
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
A Bayesian Longitudinal Trend Analysis of Count Data With Gaussian Processes

Permalink
https://escholarship.org/uc/item/7w6728f3

Author
VanSchalkwyk, Samantha

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w6728f3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

A Bayesian Longitudinal Trend Analysis of Count Data With Gaussian Processes

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Applied Statistics

by

Samantha VanSchalkwyk

September 2020

Dissertation Committee:

Dr. Daniel R. Jeske, Chairperson
Dr. Wenxiu Ma
Dr. Manuela Martins-Green

Copyright by
Samantha VanSchalkwyk

2020

The Dissertation of Samantha VanSchalkwyk is approved:

 Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, without whose help, I would not have been here. I would

also like to thank Dr. Manuela Martins-Green, Jane Kim, and Dr. James Borneman for

providing the motivating data sets, as well as for their productive discussions for analysis.

The data analyzed in this manuscript were obtained from the National Center for Biotech-

nology Information (NCBI)s Sequence Read Archive (SRA) under the BioProject Accession

Number PRJNA623025. This work was supported by 1R21 AI138188-01 to Dr. Manuela

Martins-Green.

iv

To my parents for all the support.

v

ABSTRACT OF THE DISSERTATION

A Bayesian Longitudinal Trend Analysis of Count Data With Gaussian Processes

by

Samantha VanSchalkwyk

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2020

Dr. Daniel R. Jeske, Chairperson

The context of comparing two different groups of subjects that are measured re-

peatedly over time is considered. Our specific focus is on highly variable count data which

have a non-negligible frequency of zeros and have time trends that are difficult to char-

acterize. These challenges are often present when analyzing bacteria or gene expression

data sets. Traditional longitudinal data analysis methods, including Generalized Estimat-

ing Equations, can be challenged by the features present in these types of data sets. We

propose a Bayesian methodology that effectively confronts these challenges. A key feature

of the methodology is the use of Gaussian Processes to flexibly model the time trends. Infer-

ence procedures based on both sharp and interval null hypotheses are discussed, including

for the important hypotheses that test for group differences at individual time points. The

proposed methodology is illustrated with next generation sequencing data sets correspond-

ing to two different experimental conditions.

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Model building and Inference Methods 4
2.1 Markov Chain Monte Carlo . 4

2.1.1 Markov Chains . 5
2.1.2 MCMC method . 5
2.1.3 Evaluating Performance of a MCMC algorithm 7
2.1.4 Metropolis-Hastings algorithm . 8
2.1.5 Component-wise sampling . 10
2.1.6 Stopping rules . 10

2.2 Gaussian Processes . 12
2.2.1 Gaussian Processes for Normally Distributed Data 12
2.2.2 Gaussian Processes for Negative Binomial Data 15

2.3 Negative Binomial Goodness-of-fit . 16
2.4 Inference Methods . 18

2.4.1 ROPE Procedure . 18
2.4.2 Second-Generation p-values . 18

3 Review of Existing Literature 20
3.1 Non-longitudinal Models . 20

3.1.1 edgeR . 20
3.1.2 DESeq and DESeq2 . 24

3.2 Longitudinal Models . 25
3.2.1 limma/voom . 25
3.2.2 ZIBR . 27
3.2.3 GPTwoSample . 28
3.2.4 DyNB . 31
3.2.5 GEE . 33

vii

4 Proposed Model 38
4.1 Model Formulation: Common Dispersion . 38

4.1.1 Prior Distributions . 40
4.1.2 Fitting Algorithm . 40

4.2 Model Formulation: Time-Varying Dispersion 42
4.2.1 Prior Distributions . 43
4.2.2 Fitting Algorithm . 43

5 Model Inference 44
5.1 Hyper-Rectangular Joint Credible Region . 46
5.2 Global Test . 46

5.2.1 Sharp Null Hypotheses . 49
5.2.2 Interval Null Hypotheses . 49

5.3 Individual Time Point Tests . 50
5.4 Tests of Interaction . 50

5.4.1 Differences . 50
5.4.2 Ratios . 51
5.4.3 Comment . 51

6 Simulation Study 53
6.1 GEE Results . 55
6.2 Proposed Methodology Results . 57

7 Example Data set 61
7.1 Existing Model Fitting . 63
7.2 Proposed Model Fitting . 64

7.2.1 Priors . 64
7.2.2 Proposals . 64
7.2.3 Results . 65

8 Conclusions 72

Bibliography 74

Appendices 77
A Compositional vs. Raw Data . 77
B Bacteria Lists . 79

B.1 Bacteria Names . 79
B.2 Row labels for Figure 7.5 . 82

C Functions and Code . 83
C.1 Manual . 83
C.2 R Code . 89

viii

List of Figures

2.1 The figure on the left shows poor mixing due to the inefficiency of reaching
convergence, where the proposal variance is σ = 0.1. The figure on the right
shows poor mixing due to the parameter getting stuck for too long without
exploring the state space, where σ = 10. The figure in the middle shows
reasonable mixing, with σ = 1. 8

2.2 Data here were simulated to have subjects from two groups, shown as black
or red lines. Dotted lines connect measurements on the same subject, and
solid lines show the GP fit, interpolating between observed time points. . . . 14

3.1 Visual of Library Sizes for NGS Data set . 21

5.1 The effect of varying α while computing the pseudo Bayesian p-value in a
two parameter setting is shown here. Two null hypothesis sets are shown;
one for (β1, β2) = (1,1), shown as a point at (1,1), and one for (β1, β2) ∈
(1/1.5,1.5) × (1/1.5,1.5), shown as a solid line black box. Rectangular joint
credible intervals are plotted in red, green, dark blue, and light blue, with
α = 0.05,0.01,0.005, and 0.001 respectively, where the value of α is shown at
the bottom right corner of each rectangular joint credible interval. 48

6.1 Mean structures from simulation settings described in Table 6.1. Mean struc-
tures i = 1, . . . ,6 correspond to scenarios i + 6c, for c = 0,1,2,3. 55

7.1 Empirical mean plots . 62
7.2 Repeated measures data set . 62
7.3 Pseudo Bayesian p-values for the 100 most abundant bacteria, sorted from

smallest to largest value under the interval null. The interval null used was
H0 ∶ β ∈ (1/1.5,1.5). A horizontal line is drawn at 0.05. 65

7.4 Semi-log plot with hyper-rectangular joint 95% credible intervals as well as
horizontal lines indicating the location of β = 1 (solid) and β = 1/1.5,1.5
(dashed). Pseudo Bayesian p-values for the global test of H0 ∶ β = 1 are, in
order, 0.9, 0.05, 0.0001, and 0.0001. 67

ix

7.5 SGPVs were calculated at each time point for each bacteria. Tags were
then clustered into similar groups according to their SGPVs over time. The
heatmap contains 100 rows for 100 bacteria. 68

7.6 Dendrogram of the 100 bacteria, with posterior means of logβ used for clus-
tering. 70

7.7 Fitted means from the proposed model for the four most abundant bacteria.
Points in black indicate log-counts for non-chronic mice, while points in red
indicate counts for chronic mice. There were 1, 109, 31, and 21 zero counts
each that were set equal to 1 from these four bacteria in order to generate
the plot. Groups A and B correspond to the non-chronic and chronic groups,
respectively. 71

x

List of Tables

1.1 Models and features. Features 1–6 are: longitudinal, designed for counts,
non-synchronous time allowed, inference at each time point, non-parametric
time trend, and robust convergence. 3

6.1 Settings for Simulated Data. D0, D2, D4 and D8 represent day 0, day 2, day
4, and day 8, respectively. 54

6.2 Simulation Results for GEE. The group size is denoted here as n. Numbers
in bold indicate that the test should not be rejected in that case. 57

6.3 Simulation Results for Proposed Model. The group size is denoted here as n.
The value of β is given for each time point. Rejections are anticipated unless
β = 1. The table shows results for the global test of H0 ∶ β = 1 by computing
a hyper-rectangular joint 95% credible interval, and marginal proportions of
rejections at each time point. 58

6.4 Simulation Results for Proposed Model. The group size is denoted here as n.
The value of β is given for each time point. Rejections are anticipated unless
β = 1. The table shows results for the global test of H0 ∶ β ∈ (1/1.5,1.5) using
a hyper-rectangular joint 95% credible interval, and marginal proportions of
rejections at each time point. 59

6.5 Bias and RMSE for Proposed Methodology . 60

7.1 Pseudo Bayesian p-values for interaction based on differences and ratios for
the first 4 bacteria are shown. 69

A.1 Percent power for edgeR and ZIBR on simulated data to compare raw data
analysis to compositional data analysis. The ‘diff’ column indicates the mag-
nitude of group difference. 78

A.2 Type I error rates for edgeR and ZIBR on simulated data to compare raw
data analysis to compositional data analysis. The ‘diff’ column indicates the
magnitude of group difference. 78

xi

Chapter 1

Introduction

The data sets to which the proposed methodology is aimed to be applied generally

measure a genomic feature for two or more groups. Each group has a number of subjects

which are measured at multiple discrete time points, which may or may not coincide. Since

the same subject is measured more than once, this introduces correlation on the observed

counts of the same subjects at different time points. The number of dependent variables

is often tens of thousands of this genomic feature, which can be genes or bacteria, and

will be referred to as tags throughout this thesis. These next generation sequencing (NGS)

data sets, which include RNA-sequencing (RNA-seq) data sets, produce non-negative count

data. Often data are considerably overdispersed, meaning the variance is much larger than

the mean.

Statistical models for longitudinal data sets such as Generalized Estimating Equa-

tions (GEE) (Liang and Zeger, 1986) and generalized linear mixed models which are not

designed for NGS data sets often fail to converge. Often the data sets have many zeros,

1

and especially when the ratio of zeros to non-zeros is high, this can become a significant

obstacle to model convergence. An additional complexity with NGS data sets is that the

time trends are unpredictable, and an appropriate method of addressing these time trends

is difficult to choose. Sometimes counts are expected to grow or shrink for a time before

achieving an equilibrium due to biological interaction. A flexible model made specifically

for these longitudinal NGS data sets would be helpful for identifying differences in group

trends over time.

Before NGS data sets, microarray experiments were commonly used. There were

some methods developed to detect differential expression in these data sets, such as limma

(Smyth, 2005) and GPTwoSample (Stegle et al., 2010). These models are based on Gaussian

distributions. However, when NGS data sets started to replace microarray data sets, new

models were needed since NGS produces non-negative count data. The limma model added

a method called voom (Law et al., 2014) to transform counts logarithmically. However, to

avoid taking the logarithm of zero, all zero counts were offset, and this becomes problematic

with NGS data sets which have a high number of zeros.

Some models have been developed to analyze NGS data sets using the Negative

Binomial (NB) distribution. These include edgeR (Robinson et al., 2009) and DESeq2

(Anders and Huber, 2010; Love et al., 2014), which are built to detect differential expression

between groups. However, both of these models are only designed for data sets where

subjects are measured at one time point, so they are not suitable for analysis on longitudinal

data sets. A model called ZIBR (Chen and Li, 2016) relies on normalization procedures for

the NB data and thus has eliminates information about the magnitude of the unnormalized

2

Models
limma/ GPTwo- Proposed

Feature edgeR DESeq2 voom ZIBR Sample DyNB GEE Model

1 7 7 ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ 7 7 7 ✓ ✓ ✓
3 n.a. n.a. ✓ ✓ ✓ 7 ✓ ✓
4 n.a. n.a. 7 7 ✓ 7 ✓ ✓
5 n.a. n.a. 7 7 ✓ ✓ 7 ✓
6 ✓ ✓ ✓ ✓ ✓ ✓ 7 ✓

Table 1.1: Models and features. Features 1–6 are: longitudinal, designed for counts, non-
synchronous time allowed, inference at each time point, non-parametric time trend, and
robust convergence.

data. Another model called DyNB (Äijö et al., 2014), also using the NB distribution,

was developed for longitudinal NGS data sets, however this model is not built to handle

asynchronous time points, nor does it provide inference at individual time points. See Table

1.1 for a summary of the features of each model discussed. Each of these models will be

discussed in more detail in Chapter 3. The main contribution of this thesis is a flexible

model fit to sparse, highly variable, longitudinal count data with a robust specification of

the time trend.

The rest of this dissertation is organized as follows. Chapter 2 introduces methods

used in model building and inference. In Chapter 3, existing models relevant to the NGS

application are described. In Chapter 4, the proposed model is introduced. In Chapter 5,

we discuss inference procedures implemented after model fitting. In Chapter 6, we describe

a simulation study for the proposed model. In Chapter 7, results of model fitting on a

wound healing data set are summarized. Chapter 8 provides conclusions and direction for

future work. The Appendix includes a comparison study between compositional and raw

data, supplementary material for plots, and relevant R code.

3

Chapter 2

Model building and Inference

Methods

In this chapter, methods are introduced that will be used to build the model

discussed in Chapter 4. Markov Chain Monte Carlo methods are discussed in detail, which

will be used to collect draws from the posterior distribution of interest. Another important

component of the proposed model are Gaussian Processes, which can be incorporated into

models to flexibly specify a time trend. A goodness-of-fit method for evaluating the fit of

the Negative Binomial distribution, designed in particular for NGS data sets, is explained.

Some methods to perform model inference for the proposed model are also explored.

2.1 Markov Chain Monte Carlo

As the application of frequentist methods on our data sets of interest resulted

in model convergence issues, we explored a Bayesian alternative with a Markov Chain

4

Monte Carlo (MCMC) algorithm. When computing a posterior distribution is not analyt-

ically tractable, MCMC methods can be used to gain draws from a posterior distribution.

Here we introduce Markov chains, the MCMC method, the Metropolis-Hastings algorithm,

component-wise sampling, and a stopping rule that can be used to determine how long the

algorithm needs to be run.

2.1.1 Markov Chains

A Markov chain is a dependent sequence of random variables or random vectors

X1,X2, . . . with the property that the conditional distribution of Xn+1 given X1, . . . ,Xn

depends only on Xn [Flegal, 2016]. If the conditional distribution of Xn+1 given Xn is the

same for all n, the Markov chain is said to have stationary transition probabilities, which

is a property of every Markov chain used in an MCMC algorithm. A Markov chain is

stationary if its initial distribution is stationary.

Markov chains are categorized by a state space, transition probabilities, and an

initial state across the state space. The state space is the set of all possible positions that

the random variables can travel to in the Markov chain. The transition probabilities define

how each random variable travels within the state space. An initial state across the state

space is the set of initial states that components of a Markov chain are given.

2.1.2 MCMC method

Define f to be the probability distribution we would like to explore, which is

also called the stationary distribution. In our proposed model, f will be the posterior

distribution of interest. If the Markov chain is stationary, then every iterate of the chain Xi

5

has the same marginal distribution, also called the equilibrium distribution. If chain is not

stationary but has a unique equilibrium distribution, which is the case with MCMC chains,

then the marginal distribution Xi converges to the equilibrium distribution as i Ð→ ∞.

When independent, identically distributed observations are unavailable, a Markov chain

with stationary distribution f can be utilized. Resulting draws of the MCMC can then be

used to summarize f with expectations or quantiles, for example.

Certain properties of MCMC chains are used to verify assumptions that will be

used later to identify stopping criteria of the chain. A state that the chain returns to

with probability 1 is said to be recurrent. If the expected time to return to the state is

finite, it is non null. A chain is irreducible if for all i, j pairs there exists m > 0 such that

P (Xm+n = i∣Xn = j) > 0. A chain is period r > 1 if it can only return to its present state

Xt at times t + cr, for some constant c. A chain is aperiodic if it does not have any period

r > 1. If the chain is irreducible and aperiodic, then f is unique.

A chain is ergodic if it is irreducible, aperiodic, and all its states are non null and

recurrent. Let x ∈ X, where X is the support of f , and let A be a measurable set. We will

use Pn(x,A) = P (Xn+i ∈ A∣Xi = x) to denote what is called an n-step Markov transition

kernel. Let M(x) be a nonnegative function and ∥⋅∥ be the total variation norm. Polynomial

ergodicity of order m ≥ 0 occurs when ∥Pn(x, ⋅) − f(⋅)∥ ≤M(x)n−m (Jones 2004).

Suppose we have draws X1, . . . ,Xn from a unique equilibrium distribution, and

we would like to compute the expectation θ = E[g(Xi)] with respect to the equilibrium

distribution. If E[g(Xi)] <∞, then

θ̂ = 1

n

n

∑
i=1

g(Xi)
a.s.Ð→ θ (2.1)

6

as n → ∞ by the strong law of large numbers (Flegal 2016). If for some δ > 0, g has 2 + δ

moments under f , and the Markov chain is polynomially ergodic of order m > (2+ δ)/δ, the

Markov chain central limit theorem holds for the approximate sampling distribution of the

Monte Carlo error, Σ (Jones 2004). That is, for a chain with p components, there exists a

p × p positive-definite matrix, Σ, such that as n→∞,

√
n(θ̂ − θ) dÐ→ Np(0,Σ). (2.2)

Monte Carlo error is considered later when assessing stopping criteria for chains.

2.1.3 Evaluating Performance of a MCMC algorithm

A MCMC algorithm should be run until the chain converges on the posterior

distribution of interest. The algorithm will do so in the limit, but we cannot determine

how many iterations are needed for this convergence to occur before running the chain.

However, as only a finite number of iterations can be run, it is necessary to identify when it

is reasonable to conclude the chain has converged on the posterior distribution. A stopping

rule to determine when a chain has sufficiently converged is discussed in Section 2.1.6.

Another concern while assessing performance of the MCMC algorithm is whether

the chain has good mixing. A chain mixes well if it explores the state space without getting

stuck at a particular value too long, and efficiently reaches convergence. Successfully mixing

chains will have parameters that fluctuate around the values they converge to. See Figure

2.1 for examples of chains with different mixing properties. We will come back to this

example in the following section.

7

Random Walk with .1

Time

rw
1

0 100 200 300 400 500

0
1

2
3

4
5

6
Random Walk with 1

Time

rw
2

0 100 200 300 400 500

0
1

2
3

4
5

6

Random Walk with 10

Time

rw
3

0 100 200 300 400 500

0
1

2
3

4
5

6

Figure 2.1: The figure on the left shows poor mixing due to the inefficiency of reaching
convergence, where the proposal variance is σ = 0.1. The figure on the right shows poor
mixing due to the parameter getting stuck for too long without exploring the state space,
where σ = 10. The figure in the middle shows reasonable mixing, with σ = 1.

2.1.4 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm can be used to generate draws from an

MCMC chain. The algorithm requires choice of a proposal distribution, denoted as g, which

controls transition probabilities of the chain. To begin, set X0 = x0, where x0 are the initial

states of the chain. The MH algorithm generates Xt+1 given Xt = xt as follows:

1. Sample a candidate value x∗ ∼ g(⋅∣xt)

2. Compute the MH ratio R(xt,X∗), where

R(xt,X∗) = f(x
∗)g(xt∣x∗)

f(xt)g(x∗∣xt)
(2.3)

3. Set Xt+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xt w.p. min{R(xt, x∗),1}

x∗ otherwise

8

The choice of the proposal distribution will control the performance of the chain, such as

mixing within the state space.

As a special case of the MH algorithm, if g(x∗∣xt) = g(x∗), this yields an indepen-

dence chain. In this case, the proposal does not depend on the current state. The resulting

MH ratio reduces to

R(xt, x∗) =
f(x∗)g(xt)
f(xt)g(x∗)

. (2.4)

Random walk algorithms can also be thought of as a special case of the MH

algorithm. In a random walk algorithm, candidate values are generated such that X∗ =

Xt + ε, where ε ∼ h(⋅). The resulting proposal distribution has the property g(x ∗ ∣xt) =

h(x∗ − xt). If h is a symmetric, zero mean distribution, then the MH ratio simplifies to

R(xt, x∗) =
f(x∗)
f(xt)

(2.5)

because h(x∗ − xt) = h(xt − x∗). Common choices of h include the Normal distribution and

the Uniform distribution.

Recall that in Section 2.1.3 we considered mixing properties of three chains, with

chain values shown in Figure 2.1. These three chains were random walk chains, with f ∼

Exp(1) and g ∼ N(0, σ2). We know from (2.5) that the MH ratio is

R(xt, x∗) =
exp(−x∗)
exp(−xt)

= exp(xt − x∗) (2.6)

for x∗ ≥ 0. Each of the chains begins at an initial value of 1 and is run for 500 iterations.

The value chosen for σ, the proposal variance, affects the efficiency of mixing. For σ = 0.1,

mixing is poor due to slow convergence, while for σ = 10 mixing is poor because the chain

gets stuck too often. When σ = 1 mixing is most appropriate, and the state space is explored

9

well. Therefore, the proposal variance for parameters in the chain is important and must

be chosen carefully so that mixing is reasonable and convergence is reached efficiently.

2.1.5 Component-wise sampling

In MCMC chains that have many dimensions, chain mixing can be slow, prolong-

ing convergence. Component-wise sampling is a way to speed mixing by isolating each

parameter and updating their values individually. Let θ be the vector of parameters that

will be updated in the MCMC chain. The sampling scheme for component-wise sampling

is implemented as follows:

1. Set initial values for all parameters, θ0.

2. Sample a candidate value θ∗1 for θ1.

3. At iteration i, compute the MH ratio with θ∗1 , keeping other components as their most

recently updated values in the chain.

4. Set θi1 = θ∗1 if accepted, or θi1 = θi−11 if rejected.

5. Repeat steps 2) through 4) for θ2, . . . , θN (for N -dimensional θ).

6. Repeat steps 2) through 5) for each iteration through the chain.

Each component of the vectors λ and β uses component-wise sampling.

2.1.6 Stopping rules

Vats et al. (2019) develop a stopping rule for the MCMC chain based on a mul-

tivariate effective sample size in order to address correlation across different components,

10

or parameters, of the chain. To introduce this topic, we first consider another correlation

present in MCMC chains called autocorrelation, which measures the correlation of the chain

values that are i iterations apart, for any i (Kruschke, 2015). The number of iterations i is

also referred to as the lag. We use the effective sample size (ESS) to measure the amount

of independent information that exists in autocorrelated MCMC chains. The ESS is the

sample size that we would have in a chain with no autocorrelation that yielded the same

information. In a univariate setting, the ESS is

ESS = N/(1 + 2
∞

∑
i=1

ACF(i)), (2.7)

where ACF(i) is the autocorrelation of the chain at lag i, and N is the length of the chain.

Extending now to a multivariate setting, we estimate the multivariate ESS, which

is more appropriate for chains that collect draws for multiple components, as

ˆESS = n{det(Λn)
det(Σn)

}
1/p

, (2.8)

where Λn is the sample covariance matrix of the chain, p is the number of components in

the chain, and Σn is a strongly consistent estimator of Σ (Vats et al., 2019).

The aim of the stopping rule is to terminate the chain when the Monte Carlo

standard error Σ is small compared to the variability in the target distribution, which can

be evaluated with (2.8). Vats et al. (2019) derive a stopping rule of the form

ˆESS ≥ 22/pπ

[pΓ(p/2)]2/p
χ2
1−α,p

ε2
(2.9)

for relative precision ε > 0 and some choice of confidence level, α.

11

2.2 Gaussian Processes

Another approach to modeling unpredictable time trends is with Gaussian Pro-

cesses (GPs). GPs extend Gaussian distributions to infinite dimensions, such that every

finite subset follows a multivariate Gaussian distribution. In our case, the GP will be in-

dexed by time, so the GP for a finite subset of time points with K unique time points is

defined as

F∣m, γ ∼MVN(m, T (γ)), (2.10)

where F is the process, T is the covariance matrix, γ = {σ1, σ2} are hyperparameters, and

m is the mean of the process. For a squared exponential function, σ1 and σ2 are called the

length-scale and signal variance hyperparameters, respectively (Rasmussen and Williams,

2006). The squared exponential function defines the (k, k′)th element of the matrix T as

tk,k′(σ1, σ2) = σ21 exp{ − 1

2

(k − k′)2
σ22

}. (2.11)

For simplicity in the following section, denote the resulting covariance matrix as T (k,k)

and components as tk,k′ .

2.2.1 Gaussian Processes for Normally Distributed Data

Let y = {y1, y2, . . . , yn} be observed function values measured at times given by

k = {k1, k2, . . . , kn}. Define the likelihood of y as

f(y∣θ) =MVN(µ(k), T (k,k)), (2.12)

where θ = {β, σ1, σ2}, σ1 and σ2 are used to calculate the covariance function as shown

in (2.11), and β are parameters that define the mean of y at locations k. If we believe

12

there is noise associated with the observed values, we could write the covariance function as

T (k,k)+σ23I. In this case the parameter vector θ would also include σ3, the noise variance.

For a location k∗ with unknown corresponding value y∗ which is independent of

the observed data, the joint distribution of the observed data and y∗ is

p

⎛
⎜⎜⎜
⎝

y

y∗

⎞
⎟⎟⎟
⎠
∼ N

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

µ(k)

µ(k∗)

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

T (k,k) T (k, k∗)

T (k∗,k) t(k∗, k∗)

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (2.13)

where T (k, k∗) is the column vector formed from t(k1, k∗), . . . , t(kn, k∗) and T (k∗,k) is its

transpose. The conditional distribution of Y∗∣Y = y is Gaussian with mean and variance

given by

m∗ = µ(k∗) + T (k∗,k)T (k,k)−1(y −µ(k)) (2.14)

σ2∗ = T (k∗, k∗) − T (k∗,k)T (k,k)−1T (k, k∗). (2.15)

To see an example of how GPs can be used both to model the time trend as well

as interpolate between observed time points, consider data from group A that is simulated

to take the form yrkA = −48+ 44k − 12k2 +k3 + εA, where εA ∼ N(0, σ2eA) and σeA = 20. Data

from group B were simulated as yrkB = 20+17k−24k2 +3k3 + εB, where εB ∼ N(0, σ2eB) and

σeB = 25. Both groups have r = 4 subjects with repeated measurements at time points k =

0, 2, 4, 6, 8, and 10.

Using a squared exponential covariance function, as well as noise variance, we can

estimate the parameters of interest, which involves estimating σ1, σ2 for each group, as well

as σeA, and σeB by maximizing the log likelihood. In other words, for group A, the covariance

matrix can be modeled with CA ∶= C(σ1A, σ2A, σ2eA) = T (k,k) + σ2eAI, and the covariance

matrix for group B can be modeled with CB ∶= C(σ1B, σ2B, σ2eB) = T (k,k) + σ2eBI. Then

13

Figure 2.2: Data here were simulated to have subjects from two groups, shown as black or
red lines. Dotted lines connect measurements on the same subject, and solid lines show the
GP fit, interpolating between observed time points.

minimize the negative of the log likelihood, which is ∑4
r=1[12y

T
rAC

−1
A yrA + 1

2 log(det(CA))]

for group A and ∑4
r=1[12y

T
rBC

−1
B yrB + 1

2 log(det(CB))] for group B. Estimates came out to

σ̂1A = 96.58, σ̂2A = 2.69, σ̂2eA = 26.84, σ̂1B = 629.80, σ̂2B = 3.73, and σ̂2eB = 59.34. Those

estimates can then be used to estimate the covariance matrix both for the observed points

and for any interpolated points over time.

Assuming a zero mean for the observed points, even if the data do not have a zero

mean, the GP can still generate a mean that fits with the data. Using (2.14), the GP fit can

be found for the original data points as well as for interpolated data between observed time

points, where µ(k∗) = 0, µ(k) = 0, and CA and CB are used in place of the T covariance

matrix for groups A and B, respectively. See Figure 2.2 for a visual of two zero-mean GPs

fit to two groups of subjects.

14

In the previous example, data were simulated to have normally distributed error.

However, the application of interest involves NGS data sets, which are non-negative count

data, so assuming normally distributed error is not appropriate. The proposed model

in following chapters will use the NB distribution to model the data, as there is often

overdispersion. Therefore we can consider how to incorporate GPs into a model built for

NB data.

2.2.2 Gaussian Processes for Negative Binomial Data

While normally distributed data can use GPs to directly specify the mean, the

mean of the NB distribution is strictly non-negative. The DyNB model, which will be

discussed further in Chapter 3, uses a GP as the mean of a NB distribution, and rejects all

negative MCMC draws of the GP. Another way to handle the inconsistency is by specifying

the log of the mean as the GP. That is, let

f(y∣θ) = NB(λ(θ), φ), (2.16)

where

logλ∣θ ∼MVN(µ(k), T (k,k)) (2.17)

and θ = {β, σ1, σ2}, where these parameters are defined as they were in Section 2.2.1. In

this formulation, the GP is still able to flexibly model the time trend, while eliminating the

need to reject all negative values from the GP.

15

2.3 Negative Binomial Goodness-of-fit

The proposed model in Chapter 4 relies on the assumption that the data follow a

Negative Binomial (NB) distribution. As our data are overdispersed, the NB distribution is

preferred to the Poisson distribution, which requires the same mean and variance. However,

we should still make sure that the NB distribution is an appropriate fit for the data to ensure

that the model assumption is satisfied.

Mi et al. (2015) propose a goodness-of-fit (GOF) test for NB model adequacy.

They use Pearson residuals and compute a p-value based on simulation-based null sampling

distributions. A more traditional GOF test based on χ2 null distributions for residuals is

not appropriate with small means, which are often present in NGS data sets. Their method

applies to a single tag and is not built for a longitudinal context.

Thee method relies on Pearson residuals, which are computed as br = (yr − µ̂r)/ŝr,

where yr is the count for subject r, µ̂r is the estimated NB mean and ŝr is the estimated

NB standard deviation of yr from the model being tested, for r = 1, . . . , n. They simulate

a large number of NB data sets of the same size as the observed data, using the estimated

mean and standard deviation for simulation. Then they fit the same NB regression model

and extract the ordered Pearson residuals from each simulated data set. A Pearson statistic

is computed as the sum of squared Pearson residuals. A p-value can be obtained by finding

the proportion of simulated samples that produce a Pearson statistic as extreme or more

extreme than the observed one.

Another test statistic that Mi et al. (2015) propose is computed as the sum

of squared differences of the ordered Pearson residuals from their sampling distribution

16

medians. The sampling distribution medians are available since the simulations provided

sampling distributions for each ordered residual. A sum of squared vertical distance GOF

p-value uses this statistic instead to assess which simulated statistics are as extreme or more

extreme than the observed one. The p-value is found with the following algorithm:

1. Fit a NB regression model to the data Y(0) = (Y1, . . . , Yn)T . Estimate the dis-

persion parameter φ̂ and regression coefficients β̂(0). Calculate Pearson residuals

b(0) = (b(0)1 , . . . , b
(0)
n) and mean vector µ̂(0).

2. For h = 1, . . . ,H:

● Simulate a random vector Y(h) from NB(µ̂(0), φ̂).

● Compute and retain Pearson residuals b(h).

3. Find the median of the Monte Carlo sampling distribution for each ordered residual,

denoted by b̂50
(r).

4. Compute the sum of squared deviations of ordered residuals from the medians of

their sampling distributions, denoted as d(h) = ∑nr=1(b
(h)
(r)

− b̂50
(r))

2, for the observed

data (h = 0) and for the simulated samples (h = 1, . . . ,H). Compute a Monte Carlo

GOF test p-value as

pMC = ∑
H
h=1 I(d(h) ≥ d(0)) + 1

H + 1
. (2.18)

The Pearson GOF p-value is computed the same way, but replacing the test statistic with

the sum of squared residuals.

17

2.4 Inference Methods

In this section, inference methods which will be revisited in Chapter 5 are de-

scribed, including the ROPE procedure and second-generation p-values.

2.4.1 ROPE Procedure

Kruschke (2015) described a procedure built for credible intervals to test if a null

value is plausible. The idea is to begin by creating a region of practical equivalence (ROPE)

for the null value. The width of the ROPE depends on practical interpretation, but affects

the frequency of rejection of the null value.

Once the limits of the ROPE are chosen, it is compared with the credible interval.

If the ROPE and the credible interval are disjoint, the null value is rejected. Alternatively, if

the ROPE completely contains the credible interval, the null value is said to be accepted for

practical purposes. In the case that the ROPE and the credible interval have some overlap

but neither of the above situations applies, the decision about the null value is withheld.

2.4.2 Second-Generation p-values

Second-generation p-values (SGPV) were introduced by Blume et al. (2019) as

an alternative to more traditional p-values. While the method is designed for use with

confidence intervals, credible intervals can be used as well. The SGPV uses the overlap

of the interval null hypothesis and the credible region to quantify agreement between the

null hypothesis and the data. When the SGPV is close to 1, data are compatible with the

null hypothesis. Consider a fixed time point k. Let I = [βlk, βuk] be the marginal credibility

18

interval for βk whose length is given by ∣I ∣ = βuk − βlk. Denote the interval null by H0 and

its length by ∣H0∣. The SGPV is

pδ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣I∩H0∣

∣I ∣ when ∣I ∣ ≤ 2∣H0∣

1
2
∣I∩H0∣

∣H0∣
when ∣I ∣ > 2∣H0∣

, (2.19)

where I ∩H0 is the overlap of the two intervals.

When the ∣I ∣ ≤ 2∣H0∣, the interval estimate is considered precise in relation to the

null hypothesis. In this situation, the SGPV is the fraction of the interval that is contained

within the null hypothesis. Otherwise, it is possible that the interval is wide enough to

extend on either side of H0, which would yield a deceivingly small SGPV without the

correction factor which replaces the denominator ∣I ∣ with 2∣H0∣. In this case where ∣I ∣ > 2∣H0∣,

the SGPV is bounded by 1/2. As a result, inconclusive data have a SGPV near 1/2, while

a SGPV near 1 indicates that the data support H0.

19

Chapter 3

Review of Existing Literature

The existing models to determine if there is differential expression in NGS data

sets all have some drawbacks that will be addressed in this thesis. The models considered

here include edgeR, DESeq2, limma combined with voom, ZIBR, GPTwoSample, DyNB,

and GEE. Certain features of edgeR, GPTwoSample, and DyNB will be incorporated into

the proposed model discussed in Chapter 4.

3.1 Non-longitudinal Models

3.1.1 edgeR

The R package edgeR (Robinson et al., 2009) was developed to model non-longi-

tudinal gene expression. It uses a generalized linear model with Negative Binomial (NB)

responses, which allows for overdispersion. For a NB random variable Y with mean µ

and dispersion parameter φ, edgeR uses the parameterization of the NB distribution with

20

Figure 3.1: Visual of Library Sizes for NGS Data set

probability mass function given by

f(y;µ,φ) = P (Y = y) = Γ(y + φ−1)
Γ(φ−1)Γ(y + 1)

⎛
⎝

1

1 + µφ
⎞
⎠

φ−1

⎛
⎝

µ

φ−1 + µ
⎞
⎠

y

(3.1)

so that E(Y) = µ and V ar(Y) = µ(1 + φµ). Note that the Poisson distribution is a special

case when lim
φ→0

f(y;µ,φ).

Let yrt be the count of the rth subject for tag t. The edgeR model assumes that

the counts follow a NB distribution

yrt ∼ NB(µrt, φt), (3.2)

where φt is the dispersion parameter.

Define the library size to be the sum of the counts of a subject across all tags. A

visual of the library size can be seen in Figure 3.1, with data provided by James Borneman,

PhD (see Acknowledgments). If we let λrt be the relative abundance of tag t for subject r,

and let mr = ∑t yrt be the library size of the rth subject, then the mean of yrt is expressed

as µrt =mrλrt and logµrt = logmr + logλrt.

21

When there are two groups, let logλrt = β0t + β1tUr where

Ur =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if subject r is in group A

1 if subject r is in group B

. (3.3)

Differential expression for tag t is tested with the hypotheses

H0 ∶ β1t = 0 vs. H1 ∶ β1t ≠ 0, (3.4)

where H0 indicates lack of differential expression in tag t and H1 indicates that differential

expression is present in tag t. Testing can also be performed when there are more than two

groups by utilizing additional indicator variables in the definition of logλrt.

Consider a test for differential expression between two groups. A Wald test sim-

ply divides the maximum likelihood estimate (MLE) β̂1t by the standard error, with the

asymptotic variance obtained from the Fisher information matrix. The test statistic is then

compared to the Normal distribution. An exact test is also implemented by edgeR by cre-

ating what is called “pseudodata” and calculating the probability of observing counts as or

more extreme than the counts observed.

With edgeR, information is shared across tags to estimate the dispersion param-

eter, which is thought to stabilize estimation when there are a small number of samples.

Without this information sharing approach, model fitting is often prevented by model con-

vergence issues due to instability of the dispersion parameter. The weighted conditional

log-likelihood for φt is a weighted combination of the individual and common log-likelihoods.

If `t(φ) is the single-tag profile log-likelihood for φ given the sum of observations for tag t

in each group, and `C(φ) = ∑Tt=1 `t(φ) is the common log-likelihood, where T is the total

22

number of tags, the weighted profile log-likelihood (WL) for φt is

WL(φt) = `t(φt) + α`C(φt), (3.5)

where α is the weight given to the common log-likelihood.

The value of α determines how much information is being shared across tags to

estimate the dispersion parameters. If α is chosen to be large, individual tag-wise con-

tributions to the log-likelihood are outweighed by the common log-likelihood, resulting in

a common dispersion parameter for all tags. If α = 0, the result is a tag-wise estimate,

so no information is being shared across tags. When the estimates of φ are so extreme

that they prevent model fit convergence, this could become problematic. Otherwise, if α is

chosen between these two extremes, the result yields tag-wise estimates that are between

the individual and common estimates. In this scenario, the dispersion parameters will be

prevented from being extreme values, but will also take information from the data for each

tag for estimation.

There are numerous benefits to using the edgeR model. Since the data has so

much variability, by using the NB distribution which allows the variance to be much larger

than mean, the model more accurately addresses the variability than a Poisson model. The

edgeR model allows the user to test thousands of tags for differential expression with just

a few lines of code. Conducting all tests at once is beneficial because there are often data

sets with a large number of dependent variables being inputted into edgeR, and the output

provides ordered p-values of the tags for the specified test. Additionally, a multiple testing

adjustment is built in to control the false discovery rate, which is important since there are

often so many tags being tested. One significant benefit of edgeR is that the estimation

23

procedure allows information about the dispersion parameter to be shared across tags, and

stabilization of the dispersion parameter is crucial to ensuring model convergence. Another

benefit, discussed in Appendix A, is that there is no normalization to the library size,

so information is not lost. Incorporating the library size into the mean ensures that the

counts are considered relative to other counts within their own library, which is important

because counts are not comparable across samples. Finally, an R package edgeR has been

implemented, which makes the model accessible to interested users.

The main drawback to edgeR is that it does not handle repeated measures data.

The model is built for cross-sectional data, but data sets with multiple time points are

outside the realm of edgeR functionality.

3.1.2 DESeq and DESeq2

Similar to the edgeR model, DESeq (Anders and Huber, 2010) is a model that

uses the NB distribution to identify differential expression between groups. They use the

same parameterization of the NB distribution as edgeR, but make three assumptions. First,

DESeq assumes that the mean is µrt = qt,Ursr, where qt,Ur is proportional to the expected

value of the true abundance of tag t under condition Ur, and sr is called a size factor. The

size factor represents the sampling depth of library r. Second, the variance of counts is given

by σ2rt = µrt + s2rvt,Ur , where s2rvt,Ur is referred to as raw variance. Third, they assume that

the per-tag raw variance parameter vt,Ur is a smooth function of qt,Ur , or vt,Ur = vU(qt,Ur).

A few tags may have large counts that have a strong influence on the total read

count. As a result, the ratio of total read counts can be a poor estimate of the ratios

E(Yrt)/E(Yr′t) of expected counts for tag t in different subjects r and r′. Therefore, DESeq

24

takes the median of the ratios of observed counts to estimate the size factors, which are

estimated as

ŝr = median
t

yrt

(∏nr=1 yrt)
1/n

. (3.6)

The size factors defined here allow counts to be comparable across samples while still mod-

eling counts instead of ratios.

The model is implemented in an R package called DESeq, and its successor DESeq2

was also developed. DESeq2 uses shrinkage estimators to model dispersion and fold change.

DESeq2 showed that it had higher overall precision than edgeR with tags that were not dif-

ferentially expressed. These models, as well as edgeR, are suitable for identifying differential

expression in non-longitudinal NGS data sets.

3.2 Longitudinal Models

3.2.1 limma/voom

Linear models for microarray data (limma) [Smyth, 2005] is a package in R for

detecting differential expression in data sets collected from microarray experiments. Mi-

croarray experiments are becoming widely replaced with NGS technologies. NGS has be-

come more predominantly used for various reasons, since NGS tends to perform better at

detecting differential expression [Zhao et al., 2014]. The voom function takes counts from

NGS data and converts them to log2-counts-per-million (logCPM) so that limma can be

applied to NGS data.

25

Limma assumes a linear model such that E(dt) =Xβt, where dt is a N ×1 vector of

logCPM values for tag t, for N total observations of all of the subjects, X is the N ×p design

matrix for p parameters, and βt is a p × 1 vector of coefficients. The variance-covariance

matrix for dt is block diagonal, allowing for independence for different subjects.

Since limma was originally designed for microarray data, which was continuous

data, an adjustment was necessary to apply the method to NGS data sets, which is count

data. Therefore, voom was created, which transforms the NGS data into logCPM values

by calculating

rrt = log2
⎛
⎝
yrt + 0.5

mr + 1.0
× 106

⎞
⎠
, (3.7)

where mr is the library size for subject r, where the counts are offset by 0.5 to avoid

taking the logarithm of zero and to reduce variability in low expression genes, and library

sizes are offset by 1 so that the ratio is strictly less than 1 but strictly greater than zero

[Law et al., 2014]. The logCPM values and derived weights are inputted into limma’s linear

modeling for differential expression analysis.

With limma, longitudinal data sets where subjects are measured over time can be

analyzed to account for the correlation on observations of the same subjects. Since it has

been adapted from its original design of microarray analysis to extend to NGS data analysis

through the use of voom, it can at least be used for more recent data sets, since microarray

technologies are widely becoming outdated. However, voom’s data transformation involves

adding an offset of 0.5 to all counts to avoid taking the logarithm of zero. There are often so

many zeros in NGS data, which makes the normality assumption of the voom values seem

questionable. That is, all zeros will map to a very large and negative number through the

26

log transformation, so the problem has just changed form. Finally, counts are normalized

by their library sizes, which loses information about the magnitude of the counts. Taking

the ratio of the count to its library size removes the model’s knowledge of the original scale

of the count, which may impact inference in a negative way.

3.2.2 ZIBR

Another method for analyzing longitudinal data was developed in an R package

called ZIBR [Chen and Li, 2016]. Zero-inflated Beta Regression (ZIBR) uses random ef-

fects to address correlation from repeated measures. It creates compositional data (i.e.,

proportions) by dividing counts by total sequence count in the sample, which is the library

size. ZIBR has a two-part logistic-Beta regression model. There is a logistic component to

model the absence or presence of a tag in the samples, and a Beta component that is used

to model the abundance of the tag, conditional on it being present.

A clear benefit of ZIBR is that it addresses repeated measures and allows for the

corresponding correlation. It also allows covariates affecting the presence or absence of a

tag to be different from the covariates affecting abundance, which is a unique feature that

directly addresses the fact that there are such a high quantity of zeros in these data sets.

The drawback of using the ZIBR package is that normalizing counts to their rela-

tive abundance results in ratios that can lose information (i.e., 10
100 ≡

1000
10000). The standard

errors in the models will be affected, which can have an effect on the statistical significance

of the tests for differential expression. Refer to Appendix A for an comparative example

using ZIBR and edgeR.

27

3.2.3 GPTwoSample

A model called GPTwoSample was developed by Stegle et al. (2010) to test for

differential expression in microarray data. The model has the benefit of incorporating a

time trend into the model with Gaussian Processes so that it can be applied to data with

repeated measures. The model has the benefit of allowing for inference at each time point.

Additionally, GPTwoSample claims robustness to outliers by incorporating a mixture model

that allows for noisier observations.

GPTwoSample relies on a comparison of a shared model and two independent

models. The shared model assumes that the mean of observations from the two groups

being compared were drawn from an identical shared distribution. The independent models

allow the model to be fit twice, once to each group. To determine whether differential

expression is present, the shared model is compared to the two independent models for each

tag with a Bayes factor.

For microarray data, instead of counts, the observations are referred to as ex-

pression levels. Let yrk be the expression level for subject r at the kth time point, where

r = 1, . . . ,R and k ∈ {1, . . . ,K}. Denote the time points at which the rth subject is measured

as Kr ⊆ {1, . . . ,K}. Let f ∼ N(0, T (σ1, σ2)) be a GP prior, where T (σ1, σ2) is the squared

exponential covariance function, such that the (k, k′)th element of the matrix T is given by

tk,k′(γ) = σ21 exp{ − 1

2

(k − k′)2
σ22

}. (3.8)

The posterior distribution over f for the shared model is given by

P (f∣θS ,y)∝ N(f∣0, T (σ1, σ2))
R

∏
r=1
∏
k∈Kr

N(yrk∣fk, σ2r), (3.9)

28

where σr is the noise level for observations of subject r and θS = {σ1, σ2,{σr}Rr=1} denotes

the set of all hyperparameters for the shared model. A similar posterior distribution exists

for each of the independent models, where θS is replaced by θI , the GP prior f is modeled

separately for each group, yielding fA and fB, and the product is taken over only replicates

from one group for each model.

Inference is first carried out with the Bayes factor to identify differentially ex-

pressed tags. Let HS and HI denote the competing hypotheses of the shared and inde-

pendent models, respectively. For the shared model, the probability of the observed data,

integrating out θS , is

P (y) = ∫ P (y∣θS)P (θS)dθS , (3.10)

where y are all data points from both groups. For the independent models, the probability

of the observed data is

P (yA) = ∫ P (yA∣θI)P (θI)dθI (3.11)

P (yB) = ∫ P (yB ∣θI)P (θI)dθI , (3.12)

where yA and yB are all data from groups A and B, respectively. The Bayes factor can be

computed as

BF = P (yA)P (yB)
P (y) . (3.13)

Stegle et al. (2010) acknowledge that microarray data may contain outliers that

would not be well modeled by Gaussian noise. They therefore consider a mixture model of

the form

P (yrk∣fk, θ) = π0N(yrk∣fk, σ2r) + (1 − π0)N(yrk∣fk, σ2inf), (3.14)

29

where θ = {{σr}Rr=1}, π0 is the probability of a regular observation and (1 − π0) is the

probability of an outlier. The noise variance of the outliers, σ2inf is much larger than the

noise variance of regular observations. The formation in (3.14) can be used to compute the

Bayes factor in (3.13).

Once it is determined that a tag has differential expression, the model performs

inference at each time point to identify when tags are differentially expressed. To answer

this, they design a switching model between the shared and the independent models. Binary

switches zk are defined at each time point to determine if the shared or the independent

models are preferred, where zk = 0 indicates the shared model, and zk = 1 indicates the

independent models. Let P (Z) = ∏Kk=1 Bernoulli(zk∣0.5), which assigns equal prior proba-

bility to the shared and independent models. The joint probability of the GPs and model

parameters is given by

P (f, fA, fB,Z∣y, θS , θI)∝P (f∣σ1, σ2)P (fA∣σ1, σ2)P (fB ∣σ1, σ2)P (Z)×

∏
r∈SA

∏
k∈Kr

[N(fk∣yr,k, σ2r)]
I(zk=0)

[N(fAk ∣yr,k, σ2r)]
I(zk=1)

×

∏
r∈SB

∏
k∈Kr

[N(fk∣yr,k, σ2r)]
I(zk=0)

[N(fBk ∣yr,k, σ2r)]
I(zk=1)

, (3.15)

where SA and SB are the set of subjects from groups A and B, respectively, and P (f∣σ1, σ2),

P (fA∣σ1, σ2), and P (fB ∣σ1, σ2) are the independent GP priors. The joint probability in

(3.15) does not make use of the mixture model in (3.14). GPTwoSample performs inference

on their model by using a variational approximation, in contrast with the DyNB model

discussed in Section 3.2.4 and the proposed model discussed in Chapter 4, which use an

MCMC algorithm, described in Section 2.1.

30

GPTwoSample offers various flexibilities and benefits. Incorporation of GPs into

their model allows for flexible time trend modeling. The mixture model to accommodate

outliers is useful for improving model fitting for the data. The switching parameters, zk,

are particularly useful for identifying whether differential expression is present at each time

point. These features are all desirable, but since GPTwoSample is built for microarray data

sets, an alternative is needed for NGS data sets.

3.2.4 DyNB

A model called DyNB (Äijö et al., 2014) was developed to assess differential ex-

pression in time course NGS data sets. The model uses a Negative Binomial likelihood and

integrates Gaussian Processes into its time trend. A Markov Chain Monte Carlo method

is used to gather posterior samples of the parameters of the model, and ultimately Bayes

Factors are used to make decisions about differential expression for each tag. DyNB also

draws from DESeq (Anders and Huber, 2010) by using size factors on the Gaussian Process

samples for variance estimation, which is done to make read counts comparable between

different NGS runs.

The GP with hyperparameters γ = σ1, σ2} is defined as

F∣ξ,γ ∼MVN(ξ, T (γ)), (3.16)

where F represents the process, ξ is the mean of the process, and T is the covariance matrix.

The GP in (3.16) is used as the prior distribution for the mean of the data. The data are

modeled as yrk∣fk ∼ NB(fk, φk) with subjects r and time points k = 1, . . . ,K where φk is the

dispersion parameter and fk is a realization of the random process in (3.16) at the kth time

31

point. It is assumed that subjects have measurements at synchronous time points. The

squared exponential covariance function is used. Prior distributions for θ = {ξ,γ,{φk}Kk=1}

are denoted here as p(θ).

The conditional likelihood of the data can be written as

p(y∣f,θ) = ∏
r∈S

k∈{1,...,K}

Γ(yrk + φ−1k)
Γ(yrk + 1)Γ(φ−1k) × (1

1 + fkφk
)
φ−1k

(fk
φ−1k + fk

)
yrk

, (3.17)

where the model is fit three times, once with replicates from both groups, then with repli-

cates from each group separately. The marginal density of y is defined as

p(y) = ∫ p(y∣f,θ)p(f,θ)dfdθ. (3.18)

The above equation is estimated using a harmonic mean of evaluations of p(y∣f,θ) over

the posterior draws of (f,θ) from an MCMC algorithm as proposed by Newton & Raftery

(1994).

Finally, a Bayes factor calculated based on the estimate of (3.18) is given by

BF = p(yA)p(yB)
p(y) , (3.19)

where yA is the data from group A and yB is the data from group B. For the independent

models, represented in the numerator of the Bayes factor, different models are fit to the

data from each group, while the shared model fits one model to all of the data. The Bayes

factor then provides evidence for either the independent or the shared model.

Notice that DyNB uses realizations of a GP to model the mean of negative binomial

counts. Clearly, when draws from a GP are negative, they would not function as the mean

of a negative binomial distribution, since this must be positive. To account for this, in

32

the code supplied by DyNB, the GP draws are truncated so that no negative counts are

used. The main drawback of this model is that it is not capable of analyzing data in

which subjects were measured at asynchronous time points, so an alteration is necessary to

perform analysis for data sets such as the one described in Chapter 7.

The modeling approach in DyNB is limited by challenges with Bayes factors when

subjective information is not available, and also does not readily provide an indication of

the direction or trend of group differences over time. For example, when counts in one

group trend higher than counts in the other group, Bayes factors do not indicate which

group trended higher, nor do they explain when group differences occurred. The proposed

methodology discussed in Chapter 4 provides inference for group difference overall and at

each time point, and results allow direct interpretation of the direction of group difference.

3.2.5 GEE

Generalized Estimating Equations (GEE) (Liang and Zeger, 1986) can be used

to estimate and make inference about group and time trend parameters in data sets with

repeated measures. GEE offers certain model flexibilities which make it an appealing choice

for NGS data sets. For example, it can be implemented by formulating models for the

marginal mean and variance of the data. Consequentially, no likelihood function is required.

Additionally, GEE does not require that the correlation matrix of the repeated measures

within a subject be precisely specified.

Laird (1989) provides a useful introduction of GEEs. Assume we have observa-

tions Yrk, where each observation has a corresponding p × 1 vector of covariates Xrk =

33

{xrk1, . . . , xrkp}′ so that

E(Yrk) = µrk = g(XT
rkβ) (3.20)

and

g−1(µrk) ≡ `(µrk) =Xrkβ (3.21)

for some suitable link function `(⋅). If Yrk are count data, a natural link function to use is

the log, so that

logµrk =XT
rkβ ⇒ µrk = eXrkβ, (3.22)

which ensures that µrk > 0. For simplicity of notation, denote E(Yr) = µr where `(µr) =Xrβ

denotes the vector (`(µr1, . . . , µrK)T . Let Vr denote the covariance matrix of Yr.

The generalized estimating equations are given by

S(β) =
R

∑
r=1

D′
rV

−1
r (Yr − µr) = 0, (3.23)

where Dr = (δµr/δβ) (Liang and Zeger, 1986). Let Kr ⊆ {1, . . . ,K} denote the time points

at which the rth subject is measured. The p×Kr matrix of partial derivatives of the mean

with respect β is

D′
r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xr11
g′(µr1)

. . .
xrKr1

g′(µrKr)

⋮ ⋮

xr1p
g′(µr1)

. . .
xrKrp

g′(µrKr)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.24)

Let Br(α) be a “working” correlation matrix which is specified by the parameters

α. Denote

Vr = var(Yr) = ψA1/2
r W −1/2

r Br(α)W −1/2
r A1/2

r , (3.25)

where Ar = {diagV (µrk)} and Wr is a Kr × Kr diagonal matrix of weights, which may

be set equal to one for all r and k. The mean model, given by (3.20), and the variance

34

structure in (3.25) are used to proceed with the estimation algorithm, where the variance

is assumed to be a known function of the mean. A range of models can be chosen for

the working correlation structure, including unstructured. It is estimated with an iterative

fitting process using Pearson residuals, given by

erk =
yrk − µrk√
vrk/wrk

. (3.26)

For an unstructured working correlation matrix, where

Corr(Yrk, Yrk′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 k = k′

αkk′ k ≠ k′
, (3.27)

the SAS procedure PROC GENMOD estimates the working correlation structure with

α̂kk′ =
1

(R − p)ψ
R

∑
r=1

erkerk′ . (3.28)

The parameter ψ is then estimated as

ψ̂ = 1

R − p
R

∑
r=1

Kr

∑
k=1

e2rj . (3.29)

Define

I0 =
R

∑
r=1

δµ′r
δβ

V̂ −1
r

δµr
δβ

. (3.30)

To fit the model, PROC GENMOD uses the following algorithm:

1. Obtain an initial estimate for β using a generalized linear model that assumes inde-

pendence.

2. Compute the working correlation structure B based on standardized residuals, the

current β, and the assumed structure of B.

35

3. Estimate the covariance matrix, given by Vr = ψA1/2
r W

−1/2
r B̂r(α)W −1/2

r A
1/2
r .

4. Update β such that βi+1 = βi + [I0]−1[∑Rr=1
δµ′r
δβ V

−1
r (Yr − µr)].

5. Iterate steps 2-4 until convergence.

A model-based estimator of Cov(β̂) is given by

Σm(β̂) = I−10 , (3.31)

and is a consistent estimator of the covariance matrix of β if the mean model and the

working correlation matrix are correctly specified. Alternatively, the estimator

Σe = I−10 I1I
−1
0 (3.32)

is called the empirical estimator of the covariance matrix of β̂, where

I1 =
R

∑
r=1

δµ′r
δβ

V̂ −1
r Cov(Yr)V −1

r

δµr
δβ

. (3.33)

The empirical estimator is a consistent estimator of the covariance matrix of β even if

the working correlation matrix is misspecified, meaning Cov(Yr) ≠ Vr. To compute Σe,

estimates are used for β and ψ, and Cov(Yr) is estimated as (Yr − µr)(Yr − µr)′.

It is of interest to perform inference with the GEE model to test for differential

expression between groups over time, as well as to identify overall group or time differences.

In PROC GENMOD, generalized score statistics are used, which are motivated by Boos

(1992) and Rotnitzky and Jewell (1990). For a j × p contrast matrix L′, we would like to

test L′β = 0. Let β̃ denote the regression parameters that result from solving the estimating

equations under the restricted model L′β = 0, and S(β̃) denote the values of the estimating

36

equations at β̃ (see (3.23)). Then the generalized score statistic is

T = S(β̃)′ΣmL(L′ΣeL)−1L′ΣmS(β̃). (3.34)

Then p-values can be found based on an asymptotic Wald test for T based on a chi-squared

distribution with j degrees of freedom.

For the NGS application, the mean is expressed as µrkt = mrkλrkt for subject r

at time point k for tag t, where mr,k = ∑t yrkt is the library size, which is specific to each

subject and time point. Group and time trend structure can be specified by incorporating

indicator variables into a parameterization of logλrkt. An asymptotic Wald test can be

used to determine if the time trends are the same for each group.

When implemented on data sets such as our NGS application described in Section

7, model convergence is an issue for sparse tags. The root cause of model convergence

issues is that unlike edgeR, the GEE fitting algorithm does not share data across tags. Issues

related to the difficulty of GEE convergence were discussed in a symposium talk given by the

author at the University of California, Riverside in September, 2018 [VanSchalkwyk, 2018].

37

Chapter 4

Proposed Model

It is of interest to detect differences between groups A and B measured on subjects

across time. To address the unpredictable time trend, we incorporate a GP prior into the

mean of the NB distribution. We use the probability mass function for the NB distribution

given by (3.1).

We consider two different model formulations. One allows the dispersion parameter

of the NB distribution to be common within each group. The other formulation is a richer

model, which allows for a unique estimate of the dispersion parameter for each group at each

time point. While this allows for more flexibility in specifying the dispersion parameter,

this extension may not often be necessary.

4.1 Model Formulation: Common Dispersion

For simplicity in notation, we describe the model for one arbitrary tag. Let yrk

be the observation for subject r at the kth time point. Let r ∈ {SA, SB}, where SA denotes

38

subjects from group A and SB denotes subjects from group B, and Kr ⊆ {1, . . . ,K} denote

the time points at which the rth subject is measured. The posterior distribution of all the

model parameters can be written as

P (λ,β, σ1, σ2, φA, φB ∣y)∝ ∏
r∈SA

∏
k∈Kr

NB(yrk;mrkλk, φA) ∏
r∈SB

∏
k∈Kr

NB(yrk;mrkλkβk, φB)

P (β)P (λ∣σ1, σ2)P (σ1)P (σ2)P (φA)P (φB), (4.1)

where mrk is the library size, which is specific to each subject and time point, and is defined

as the sum of counts observed at time k for subject r across all of the tags. Here, P (⋅) denotes

a prior for the indicated parameter. Note that the group means are mrkλk and mrkλkβk

for groups A and B, respectively. Going forward, we define θ = (λ,β, σ1, σ2, φA, φB). Priors

on these parameters are defined in Section 4.1.1.

The mean specification in (4.1) is designed to mimic the edgeR mean structure by

incorporating the library size. Counts are therefore modeled relative to their measurement

totals, which is important because counts are only interpretable relative to this library size.

Including the library size in the mean is a preferred option to taking ratios of counts and

library sizes, as it retains the magnitude of the data. See Appendix A for more details.

Notice from (4.1) that the difference between group means for groups A and B is

quantified by the K × 1 vector β. These β parameters will therefore be used to perform

inference on group differences over time in Chapter 5. For now, note that when βt < 1, the

mean for group B is lower than the mean for group A at time t. When βt > 1, the mean for

group B is higher than the mean for group A at time t. When βt = 1, means are equivalent

for both groups at time t.

39

4.1.1 Prior Distributions

The K ×1 vector for λ has a multivariate log-normal prior distribution, equivalent

to a GP prior for logλ, that is, logλ ∼ MVN(0, T (σ1, σ2)) where the elements in the

covariance matrix T (σ1, σ2) are given by (3.8). Prior information is not always available,

so we use non-informative priors for the other parameters of the model. A multivariate

log-normal prior distribution is used for β, so that logβ follows a zero-mean multivariate

normal distribution with a large variance. Then σ1, σ2, φA and φB have non-informative

gamma priors with appropriate and specific hyperparameters. Non-informative uniform

priors on φA and φB were also implemented, and the resulting posterior draws were very

similar in both cases.

4.1.2 Fitting Algorithm

To sample from the posterior distribution in (4.1), we use a Markov Chain Monte

Carlo (MCMC) algorithm. More specifically, we use the Metropolis Hastings (MH) algo-

rithm, which requires the choice of proposal distributions. For proposal distributions, each

component of θ is generated via a random walk. For candidate values θ∗ and draws from

iteration i − 1 of the chain denoted as θi−1, the Metropolis Hastings (MH) ratio is

R(θi−1,θ∗) = f(θ∗∣y)
f(θi−1∣y)

. (4.2)

The variance of the proposal distribution for each parameter should be used as a

lever to achieve proper mixing of the MCMC chain. Proposal distributions for components

of β and λ are log-normal, equivalent to normal distributions for components of logβ and

40

logλ. The complete set of proposal distributions are:

logβ∗k ∼ N(logβi−1k , σ2βk), k = 1,2, . . . ,K (4.3)

logλ∗k ∼ N(logλi−1k , σ2λk), k = 1,2, . . . ,K (4.4)

σ∗1 ∼ Unif(σi−11 − a, σi−11 + a) (4.5)

σ∗2 ∼ Unif(σi−12 − b, σi−12 + b) (4.6)

φ∗A ∼ Unif(φi−1A − c, φi−1A + c) (4.7)

φ∗B ∼ Unif(φi−1B − d,φi−1B + d), (4.8)

where σβk , σλk , a, b, c, and d are constants for k = 1, . . . ,K, and are chosen in the tuning

phase of the algorithm where the goal is to achieve a target acceptance rate. Since σ1, σ2,

φA and φB all take strictly positive values, candidate values for these parameters which are

non-positive are rejected with probability 1.

Component-wise sampling can be helpful for high-dimensional chains when mixing

is slow or satisfactory acceptance rates are difficult to achieve. We implement component-

wise sampling for each of the parameters of the model with the sampling scheme described

in Section 2.1.5.

There are some challenges introduced with the MCMC method, but each can be

attended to. For example, running the chain is time consuming, and must be done for

each tag. However, running tags in parallel on a computing cluster can alleviate computing

time concerns. Also, the chain should be run until a minimum effective sample size (which

depends on the number of parameters) is reached (Vats et al., 2019). To avoid gathering too

few draws and needing to restart, after a specified number of iterations are run, the code

checks every 100 iterations whether this condition is met as stopping-point criteria. Another

41

concern is that parameters for the proposal distribution must be chosen. After fitting the

model to a few tags using a manual process, reasonable ranges of proposal distribution

parameters will become apparent.

The proposed model is designed to accommodate missing data. That is, it is not

assumed that there are measurements at each time point for all subjects, nor is it assumed

that there are an equal number of subjects in each group. These are both limitations that

exist in the DyNB method (Äijö et al., 2014). However, it is necessary to have data from

subjects from both groups at each time point in order to detect difference in groups. The

proposed model is formulated to perform inference on the β parameters, which quantify

differences between groups at each time point, so having data at each time point from both

groups is necessary.

4.2 Model Formulation: Time-Varying Dispersion

We would now like to formulate a model which will allow the dispersion to vary

over time within each group. Utilizing much of the same notation from Section 4.1, the

posterior distribution can be written as

P (λ,β, σ1, σ2,φA,φB ∣y)∝ ∏
r∈SA

∏
k∈Kr

NB(yrk;mrkλk, φkA) ∏
r∈SB

∏
k∈Kr

NB(yrk;mrkλkβk, φkB)

P (β)P (λ∣σ1, σ2)P (σ1)P (σ2)P (φA)P (φB), (4.9)

where now φA and φB are K-dimensional vectors of dispersion parameters.

42

4.2.1 Prior Distributions

For this richer model, we use the same prior distributions as Section 4.1.1 for all of

the common parameters of the two model formulations (i.e., β,λ, σ1, σ2). Prior distributions

for each component of the vectors φA and φB are specified as gamma priors, as were the

common φA and φB parameters.

4.2.2 Fitting Algorithm

Using the random walk chain is done in a very similar way as in Section 4.1.2,

but now the proposal distributions must be specified for each component of the vectors of

dispersion parameters. Proposal distributions for the dispersion parameters are given by

φ∗Ak ∼ Unif(φi−1Ak − ck, φi−1Ak + ck) (4.10)

φ∗Bk ∼ Unif(φi−1Bk − dk, φi−1Bk + dk), (4.11)

where ck and dk are constants for k = 1, . . . ,K. Proposed values of φAk or φBk less than

zero are rejected with probability 1.

43

Chapter 5

Model Inference

Testing for differences between the two groups involves inference on the parameters

βk, for k = 1, . . . ,K. Bayes factors are commonly used for Bayesian hypothesis testing, which

is exemplified by the DyNB method in Section 3.2.4. Bayes factors are designed for model

selection, and we could have tried to implement the Bayes factor for the posterior draws

of our model. However, Bayes factors are not advised for use with noninformative prior

distributions, as prior distributions significantly impact the outcome. For our purposes,

we do not assume subjective prior knowledge about group differences in the data, as our

analysis is exploratory. Therefore, we prefer an alternative approach to testing for group

differences.

While using a Bayesian methodology to construct the model in Chapter 4, we

would like to capitalize on the information available from the posterior distribution. Stern

(2005) discusses a preference for using the posterior distribution to perform Bayesian analy-

sis, compared with model selection methods such as the Bayes factor. However, a hypothesis

44

testing framework is not widely accepted by Bayesian statisticians, so it is not obvious how

to perform inference in the context of interest. Our inference methods, discussed in this

chapter, integrate information from the posterior draws of β to conduct hypothesis tests

to identify group differences. It is our belief that such a test is unavoidable for making

decisions for each tag in the data set, since we would like to provide an answer to whether

or not group differences are present.

Following McShane et al. (2019) and references therein, which discuss the fact

that sharp null hypotheses of zero effect are often implausible, we develop inference methods

that can accommodate either sharp or interval null hypotheses. We begin by constructing a

hyper-rectangular joint 100(1 −α)% credible region of the K-dimensional β vector. Group

difference is inferred when at least one dimension of the credible region is disjoint from the

null hypothesis of choice. We then integrate this hyper-rectangular joint credible region into

a method which calculates what we refer to as a ‘pseudo Bayesian p-value’, which provides

a global significance test for group difference for each tag. When the global significance test

rejects, we proceed to individual significance tests of group difference at each time point.

A sharp null, H0 ∶ β = 1, would consist of testing whether each dimension of the

hyper-rectangular joint credible region includes 1. An interval null hypothesis is constructed

to be an interval of indifference, or in other words a region of practical equivalence (ROPE)

(Kruschke, 2015), which was introduced in Section 2.4.1. The amount we allow each βk

to differ from 1 and be considered inconsequential dictates the width of the ROPE. The

ROPE hypothesis testing procedure is designed for a one-dimensional interval null. We

extend the ROPE procedure to higher dimensions by rejecting the global significance test

45

of group difference if any dimension of the credible region is disjoint from its corresponding

dimension specified by the ROPE.

5.1 Hyper-Rectangular Joint Credible Region

We would like to be able to contain our β parameters in a credible region which has

the appropriate joint 100(1−α)% posterior coverage probability. Building marginal 100(1−

α)% credible intervals for each dimension would lead to joint coverage under 100(1 − α)%,

while if we considered Bonferroni-corrected marginal credible intervals this would lead to

joint coverage over 100(1 − α)%. We utilize an approach motivated by Robertson et al.

(2019), which searches α∗ ∈ [α/K,α] to find marginal intervals with size 100(1−α∗)% that

collectively create a joint 100(1 − α)% hyper-rectangular credible region.

The hyper-rectangular joint credible region is found by constructing 100(1−α∗)%

credible intervals for each of the K dimensions and counting how many of the MCMC

draws of these β parameters are within the resulting credible region. Once this coverage

is satisfactorily close to 100(1 − α)%, we stop and use that α∗ as a calibrating value that

provides approximate joint coverage of 100(1 − α)%.

5.2 Global Test

We propose the following scheme to calculate what we refer to as ‘pseudo Bayesian

p-values’ to identify whether group difference exists for each tag:

46

1. Given:

● A set of α ∈ (0,1] from which to search for the pseudo Bayesian p-value

● A null hypothesis set corresponding to a sharp null or a K-dimensional interval

null

2. Begin with the smallest α, say α∗

3. Construct a 100(1 − α∗)% hyper-rectangular joint credible interval

4. Identify whether any dimension of the credibility interval is disjoint with the corre-

sponding dimension in the null hypothesis set

● If so, stop, α∗ is the pseudo Bayesian p-value

● Otherwise, use the next largest α and repeat steps 3 and 4

● If you reach α = 1, set the pseudo p-value equal to 1

Due to the discreteness of the search algorithm, the actual pseudo p-value will be less than

or equal to the stopping value α∗.

The scheme above results in pseudo Bayesian p-values which are smallest for a

point null hypothesis and increase as the null hypothesis set expands in size, as long as

the point null is a subset of the null interval. Since it should be easier to reject a point

null than an interval null that contains that point, this agrees with intuition. Referring to

Figure 5.1, which illustrates a two parameter setting, notice that smaller values of α result

in larger joint credible regions. When α = 0.001 or 0.005, neither rectangular joint credible

interval is disjoint from either null hypothesis set shown. When α = 0.01, the sharp null at

47

Figure 5.1: The effect of varying α while computing the pseudo Bayesian p-value in a two
parameter setting is shown here. Two null hypothesis sets are shown; one for (β1, β2) =
(1,1), shown as a point at (1,1), and one for (β1, β2) ∈ (1/1.5,1.5) × (1/1.5,1.5), shown as
a solid line black box. Rectangular joint credible intervals are plotted in red, green, dark
blue, and light blue, with α = 0.05,0.01,0.005, and 0.001 respectively, where the value of α
is shown at the bottom right corner of each rectangular joint credible interval.

(β1, β2) = (1,1) is rejected, but the interval null, where (β1, β2) ∈ (1/1.5,1.5) × (1/1.5,1.5),

is not. Thus, for the null hypothesis H0 ∶ (β1, β2) = (1,1), the pseudo Bayesian p-value

is between 0.005 and 0.01. For α = 0.05, the interval null hypothesis set is disjoint from

the null interval, so the pseudo Bayesian p-value for the null hypothesis H0 ∶ (β1, β2) ∈

(1/1.5,1.5) × (1/1.5,1.5) is between 0.01 and 0.05.

Tags which yield global test pseudo Bayesian p-values less than a chosen threshold,

such as α = 0.05, could be considered to have statistically significant group differences over

time. Moreover, if interval nulls are used, it could be said the groups have statistically

48

significant practical differences over time. Note that values of α that are used to search for

the pseudo Bayesian p-value should be carefully chosen to account for specific significance

levels of interest.

5.2.1 Sharp Null Hypotheses

To use a sharp null for a global test, we would test

H0 ∶ β = 1K vs. H1 ∶ at least one βk ≠ 1, (5.1)

where 1K is a K-dimensional vector of 1’s.

5.2.2 Interval Null Hypotheses

To use an interval null for a global test, we would test

H0 ∶ β ∈ (1/c, c)K vs. H1 ∶ at least one βk ∉ (1/c, c) (5.2)

for some constant c > 0, where (1/c, c)K is a K-dimensional hypercube with endpoints

(1/c, c) in each dimension. Note that an interval null is synonymous with the term ROPE.

Using the interval null hypothesis in conjunction with the hyper-rectangular joint credible

region would extend the ROPE testing procedure to multiple dimensions.

If a change of means by a factor of 1.5, for example, is considered negligible, this

can be used to define the interval null. Specifically, that would mean the hypothesis test is

H0 ∶ β ∈ (1

1.5
,1.5)

K

vs. H1 ∶ at least one βk ∉ (1

1.5
,1.5). (5.3)

Since the posterior draws of β are on the log scale, this is equivalent to testing

H0 ∶ logβ ∈ (−.405, .405)K vs. H1 ∶ at least one logβk ∉ (−.405, .405). (5.4)

49

5.3 Individual Time Point Tests

When the global test from Section 5.2 rejects, we proceed to individual tests for

group differences at each time point. The calibrated hyper-rectangular joint credible region

has built-in multiple testing protection, so the same region is appropriate for tests at each

time point. One option is to use the ROPE testing procedure described by Kruschke (2015)

for each dimension, leading to a decision at each time point. The results from such a test,

assuming the hyper-rectangular joint credible intervals are still used, would be equivalent

to observing which dimensions of the hyper-rectangular joint credible region were disjoint

from the null space in the global test. Another option is to use the SGPV method (Blume

et al., 2019) introduced in Section 2.4.2.

5.4 Tests of Interaction

A useful result would be to gain insight on how groups differ over time. There are

two tests of interaction that can be conducted using the output of MCMC draws. One test

is for whether the difference in group intensities is the same over time, and another tests

for whether ratios of the means are the same over time.

5.4.1 Differences

It may be of interest to identify whether the difference in means is constant over

time. Since the data sets of interest are compositional, that is, counts are only interpretable

relative to their respective library sizes, we can conduct this test using intensities which

eliminate the need for the library size to be included in the test. Define ck = λk(1 − βk),

50

which is a difference of the means of groups A and B, eliminating the library size term.

Testing for consistent difference in group intensities over time is a test of

H0 ∶ c1 = c2 = ⋅ ⋅ ⋅ = cK vs. H1 ∶ not H0. (5.5)

The test can be carried out by forming the K −1 contrasts of the ck’s and testing if they are

jointly zero. MCMC draws of logλ and logβ can be used to construct a hyper-rectangular

joint credible region for the contrasts, and a pseudo Bayesian p-value can be found as

described in Section 5.2.

5.4.2 Ratios

Testing for consistent ratios of group means over time is a test of

H0 ∶ β1 = β2 = ⋅ ⋅ ⋅ = βK vs. H1 ∶ not H0. (5.6)

The test can be carried out by forming the K − 1 contrasts of the βk’s and testing if they

are jointly zero. MCMC draws of logβ can be used to construct a hyper-rectangular joint

credible region for the contrasts, and a pseudo Bayesian p-value can be found as described

in Section 5.2.

5.4.3 Comment

Though they are both tests of interaction, the tests for differences of group inten-

sities and ratios of group means may produce different results. Chapter 6 will introduce

a setting where data are simulated to have parallel differences over time (refer to Figure

6.1). Data sets with this mean structure should not reject the test for differences of group

intensities, since the difference stays constant over time between the two groups. Using

51

GEE, a related test could be performed on these data sets using a log link function and

testing for group by time interaction. In the same mean structure scenario, the test for

difference of ratios should reject, since the parallel group lines change over time, impacting

the ratios. The related test with GEE would use the identity link function to test for group

by time interaction, and is implemented in the following chapter.

The discrepancy between expected results for this particular mean structure is

useful for understanding the difference in the two types of interaction tests. When the log

link function was used to test for interaction with GEE, 99.9% of the simulated data sets

indicated group by time interaction. While this result makes sense for testing difference of

intensities, the traditional understanding of an interaction test as identifying non-parallel

lines would make this an unusual result. Using ratios to test the difference instead yields

more comprehensible results in such a context.

52

Chapter 6

Simulation Study

While a Bayesian machinery is used to develop this model, we are interested in

exploring frequentist properties of the model by using repeated sampling so that we can

evaluate performance of the hypothesis test for group differences. To explore the statistical

power of the proposed model, various data generation settings were considered (see Table

6.1). For each data set scenario, 1000 data sets were simulated. To generate the data, the

means from Table 6.1 were used as the mean of the NB distribution, specified as µrk =mrkλk

for time points k = 1, . . . ,K. The size parameter for the NB distribution was specified as

1
φC

, for C = {A,B}. The library sizes were set to 10,000 for each subject at all time points,

which is within the range of library sizes from the data set in Chapter 7. All simulated

data sets have 4 time points at days 0, 2, 4, and 8. Some data sets have 10 subjects per

group, while others have 40 subjects per group. Dispersion parameters for each group, φA

and φB, were set to either .1 or 2, which was motivated by preliminary analysis of the data

in Chapter 7 using edgeR.

53

Means Group A Means Group B

Scenario Group Sizes φA, φB D0 D2 D4 D8 D0 D2 D4 D8

1 10 .1, .1 400 600 800 1000 400 600 800 1000

2 10 .1, .1 400 600 600 600 400 600 1200 1800

3 10 .1, .1 400 600 1200 1800 400 600 600 600

4 10 .1, .1 400 600 800 1000 1200 1400 1600 1800

5 10 .1, .1 400 400 400 400 400 600 800 1000

6 10 .1, .1 200 200 200 200 200 1000 2000 3000

7 10 2, 2 400 600 800 1000 400 600 800 1000

8 10 2, 2 400 600 600 600 400 600 1200 1800

9 10 2, 2 400 600 1200 1800 400 600 600 600

10 10 2, 2 400 600 800 1000 1200 1400 1600 1800

11 10 2, 2 400 400 400 400 400 600 800 1000

12 10 2, 2 200 200 200 200 200 1000 2000 3000

13 40 .1, .1 400 600 800 1000 400 600 800 1000

14 40 .1, .1 400 600 600 600 400 600 1200 1800

15 40 .1, .1 400 600 1200 1800 400 600 600 600

16 40 .1, .1 400 600 800 1000 1200 1400 1600 1800

17 40 .1, .1 400 400 400 400 400 600 800 1000

18 40 .1, .1 200 200 200 200 200 1000 2000 3000

19 40 2, 2 400 600 800 1000 400 600 800 1000

20 40 2, 2 400 600 600 600 400 600 1200 1800

21 40 2, 2 400 600 1200 1800 400 600 600 600

22 40 2, 2 400 600 800 1000 1200 1400 1600 1800

23 40 2, 2 400 400 400 400 400 600 800 1000

24 40 2, 2 200 200 200 200 200 1000 2000 3000

Table 6.1: Settings for Simulated Data. D0, D2, D4 and D8 represent day 0, day 2, day 4,
and day 8, respectively.

Six distinct mean trends were chosen to assess the power of tests from Section 5.

A visual of the mean structures is shown in Figure 6.1. Notice that mean structure 1 has no

difference between groups at any time point. Scenarios with this structure should allow us

to measure the Type I Error for different combinations of sample size and variation, imposed

by φA and φB. Mean structures 2 and 3 reverse the direction of group difference, allowing

us to assess power for values of β that are greater than 1, as well as less than 1. Mean

structure 4 has a parallel difference between groups over time. We expect more power

54

0 2 4 6 8

50
0

10
00

15
00

20
00

25
00

30
00

Mean Structure 1

time

C
ou

nt

0 2 4 6 8

50
0

10
00

15
00

20
00

25
00

30
00

Mean Structure 2

time
C

ou
nt

0 2 4 6 8

50
0

10
00

15
00

20
00

25
00

30
00

Mean Structure 3

time

C
ou

nt
0 2 4 6 8

50
0

10
00

15
00

20
00

25
00

30
00

Mean Structure 4

time

C
ou

nt

0 2 4 6 8

50
0

10
00

15
00

20
00

25
00

30
00

Mean Structure 5

time

C
ou

nt

0 2 4 6 8

50
0

10
00

15
00

20
00

25
00

30
00

Mean Structure 6

time
C

ou
nt

Group A Group B

Figure 6.1: Mean structures from simulation settings described in Table 6.1. Mean struc-
tures i = 1, . . . ,6 correspond to scenarios i + 6c, for c = 0,1,2,3.

to detect changes in mean structure 6 due to the larger magnitude of group differences,

especially in later time points.

6.1 GEE Results

Power for the global test of group differences from running GEE on the simulated

data is shown in Table 6.2. GEE was fit with an identity link function and a non-parametric

time trend using dummy variables for each day. Results in the table were based on asymp-

55

totic Wald tests, as described in Section 3.2.5. The column for Group × Time is a test for

equality of difference of means over time. With few exceptions, the GEE model was able to

converge successfully for the simulated data sets within each scenario. Overall, GEE shows

strong power to detect significant group and time differences at a 5% significance level, as

well as difference in means. Power is weaker for simulated scenarios 7-12 and 19-24 because

φA and φB were higher in those scenarios, introducing higher levels of variation. The fact

that scenarios 13-24 show higher power than scenarios 1-12 is due to the increased sample

size for those scenarios. Scenarios 6, 12, 18, and 24, which have higher effect sizes compared

to the other scenarios, generally yield stronger power. Some false rejection rates are high for

scenarios 1-12. Due to the smaller sample sizes per group in these scenarios, the asymptotic

properties of the GEE parameter estimators most likely have not quite taken effect.

The following code can be used to run GEE in R:

data1 . 1 <− read . csv (”Data1 . 1 . csv ” , f i l e E n c o d i n g=”UTF−8−BOM”)
l ibrary (geepack)
gee1 . 1 <− geeglm (Count ˜ factor (Group) + factor (Day) +

factor (Group) : factor (Day) + of fset (log (Total)) ,
id = Mouse , data = data1 . 1 ,
family = poisson , c o r s t r = ” unstructured ”)

summary(gee1 . 1)
anova(gee1 . 1)

The above code produces the same model estimates as the SAS GENMOD procedure.

Running the anova() function on the geeglm object gives results for a Wald statistic test

of group difference, time difference, and an interaction test between group and time.

56

% Rejected
Scenario n φA, φB Group Time Group × Time

1 10 .1, .1 10.0 100 12.9
2 10 .1, .1 98.8 100 100
3 10 .1, .1 98.8 100 100
4 10 .1, .1 99.9 99.9 18.1
5 10 .1, .1 99.8 95.8 100
6 10 .1, .1 96.3 100 100
7 10 2, 2 8.9 50.5 11.6
8 10 2, 2 44.3 51.1 34.4
9 10 2, 2 46.4 48.8 36.8

10 10 2, 2 63.4 28.0 17.4
11 10 2, 2 46.8 24.0 28.0
12 10 2, 2 97.7 70.9 95.0
13 40 .1, .1 6.2 100 5.9
14 40 .1, .1 100 100 100
15 40 .1, .1 99.9 100 100
16 40 .1, .1 100 100 7.1
17 40 .1, .1 100 100 100
18 40 .1, .1 97.5 100 100
19 40 2, 2 5.0 97.5 6.0
20 40 2, 2 93.3 98.9 85.1
21 40 2, 2 93.9 98.9 82.7
22 40 2, 2 99.4 57.7 6.7
23 40 2, 2 94.1 52.1 56.6
24 40 2, 2 99.9 100 100

Table 6.2: Simulation Results for GEE. The group size is denoted here as n. Numbers in
bold indicate that the test should not be rejected in that case.

6.2 Proposed Methodology Results

Tables 6.3 and 6.4 show the rejection rates for the global test of group difference

for each data set scenario, as well as the rejection rates at each time point. Effect size

is determined by the values of βk, k ∈ {1,2,3,4}, and the further logβk is from 1, the

higher the effect size. For each scenario, H0 is rejected if the hyper-rectangular joint 95%

credible interval is disjoint from the null region. Although pseudo-Bayesian p-values were

not computed, they would have produced identical results for these tables by using 0.05

57

as a rejection boundary. From these tables, it is evident that with a larger effect size, the

proposed model more easily rejects H0. Larger sample size and lower values of φA and φB

also improve true rejection rates. There are no instances of high rates of false rejection.

φA, Proportion Rejected
Scen. n φB Global Time 0 β1 Time 2 β2 Time 4 β3 Time 8 β4

1 10 .1, .1 0.027 0.010 1 0.003 1 0.006 1 0.008 1
2 10 .1, .1 1.000 0.012 1 0.026 1 0.987 2 1.000 3
3 10 .1, .1 1.000 0.012 1 0.008 1 0.952 1/2 1.000 1/3
4 10 .1, .1 1.000 1.000 3 1.000 7/3 0.991 2 0.816 9/5
5 10 .1, .1 1.000 0.007 1 0.725 3/2 0.994 2 0.999 5/2
6 10 .1, .1 1.000 0.014 1 1.000 5 1.000 10 1.000 15
7 10 2, 2 0.022 0.008 1 0.006 1 0.007 1 0.003 1
8 10 2, 2 0.166 0.010 1 0.004 1 0.075 2 0.094 3
9 10 2, 2 0.142 0.009 1 0.007 1 0.026 1/2 0.105 1/3
10 10 2, 2 0.255 0.090 3 0.144 7/3 0.067 2 0.012 9/5
11 10 2, 2 0.145 0.006 1 0.033 3/2 0.073 2 0.048 5/2
12 10 2, 2 0.990 0.010 1 0.645 5 0.898 10 0.868 15
13 40 .1, .1 0.030 0.011 1 0.005 1 0.007 1 0.009 1
14 40 .1, .1 1.000 0.008 1 0.026 1 1.000 2 1.000 3
15 40 .1, .1 1.000 0.016 1 0.015 1 1.000 1/2 1.000 1/3
16 40 .1, .1 1.000 1.000 3 1.000 7/3 1.000 2 1.000 9/5
17 40 .1, .1 1.000 0.011 1 0.999 3/2 1.000 2 1.000 5/2
18 40 .1, .1 1.000 0.009 1 1.000 5 1.000 10 1.000 15
19 40 2, 2 0.029 0.010 1 0.010 1 0.005 1 0.005 1
20 40 2, 2 0.839 0.021 1 0.014 1 0.427 2 0.727 3
21 40 2, 2 0.799 0.014 1 0.003 1 0.217 1/2 0.738 1/3
22 40 2, 2 0.961 0.806 3 0.752 7/3 0.475 2 0.142 9/5
23 40 2, 2 0.748 0.013 1 0.170 3/2 0.446 2 0.486 5/2
24 40 2, 2 1.000 0.011 1 1.000 5 1.000 10 1.000 15

Table 6.3: Simulation Results for Proposed Model. The group size is denoted here as n.
The value of β is given for each time point. Rejections are anticipated unless β = 1. The
table shows results for the global test of H0 ∶ β = 1 by computing a hyper-rectangular joint
95% credible interval, and marginal proportions of rejections at each time point.

Table 6.5 shows the bias and root mean squared error (RMSE) of the estimates

of β1, β2, β3, β4, as well as the average run time that data sets in each scenario took to

achieve the minimum effective sample size. As expected, the bias and RMSE tend to be

58

φA, Proportion Rejected
Scen. n φB Global Time 0 β1 Time 2 β2 Time 4 β3 Time 8 β4

1 10 .1, .1 0.000 0.000 1 0.000 1 0.000 1 0.000 1
2 10 .1, .1 0.966 0.000 1 0.000 1 0.227 2 0.961 3
3 10 .1, .1 0.970 0.000 1 0.000 1 0.121 1/2 0.967 1/3
4 10 .1, .1 0.992 0.979 3 0.824 7/3 0.311 2 0.031 9/5
5 10 .1, .1 0.795 0.000 1 0.004 3/2 0.324 2 0.727 5/2
6 10 .1, .1 1.000 0.000 1 1.000 5 1.000 10 1.000 15
7 10 2, 2 0.004 0.003 1 0.000 1 0.001 1 0.000 1
8 10 2, 2 0.040 0.004 1 0.000 1 0.011 2 0.027 3
9 10 2, 2 0.044 0.002 1 0.001 1 0.009 1/2 0.032 1/3
10 10 2, 2 0.066 0.017 3 0.033 7/3 0.018 2 0.002 9/5
11 10 2, 2 0.029 0.002 1 0.002 3/2 0.014 2 0.011 5/2
12 10 2, 2 0.926 0.004 1 0.358 5 0.741 10 0.700 15
13 40 .1, .1 0.000 0.000 1 0.000 1 0.000 1 0.000 1
14 40 .1, .1 1.000 0.000 1 0.000 1 0.871 2 1.000 3
15 40 .1, .1 1.000 0.000 1 0.000 1 0.826 1/2 1.000 1/3
16 40 .1, .1 1.000 1.000 3 1.000 7/3 0.947 2 0.356 9/5
17 40 .1, .1 1.000 0.000 1 0.004 3/2 0.972 2 1.000 5/2
18 40 .1, .1 1.000 0.000 1 1.000 5 1.000 10 1.000 15
19 40 2, 2 0.000 0.000 1 0.000 1 0.000 1 0.000 1
20 40 2, 2 0.275 0.000 1 0.000 1 0.058 2 0.237 3
21 40 2, 2 0.320 0.000 1 0.000 1 0.021 1/2 0.303 1/3
22 40 2, 2 0.447 0.300 3 0.187 7/3 0.075 2 0.016 9/5
23 40 2, 2 0.145 0.000 1 0.003 3/2 0.060 2 0.088 5/2
24 40 2, 2 1.000 0.000 1 0.967 5 1.000 10 1.000 15

Table 6.4: Simulation Results for Proposed Model. The group size is denoted here as n.
The value of β is given for each time point. Rejections are anticipated unless β = 1. The
table shows results for the global test of H0 ∶ β ∈ (1/1.5,1.5) using a hyper-rectangular joint
95% credible interval, and marginal proportions of rejections at each time point.

highest for the scenarios 6-12 with lower sample sizes per group and higher variation and

lowest for scenarios 13-18 with higher sample sizes per group and lower variation. The

average run time per data set across scenarios ranged from 34.1 minutes to 101.4 minutes,

and altogether the model run on these 24,000 simulated data sets takes about 24 days on a

high performance computing cluster using 100 cores, which allowed for 50 data sets to be

analyzed simultaneously.

59

bias RMSE Avg Run
Scenario logβ1 logβ2 logβ3 logβ4 logβ1 logβ2 logβ3 logβ4 Time

1 0.039 -0.022 -0.029 0.017 0.145 0.122 0.137 0.146 54.3 min
2 0.058 -0.086 0.016 0.014 0.153 0.152 0.132 0.149 58.2 min
3 -0.002 0.047 -0.061 0.018 0.144 0.137 0.159 0.149 35.2 min
4 0.036 -0.021 -0.022 0.027 0.145 0.119 0.136 0.145 34.1 min
5 0.022 0.000 -0.009 0.017 0.131 0.119 0.125 0.135 39.6 min
6 0.018 -0.011 -0.020 0.020 0.143 0.119 0.126 0.139 44.6 min
7 0.194 -0.024 -0.054 0.045 0.627 0.545 0.560 0.629 69.1 min
8 0.193 -0.075 -0.025 0.047 0.645 0.560 0.575 0.619 99.3 min
9 0.173 0.078 -0.123 0.081 0.630 0.572 0.595 0.609 93.5 min

10 0.202 0.010 -0.013 0.037 0.614 0.586 0.578 0.617 73.2 min
11 0.093 -0.004 -0.036 0.109 0.604 0.541 0.553 0.633 79.7 min
12 0.095 0.016 0.019 0.100 0.624 0.541 0.558 0.638 60.8 min
13 0.008 -0.012 -0.006 0.008 0.070 0.062 0.066 0.073 62.0 min
14 0.019 -0.038 0.018 -0.003 0.072 0.084 0.074 0.072 61.6 min
15 -0.009 0.026 -0.019 0.003 0.071 0.078 0.078 0.073 60.7 min
16 0.013 -0.012 -0.005 0.007 0.072 0.063 0.064 0.069 61.1 min
17 0.009 -0.008 -0.008 0.004 0.067 0.060 0.063 0.068 80.7 min
18 0.009 -0.004 -0.004 0.008 0.069 0.060 0.062 0.069 85.4 min
19 0.096 -0.036 -0.055 0.040 0.321 0.272 0.274 0.309 97.4 min
20 0.116 -0.086 -0.010 0.026 0.327 0.283 0.285 0.313 96.6 min
21 0.066 0.056 -0.103 0.030 0.317 0.279 0.324 0.327 83.7 min
22 0.068 -0.036 -0.063 0.034 0.321 0.262 0.283 0.318 90.6 min
23 0.028 -0.022 -0.026 0.041 0.297 0.268 0.275 0.305 100.8 min
24 0.039 -0.007 -0.032 0.012 0.294 0.268 0.271 0.319 101.4 min

Table 6.5: Bias and RMSE for Proposed Methodology

60

Chapter 7

Example Data set

The motivating data set for this proposed methodology contains 37 mice with

chronic wounds and 40 mice with non-chronic wounds. Referring to Section 4.1, we will

treat mice with non-chronic wounds as group A, and those with chronic wounds as group

B. Mice with chronic wounds are considered chronic due to application of oxidative stress

(Kim et al., 2020), and are coded as 1 in Figure 7.2. Most mice are measured at days 0,

1, 2, 3, 5, 10, 15, and 20, with some missing data. Bacteria counts for each sample over

time are gathered. The 100 bacteria with the highest summed count over all mice and time

points were considered for analysis, since, as can be seen in the data, nonzero counts quickly

become sparse as their summed count decreases. Empirical mean plots for the twelve most

abundant bacteria are shown in Figure 7.1. The data set is shown in abbreviated form

in Figure 7.2, where rows of the data correspond to the samples taken on the subjects,

and columns labeled “Bacteria1” to “Bacteria100” are the tags. The library size for this

example data set is shown as the right-most column.

61

Figure 7.1: Empirical mean plots

Figure 7.2: Repeated measures data set

62

The objective of the data analysis is to discover bacteria which behave differently

between groups over time in the hopes of discovering possible probiotics, which are bacteria

that promote wound healing. These probiotics become candidates to heal wounds for human

patients, in particular those with diabetes. Identifying pathogens, or bacteria which prevent

wound healing, would also be helpful. Diabetic patients, who often face difficulty with

wound healing, are analogous to the mice with chronic wounds in the experiments, while

non-diabetic patients are analogous to the mice with non-chronic wounds. It is hypothesized

that probiotic bacteria could flourish in a non-chronic wound to improve wound healing,

while pathogenic bacteria dominate in chronic wounds. That hypothesis would need to

be tested in future validation experiments, as the experiments discussed here only identify

candidates for probiotics and pathogens. The data set was provided by Dr. Manuela

Martins-Green and PhD student Jane Kim.

7.1 Existing Model Fitting

The GEE model discussed in Chapter 3 was applied to this data set. GEE was fit

with an identity link function and a non-parametric time trend using dummy variables for

each day. The resulting model convergence problems arising in each case largely motivated

the proposed model in Chapter 4. Ultimately, only 39 of the models fit to the 100 most

abundant bacteria converged with GEE. With a sample size of 37 mice with chronic wounds

and 40 mice with non-chronic wounds, some significant tests were produced from models

that did converge. However, the 39% success rate was not an adequate outcome that will

help advance the science. The GEE model would have been a good choice if it had succeeded

63

in yielding converging models more often, but since this became such a persistent problem,

it is apparent that an alternative is needed to remedy this issue.

7.2 Proposed Model Fitting

The proposed methodology discussed in Chapter 4 was implemented on the wound

healing data set as well. In this section we describe the prior distributions used to implement

the proposed model, provide ranges of proposal variances that worked well for the wound

healing data, and summarize the results.

7.2.1 Priors

The priors for σ1 and σ2 were Γ(10/256,1/256) and Γ(1/2,1/8), where Γ(s, t) is

a gamma distribution with mean s/t and variance s/t2. The prior for logλ was MVN(0,

T (σ1, σ2)) for given values of σ1 and σ2, where elements of T are defined in (3.8). The

prior for logβ was MVN(0,50I). Prior distributions for φA and φB were both Γ(5/8,1/16).

Each distribution was chosen to have a large enough variance so that the prior would not

strongly influence posterior draws.

7.2.2 Proposals

While fitting the model to the data, reasonable values for proposal variances for

each parameter needed to be chosen. Proposal variances for logλ and logβ were often

adjusted for each time point. Referring to Section 4.1.2, proposal variances ranged from 1

to 6 for σ2βk , from 0.015 to 3 for σ2λk , from 1.5 to 10 for a, from 1.4 to 3 for b, from 0.3 to

64

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pseudo Bayesian p−values for Global Test

Index

P
se

ud
o

B
ay

es
ia

n
p−

va
lu

es

Interval Null
Sharp Null

Figure 7.3: Pseudo Bayesian p-values for the 100 most abundant bacteria, sorted from
smallest to largest value under the interval null. The interval null used was H0 ∶ β ∈
(1/1.5,1.5). A horizontal line is drawn at 0.05.

18 for c, and from 0.7 to 20 for d. These ranges should provide a good starting point for

fitting the model to other NGS data sets.

7.2.3 Results

We implemented the global test for group difference on the wound healing data,

which includes the pseudo Bayesian p-values as well as the hyper-rectangular joint credible

regions. We looked at results for a point null hypothesis for each time point (H0 ∶ β = 1),

and a null interval allowing for 50% change of means as practically equivalent (H0 ∶ β ∈

(1
1.5 ,1.5)). These yielded pseudo Bayesian p-values less than 0.05 for 88 and 76 bacteria,

respectively, and each of the 76 bacteria that rejected the interval null also rejected the

point null. See Figure 7.3 for a visual of these pseudo Bayesian p-values. Note that the

65

lines in the figure for the interval null and the sharp null may meet, but will not cross, since

the sharp null is a subset of the interval null (see Section 5.2).

Figure 7.4 shows the hyper-rectangular joint 95% credible intervals for the β pa-

rameters for the four most abundant bacteria. Notice that for bacteria 1 and 2, each

marginal credible interval has some overlap with the point null, and thus also both null in-

tervals. Hence there is no evidence to suggest that these bacteria behave differently for the

mice with chronic and non-chronic wounds. Plots for bacteria 3 and 4 show some marginal

intervals that not only exclude the point null value of 1, but are also disjoint from the

null interval of (1/1.5, 1.5). However, the trend of intervals of β differ between these two

bacteria. Bacteria 3 has marginal intervals that are larger than the null interval, suggesting

that bacteria 3 is a potential pathogen, since the counts are higher in mice in the chronic

group than the non-chronic group, so this bacteria flourishes in a chronic wound. Bacteria

4 has marginal intervals that are smaller than the null interval, suggesting that bacteria 4

is a potential probiotic since the counts get muted in the chronic group. Figure 7.4 demon-

strates that output of our proposed model can be used not only to perform inference at

each time point, but also to identify the direction of group difference over time.

Using the hyper-rectangular joint 95% credible regions, the SGPV was calculated

at each time point. Figure 7.5 shows how bacteria cluster according to their SGPVs over

time, and each bacteria is represented as a row in the heatmap. Many bacteria clustered

toward the top of the heatmap have SGPVs near 0.5, meaning that these bacteria do not

provide evidence that they affect wound healing. Another cluster around the center of the

rows show smaller values of SGPVs in the last two or three time points, suggesting that

66

0 5 10 15 20

0.
5

1.
0

2.
0

5.
0

Bacteria 1 Intervals

Time

B
et

a

0 5 10 15 20
0.

5
2.

0
5.

0
20

.0

Bacteria 2 Intervals

Time

B
et

a

0 5 10 15 20

0.
1

0.
5

2.
0

10
.0

Bacteria 3 Intervals

Time

B
et

a

0 5 10 15 20

0.
01

0.
05

0.
50

5.
00

Bacteria 4 Intervals

Time

B
et

a

Figure 7.4: Semi-log plot with hyper-rectangular joint 95% credible intervals as well as
horizontal lines indicating the location of β = 1 (solid) and β = 1/1.5,1.5 (dashed). Pseudo
Bayesian p-values for the global test of H0 ∶ β = 1 are, in order, 0.9, 0.05, 0.0001, and 0.0001.

67

Figure 7.5: SGPVs were calculated at each time point for each bacteria. Tags were then
clustered into similar groups according to their SGPVs over time. The heatmap contains
100 rows for 100 bacteria.

groups differ in these later time points for these bacteria. With some exceptions, bacteria

typically do not show differences between groups at day 0, which makes sense because the

bacteria are expected to behave similarly in the two groups before the experiment begins.

Row labels for the names of each bacteria in the heatmap were too small to see in the figure

and are provided in Appendix B.2.

The tests for interaction based on differences and ratios as described in Sections

5.4.1 and 5.4.2 are shown in Table 7.1 for the four most abundant bacteria. The two forms

of the test for interaction can yield varying results, especially looking at the disparity in

pseudo Bayesian p-values for bacteria 2 and 4, but both give similar inference conclusions.

68

Interaction type

Bacteria Difference Ratio

1 0.8000 0.8000
2 0.3000 0.9000
3 0.0030 0.0030
4 0.0100 0.0001

Table 7.1: Pseudo Bayesian p-values for interaction based on differences and ratios for the
first 4 bacteria are shown.

Clustering bacteria which behave similarly could be useful for identifying probiotics

or pathogens. Hypothesis testing is not required for clustering, and instead information

from the posterior distribution is used to assess which bacteria have similar patterns of

group differences over time. Figure 7.6 shows a dendrogram for the 100 bacteria, which are

clustered based on means of posterior draws of logβ. The dendrogram was formed with

the hclust function in the stats package in R. Squared Euclidean distances are used in

this clustering method to define the dissimilarity structure. Names corresponding to the

numbered bacteria are provided in Appendix B.1.

Goodness-of-fit (GOF) of the proposed methodology can be assessed by combining

MCMC draws of logλ and logβ with library sizes, and then comparing these with empirical

estimates from the data. Figure 7.7 shows jittered boxplots of data from the four most

abundant bacteria for each group over time, with means from the proposed model plotted.

Another metric to assess GOF is described in Mi et al. (2015). Their method does

not account for longitudinal data sets, so when we applied it to our data, we obtained a

GOF p-value for each group at each day. The four most abundant bacteria yielded squared

vertical distance GOF p-values that rejected adequacy for 10/64 tests at α = 0.01/16, a

Bonferroni-corrected threshold correcting for the number of groups (2) and the number of

69

20 15 10 5 0

D
is

ta
nc

e

11
14
3
2
6
48
99
18
53
66
69
75
84
7
85
29
60
49
52
34
22
9
79
27
93
32
35
67
70
51
86
19
91
83
13
100
17
1
5
41
56
24
40
46
54
72
76
68
95
80
63
98
30
96
77
57
89
45
74
8
50
47
73
25
28
44
12
38
39
55
43
15
20
88
33
4
10
62
37
61
58
81
26
59
90
31
42
16
64
23
36
97
92
94
65
78
21
87
71
82

Cluster Dendrogram

Figure 7.6: Dendrogram of the 100 bacteria, with posterior means of logβ used for cluster-
ing.

70

Figure 7.7: Fitted means from the proposed model for the four most abundant bacteria.
Points in black indicate log-counts for non-chronic mice, while points in red indicate counts
for chronic mice. There were 1, 109, 31, and 21 zero counts each that were set equal to 1
from these four bacteria in order to generate the plot. Groups A and B correspond to the
non-chronic and chronic groups, respectively.

time points (8). The NB assumption is typically not violated via this metric, and when it

is, generally an extremely large count causes the lack of fit.

71

Chapter 8

Conclusions

The inference methodology proposed in this paper extends the practitioner’s tool-

box when analyzing NGS data. The model is designed specifically for longitudinal count

data sets, explicitly incorporates library sizes without normalizing to them, addresses model

convergence via Bayesian methods, does not require synchronous measurements, and utilizes

the GP prior that allows a robust characterization of time trends.

Additionally, our method of testing for group differences using a multi-dimensional

version of ROPE allows for improved interpretation compared with more commonly used

Bayesian hypothesis testing methods. By using posterior draws of model parameters to

construct joint credible regions, we control interval coverage while retaining valuable infor-

mation about parameter magnitudes, uncertainty, and direction. The method encourages

users to consider how much group difference is considered practically equivalent by defining

a null interval for the easily interpretable parameters which concern group difference. While

information about the full posterior distribution of these parameters should not be ignored,

72

summarizing them with joint credible intervals allows us to make a decision at each time

point about whether there is a difference in groups, and if so which direction the difference

exists.

Future work could include extending this model to test difference between more

than two groups. Other models, such as edgeR, already have this functionality. Extend-

ing the model described in Chapter 4 to multiple groups would be a bit more involved,

but should be possible through a more thorough specification of group means in the NB

distribution. An extension to allow for other covariates that describe differences between

subjects could be useful.

Additionally, different covariance structures could be investigated in the GP prior

instead of the squared exponential function. Roberts et al. (2013) describe a wide assort-

ment of alternative choices for covariance structures, including white noise, the rational

quadratic kernel, Matérn, multiple inputs and outputs, periodic and quasi-periodic kernels,

and changepoint functions. Our choice of the squared exponential function was motivated

by the fact that it is a widely used covariance function for Gaussian Processes.

Another potential improvement to model fitting could be made by incorporating

a mixture of NB distributions. While identifying instances of lack-of-fit, it was discovered

that some outliers in the data set were impactful. We do not feel that these outliers should

be ignored, however, as they may be informative data points. Rather, we could explore

using a mixture model with a NB distribution that has a dispersion parameter which allows

for these large data points, similar to the way that GPTwoSample used a mixture model

to allow for outliers (Stegle et al., 2010).

73

Bibliography

Äijö, T., Butty, V., Chen, Z., Salo, V., Tripathi, S., Burge, C. B., Lahesmaa, R., and
Lähdesmäki, H. (2014). Methods for time series analysis of RNA-seq data with application
to human Th17 cell differentiation. Bioinformatics, 30(12):i113–i120.

Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data.
Genome Biology, 11(R106).

Blume, J. D., Greevy, R. A., Welty, V. F., Smith, J. R., and Dupont, W. D. (2019). An
Introduction to Second-Generation p-Values. American Statistician, 73(sup1):157–167.

Boos, D. D. (1992). On generalized score tests. The American Statistician, 46(4):327–333.

Chen, E. Z. and Li, H. (2016). A two-part mixed-effects model for analyzing longitudinal
microbiome compositional data. Bioinformatics, 32(17):2611–2617.

Christensen, R., Johnson, W., Branscum, A., and Hanson, T. E. (2010). Bayesian ideas
and data analysis: An introduction for scientists and statisticians. Press, CRC, Boca
Raton, FL.

Ebden, M. (2015). Gaussian processes: A quick introduction. In arXiv e-prints, page
arXiv:1505.02965.

Flegal, J. (2016). Statistics for data scientists: Monte carlo and mcmc simulations [slides].
Retrieved from http://faculty.ucr.edu/∼jflegal/StatisticsForDataScientists.pdf.

Flegal, J. M., Hughes, J., Vats, D., and Dai, N. (2020). mcmcse: Monte Carlo Standard
Errors for MCMC. Riverside, CA, Denver, CO, Coventry, UK, and Minneapolis, MN. R
package version 1.4-1.

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn, T. (2020).
mvtnorm: Multivariate Normal and t Distributions. R package version 1.1-0.

Halekoh, U., Hjsgaard, S., and Yan, J. (2006). The r package geepack for generalized
estimating equations. Journal of Statistical Software, 15/2:1–11.

Jones, G. L. (2004). On the Markov chain central limit theorem. Prob. Surveys, 1:299–320.

74

Kim, J. H., Ruegger, P. R., Lebig, E. G., VanSchalkwyk, S., Jeske, D. R., Hsiao, A.,
Borneman, J., and Martins-Green, M. (2020). High Levels of Oxidative Stress Create a
Microenvironment That Significantly Decreases the Diversity of the Microbiota in Diabetic
Chronic Wounds and Promotes Biofilm Formation. Frontiers in Cellular and Infection
Microbiology, 10(June):1–20.

Kruschke, J. K. (2015). Bayesian Approaches to Testing a Point (Null) Hypothesis. Doing
Bayesian Data Analysis, pages 143–191, 335–358.

Laird, N. M. (1989). Longitudinal Data Analysis for Counts and Binary Outcomes: Gen-
eralized Estimating Equations (GEE). Analysis of Longitudinal and Cluster-Correlated
Data, 6(1988):96–109.

Law, C. W., Chen, Y., Shi, W., and Smyth, G. K. (2014). voom: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biology, 15(29).

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear
models. Biometrika, 73(1):13–22.

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):1–21.

McShane, B. B., Gal, D., Gelman, A., Robert, C., and Tackett, J. L. (2019). Abandon
Statistical Significance. American Statistician, 73(sup1):235–245.

Mi, G., Di, Y., and Schafer, D. W. (2015). Goodness-of-fit tests and model diagnostics for
negative binomial regression of RNA sequencing data. PLoS ONE, 10(3):1–16.

Newton, M. A. and Raftery, A. E. (1994). Approximate Bayesian Inference with the
Weighted Likelihood Bootstrap. Journal of the Royal Statistical Society, 56(1):3–48.

R Development Core Team (2011). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning.
Massachusetts Institute of Technology, Cambridge, Massachusetts.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., and Aigrain, S. (2013).
Gaussian processes for time-series modelling. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 371(1984):1–27.

Robertson, N., Flegal, J. M., Jones, G. L., and Vats, D. (2019). New visualizations for
monte carlo simulations. In arXiv e-prints, page arXiv:1904.11912v1.

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2009). edgeR: A Bioconductor
package for differential expression analysis of digital gene expression data. Bioinformatics,
26(1):139–140.

Robinson, M. D. and Smyth, G. K. (2007). Moderated statistical tests for assessing dif-
ferences in tag abundance. Bioinformatics, 23(21):2881–2887.

75

Robinson, M. D. and Smyth, G. K. (2008). Small-sample estimation of negative binomial
dispersion, with applications to SAGE data. Biostatistics, 9(2):321–332.

Rossi, P. (2019). bayesm: Bayesian Inference for Marketing/Micro-Econometrics. R pack-
age version 3.1-4.

Rotnitzky, A. and Jewell, N. P. (1990). Hypothesis testing of regression parameters in semi-
parametric generalized linear models for cluster correlated data. Biometrika, 77(3):485–
497.

SAS Institute Inc. (2012). SAS/STAT® Software, Version 9.4 User’s Guide. Cary, NC:
SAS Institute Inc.

Smyth, G. K. (2004). Linear Models and Empirical Bayes Methods for Assessing Dif-
ferential Expression in Microarray Experiments. Statistical Applications in Genetics and
Molecular Biology, 3(1):1–25.

Smyth, G. K. (2005). limma: Linear Models for Microarray Data. Bioinformatics and
Computational Biology Solutions Using R and Bioconductor, pages 397–420.

Stegle, O., Denby, K. J., Cooke, E. J., Wild, D. L., Ghahramani, Z., and Borgwardt, K. M.
(2010). A Robust Bayesian Two-Sample Test for Detecting Intervals of Differential Gene
Expression in Microarray Time Series. Journal of Computational Biology, 17(3):355–367.

Stern, H. S. (2005). Model inference or model selection: Discussion of Klugkist, Laudy,
and Hoijtink (2005). Psychological Methods, 10(4):494–499.

VanSchalkwyk, S. (2018). Statistical Modeling and Analysis of Longitudinal Microbiome
Data [slides]. UCR Microbiome Initiative, University of California, Riverside.

Vats, D., Flegal, J. M., and Jones, G. L. (2019). Multivariate output analysis for Markov
chain Monte Carlo. Biometrika, 106(2):321–337.

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley,
T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., and Venables, B. (2020).
gplots: Various R Programming Tools for Plotting Data. R package version 3.0.3.

Wickham, H., Hester, J., and Chang, W. (2020). devtools: Tools to Make Developing R
Packages Easier. R package version 2.3.0.

Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988). Models for Longitudinal Data: A
Generalized Estimating Equation Approach. International Biometric Society, 44(4):1049–
1060.

Zhao, S., Fung-Leung, W. P., Bittner, A., Ngo, K., and Liu, X. (2014). Comparison of
RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS ONE, 9(1).

76

Appendix

Appendix A Compositional vs.

Raw Data

As NGS data produce data which are only interpretable relative to their respective

library sizes, a common practice is to normalize counts to the library size. That is,

ratios are computed by dividing counts by their library size, and the ratios are then

used for analysis. Consequentially, information about the original magnitude of the data

is lost. Here we consider a simulation of data sets which are analyzed for differential

expression with edgeR and ZIBR to compare performance of analysis on unnormalized

data to analysis on compositional data.

Non-longitudinal data is sufficient to compare compositional to raw data. One hun-

dred data sets were simulated in four situations, allowing for group sizes of 10 each and

40 each, and a dispersion parameter of 0.1 and 2. Library sizes were simulated from a

discrete uniform distribution with endpoints 10,000 and 40,000. There were 100 tags

for each data set, 50 of which were differentially expressed, and the other 50 were not.

Using the mean structure of edgeR, the relative abundance terms were chosen to sum

to one across tags. Five sets of group differences were used, allowing for group A to be

77

1.5, 2, 5, 10, and 20 times as large as group B for 25 tags, and allowing for group B to

be 1.5, 2, 5, 10, and 20 times as large as group A for 25 tags.

Results in Table A.1 show overall higher power with edgeR to detect group differences

compared with ZIBR. Particularly when the group size is 10 and φ = 2, it becomes

evident with larger group differences that edgeR has higher power. Table A.2 shows

Type I error rates for each simulation setting, where the nominal size is 5%. ZIBR

p-values were FDR corrected to be comparable to edgeR results. Notice in comparing

these tables that power is generally low in situations where the Type I error is low. All

results in the table show Type I error below 5%.

Group Size
10 40

φ 0.1 2 0.1 2

diff
model

edgeR ZIBR edgeR ZIBR edgeR ZIBR edgeR ZIBR

1.5 65.5 44.5 0.3 0.2 100.0 99.8 2.1 0.2
2 99.5 96.4 0.8 0.4 100.0 100.0 28.6 1.7
5 100.0 100.0 43.1 4.92 100.0 100.0 99.7 70.8

10 100.0 100.0 88.5 18.0 100.0 100.0 100.0 97.0
20 100.0 100.0 98.7 34.3 100.0 100.0 100.0 99.8

Table A.1: Percent power for edgeR and ZIBR on simulated data to compare raw data
analysis to compositional data analysis. The ‘diff’ column indicates the magnitude of
group difference.

Group Size
10 40

φ 0.1 2 0.1 2

diff
model

edgeR ZIBR edgeR ZIBR edgeR ZIBR edgeR ZIBR

1.5 2.1 1.4 0.1 0.0 2.5 0.7 0.1 0.0
2 2.6 2.2 0.2 0.1 2.9 0.9 0.9 0.0
5 2.7 2.2 1.5 0.2 2.4 0.6 2.3 1.7

10 2.5 1.8 2.5 0.5 2.5 0.8 2.8 2.4
20 2.5 1.9 3.3 1.1 3.0 1.3 2.9 2.2

Table A.2: Type I error rates for edgeR and ZIBR on simulated data to compare raw
data analysis to compositional data analysis. The ‘diff’ column indicates the magnitude
of group difference.

78

Appendix B Bacteria Lists

B.1 Bacteria Names

1. Enterobacter cloacae

2. Pseudomonas aeruginosa

3. Staphylococcus xylosus

4. Streptococcus sp.

5. Enterobacteriaceae

6. Corynebacterium frankenforstense

7. Enterococcus gallinarum

8. Exiguobacterium sp.

9. Turicibacter sp.

10. Cutibacterium acnes

11. Acinetobacter sp.

12. Lactobacillus johnsonii

13. Lactobacillus murinus

14. Bacillus paralicheniformis

15. Escherichia sp.

16. Weissella paramesenteroides

17. Bacillus sp.

18. Aerococcus urinaeequi

19. Enterococcus faecalis

20. Escherichia coli

21. Corynebacterium urealyticum

22. Lactobacillus reuteri

23. Faecalibaculum rodentium

24. Staphylococcus nepalensis

25. Helicobacter hepaticus

26. Massilia oculi

27. Streptococcus sp.

28. Staphylococcus epidermidis

29. Epulopiscium sp.

30. Lactobacillus crispatus

79

31. Pantoea agglomerans

32. Paenibacillus sp.

33. Achromobacter sp.

34. Massilia sp.

35. Bacteroidales

36. Staphylococcus capitis

37. Staphylococcus hominis

38. Muribaculum intestinale

39. Bacteroides uniformis

40. Alistipes finegoldii

41. Candidatus Arthromitus sp.

42. Pantoea sp.

43. Lactobacillus sp.

44. Prevotella denticola

45. Bacillus subtilis

46. Bacteroidetes

47. Flavobacteriaceae

48. Enterococcus hirae

49. Lachnospiraceae

50. Pantoea vagans

51. Erysipelothrix rhusiopathiae

52. Anaerostipes hadrus

53. Aerococcus sp.

54. Odoribacter splanchnicus

55. Ralstonia sp.

56. Bacteroides salanitronis

57. Clostridium saccharolyticum

58. Rothia mucilaginosa

59. Sporosarcina psychrophila

60. Bacilli

61. Geobacillus sp.

62. Streptococcus equinus

63. Echinicola sp.

64. Lawsonella clevelandensis

65. Salinicoccus sp.

66. Bacteroides massiliensis

67. Bacteroides caecimuris

68. Erysipelotrichaceae

69. Prevotella sp.

80

70. Desulfovibrio fairfieldensis

71. Corynebacterium propinquum

72. Lachnoclostridium Clostridium

73. Dyadobacter fermentans

74. Clostridium sp.

75. Porphyromonas endodontalis

76. Anaerotignum propionicum

77. Parabacteroides merdae

78. Marinilactibacillus sp.

79. Lachnoclostridium phocaeense

80. Aneurinibacillus soli

81. Lysinibacillus sp.

82. Bacillus glycinifermentans

83. Actinobacteria sp.

84. Prevotella buccae

85. Lactobacillus delbrueckii

86. Pantoea sp.

87. Corynebacterium choanis

88. Delftia sp.

89. Blautia hansenii

90. Mucinivorans hirudinis

91. Pantoea ananatis

92. Lactobacillus agilis

93. Porphyromonas gulae

94. Thauera aromatica

95. Porphyromonas asaccharolytica

96. Adlercreutzia equolifaciens

97. Pseudomonas sp.

98. Planococcus sp.

99. Geobacillus sp.

100. Other

81

B.2 Row labels for Figure 7.5

Bacteria from top to bottom in Figure 3 are: 55, 48, 62, 70, 72, 73, 83, 98, 1, 5, 29, 2,

49, 34, 52, 91, 56, 93, 54, 46, 82, 21, 38, 76, 86, 65, 78, 74, 50, 39, 14, 81, 59, 23, 51,

100, 85, 60, 79, 84, 18, 90, 42, 22, 7, 26, 97, 9, 33, 10, 4, 89, 31, 87, 67, 20, 6, 15, 44, 12,

11, 77, 27, 53, 28, 30, 75, 66, 69, 96, 57, 58, 24, 41, 71, 13, 40, 25, 47, 17, 8, 45, 80, 92,

3, 94, 16, 99, 95, 43, 61, 19, 37, 68, 64, 88, 36, 32, 35, 63.

82

Appendix C Functions and Code

C.1 Manual

mhNBsamp Longitudinal trend analysis of count data with Gaussian Processes

The mhNBsamp function implements a Metropolis Hastings MCMC algorithm to get

draws from the posterior shown in equation 10. The algorithm implemented provides

draws for logλ and logβ which can be exponentiated to get draws for λ and β.

Usage

mhNBsamp(s1init, s2init, pAinit, pBinit,

loglaminit, logbetainit, data, times, ...)

Arguments

s1init Initial value for σ1

s2init Initial value for σ2

pAinit Initial value for φA

pBinit Initial value for φB

loglaminit Initial values for logλ. Length must be equal to the length of

times.

logbetainit Initial value for logβ. Length must be equal to the length of

times.

data A matrix with six columns indicating measured time points for

data A, measured time points for data B, counts for data A,

counts for data B, library sizes for data A, and library sizes for

data B. If there are a different number of measurements in the

groups, extra rows can be filled with NA.

times A sorted vector of unique time points in the data

83

numiter Number of MCMC iterations to run before checking multiESS condi-

tion (see mcmcse package). Default is 1e5.

w1 Proposal variance for logλ parameters. Length must be equal to the

length of times. Default is rep(0.9, length(times).

sigmasq Proposal variance for logβ parameters. Length must be equal to the

length of times. Default is rep(5, length(times)).

s1var Proposal variance for σ1. Default is 3.

s2var Proposal variance for σ2. Default is 2.5.

pAvar Proposal variance for φA. Default is 2.5.

pBvar Proposal variance for φB. Default is 2.5.

tune If TRUE, requires multiESS of 1. Useful for tuning proposal variances

if numiter is set to a smaller number (e.g. 500).

Value

sigma1 Vector of posterior draws of σ1

sigma2 Vector of posterior draws of σ2

phiA Vector of posterior draws of φA

phiB Vector of posterior draws of φB

loglambda Matrix of posterior draws of logλ (number of columns equal to the

length of times).

logbeta Matrix of posterior draws of logβ (number of columns equal to the

length of times).

covmatrix Covariance function to define the Gaussian Process

The covmatrix function returns the squared exponential covariance matrix formed

by σ1, σ2, and times. It is a supporting function for the posterior function.

Usage

covmatrix(s1, s2, times)

84

Arguments

s1 Value for σ1

s2 Value for σ2

times A sorted vector of unique time points in the data, originally passed

into the mhNBsamp function

Value

A K ×K squared exponential matrix formed by s1, s2, and times

get proposal distribution Samples proposals for parameters

The get proposal distribution returns a candidate value for the requested pa-

rameter of interest using the inputted proposal variance. It is a supporting function for

mhNBsamp.

Usage

get proposal distribution(parameter, lastvalue, s1var = s1var,

s2var = s2var, pAvar = pAvar, pBvar = pBvar)

Arguments

parameter Parameter of interest to generate a candidate value

lastvalue Last accepted value of the MCMC chain for the parameter of in-

terest

s1var Proposal variance for σ1

s2var Proposal variance for σ2

pAvar Proposal variance for φA

pBvar Proposal variance for φB

Value

A candidate value for the specified parameter

85

posterior Computes and returns the log of the posterior distribution

The posterior function computes and returns the log of the posterior distribution

for inputted parameter values using a Negative Binomial distribution. Priors for all

parameters are defined here. This is a supporting function for the mhNBsamp function.

Usage

posterior(s1, s2, pA, pB, loglambda, logbeta, yA, yB, times,

loglibA, loglibB, loglamAtimes, loglamBtimes)

Arguments

s1 Most recently accepted or candidate value for σ1

s2 Most recently accepted or candidate value for σ2

pA Most recently accepted or candidate value for φA

pB Most recently accepted or candidate value for φB

loglambda Most recently accepted or candidate values for logλ

logbeta Most recently accepted or candidate values for logβ

yA Data from group A

yB Data from group B

times A sorted vector of unique time points in the data, originally

passed into the mhNBsamp function

loglibA Log library sizes for group A corresponding to yA

loglibB Log library sizes for group B corresponding to yB

loglamAtimes Times corresponding to measurements in yA

loglamBtimes Times corresponding to measurements in yB

Value

The log of the posterior distribution, computed as the log of the priors

plus the log likelihood

86

get coverage Computes coverage probability of a joint credible interval

The get coverage function returns a coverage probability for posterior draws and

a given α by computing a 100(1 − α)% hyper-rectangular joint credible interval and

counting how many posterior draws are jointly in the hyper-rectangular interval. It is

currently built only for an 8-dimensional case, and would need to be adjusted if K 6= 8.

This function is a supporting function for find alpha.

Usage

get coverage(X, alpha MID)

Arguments

X A 6 item list returned from mhNBsamp

alpha MID The value of α to use to build a hyper-rectangular joint credible

interval

Value

The joint coverage of the 100(1−α)% hyper-rectangular joint credible

interval

find alpha Finds the calibrating value of α to get the desired joint coverage

The find alpha function uses a bisection method to find the calibrating value of α

that will produce the desired joint coverage in a hyper-rectangular joint credible interval.

It can be called individually for a particular tag, but is also used as a supporting function

within the getBayesianpvalues function to compute pseudo Bayesian p-values.

87

Usage

find alpha(bacnum, alpha = 0.05, tol = 0.0001, n max = 100)

Arguments

bacnum The tag number. Assumes file is saved as paste0("bac", bacnum,

"results.RDS")

alpha The desired α to form the hyper-rectangular joint credible intervals.

Default is 0.05

tol The tolerance allowed for coverage to differ from (1 − α). Default is

0.0001

n max The maximum number of iterations to search for α. At default of 100,

this maximum is hardly ever used.

Value

alpha The calibrating value of α to get the desired joint coverage

iterations The number of iterations needed to find the calibrating α

coverage The actual coverage yielded by the calibrating α

getBayesianpvalues Computes pseudo Bayesian p-values

The getBayesianpvalues function returns pseudo Bayesian p-values for a chosen

null hypothesis set. It assumes an output file from mhNBsamp for each tag is saved as

paste0("bac", bacnum, "results.RDS").

Usage

getBayesianpvalues(testingUB = 1.5, numtags)

Arguments

testingUB Defines null hypothesis set. Default is 1.5. Use 1 for sharp null.

numtags The number of tags in the data set

88

Value

A 1× numtags vector of pseudo Bayesian p−values

getsgpv Computes Second-Generation p-values

The getsgpv function computes Second-Generation p-values. It assumes output

from mhNBsamp for each tag is saved as paste0("bac",bacnum,"results.RDS").

Usage

getsgpv(numtags, K, nullinterval = log(c(1/1.5, 1.5)))

Arguments

numtags The number of tags in the data set

K Total number of unique time points

nullinterval Endpoints of one dimension of a null hypothesis interval set for

logβ. Default is log(c(1/1.5, 1.5))

Value

A numtags× K matrix of Second-Generation p−values

C.2 R Code

Download and load packages:

library(gplots)

library(devtools) # devtools::install_github("gu-mi/NBGOF")

library(NBGOF)

library(geepack)

Functions to run the model

Main function:

mhNBsamp <- function(s1init, s2init, pAinit, pBinit, loglaminit,

logbetainit, data, times, numiter = 100000,

w1 = rep(.9, length(times)), sigmasq =

89

rep(5, length(times)), s1var = 3, s2var = 2.5,

pAvar = 2.5, pBvar = 2.5, tune = FALSE){
library(mvtnorm)

library(bayesm)

suppressMessages(library(mcmcse))

if(tune){
minIIDdraws = 1

}
else{

minIIDdraws <- minESS(4 + 2*(length(loglaminit)))

}
print(paste0("Requires at minimum an effective sample size of ",

minIIDdraws, "."))

yA <- data[,3][!is.na(data[,3])]; yB <- data[,4][!is.na(data[,4])]

loglibA <- data[,5][!is.na(data[,5])]

loglibB <- data[,6][!is.na(data[,6])]

loglamAtimes <- data[,1][!is.na(data[,1])]

loglamBtimes <- data[,2][!is.na(data[,2])]

numtimes <- length(times)

s1vals <- c(s1init, rep(NA, 8e5)); s2vals <- c(s2init, rep(NA, 8e5))

pAvals <- c(pAinit, rep(NA, 8e5)); pBvals <- c(pBinit, rep(NA, 8e5))

loglvals <- matrix(c(loglaminit, rep(NA, 8e5*length(loglaminit))),

ncol = length(loglaminit), byrow = TRUE)

logbvals <- matrix(c(logbetainit, rep(NA, 8e5*length(logbetainit))),

ncol = length(logbetainit), byrow = TRUE)

Save most recently updated version of each parameter

s1current <- s1init; s2current <- s2init; logbetacurrent <- logbetainit

pAcurrent <- pAinit; pBcurrent <- pBinit; loglcurrent <- loglaminit

Record of how many candidate values get accepted for each component

s1accepted <- 0; s2accepted <- 0

logbetaaccepted <- rep(0, length(logbetainit))

pAaccepted <- 0; pBaccepted <- 0

loglaccepted <- rep(0, length(loglaminit))

Keep trackers of how often each component yields an error

logbetatrackers <- rep(0, length(logbetainit))

s1tracker <- 0; s2tracker <- 0

pAtracker <- 0; pBtracker <- 0

logltracker <- rep(0, length(loglaminit))

Error catching -Inf/-Inf (NaN) ratios

is.error <- function(x) inherits(x, "try-error")

90

Save numerator or denominator of acceptance ratio to speed up

computation

Initialize value

saveND <- posterior(s1init, s2init, pAinit, pBinit, loglaminit,

logbetainit, yA, yB, times, loglibA, loglibB,

loglamAtimes, loglamBtimes)

i <- 1

extraiter <- 0

repeat {
i <- i + 1

add in component-wise sampler here for beta

for(j in 1:length(logbetainit)){
temp <- NaN

while(is.error(try(if(min(temp, 0) > log(runif(1))){ },
silent = TRUE))){

logbetastar <- rnorm(1, logbvals[i-1,j], sd = sqrt(sigmasq[j]))

logbetacurrent[j] <- logbetastar

tempNum <- posterior(s1vals[i-1], s2vals[i-1], pAvals[i-1],

pBvals[i-1], loglvals[i-1,], logbetacurrent,

yA, yB, times, loglibA, loglibB,

loglamAtimes, loglamBtimes)

temp <- tempNum - saveND

logbetatrackers[j] <- logbetatrackers[j] + 1

if(logbetatrackers[j] > 2*(numiter+extraiter)){
message("Taking too long on log beta;

tracker twice initial iteration number")

break

}
}
if(min(temp, 0) > log(runif(1))){ # accept

logbvals[i,j] <- logbetastar

logbetaaccepted[j] <- logbetaaccepted[j] + 1

saveND <- tempNum

}
else{ # reject

logbvals[i,j] <- logbvals[i-1,j]

logbetacurrent[j] <- logbvals[i-1,j]

}
}

s1ratio <- NaN

while(is.error(try(if(min(s1ratio, 0) > log(runif(1))){ },
silent = TRUE))){

s1star <- get_proposal_distribution("sigma1", 0, lastvalue =

s1vals[i-1], s1var = s1var)

if(s1star <= 0){ # reject if <= 0

91

s1ratio <- -Inf

break

}
s1ratioNum <- posterior(s1star, s2vals[i-1], pAvals[i-1],

pBvals[i-1], loglvals[i-1,],

logbetacurrent, yA, yB, times,

loglibA, loglibB,

loglamAtimes, loglamBtimes)

s1ratio <- s1ratioNum - saveND

s1tracker <- s1tracker + 1

if(s1tracker > 2*(numiter + extraiter)){
message("Taking too long on s1;

tracker is twice initial iteration number")

break

}
}
if(min(s1ratio, 0) > log(runif(1))){ # accept

s1current <- s1star; s1vals[i] <- s1star

s1accepted <- s1accepted + 1

saveND <- s1ratioNum

}
else{ # reject

s1current <- s1vals[i-1]; s1vals[i] <- s1vals[i-1]

}

s2ratio <- NaN

while(is.error(try(if(min(s2ratio, 0) > log(runif(1))){ },
silent = TRUE))){

s2star <- get_proposal_distribution("sigma2", 0, lastvalue =

s2vals[i-1], s2var = s2var)

if(s2star <= 0){ # reject if <= 0

s2ratio <- -Inf

break

}
s2ratioNum <- posterior(s1current, s2star, pAvals[i-1],

pBvals[i-1], loglvals[i-1,],

logbetacurrent, yA, yB, times,

loglibA, loglibB, loglamAtimes,

loglamBtimes)

s2ratio <- s2ratioNum - saveND

s2tracker <- s2tracker + 1

if(s2tracker > 2*(numiter + extraiter)){
message("Taking too long on s2;

tracker is twice initial iteration number")

break

}
}
if(min(s2ratio, 0) > log(runif(1))){ # accept

92

s2current <- s2star; s2vals[i] <- s2star

s2accepted <- s2accepted + 1

saveND <- s2ratioNum

}
else{ # reject

s2current <- s2vals[i-1]; s2vals[i] <- s2vals[i-1]

}

pAratio <- NaN

while(is.error(try(if(min(pAratio, 0) > log(runif(1))){ },
silent = TRUE))){

pAstar <- get_proposal_distribution("phiA", 0, lastvalue =

pAvals[i-1], pAvar = pAvar)

if(pAstar <= 0){ # reject if <= 0

pAratio <- -Inf

break

}
pAratioNum <- posterior(s1current, s2current, pAstar, pBvals[i-1],

loglvals[i-1,], logbetacurrent, yA, yB,

times, loglibA, loglibB,

loglamAtimes, loglamBtimes)

pAratio <- pAratioNum - saveND

pAtracker <- pAtracker + 1

if(pAtracker > 2*(numiter + extraiter)){
message("Taking too long on phi A;

tracker twice init iter number")

break

}
}
if(min(pAratio, 0) > log(runif(1))){ # accept

pAcurrent <- pAstar; pAvals[i] <- pAstar

pAaccepted <- pAaccepted + 1

saveND <- pAratioNum

}
else{ # reject

pAcurrent <- pAvals[i-1]; pAvals[i] <- pAvals[i-1]

}

pBratio <- NaN

while(is.error(try(if(min(pBratio, 0) > log(runif(1))){ },
silent = TRUE))){

pBstar <- get_proposal_distribution("phiB", 0, lastvalue =

pBvals[i-1], pBvar = pBvar)

if(pBstar <= 0){ # reject if <= 0

pBratio <- -Inf

break

}
pBratioNum <- posterior(s1current, s2current, pAcurrent, pBstar,

93

loglvals[i-1,], logbetacurrent, yA, yB,

times, loglibA, loglibB,

loglamAtimes, loglamBtimes)

pBratio <- pBratioNum - saveND

pBtracker <- pBtracker + 1

if(pBtracker > 2*(numiter + extraiter)){
message("Taking too long on phi B;

tracker twice init iter number")

break

}
}
if(min(pBratio, 0) > log(runif(1))){ # accept

pBcurrent <- pBstar; pBvals[i] <- pBstar

pBaccepted <- pBaccepted + 1

saveND <- pBratioNum

}
else{ # reject

pBcurrent <- pBvals[i-1]; pBvals[i] <- pBvals[i-1]

}

add in component-wise sampler here for log lambda

for(j in 1:length(loglaminit)){
temp <- NaN

while(is.error(try(if(min(temp, 0) > log(runif(1))){ },
silent = TRUE))){

loglstar <- rnorm(1, loglvals[i-1,j], w1[j])

loglcurrent[j] <- loglstar

tempNum <- posterior(s1current, s2current, pAcurrent, pBcurrent,

loglcurrent, logbetacurrent, yA, yB, times,

loglibA, loglibB, loglamAtimes,

loglamBtimes)

temp <- tempNum - saveND

logltracker[j] <- logltracker[j] + 1

if(logltracker[j] > 2*(numiter + extraiter)){
message("Taking too long on log lambda;

tracker twice init iter number")

break

}
}
if(min(temp, 0) > log(runif(1))){ # accept

loglvals[i,j] <- loglstar

loglaccepted[j] <- loglaccepted[j] + 1

saveND <- tempNum

}
else{ # reject

loglvals[i,j] <- loglvals[i-1,j]

loglcurrent[j] <- loglvals[i-1,j]

}

94

}

Check if we have collected enough draws

if(i > numiter){
if(tune){
break

}
else if((i+1) %% 100 == 0){

s1noNA <- s1vals[!is.na(s1vals)]

s2noNA <- s2vals[!is.na(s2vals)]

pAnoNA <- pAvals[!is.na(pAvals)]

pBnoNA <- pBvals[!is.na(pBvals)]

loglnoNA <- matrix(loglvals[!is.na(loglvals)],

ncol = ncol(loglvals))

logbnoNA <- matrix(logbvals[!is.na(logbvals)],

ncol = ncol(logbvals))

allparameters <- cbind(s1noNA, s2noNA, pAnoNA, pBnoNA, loglnoNA,

logbnoNA)

if(multiESS(allparameters) >= minIIDdraws){
break

}
else{
extraiter <- extraiter + 1

}
}
else{

extraiter <- extraiter + 1

}
}

}
loglvals <- matrix(loglvals[!is.na(loglvals)], ncol = ncol(loglvals))

logbvals <- matrix(logbvals[!is.na(logbvals)], ncol = ncol(logbvals))

s1vals <- s1vals[!is.na(s1vals)]

s2vals <- s2vals[!is.na(s2vals)]

pAvals <- pAvals[!is.na(pAvals)]

pBvals <- pBvals[!is.na(pBvals)]

totaliter <- length(s1vals)

message("Number of attempts per component:")

message(paste(s1tracker, s1tracker, pAtracker, pBtracker, logltracker,

sep = ", "))

tracklbeta <- logbetatrackers[1]

for(t in 2:length(logbetatrackers)){
tracklbeta <- cat(tracklbeta, logbetatrackers[t], sep = ", ")

}
message(tracklbeta/totaliter)

When the chain ends, return the sampled posterior values

95

return(list("s1" = s1vals, "s2" = s2vals, "pA" = pAvals, "pB" = pBvals,

"log lambda" = loglvals, "log beta" = logbvals))

}

covmatrix <- function(s1, s2, times){
K <- matrix(NA, nrow = length(times), ncol = length(times))

for(i in 1:length(times)){
for(j in 1:length(times)){
K[i,j] <- (s1^2)*exp(-(1/2)*(times[i]-times[j])^2/(s2^2))

}
}
return(K)

}
get_proposal_distribution <- function(parameter, lastvalue,

s1var = s1var, s2var = s2var,

pAvar = pAvar, pBvar = pBvar){
if(parameter == "sigma1"){

return(runif(1, lastvalue - s1var, lastvalue + s1var))

}
else if(parameter == "sigma2"){
return(runif(1, lastvalue - s2var, lastvalue + s2var))

}
else if(parameter == "phiA"){
return(runif(1, lastvalue - pAvar, lastvalue + pAvar))

}
else if(parameter == "phiB"){

return(runif(1, lastvalue - pBvar, lastvalue + pBvar))

}
}
posterior <- function(s1, s2, pA, pB, loglambda, logbeta, yA, yB, times,

loglibA, loglibB, loglamAtimes, loglamBtimes){
sigma1 <- dgamma(s1, 10/(2^8), 1/(2^8))

sigma2 <- dgamma(s2, 4/(2^3), 1/(2^3))

phiA <- dgamma(pA, 10/(2^4), 1/(2^4))

phiB <- dgamma(pB, 10/(2^4), 1/(2^4))

loglambdaprior <- sum(lndMvn(loglambda, rep(0, length(loglambda)),

backsolve(chol(covmatrix(s1, s2, times)),

diag(length(loglambda)))))

logbetaprior <- sum(lndMvn(logbeta, rep(0, length(logbeta)),

backsolve(chol(50*diag(length(logbeta))),

diag(length(logbeta)))))

logpriors <- sum(log(sigma1), log(sigma2), log(phiA), log(phiB),

loglambdaprior, logbetaprior)

likelihood

loglikelihood <- 0

for(r in 1:length(yA)){
for(t in 1:length(times)){ #These lines ensure correct component of

96

if(loglamAtimes[r] == times[t]){ #log lambda aligns w/ time of obs

loglikelihood <- loglikelihood +

log(dnbinom(yA[r], mu = exp(loglibA[r] +

loglambda[match(loglamAtimes[r], times)]),

size = 1/pA))

}
}

}
for(r in 1:length(yB)){
for(t in 1:length(times)){
if(loglamBtimes[r] == times[t]){
loglikelihood <- loglikelihood +

log(dnbinom(yB[r], mu = exp(loglibB[r] +

loglambda[match(loglamBtimes[r], times)] +

logbeta[match(loglamBtimes[r], times)]),

size = 1/pB))

}
}

}

return(logpriors+loglikelihood)

}

pseudo-Bayesian p-values

get_coverage <- function(X, alpha_MID){
total_MCMC_samples <- length(X[[1]])

all_CIs_MID <- matrix(NA, nrow = 8, ncol = 2)

for(i in 1:8){
all_CIs_MID[i,] <- quantile(X[[6]][,i], probs = c(alpha_MID/2,

1-(alpha_MID/2)))

}
coverage_MID <- 0

for(i in 1:total_MCMC_samples){
if(all_CIs_MID[1,1] < X[[6]][i,1]&&X[[6]][i,1] < all_CIs_MID[1,2] &&

all_CIs_MID[2,1] < X[[6]][i,2]&&X[[6]][i,2] < all_CIs_MID[2,2] &&

all_CIs_MID[3,1] < X[[6]][i,3]&&X[[6]][i,3] < all_CIs_MID[3,2] &&

all_CIs_MID[4,1] < X[[6]][i,4]&&X[[6]][i,4] < all_CIs_MID[4,2] &&

all_CIs_MID[5,1] < X[[6]][i,5]&&X[[6]][i,5] < all_CIs_MID[5,2] &&

all_CIs_MID[6,1] < X[[6]][i,6]&&X[[6]][i,6] < all_CIs_MID[6,2] &&

all_CIs_MID[7,1] < X[[6]][i,7]&&X[[6]][i,7] < all_CIs_MID[7,2] &&

all_CIs_MID[8,1] < X[[6]][i,8]&&X[[6]][i,8] < all_CIs_MID[8,2]){
coverage_MID <- coverage_MID + 1

}
}
coverage_MID <- coverage_MID/total_MCMC_samples

return(coverage_MID)

}
find_alpha <- function(bacnum, alpha = 0.05, tol = 0.0001, n_max = 100){

97

X <- readRDS(paste0("bac", bacnum, "results.RDS"))

total_MCMC_samples <- length(X[[1]])

Bisection method. So find it at alpha/8, alpha/4, and alpha.

Then decide which half to use

alpha_LB <- alpha

alpha_MID <- alpha/4

alpha_UB <- alpha/8

coverage <- get_coverage(X, alpha_MID)

conf <- 1-alpha

j <- 1

while(abs(coverage - conf) > tol & j <= n_max){
j <- j + 1

if(coverage - conf < 0){
alpha_LB <- alpha_MID

alpha_MID <- (alpha_LB + alpha_UB)/2

}
else if(coverage - conf > 0){
alpha_UB <- alpha_MID

alpha_MID <- (alpha_LB + alpha_UB)/2

}
else{
print("Coverage is equal to conf level")

}
coverage <- get_coverage(X, alpha_MID)

}
return(list("alpha" = alpha_MID, "iterations" = j,

"coverage" = coverage))

}
getBayesianpvalues <- function(testingUB = 1.5, numtags){
pvalues <- vector("double", length = numtags)

for(b in 1:numtags){
MCMCoutput <- readRDS(paste0("bac", b, "results.RDS"))

interval <- log(c(1/testingUB, testingUB))

possibleCIsizes <- c(seq(.0001, .001, by = .0001),

seq(.002, .01, by = .001),

seq(.02, .2, by = .01),

seq(.3, 1, by = .1))

for(i in 1:length(possibleCIsizes)){
alpha <- find_alpha(b, alpha = possibleCIsizes[i])$alpha

for(j in 1:8){
CI will contain the 100(1-alpha)% CIs for all 8 dimensions

CI <- quantile(MCMCoutput[[6]][,j],

probs = c(alpha/2, 1 - alpha/2))

First check if endpoints of CI are between (1/tUB, tUB)

If CI LB between 1/tUB,tUB

if((interval[1] < CI[1] && CI[1] < interval[2]) ||

or UB between 1/1.5,1.5

(interval[1] < CI[2] && CI[2] < interval[2])){

98

}# Then regions are not disjoint (do nothing)

Check also if (1/tUB,tUB) completely contained in CI

If CI LB < 1/tUB and tUB < CI UB

else if(CI[1] < interval[1] && interval[2] < CI[2]){
} # Then regions are not disjoint (do nothing)

Otherwise they are disjoint

else{ # this is our p-value; stop heres

pvalues[b] <- possibleCIsizes[i]

break

}
}
if(pvalues[b] != 1 && pvalues[b] != 0){

break

}
if(i == length(possibleCIsizes)){

pvalues[b] <- 1

}
}
print(pvalues[b])

}
return(pvalues)

}

Second Generation p-values

getsgpv <- function(numtags, K, nullinterval = log(c(1/1.5,1.5))){
sgpv <- matrix(NA, ncol = K, nrow = numtags)

nullwidth <- nullinterval[2] - nullinterval[1]

for(i in 1:numtags){
X <- readRDS(paste0("bac",i,"results.RDS"))

for(j in 1:K){
jointCI <- quantile(X[[6]][,j],

probs = c(alphas[i]/2, 1-alphas[i]/2))

jointwidth <- jointCI[2] - jointCI[1]

First find |I and H_0|. If disjoint, overlap is 0

if(jointCI[2] < nullinterval[1] || jointCI[1] > nullinterval[2]){
overlap <- 0

}
If null contains interval, overlap is width of interval

else if(nullinterval[1] < jointCI[1] && jointCI[2] <

nullinterval[2]){
overlap <- jointwidth

}
If interval contains null, overlap is width of null

else if(jointCI[1] < nullinterval[1] && nullinterval[2] <

jointCI[2]){
overlap <- nullwidth

}
If the overlap is not total but joint int below null, overlap

99

is upper limit of joint minus lower limit of null

else if(jointCI[1] < nullinterval[1] && nullinterval[2] >

jointCI[2]){
overlap <- jointCI[2] - nullinterval15[1]

}
If the overlap is not total but joint int above null, overlap

is upper limit of null minus lower limit of joint

else if(nullinterval[1] < jointCI[1] && jointCI[2] >

nullinterval[2]){
overlap <- nullinterval15[2] - jointCI[1]

}
else{
print("Error. Unanticipated overlapping.")

}
If precise,

if(jointwidth <= 2*nullwidth){
sgpv[i,j] <- overlap/jointwidth

}
else{
sgpv[i,j] <- (1/2)*overlap/nullwidth

}
}
}
return(sgpv)

}

100

