparing stemness index (mRNAsi) between EB 

iPSCs in KRAS knockdown vs. control cells. Y axis is mRNAsi via box 

plot, X axis is experimental condition.  
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Figure 3.6: Scatter plot with linear regression, stemness index vs 

hypoxic score between experimental conditions. A) Scatter plot with linear 

regression of cluster 0 control cells, X axis is stemness index and Y axis is 

hypoxic score. B) Scatter plot with linear regression of cluster 0 KRAS 

knockdown cells, X axis is stemness index and Y axis is hypoxic score.  
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A single cell RNAseq glioma dataset finds no relationship between 

hypoxia and stemness using a machine learning tool 

Before creation of a lung cancer CRISPR cas9 cell line, we found it 

prudent to first demonstrate that there exists a relationship between cells 

scoring high for hypoxia and as such, concurrent stemness. To do this, I made 

use of a publicly available single cell RNAseq data set, the likes of which was 

derived from a disassociated human glioma tumor. I then implemented the 

use of a single cell RNAseq analysis tool known as Seurat. Upon clustering of 

these individual cells (figure 3.4) I then sought to see which cluster scored 

highest for a hypoxia gene set signature using a hypoxia hallmark gene set 

from the GSEA database.  

Following identification of the high scoring hypoxia cluster, I then 

utilized the machine learning algorithm across all clusters. Interestingly I 

found that the cluster scoring high for hypoxia was different from the cluster 

scoring highest for stemness (figure 3.5). Additionally, I also found that cluster 

11 also appeared to have an enriched gene expression pattern for entry to the 

cell cycle (Figure 3.6), conflicting with the notion that cancer cells with high 

stemness often demonstrate a quiescent nature. Taken together, the above 

results indicate a negative relationship between hypoxia gene expression and 

subsequent stemness in individual cells.  
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Figure 3.7: Clustering of glioma cells in Seurat and corresponding 
heatmap for detected hypoxic genes. A) UMAP clustering of glioma cells. 
B) Heatmap of detected hypoxic genes, Y axis (detected hypoxic genes) X 
axis is corresponding cluster. Yellow indicates upregulated, purple 
downregulated.  
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Figure 3.8: Stemness index vs hypoxic signature violin plot with 
corresponding clusters. A) Stemness index as determined by machine 
learning algorithm. Y axis is stemness index and X axis is corresponding 
cluster. B) Hypoxic score across clusters. Y axis hypoxic score and X axis is 
corresponding cluster.  
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Figure 3.9: Cell cycle entry per cluster as determined by Seurat. Cell 
cycle entry determined by Seurats own built-in function. X axis is overall 
expression of a cell cycle entry gene list, X axis is corresponding cluster.  
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Methods and Materials 

Glioma Single Cell Dataset 

The disassociated glioma dataset was obtained from the GEO website as 

referenced14.  

 

Single Cell Embryoid Body Single Cell Dataset 

The embryoid body dataset was produced in lab by a fellow graduate student 

Sree Maroli. Embryoid bodies (EBs) were derived from iPSCs, grown in low 

adhesion conditions and allowed to spontaneously differentiate. EBs were 

then disassociated and subsequent single cell protocols were followed 

according the 10X manufacturer.  

 

Machine Learning Tool  

The machine learning tool used to score for stemness or mRNAsi, was 

obtained from the following paper13. The tool was implemented in R according 

to the authors own code, using the R packages mentioned in the source 

paper13.  

 

Single Cell RNAseq Analysis 

Single cell RNAseq for embryoid bodies was performed using 10X genomics 

manufacture kits and protocols. Alignments and counts were produced using 

10x genomics own computational tool CellRanger in UCSC’s computational 
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cluster Hummingbird. Data was then exported to R for subsequent analysis 

using the R package Seurat. Plots and other tables were produced either with 

Seurats own functions or ggplot2 in R.  

 

Discussion 

 Our findings indicate a disconnect in the canonically accepted notion 

that hypoxia tunes a stemness identity in cancer, at least in the case of a 

single disassociated glioma. Additionally, we found no correlation in stemness 

between cells scored high for a hypoxia signature in embryoid bodies derived 

from iPSCs. It may be that the ability for hypoxia to provide a stem cell like 

signature is context dependent between cancers and may require the 

presence of one or more driver mutations, like KRAS. Though the iPSC data 

shown above does not support a KRAS connection, the cancer connection 

may still be of interest.  

What’s more, it may be of significant clinical significance to determine 

the conditions necessary for hypoxic conditions to provide some modicum of 

stem cell identity. That is, determining what conditions are necessary both 

endogenously and exogenously to provide stem cell gene expression 

signatues in the presence of hypoxia. This work, of course is beyond the 

scope of the current PhD project but may be of interest for future 

investigators. The limitations of the study outlined in this chapter are also 

significant, as single cell RNAseq is not as sensitive to relatively low 
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expressed transcripts. As such, there may be several hypoxia related genes 

that were unaccounted for that may have contributed to a more concrete 

understanding of hypoxia’s relationship to both KRAS signaling and stemness 

as determined by the machine learning tool.  

Another limitation comes from the fact that stem cell identity is more 

than mRNA content. Indeed, the original Yamanaka5 paper in which iPSCs 

were first derived relied on epigenetic signatures to better characterize stem 

cell identify. This same approach was also applied to the machine learning 

algorithm, where bisulfite sequencing was used as a training set and 

prediction models were implemented on both mRNA and epigenetic 

signatures to score for stemness. Taken together, there exist multiple 

alternative approaches that may be of use for characterizing stemness and 

discerning the relationship between KRAS signaling and hypoxia signaling.  
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Chapter 4: Transposable element RNA dysregulation in mutant 

KRAS(G12C) 3D lung cancer spheroids 

 

Introduction 

Transposable element (TE) RNAs are recurrently dysregulated in the 

context of cancer36. In mutant KRAS lung cancer cells, KRAB zinc-finger 

(KZNF) genes are broadly downregulated, leading to the aberrant 

upregulation of TE RNAs derived from LINE, SINE, and LTR elements8,37. In 

addition to TE RNAs, long noncoding RNAs (lncRNAs) are also coordinately 

regulated with RAS signaling genes38, and their expression patterns are 

similarly altered in many cancers10,39–41. For TE RNAs, their upregulation in 

cancer induces a state of viral mimicry, leading to the intrinsic activation of 

innate immunity genes such as interferon-stimulated genes (ISGs)8,36,42. In 

particular, the Alu family of SINEs are a predominant source of immunogenic 

TE RNAs43, which are induced by epigenetic changes caused by DNA 

methyltransferase inhibitors (DNMTi) or mutant KRAS-mediated KZNF 

inhibition8,36,42.  

To investigate how a common mutation in KRAS affects the TE RNA 

landscape in lung cancer cells, we characterized the transcriptomes of 3D 

lung cancer spheroids that harbor KRAS(G12C) mutations in the presence or 

absence of mutant KRAS(G12C) inhibitor44. We show that KRAS(G12C) 

signaling is required for the expression of LINE- and LTR-derived TE RNAs, 



 

 43 

while KRAS(G12C) inhibition specifically upregulates both SINE-derived TE 

RNAs and a subset of interferon (IFN)-related genes. Our findings reveal the 

complex interplay between mutant KRAS signaling and TE dysregulation in 

lung cancer cells, where a defined set of young AluY elements are 

upregulated in a mutation-dependent manner.   

 

Results 

KRAS(G12C) inhibition alters the coding and noncoding transcriptome 

To determine how oncogenic KRAS(G12C) signaling regulates the 

coding and noncoding transcriptome, we performed RNA sequencing (RNA-

seq) on 3D mutant KRAS(G12C) lung cancer spheroids. For RNA-seq, we 

used a full-length protocol with 5’ unique molecular identifiers (UMIs) to 

enable precise RNA counting while mitigating PCR amplification biases45 

(Figure 4.1). We compared the transcriptomes of H358 lung cancer spheroids 

treated with the KRAS(G12C) inhibitor ARS-1620 (ARS) to control spheroids 

(DMSO-treated) (Figure S1A) and saw that ARS treatment substantially 

reduced the levels of phosphorylated ERK (p-ERK) (Figure S1B), indicating 

that ARS treatment was inhibiting downstream KRAS(G12C) signaling. The 

suppression of KRAS(G12C) signaling by ARS treatment was also evidenced 

by reductions in spheroid size and cell viability (Figure S1C and S1D).  
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At the RNA level, we assessed the relative abundances of different 

biotypes and TE superfamilies in ARS- or DMSO-treated 3D lung cancer 

spheroids, which revealed dynamic changes in TE RNA composition upon 

KRAS(G12C) inhibition (Figure 4.1). While we detected only 32% of 

GENCODE-annotated protein-coding genes and 15% of lncRNA genes, 92-

96% of TE superfamilies (92% LTR, 95% SINE, 96% LINE) were represented 

in our UMI-tagged RNA-seq data, revealing broad dysregulation of TE RNAs 

in the KRAS(G12C)-driven transcriptome. Up to a quarter of all detected RNA 

molecules in ARS-treated lung cancer spheroids were derived from TEs, 

indicating that TE RNAs represent a sizable portion of the transcriptional 

output of mutant KRAS(G12C) lung cancer cells.  

We next determined the significantly differentially expressed genes 

between ARS- and DMSO-treated 3D lung cancer spheroids to identify 

biological processes that were regulated by oncogenic KRAS(G12C) 

signaling. Lung cancer spheroids with intact KRAS(G12C) signaling were 

significantly enriched for genes involved in G2M checkpoint, E2F targets, 

MYC targets, and mitotic spindle (Figure 4.1). Upon KRAS(G12C) inhibition, 

however, lung cancer spheroids expressed significantly higher levels of genes 

involved in oxidation phosphorylation, complement, and the IFN alpha and 

gamma responses (Figure 4.1), providing further supporting evidence for the 

involvement of KRAS signaling in the regulation of IFN-related genes8,37.   
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Figure 4.1. KRAS(G12C) inhibition alters the coding and noncoding 

transcriptome 

A. Experimental schematic. B. Distribution of counts assigned to GENCODE 
coding, lncRNA, and TE/repeat superfamilies in ARS-treated (ars) or DMSO-
treated (dmso) lung cancer spheroid RNA-seq libraries, where each column 
represents a biological replicate. C. Significant Gene Set Enrichment Analysis 
results observed in DMSO-treated (right, positive NES) or ARS-treated (left, 
negative NES) lung cancer spheroids using differentially expressed genes 
ranked by normalized enrichment score (NES).  
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Figure S1: Viability and Spheroid Diameter 

A. H358 3D lung cancer spheroids treated with ARS or DMSO. B. Western 
blot for p-ERK and HSP90 using H358 3D lung cancer spheroids treated with 
ARS or DMSO. C. Diameter measurements (in micrometers) (left plot) and 
cell viability (Cell Titer-Glo® luminescent cell viability in relative fluorescence 
units) (right plot) of H358 3D lung cancer spheroids treated with ARS or 
DMSO after 3 or 5 days of treatment (500 nM ARS-1620 or DMSO). D. 
Diameter measurements (in micrometers) of H358 3D lung cancer spheroids 
treated with different concentrations of ARS-1620 (nM) for 7 days. 
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KRAS(G12C) inhibition coordinately induces ISGs and young AluY 

elements 

To further elucidate the intrinsic upregulation of ISGs upon 

KRAS(G12C) inhibition, we identified which genes and TEs were significantly 

differentially expressed in each gene set and TE superfamily, respectively. 

Across both IFN alpha and IFN gamma response genes, the most strongly 

induced gene upon KRAS(G12C) inhibition in lung cancer spheroids was 

RTP4 (Figure 4.2), a receptor transporter protein that negatively regulates 

TBK1 signaling46. Additionally, the MHC class I complex gene beta-2-

microglobulin (B2M), which is recurrently inactivated in lung cancer47, was 

also significantly upregulated in both IFN-related gene sets in ARS-treated 

lung cancer spheroids (Figure 4.2).  

Given the direct role for oncogenic KRAS signaling in TE RNA 

regulation8, we investigated which subfamilies of TE RNAs were dependent 

on mutant KRAS(G12C). In lung cancer spheroids with intact KRAS(G12C) 

signaling, we found that the LINE subfamilies L1M6B and L1PA12 were highly 

expressed and dependent on KRAS(G12C), as evidenced by their 

downregulation in lung cancer spheroids treated with ARS (Figure 4.2). 

Moreover, while only a single DNA subfamily MER44D was dependent on 

KRAS(G12C) signaling, over a dozen LTR subfamilies were regulated by 

mutant KRAS(G12C), including MLT1A0-int, LTR51, MER50B, and LTR1B0 

(Figure 4.2). In contrast, SINE subfamilies were all significantly upregulated 
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upon KRAS(G12C) inhibition and coordinately induced with specific ISG 

genes (Figure 4.2) in lung cancer spheroids. These SINE TE RNAs were all 

derived from the AluY subfamily (Figure 4.2), indicating that KRAS(G12C) 

inhibition dysregulates a specific subset of young AluY elements.  
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Figure 4.2. KRAS(G12C) inhibition coordinately induces ISGs and young 

AluY elements 

A. Volcano plots depicting significant differential expression observed in 
key gene sets between DMSO-treated (right, positive fold-change) or 
ARS-treated (left, negative fold-change) lung cancer spheroids. B. 
Volcano plots depicting significant differential expression observed in 
TE superfamilies between DMSO-treated (right, positive fold-change) 
or ARS-treated (left, negative fold-change) lung cancer spheroids. 
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KRAS(G12C) inhibition downregulates long noncoding RNAs 

To further elucidate the effects of KRAS(G12C) inhibition on the 

transcriptome, we examined all significantly differentially expressed lncRNAs 

in lung cancer spheroids treated with ARS or DMSO control. We found that a 

large number of lncRNAs were dependent on KRAS(G12C) signaling for their 

expression, as many of these lncRNAs were significantly downregulated upon 

KRAS(G12C) inhibition (Figure 4.3). Three of these downregulated lncRNAs, 

AC114546.3, NCMAP-DT, and AC073575.2, have no known functions but 

overlap in an antisense orientation to the coding genes ZNF770, RCAN3, and 

ERP29, respectively. As a class of noncoding RNA, we observed broad 

downregulation of lncRNAs upon ARS treatment in lung cancer spheroids 

(Figure 4.3), indicating that many lncRNAs are dependent on KRAS(G12C) 

signaling for their expression.   
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Figure 4.3. KRAS(G12C) inhibition downregulates long noncoding RNAs 

A. Volcano plot of significant differential expression of GENCODE protein-
coding RNAs and lncRNAs between DMSO-treated (right, positive fold-
change) or ARS-treated (left, negative fold-change) lung cancer spheroids. B. 
Box plot of significant differential expression of GENCODE protein-coding 
RNAs and lncRNAs between DMSO-treated (top, positive fold-change) or 
ARS-treated (bottom, negative fold-change) lung cancer spheroids 
(Wilcoxon). 
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Methods and Materials 

 

Cell lines 

H358 lung cancer cell lines containing the KRAS(G12C) mutation were 

cultured in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal 

bovine serum (Sigma) at 37°C, 5% CO2 in a humidified incubator. All cell 

lines tested negative for mycoplasma. Cell lines were purchased from 

American Type Culture Collection (ATCC). 

 

Cell viability assays 

For spheroid viability assays, 10,000 cells/well were seeded in low adhesion 

round bottom 96-well plates and incubated at 37°C, 5% CO2 for 24 hours. 

Then serially diluted ARS-1620 or DMSO were added to the cells, and plates 

were incubated in standard culture conditions for 72 hours, with fresh ARS 

and DMSO media being replaced daily. Cell viability was measured using a 

Cell Titer-Glo® Luminescent Cell Viability Assay kit (Promega) according to 

the manufacturer protocol. The luminescence signal of ARS-treated samples 

was normalized to DMSO control. Luminescence was measured on a 

SpectraMax iD3 molecular device. 
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RNA isolation  

Total bulk RNA was isolated from approximately 100 H358 spheroids (per 

condition) using Quick-RNA Mini-Prep kit (Zymogen) according to the 

manufacturer protocol. RNA was quantified via NanoDrop-8000 

Spectrophotometer.  

 

RNA-seq library preparation  

An adapted Smart-seq3 protocol45 was used to generate RNA-seq libraries 

from total RNA to count and assess full-length RNA molecules. Briefly, 10ng 

of total RNA was reverse transcribed using a barcoded oligoDT primer 

(125nM) followed by template switching with a barcoded template switch oligo 

(125nM). These oligo sequences served as primers for PCR amplification. 

The Nextera HT kit (Illumina) was used to convert cDNA libraries into 

sequencing libraries with the addition of a UMI-specific primer to amplify the 

cDNA ends containing molecular barcodes as described in the Smart-seq3 

protocol. cDNA and library quality were assessed using an Agilent bioanalyzer 

DNA high sensitivity chip and quantified using the high sensitivity DNA assay 

on the Qubit 3.0. 
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Western blot 

Approximately 100 H358 spheroids (per condition) were isolated following 

ARS or DMSO treatment. Spheroids were then incubated on ice in RIPA 

buffer supplemented with protease inhibitor for 15 minutes. Lysates were then 

spun at 10,000 RCF for 10 minutes. Supernatant was then transferred to a 

new tube for subsequent SDS-PAGE sample prep in Laemmli buffer, boiled 

for 5 minutes at 95 C for a final concentration of 1mg/ml. SDS-PAGE was 

performed to separate protein by size followed by subsequent transfer to a 

PVDF membrane. Membranes were incubated with primary p-ERK (CST) and 

HSP90 (CST) antibodies overnight at 4 C. Secondary antibodies (Abcam) 

were then incubated on 3 times TBST washed membranes in blocking buffer 

for subsequent imaging. 

 

RNA-seq analysis 

All fastq files were trimmed with Trimmomatic 2 (0.38)48 and resulting trimmed 

files were assessed with FastQC49 and then processed with the following 

analytical pipeline: 

Salmon (1.3.0): pseudoalignment of RNA-seq reads performed with Salmon50 

using the following arguments: 

--validateMappings –gcBias --seqBias --recoverOrphans --

rangeFactorizationBins 4  
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using an index created from the GENCODE version 35 transcriptome fasta 

file using decoy sequences to enable selective alignment. An additional, TE-

aware index was created in a similar fashion but supplemented with 

sequences generated from the UCSC Repeat Masker track. 

DESeq2 (1.32.0): Salmon output was imported into a DESeq object using 

tximport51 and differential expression analysis was performed with standard 

arguments52. All results were filtered to have padj < 0.05. In the case where R 

could only generate 0.00 for the padj values, they were reset to the lowest 

non-zero padj value in the data set. Where count data was used, it was 

normalized across samples using DESeq. 

 

Gene set enrichment analysis 

Differentially expressed genes were ranked by the shrunken log2FoldChange 

values generated by DESeq2. Gene sets were acquired using the R package 

msigdbr (7.4.1) and filtered to only contain gene sets with ‘Hallmark’ status. 

The R package fgsea (1.18.0) was used to generate Gene Set Enrichment 

estimates which were filtered to results with adjusted pvalues < 0.05. 

 

UMI De-duplication 

Paired end illumina reads were adapter trimmed using FastP53 with default 

settings. UMIs were extracted from the read and moved to the readname 

using Umi tools extract from the UMI-tools package UMI-tools54 with the 
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barcode pattern set to "NNNNNNNN".  UMI-removed reads were aligned 

against HG38 using the STAR aligner with the GENCODE v38 annotation set. 

Aligned reads were deduplicated using "UMI-tools dedup" with default 

settings. 

 

Discussion 

Here we show that oncogenic KRAS(G12C) signaling is required for 

the expression of specific TE superfamilies, namely LINE and LTR elements, 

as well as a subset of lncRNAs, further demonstrating how RAS signaling 

regulates the noncoding transcriptome8,8,38. We also used a 3D lung cancer 

spheroid model for our KRAS(G12C) inhibitor experiments since 3D models 

have been shown to more faithfully recapitulate the in vivo drug response 

when compared to 2D culture models55. Furthermore, our application of a 

UMI-based full-length RNA-seq technique45 allowed us to more accurately 

capture TE RNA composition and dynamics in our lung cancer spheroids by 

removing PCR duplicates in our RNA-seq data.  

Our findings are consistent with previous studies of KRAS(G12C) 

inhibition, where IFN alpha and gamma response genes were upregulated in 

ARS-treated H358 lung cancer cells56. Based on the known immunogenic 

properties of Alu-derived RNAs, our results suggest that the specific 

upregulation of young AluY elements upon KRAS(G12C) inhibition is at least 

in part responsible for the strong upregulation of ISGs in ARS-treated lung 
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cancer spheroids. Notably, the significant enrichment of IFN-related genes in 

response to KRAS(G12C) inhibitor treatment does not include the further 

upregulation of RNA sensor ISGs such as MDA-5, RIG-I, or PKR, which 

initially become upregulated in lung cells in response to oncogenic KRAS 

signaling8,37.  

We have previously shown that mutant KRAS signaling alone is 

sufficient to induce TE RNA upregulation in human lung cells that have been 

transformed in vitro8,36, and our results described here extend these 

observations to lung cancer cells with a different activating KRAS mutation. 

KRAS(G12D) or KRAS(G12V) mutations both induce the significant 

upregulation of the LTR12C subfamily in transformed lung cells8, but we did 

not see significant enrichment of LTR12C-derived TE RNAs in our 

KRAS(G12C) lung cancer spheroids. Instead, we saw upregulation of LTR51, 

LTR1B0, LTR14B, and LTR28B, suggesting that diverse gain-of-function 

mutations in KRAS regulate different aspects of the TE RNA transcriptome.   

Our work provides a comprehensive assessment of how the 

noncoding/TE RNA transcriptome dynamically responds to KRAS(G12C) 

inhibition. Future studies may provide new insights into the potential roles of 

noncoding/TE RNAs in mechanisms of KRAS(G12C) inhibitor resistance. 

Furthermore, TE RNAs that are secreted from cancer cells upon KRAS 

inhibition may serve as extracellular RNA biomarkers8,10,17,37,57 of response 

and/or resistance to KRAS inhibitor therapies 20. 
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Chapter 5: Extracellular RNA signatures of mutant KRAS(G12C) lung 

adenocarcinoma cells (Khoja et. al.) 

 

Introduction 

Growing evidence suggests extracellular vesicles excreted from cancer 

cells hold promise for the identification of novel cancer biomarkers57. In the 

context of cancers driven by mutant KRAS however, unraveling the 

connection between aberrant KRAS signaling and the secretion of exosomes 

becomes problematic. This is because traditional modes of gene expression 

interruption rely on near complete ablation of gene targets with the use of 

gene knockouts or silencing using siRNA20. Such methods are a problem for 

the study of popular oncogenic targets, as often times disrupting these 

oncogenic functions leads to cell death58. Until recently, cancers with 

mutations for KRAS remained largely undruggable due to the difficulty of the 

drug design prescribed for RAS GTPase activity. However, a recent class of 

small molecule inhibitors targeting KRAS with G12C mutations has recently 

been unveiled. These inhibitors can be fine-tuned to interrupt key cellular 

signaling pathways while simultaneously preserving cellular viability16. The 

two primary inhibitors used in this study17 and the previous are AMG-510 and 

ARS-162016,19,56. This study aims to understand how KRAS G12C signaling 

ablation tunes the non-coding transcriptome and what if any of these non-
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coding RNAs may hold potential for serving as biomarkers. We found that 

exposing 2D cancer cells to AMG-510 induces a wide transcriptional change 

in both coding and non-coding RNA. We also found that of the exported non-

coding RNAs, transposable elements represent one of the largest classes 

representing total RNA content. We believe these results are an important first 

step in the use and identification of novel non-coding transcripts as potential 

biomarkers.   

 

Results 

 My work for this project consisted of aiding and assisting in the 

development of wet lab work required to identify an AMG-510 treatment 

concentration that would both sustain cell viability and diminish KRAS G12C 

signaling. To do this, I aided in the production of a protocol that utilized time 

course titrations of AMG-510. I also produced the protocol necessary for 

assessing KRAS G12C signaling inhibition via a phosphorylated ERK 

immunoblot. Sustained viability is paramount for downstream RNAseq 

applications, as gene expression patterns and their interpretation are prone to 

interrupted oncogene functions resulting in subsequent cell death. 

Phosphorylated ERK immunoblots are also the chief mode of assessing RAS 

function, as this step in the pathway is tightly regulated and downstream 

processes that control cell behavior are executed via this final step.  
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Figure 5: Conceptual diagram of 3D spheroid formation from 2D culture 

and subsequent experimental pipelines.  
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Methods and Materials 

Cell Lines 

H358 lung cancer cell lines containing the KRAS G12C mutation were 

cultured in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal 

bovine serum (Sigma) at 37°C, 5% CO2 in a humidified incubator. All cell 

lines tested negative for mycoplasma. Cell lines were purchased from 

American Type Culture Collection (ATCC). 

 

Cell viability assays 

For spheroid viability assays 10,000 cells/well were seeded in low adhesion 

round bottom 96-well plates and incubated at 37°C, 5% CO2 for 24 hours. 

Then serially diluted ARS 1620 and DMSO were added to the cells, and 

plates were incubated in standard culture conditions for 72 hours, with fresh 

drug and DMSO media being replaced daily. Cell viability was measured 

using a Cell Titer-Glo® Luminescent Cell Viability Assay kit (Promega) 

according to the manufacturer’s protocol. The luminescence signal of treated 

samples was normalized to DMSO control. The luminescence was measured 

on a SpectraMax iD3 molecular devices. 

 

 

 

 



 

 62 

 

 

Western Blot 

Approximately 100 spheroids per condition (drug and control) were isolated 

following the drug treatment time course. Spheroids were then incubated on 

ice in RIPA buffer supplemented with protease inhibitor for 15 minutes. 

Lysates were then spun at 10,000 rcf for 10 minutes. Supernatant was then 

transferred to a new tube for subsequent SDS page sample prep in laemmli 

buffer, boiled for 5 minutes at 95 degrees Celsius for a final concentration of 

1mg/ml. SDS page was performed to separate protein by size followed by 

subsequent transfer to a PVDF membrane. Membranes were incubated with 

primary P-ERK (cst) and HSP-90 (cst) antibodies overnight at 4 degrees 

Celsius. Secondary antibodies (abcam) were then incubated on 3 times TBST 

washed membranes in blocking buffer. Images were obtained on a biorad gel 

cabinet.  

 

Discussion 

The results of this study indicate a time sensitive manner in which cells 

harboring KRAS (G12C) mutations must be treated with AMG-510 to provide 

sustained KRAS signaling ablation and viability. Furthermore, preliminary 

evidence suggest a adaptation to drug treatment after 5 days of exposure 

(data not shown). Here I demonstrate a quick and effective mode to identify 
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the conditions necessary for sustained KRAS signaling interruption and 

cellular viability using small molecule inhibitors of KRAS G12C. Time course 

assessments found a sustained effect on KRAS signaling with daily 

replenishment of the small molecule AMG-510. Further investigation of 

pathway interruption can be done to substantiate findings indicative of KRAS 

signaling ablation, such as immunoblots for PI3K, MEK and AKT. This may be 

of particular interest, as recent findings indicate a fast adaptation to this new 

class of KRAS G12C inhibitors with regards to these particular pathways59. 

Indeed, identifying points and features of gene expression changes consistent 

with adaptation to these drugs may also be of interest for filtering of data not 

related to KRAS signaling alone. Taken together, we find strong potential for 

an in vitro model of 3D grown cancer spheroids to serve as a tractable and 

effective means for study of oncogenic pathways using novel cancer 

therapeutics.   
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