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Abstract

Fuzzy memory theory extends fuzzy set theory to the
case of imperfectly performing memory devices. In fuzzy
set theory, the key concept is that of graded set mem-
bership. The degree to which an item belongs to a set
is specified by a continuous function. Fuzzy memory
theory is organized around the analogous concept of
graded recall. Items stored in a fuzzy memory are as-
sociated with cues, such that each item is recalled by
provision of the corresponding cue. But unlike conven-
tional memory (where cues are typically addresses) the
recall process may vary in its degree of error. The item
produced may embody missing information. The capac-
ity of a fuzzy memory is then measured in terms of the
net information content of recalled items. The theory
has potential applications for new forms of technology,
but also for the study of cognition. In particular, it
can be the means of formalizing the properties of error-
prone natural memory mechanisms. It can also supply
a non-circular explanation for similarity-based category
formation.

Introduction

Since its innovation nearly half a century ago (Gottwald,
2010), fuzzy set theory has become an essential tool of
analysis in a wide range of disciplines (cf. Zadeh, 1965,
1976, 1982). In essence, the theory is a generalization of
the classical theory of sets, in which set membership be-
comes a continuous rather than all-or-nothing criterion.
The framework is particularly of use in contexts where
set membership has a probabilistic character. There
have been many applications in cognitive science. For
example, the theory has been used for analysis of con-
cept combination and feature emergence (Osherson and
Smith, 1981, 1982; Zadeh, 1965, 1976, 1982). In this
approach, concepts are deemed to represent fuzzy sets
of objects, on which basis combinational concepts can
be seen to represent the (fuzzy) intersections of the sets
associated with the constituents (Murphy, 2002).
The present paper extends the theory of fuzzy sets to

the case of memory. In fuzzy set theory, we assume an
item can be a member of a set to a greater or lesser
degree. In the proposed extension, it is the degree to
which items are recalled that is variable. Information
theory (Shannon, 1948; Shannon and Weaver, 1949) pro-
vides the means of measurement. The imperfection with
which a particular item is recalled can be related to the
amount of missing information (i.e., uncertainty) the re-
called item exhibits.

Formally, a fuzzy memory device is considered to be a
function from cues to items. But the items produced by
the memory have to be distinguished from the reference
items that are deemed to be stored. The behaviour of a
fuzzy memory device is thus characterized as

f : C → X ′

where C is the set of cues, X is the set of reference items
that are considered to be stored and X ′ is a set that
replaces each member of X with the item recalled.
The storage capacity of the device then depends on

the information content of the recalled items. This is
denoted I(X ′). But in calculating capacity, we must
also take account of C, the set of cues. If this is not
done, a function that simply copies its argument has the
potential to exhibit an arbitrarily large storage capacity.
The capacity of a fuzzy memory device is thus defined
to be the net information content of recalled items. This
is the information content of the reference items less the
content of the keys and the information that is lost in
recall. Formally, the capacity of fuzzy memory f is

I(X ′)− I(C)

where C is the set of cues used to elicit members of X ′

by f .1

In fuzzy set theory, the constituents of a set are char-
acterized using a continuous function. This allows any
degree of set membership to be specified. Extending
the idea to the case of memory, we require a proba-
bilistic model for the variables on which reference items
are constructed. These are termed base variables below.
A model that imposes a distribution on each variable
will not suffice, since it cannot accommodate informa-
tion losses involving specific variable combinations. A
fuzzy memory is therefore considered to be a composite

of distributions, in which each distribution applies ei-
ther directly or indirectly to one or more base variables.
Information losses arising in the recall of base-variable
combinations are then accommodated.
This constituency can be formalized in a recursive way.

Letting a distribution be considered contributory if it

1The word ‘memory’ refers to fuzzy memory in all cases.
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applies directly to a base variable, or to a variable whose
values themselves designate contributory distributions,
we can characterize the constituents of memory f thus:

f = {P | contrib(P, f)}

In this formula, contrib(P, f) is true just in case distri-
bution P applies either directly or indirectly to any base
variable of f . Variables that mediate indirectly apply-
ing distributions are termed contributory variables. This
distinguishes them from the base variables on which ref-
erence items are constructed.
A storage criterion for fuzzy memory can then be for-

malized. Fuzzy memory f is deemed to store some item
x if x can be probabilistically reconstructed from f ’s
distribution composite. The informational requirements
are as follows. The reconstruction must reconstitute the
original item with measurable (but potentially zero) loss
of information, and this loss must be less than the infor-
mation required to specify the cue for the reconstruction.
An item is deemed to be stored, then, just in case it can
be reconstructed with a net gain of information. The
degree of recall is the net gain obtained.
The degree to which an item is recalled by a fuzzy

memory is analogous to ‘grade of membership’ in fuzzy
set theory. The evaluation is formalized as follows. The
grade of recall for some item x given some cue c is

r(x, c) = I(x′)− I(c)

where x′ is the device’s probabilistic reconstruction of
x, and x′ satisfies the requirement of being derivable
from x by elimination of information. The definition of
I(c) depends on how cues are constituted (see below).
Given there are k bits of content in each base-variable
instantiation, the value of I(x′) is

I(x′) =
∑

i

k −H(x′

i
)

where H(x′

i
) is the entropy of the distribution derived

for the i’th variable of x′.

Illustrations

To illustrate the use of fuzzy memory, it is convenient
to look at the case of 1-bit devices. These are simple
assemblies in which base and contributory variables are
all binary. Variable values are the digits 1 and 0, each
of which has an information content of 1.0 bit. An ad-
vantage of this type of device is that it is particularly
easy to represent as a tree diagram (cf. Figure 1). It
also allows a simple cueing protocol, in which each cue
comprises some subsequence of the variable evaluations
required to render a fully deterministic reconstruction.
In this context, a cue is a sequence of reconstruction
constraints.

1  1  0  

1.0  

1.0  
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0.0  

0.7  
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0.6  

0.0  

0.0  
1.0  

0  
0 

0  

0.0  

1.0  

0.5  
0.5  

0 
0  

Reference items Cues (12 bits) Recalled items (23.98 bits) r(x,c) 

1 1 0 1 0 00 1  1  0.7  0.6  0  1.26 
1 0 0 0 1 11 1  0  0  0  1  3.0 
1 1 1 0 1 01 1  1  0.7  0  1  2.18 
1 1 1 1 0 00 1  1  0.7  0.6  0  1.26 
1 0 0 0 0 10 1  0  0  0.6  0  2.07 
1 1 1 0 1 01 1  1  0.7  0  1  2.18 

Memory capacity: 11.98 bits 

0.7  0.6  

Figure 1: Recall performance of a 1-bit memory.

Consider Figure 1. This is a 1-bit fuzzy memory con-
structed for the reference items shown in the lower, left
part of the figure. The tree structure in the upper part of
the figure represents the composite of distributions. No-
tice this has two levels of construction. These are termed
level 1 and level 2. Circles in the bottom row represent
base variables. Circles elsewhere represent contributory
variables. The digit seen within a circle is the value
(or more generally distribution) the variable acquires in
recall of the first reference item. Finally, the arcs lead-
ing down from each circle show which distributions are
designated by which values of the relevant contributory
variable.
Consider the leftmost contributory variable at the first

level of the composite. By following the attached arcs
downwards, we see that each value of this variable des-
ignates distributions applying to the three leftmost base
variables. All distributions being over the values 0 and
1, only the probability applying to 1 is specified. Thus a
value such as ‘0.6’ is shorthand for the distribution <0.4,
0.6>, i.e., the distribution that gives probability 0.4 to a
value of 0 in the designated variable, and probability 0.6
to a value of 1.
Also of note is the way the distributional values are ar-

ranged. Over each set of arcs, we have two rows of boxes.
Lower boxes contain distributions designated by a value
of 0 in the contributory variable; upper boxes represent
distributions designated by a value of 1. Applying these
conventions, it should be possible to interpret all the dis-
tributions of Figure 1. For example, looking at the bot-
tom, left part of the structure, we see that a value of 0
in the rightmost variable at level 1 designates a distribu-
tion on the third base variable which gives a probability
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0.7 to the value 0.

The listing in the lower part of the figure portrays the
behaviour of the device for the six reference items. (Dis-
tributions on variables are those obtained during recall
of the initial item.) Each row shows the degree to which
a particular item is recalled by its cue, with the associ-
ated recall grade r(x, c) appearing on the far right of the
figure. As noted, each cue in a 1-bit memory is some sub-
sequence of the disambiguating values required to pro-
duce a fully determined reconstruction. For the initial
reference item <1 1 0 1 0>, we have the cue 00. The ini-
tial digit in this sequence resolves the initial ambiguity
in the reconstruction: i.e., it supplies the value 0 for the
root contributory variable. The second digit resolves the
next ambiguity arising. This affects the rightmost con-
tributory variable at level 1. This value is subject to
the equiprobable distribution developed in the previous
step. The variable acquires the value 0.

With the cue now exhausted, the reconstruction con-
tinues in an un-cued way. The first, second and fifth
base variables then acquire implicitly deterministic val-
ues, i.e., distributions that embody no loss of informa-
tion. Regarding the third and fourth base variables, we
have the distributions <0.3, 0.7> and <0.4, 0.6> respec-
tively. Adopting the previous convention for represent-
ing binary distributions, the recalled item is then <1 1
0.7 0.6 0>. There is of recall of 1.26 bits. This is the
information obtained from the five bits of the reference
item after deducting the two bits of the cue, and the
1.74 bits eliminated by the two information-losing dis-
tributions. Summing recall values for all six reference
items, the total capacity of the memory is found to be
11.98 bits.

1  0  0.1  1  0  0  0.3  

0.0  

1.0  
0.3  

0.0  

1.0  

0.6  
0.0  1.0  

1.0  

0.0  
0.3  0.7  

1  0.1  0  0.2  

0.0  

1.0  
0.3

  0.2
  

0.0  
1.0  

0.2
  0.6

  

0.2  0  

0.2  
0.6  

0.
0 

 

1.
0 

 

0 

0  

Reference items Cues (10 bits) Recalled items (48.41 bits) 

0 0 0 1 0 1 0 0 1  0  0.1  1  0  0  0.3  4.42 

1 0 0 1 1 0 1 1 1  0  0.5  0.6  1  0  0.7  3.25 

0 1 0 1 0 1 1 0 1  0  0.1  1  0  0  0.3  4.42 

1 0 1 1 1 0 0 1 1  0  0.5  0.6  1  0  0.7  3.25 

0 0 1 1 0 0 1 0 1  0  0.1  1  0  0  0.3  4.42 

1 0 0 1 1 1 1 1 1  0  0.5  0.6  1  0  0.7  3.25 

0 1 1 0 1 1 0 1 1  0  0.5  0.6  1  0  0.7  3.25 

0 0 0 1 0 1 0 0 1  0  0.1  1  0  0  0.3  4.42 

0 0 0 0 1 0 1 1 1  0  0.5  0.6  1  0  0.7  3.25 

1 0 0 1 0 1 0 0 1  0  0.1  1  0  0  0.3  4.42 

Memory capacity: 38.41 bits 

r(x,c) 

Figure 2: 1-bit memory with a capacity of 38.41 bits.

A more complex illustration of the 1-bit memory is
provided by Figure 2. This is a fuzzy memory for the
10 reference items shown on the left. In this example,
reference items are defined in terms of seven base vari-
ables rather than five. Contributory variables exist at
three levels of construction rather than two. The cue-
ing protocol remains the same. But, here, cue sequences
comprise a single digit, meaning they supply values for
the root variable only. The main part of the construction
process thus proceeds in an un-cued way, with the result
being a noticeable increase in the uncertainty of what is
recalled. However, with the informational cost of cues
at a low level, the memory capacity remains relatively
substantial.

Applications in cognitive science

Fuzzy memory theory formalizes a statistical form of
memory in a way that reflects fuzzy set theory. Ap-
plications of a technological nature are one possibility.
But might there also be applications in cognitive science?
One way the theory could be used involves natural forms
of memory. Human memory is notoriously error-prone,
perfect recall being more the exception than the rule.
There may be potential, then, for using the framework
as a way of theoretically modeling human and other bi-
ological forms of memory.

Another possible application involves modeling devel-
opment of categorical and conceptual representations. It
is widely believed that such behaviours are at the heart
of cognition (e.g. Harnad, 2005) and that categories are
constructed so as to group entities by similarity (Mach-
ery, 2009). But it remains a considerable challenge to
explain why this should be the case (Murphy, 2002).
The temptation is to say that categories are formed as
a result of the ways in which similarities are identified.
Unfortunately, this makes no sense if the way we identify
similarities depends on the category representations we
bring to bear. With similarity being used to explain both
why an entity is assigned to a certain category, and also
why that category exists in the first place, such theories
are placed ‘in the perilous position of using explanations
which presuppose the very notions that they attempt to
explain’ (Hahn and Chater, 1997, p. 84).

Fuzzy memory theory has the potential to address this
dilemma. The critical factor affecting performance in
fuzzy memory is the degree to which recalled items re-
semble reference items. The more closely each recalled
item approximates its referenced counterpart, the less
information is lost and the greater the capacity of the
memory. But notice that recall loses less information
if distributions deploy more extremal probabilities (i.e.,
probabilities closer to 1.0 or 0.0). At the same time, dis-
tributions must fulfil the function of modeling the refer-
enced items; i.e., they must be the means of constructing
valid approximations.
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0  
FLESHY 
HARD 1  

EDIBLE 
COOKABLE 1  

LOWFAT 
HIGHFAT 0  

DOUGH 
MIX L0 

1.0 

0.0  
1.0  

0.5  

0.8  

0.9  

0.7  

0.0
  1.0

  

1.0 

0  
FRUIT 
NUT 

1.8 

0  
PASTRY 
SPONGE L1 

1.2 

0.0  

0.3  

1.0  
0.0  

2.2 

1  
PIE 
CAKE L2 

2.32 

0 (FLESHY) 1 (COOKABLE) 1 (HIGHFAT) 0 (DOUGH) 
0 (FLESHY) 1 (COOKABLE) 0 (LOWFAT) 1 (MIX) 
0 (FLESHY) 1 (COOKABLE) 0 (LOWFAT) 0 (DOUGH) 
1 (HARD) 0 (EDIBLE) 1 (HIGHFAT) 0 (DOUGH) 
1 (HARD) 1 (COOKABLE) 1 (HIGHFAT) 0 (DOUGH) 
0 (FLESHY) 0 (EDIBLE) 1 (HIGHFAT) 0 (DOUGH) 

Figure 3: 1-bit fuzzy memory interpreted as a structure
of categories.

Combining these two observations, we see how an im-
plicit similarity preference can arise. The distribution-
composite of a fuzzy memory divides the reference data
into implicit groupings based on variable subsets. Each
of these groupings is then implicitly subdivided into two
parts by the (binary) evaluations of the contributory
variable involved. More memory capacity is obtained
if within-group similarity is maximized, since this is the
basis for achieving more extreme probabilities. Distribu-
tion composites that group by similarity thus yield rela-
tively greater memory capacity. On the assumption that
human memory can be formalized under the fuzzy mem-
ory model, the disposition to construct similarity-based
categories would then be explained in a non-circular way.
It would be seen as a strategy for increasing memory ca-
pacity.
The schematic of Figure 3 illustrates the idea in more

intuitive terms. (The corresponding informational as-
sessments appear in Figure 4.) This memory is con-
structed to represent the reference items shown in the
lower, left part of the figure as usual. But all the vari-
ables of the memory are here seen as representing cat-
egories. The assumed domain is that of food concepts,
such as COOKABLE and DOUGH. Each contributory
variable has two labels. These name the categories that
are represented by the two values of the variable, with
the category represented by a value of 1 appearing above
the category represented by a value of 0. The value 0 in
the leftmost contributory variable at level 1, for exam-
ple, represents the FRUIT category, while the value 1 in
this variable represents NUT.
The distributions in the composite fulfil their key

function of modeling the reference items. But no-
tice how they also mediate similarity-based groupings.
FRUIT can be seen to represent a group that includes
all FLESHY items, some of which are COOKABLE.

Reference items Cues (9 bits) Recalled items (13.75 bits) 
0 1 0 1 0 0  0.5  0.2  1  1.27 
0 1 1 0 0 0  0.5  0.2  1  1.27 
0 1 1 1 0 0  0.5  0.2  1  1.27 
1 0 1 1 11 1  0.4  0.2  1  0.3 
1 1 1 1 11 1  0.4  0.2  1  0.3 
1 0 1 0 11 1  0.4  0.2  1  0.3 

Memory capacity: 4.75 bits 

r(x,c) 

Figure 4: Graded recall using implicit food categories.

SPONGE represents a group that includes all cases of
MIX, most of which are HIGHFAT. These fuzzy group-
ings then become the means of constructing higher-level
categories such as PIE. At this level too, the structure
can be viewed as exploiting similarities, although here
they reflect the way instances of PIE incorporate (man-
ifestations of) PASTRY and FRUIT.
On this interpretation, the distributions of the com-

posite are akin to the prototype representations envis-
aged by Rosch and others (e.g. Rosch, 1973; Hampton,
2000). The difference is that here they are deployed at
multiple levels of description, and in a way that gets
around the problem of prototype compositing (Osherson
and Smith, 1981; Prinz and Clark, 2004; Connolly et
al., 2007). The construction of similarity-based group-
ings comes to be seen as a way of increasing the capacity
to remember certain data. Exploitation of similarity is
explained as a way of increasing the capacity of memory.

Concluding comment

Inspiration for the idea of graded recall comes from the
idea of graded set membership. This is the key concept
in fuzzy set theory. What lies behind the operationaliza-
tion of the idea is more obviously information-theoretic
in nature: assessing degree of recall involves measure-
ment of information loss. Fuzzy memory theory thus
combines two distinct areas of theoretical analysis into
a hybrid framework. This is found to have applications
of a cognitive nature when note is taken of the ways
the framework can model error-prone memory, and the
development of categorical forms of representation.
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