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Section 1. Introduction 

The ouhtanding feature in the development of nucleon-nucleon 

scattering experiments since 1953 is the uoe of polarized beams. Initial 

nucleon-nucleon polarization experiments were reported in 1954 by Oxley, 

Cartwright and Rouvina and two years later triple scattering experiments were 

performed by Chamberlain, Segr~. Tripp, Wiegand and Ypsilantis. Theae, 

and subsequent similar experimento, have been the decisive factors in the 

comparative successes of recent phenomenological analyses and will 

accordingly receive a major emphasis in this article. 

In typical polarization experiments the internal proton beam of a 

cyclotron is scattered from a target such as carbon and the scattered protons 

are found to have their spina partially aligned in a direction normal to the 

scattering plane, with generally more having spin up than down for a left 

scattering. A beam such ao this, in which the spins are partially aligned, 

is said to be polarized, and if it is caused to strike a (second) target of, say, 

liquid hydrogen the second scattering cross section generally exhibits an 

azimuthal acymmetry. The measurement of this asymmetry is the object of 

the ao .. called doubte .. scattering polarization experiments. In the more 
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compltcntca triple -scattering experiments the protono emerging from the 
4 

second colUaion are allowed to scatter still again and the aaymmetry after 

this third scattering process io measured. In variations of the experiment 

magnetic fields may be interposed between the various scatteringa. 

In these experiments the final measured aoymmetry dependo upon 

the properties of the various interactions involved and upon the geometric 

configuration. It is the object of the formaliam discussed in this part to 

exhibit in a simple way the dependence of the observed quantities on the 

characteriotic parameters describing these two factoro. A nonrelativiotic 

treatment is given first. hut thio io later extended to the re lativiotic caoe. 

At the outset the two nucleons are conoidered distinguiohable with the effecto 

of undistinguishability being brought in later. 

The diocussion io based upon. the use of the density matrix, which 

was introduced in this connection by Wolfenstein & Aslddn (1) and by Dalitz (Z}. 

This device greatly simplifies the analysis. both mathematically and conceptually. 

and is the basis of all contemporary work in the field. The next aection is 

devoted to a description of the density matrix formalism in nucleon-nucleon 

scattering. 
y".. ... ....t ... •·• 

Section Z. Statistical Mixtures and the Density Matrix 

The spin vee~' of a Pauli particle is defined here ao the expectation 

value of the Pauli spin operator a = i a + f<7 + k 0' . Thus if an arbitrary 
- -x ~y -..~ 

. 6 
normalized .spin wave £unction is written in the form (cos z- exp (i G/l) . 

6 
sin 2" exp (i ~/Z)] the spin vector is a ~ vector with polar an.gle 8 and 
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azimuthal angle cj> = (4 - M/l . lt is important, however, that the particles 

injected into or emerging from a cyclotron are generally not all in the same 

quantum state. The various individual spin vectors therefore have different 

directions, generally, and the expectation value of the spin opor~.t'or averaged 

ovt!!r the particles of -the beam will be a vector of length less than unity. Thha 

average over the particles of the. beam of the individual unit spin vectors is 

called the p0larization vectJ>r of the beam. 

In pola.rimation experiments this beam polarization is the central 

object; tb.e measured quantities are directly related to it. Although it is ,pGoaible 

to carry out calcul.a.tions for each individual quantum state and then to perform 

(clO.ssical)averages over the varioua particles. it is much easier to deal directly 

with statiatical averages over the particles of the beam. The method is 

described in this section. 

If the fraction of beam particles In the pure qUantum otate I +1}"~·" 
is f. , the beam expectation value of an operator A is 

l 

(Z.lt, 

Often a bar ia placed over the quantity on the left-hand side to signify that it is 
~"''ho t.+-.+es, 

an average over individunletiee uo&eoo-. It is convenient to re -expres·'S· 

Z.l in the form 

(~) = Tr pA • z.z. 

where Tr means trace and p ia a Hermitian matrix called the density matrix . 
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As is apparent from Z.l and 2.Z • the density matrix p can be represented 

in the form 

where Pi is a projection operator which is unity when acting on the state 

I "'i) an4 zero when ading on states orthogonal to I "'i ) . 

From a more abstract point of view the fact that 2.1 can be cast in the 

form Z.Z can be deduced as follows: The physical state of a system ie 

determined by the expectation values of a complete set of Hermitian operators. 

In an N-dimensional space there are N
2 

independent Hermitian operators. 

z ' 
The corresponding N equations of the form Z.Z determine completely the 

Hermitian matrix p. and by linearity this equation then determines the 

expectation values of all other operators. 

In treating scattering experiments it iB important that the density 

matrix can be used to characterize not only a collection of particles but also . 
• ' .••• ':r> 

a single particle. For example, in a system of two particles the wave !unction 

rna y take the form 

If the states +1 (x2 ) are nonoverlapping (i.e •• orthogonal} then the contributions 

from the various q, i (x1) cannot interfere and must be combined according to 

classical statistics. The denoity matrix is therefore appropriate for describing 

the first particle alone if information regarding the second particle is unavailable. 

If the states of the second particle are partially overlapping the situation is more 
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complex, but the flrot particle is still characterized by some density matrix, 

as the abotract araument obowo. 

The denoity matrix defined above characterifeo a system at a given time. As 

t~e proceeds the denoity matrix changes--at leaot in the Schroedinger 

repreoentation, which is used throughout. In particulAr, if the stntea before 

and after a scattering process are rotated by +t z S +1 , then the denoity 

mntriceo characterizing the oystem before and after the scattering are related 

as is oeen from Eqs. Z.l and z.z . For scAttering experiments in which 

the final particles are counted outoide the unscnttered beam, the incident 

beam must be subtracted out and one uoea, instead of Z.3 , 

Z .. 4. 

\ 
' 

where R = S • 1. The Psc defined in this wny describes the ocattered wave. 

Equations z.z and Z.4 are the two fundamental equations for treating the \' 
\ 
\ 

.,·t ' 

scattering of statistical mixtureo; Z.Z .Zwwplied to both , pi and p
8

c determines 

the connection to experiment, and 2.4 siveo the dynamical content. 

_In scattering experimento the momentum can usually be considered 

well defined. Conaequently., the operatora A uoed in Eq. 2.2 can be 

' considered the product of an operator A
0 

in spin space times an operator 

P (~ that projecto onto a otate of relative momentum ~. According to 2..Z 

the expectation value of a:'l:Jpin operator, A
8 

• in this momentum state ia 

' 
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= 
: T;r p (k) A 
:Y>:c - S • Z.Z' 

Tr p ~) 

is the probability that the ~leW is.in,~,~l! 

momentum state k , and the spin-opac:e density matrix p (k) is some as yet - -
arbitrary multiple of· ( !_ I p I!) , the diagonal momentum-space matrix 

element of p • In Z.Z' the trace is over spin states only, the sum over 

momentum states present in Z.Z having been cancelled by the momentum· 

state projection operator P (k). -
Aside from the undetermined normalization Eq. Z.Z' can be considered 

the definition of the spin density matrix p (k) • Indeed, if one introduces in the -
four -dimensional spin space of the two Pauli particles the sixteen independent 

matrixes a ( 1) a (Z) defined by 

"' " 
( m •. n I a,t (1) o.,(Z) I m', n') = (t1 ) (a ) 

,... loL mm' " nn' 
2.5. 

where m and n specify the spin atates of the first and second particles 

respectively, and a 1 , a2 , a3 , and a0 are the Pauli spin matrices ard 

the Pauli unit matrix, one obtains, using the orthogonality relations 

1 Tr a (l) a (Z) a (l) a· (2.) = 6,J. .. 6 
i J.1. " ~ P ,.../\. "P 

2.6. 
'>. 

·~ 
\ 

the inverse of 2..2.' \ 
p(_k) = _; Tr p(k)L (a (l) a (l)\ a (1) a (2.) 

• IJ. " /k ll " I.A.·" . -
2..7. 

i 
\ 
\ ., 

~. 

\ 
\ 
' 

\ 

\ 
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In this form the spin density matrix h expressed directly in terms of 

and the sixteen expectation values <a~ (l) av (Z)) ~. Six: of these. 

Tr p (k) -

are the components of the polarization vectors for the first and oecond particles 

respectively. and ( a1 (1) a/2.)) k .: Cij (~) -
are nine parameters related to a correlation between spin expectations in the 

two beamo. Theoe fU'teen parameters can be conoidered as specifying the 

spin state of the combined two-particle syotem. 

Turning to the dynamical aide, the momentum-apace matrix element 

(! I R I~ 1 ) is a matrix in 111pin space whose elementa, aside from a normalization 

factor, are the scattering amplitudes for individual initial and final spin states. 

In the deacription of polarization phenomena it is convenient to incorporate this 

• I normalization factor and deal also w1th the spin matrix M (k , k ) whose - -
matrix: elemento are exactly the scattering amplitudes in variouo final spin 

( k l ) ) utates for fixed initial spin stateo. In termo of M k , and the p (k ... .. ~ 

I 

defined in Z.Z Eq. Z.4 becomes 

Pee ~) 2.4 

where the freedom in the normalization of the p(k) has been exploited. -
With thie choice of normalization the differential cross oection becomes 

simply 

da em 
Trp 

"" 8C - I (e. 't" ) = Tr p i 

t • I 
TrM(k,k)p.M (k,k) 

... ... 1 .......... Z.8 

' 

t 
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.,.,J, 
~ is the straightforward generalization to the case of polarized initial 

q particles of the usual rule of summing over the final states and averaging 

over the initial states. 

The operator M(k, k') is a matrix in the spin space o! the two - -
particles and, like p (k) , it can be expanded in terms of the a (1) a (l) 

- ~ v 

M (k, k') -- MJJ." (k , k •) a ( 1) a (l > • 
- - fJ. v 

Z.9 

t 
In the center -of-mass frame, where k and k are the only vectors upon which - -
the M""' " (k, k') can depend, the most general function of the form 2.9 

invariant under rotationo and spatial reflections is 

t 

M(k, k) = - -
a+ b (a(l) • N -a(Z). N) + c (a(l). N+a(Z), N) .. .... ... ... ... _. .... ... 

Z.lO 

t 
Here N , P are unit orthogonal vectors in the directiono k x k, k + k , .... _. . - ... .. .. 

t • I. and k - k respectively, and the coeff1cienta a, b, • • · , - - are scalar 

functions of the vectors k and k • - -
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For proton-proton ocattering, in which the two particles are identical, 

b = 0 and j = I. , since M must be symmetric under interchange of the two 

particleo. The same conditions would be satisfied also for n- p scattering 

if charge independence.'\\tere strictly maintained. 

It was pointed out by Wolfenotein &tttA:shldn(l) that the requirement of 

time-reversal invariance implies the vanishing of j and I. • As is shown later, 

this requirement directly implies the invariance of M(k, k 1
) under,.th~,,;,c;.,,~~ - -

oimuMneous substitutions k - - k
1 

and a - .. a . Sl~·the terms vl .. - .. -. .... -. 

multiplying j and I. change sign under this transformation while j and l 

like the available scalars k· k , k' . k' and k. k 
1 

, are invariant, j and I. .......... - ....... 
must vaniih.' ·· Thus the combined requirements of invariance under ~otation. 

spactial reflection, and time reversal imply that the scattering matrix M can 

be expressed in terms of the six (five for p-p) remaining complex ocalar 

-
parameters in Eq. Z.lO. Tbeee parameters are called the Wolfenstein parameters. 

For .fixed energy, they are functions of the single scalar variable k \ k
1 o'~. - -

equivalently, of the polar scattering angle 8 • They are, of course, independent 

of the initial and final polarizations; these latter quantities enter the theory only 

I 
through the initial and final density matrices pi (It ) and p (k) . 

- sc -
An alternative way of writing the M matrix has been given by 

Wolfenstein (3) : 

z.l0
1 
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The quantities S and T in this equation are the singlet and triplet projection 

operators, ! ( 1 - ,!(1) ~ .!(Z.) ) and i ( 3 + ~( 1 ). ~ (Z.) ) respectively and the 

coefficients B , C , G , H , and N &l"e n,g.in functions of the scattering angle 

6 , but now with the oymmetry properties B ( 6) = B (1r - 6 ), C (6) = C(v- 6) r 0(6) 

= - G( 11' - 8), H (6) • H ( v .. 6) , and N (8) = - N ( 11' - 8) !or the isotopic triplet 

caoe. The-i1Jotopic singlet amplitudes have the opposite symmetries. 

cl "' .... b-eJ 
The formaliomAabove is the basis of the discussions in the following 

sections and~ indeed, of all contemporary discussions of polarization phenomena. 
'' ~ • •1" ~~ 

Section 3. Possible Experiments 

In principle ZS6 experiments can be performed on the nucleon• 

nucleon system at a dngle scattering angle. The final spin-space density 

matrix depends on sixteen independent real ecalar parameters and each of these 

depends linearly through Eq. Z..4' on each of the 16 real scalar parameters that 

determine the initial density matrix. In terms of the Z.S6 scalar coefficients 

:: 
i ·: 

3.1 

the relation between initial and final expectation values is simply 

1 (6, +) (~· Cl)o (Z)) = z . (k, k')/0' (l) a (Z)) 1:i 
Ill ll' k JJ.,V,~p-- \

1

~ p k - - 3.! 

The experimental problem is to fix the initial expectation values and 

measure the final ones. This determines the Z's, which in turn give information 

on the nucleon-nucleon interaction through Eq. 3.1 . 
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The initial polarisation is fixed and the final ones measured, generally, 

by making auxiliary scattering before and after the principal nucleon-nucleon 

scattering. These auxiliary ocatterings can be treated by using a formalism 

analogouo to the one deocribed above. If, for simplicity, the initial auxiliary 

scatterer io taken to have spin zero and if invariance under spatial reflection 

is assumed, this initial scattering is described by a two-by-two spin matrix oi 

the form 

3.3 

aa discusoed by Wolfenotein (4) ln an earlier volume. Inoerting this into 

• • Z.4 and uaing z. Z one obtains for the polarization vector after the scattering 

of an initially unpolarized beam the expression 

3.4 

Here ~l is the normal to the first scattering plane and the quantity P 1 • 

which giveo the magnitude ol tlie polarization vector, is called the polarizing 

power of the reaction. The subscripto 1 identi~ the quantities as pertaining 

to the initial scattering. 

A~ossible third ecattering acts as an analyzer. If the final target is 

also taken to have opin zero it will be represented by a matrix: like that in 

Eq. 3.3 , but now with aubocripta 3 to denote the third scattering. Inserting 
I 

thio matrix into Z.4 , one obtains, for the differential cross section Z.8 , 

3.5 
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where 

3.6 

and 

3.7 

Here 103 is the differential cross section for the third scattering when the 

incident beam i8 unpolarized, and a.3 is called the analyzing power of the 

reaction.. According to 3.5 the deviation from azimuthial symmetry after 

the final scattering is a measure of ( ':) k • 1!3 , the component perpendicular - . 
to the final scattering plane of the polarization vector of the incident beam of the 

final reaction. 

The fact that the vectors appearing in Eqs. 3.4 and 3.5 are the 

normals to the scattering plane is a consequence of the assumed invariance 

of the interaction under spatial reflection; the normal is the only axial vector 

that can be formed from the initial and final relative momentum vectors. The 

equality of polarizing and analyzing powers for a given reaction, which is seen 

from Eqs. 3.4 to 3. 7 , was shown by Wolfenstein & Ashltin ( 1) to be a general 

consequence of the assumed invarances under rotation, reflection, and time 

reversal, true even for targets of nonzero spin. This equality is often tacitly 

assumed and the polarizing and analyzing powere, undifferentiated, are called 

the polarization function of the reaction. 

According to Eq. 3.4 the polarization vector after the scattering 

of an initially unpolarized beam ia normal to the line of flight of the nucleon. 

To obtain polarizAtion components along the line of fli&ht the beam can be 

paaoed through a magnetic field. Relativiotic formulao for the preceeoion 
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rate are given by Bargmann, Michel & Telegdi (S). Magnetic fields may 

also be used to rotate a longitudinal component of the final polarization 

vector into a measureable transverse component. 

At present no exporiments in which the target nucleon is polarized 

have been performed. When polarized targets become available the dependence 

on the initial correlation parameters can be, investigated. Since there can be 

no correlation between the orientations of individual target and beam nucleons, 

the initial correlation parameter is simply the product of the individual 

polarizations: 

<
0 (f) o (Z)\ ' 

I" " lk -
The dependence of final expectation values on this term may be isolated by 

performing experiments with varioua combinations of the signa of (a (l >) k' 
I" -

and (a" (Z)) k' and then averaging with an appropriately signed weighting -factor to eliminate the unwanted terms. [ As in many of these experiments 

it must be remembered that the differential cross section appearing on the 

left of 3.2 generally depends on the initial spin expectation values, so that 

the relation between the initial and final spin expe~t;.t.tion values, unlike the 

relationship between the two density matrices, is not linear.] 

In order to measure the final correlation parameters, 

one can rescatter both outgoing nucleons. Contrary to the case for the 

initial state, the orientations of the two nucleons can now possess correlations, 

and the correlation parameter ie expected to differ from the product of the 

individual polarizations. It ie therefore necessary to consider Dimultapeoubly 

the scattering of both particles. 
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Jf the two particles are considered a single system the fina:l 

scattering process is described by the product scattering matrix 

M =(a (l) +b (l) a (l). N(l)) (a (Z) +b (2.) a(Z). N(Z)) 
3 3 3- - 3 3--

where for simplicity the final targets are again assumed epinleaa. Substituting 

this expression into Z.8 and identifying the pi of that equation with p (~) , 

the final density matrix of the nucleon nucleon collision, one obtains (6) after 

some rearrangement the coincidence cross section 

1 (l)(Z):: 1 (1) 1 (Z) [ 1 +CL (1) (a(l)> . N (1) + CL (2.)(a(Z)> . N (Z) 
3 03 03 3 - k -3 3 - k 3 - -

3.8. 

Here the analyzing powers, CL
3 
(i), are ZRe a

3 
(l) b

3 
(i)* /( !a

3 
(i) 12 + !h

3 
(i) 12 , 

as before. The final correlation parameter (a1 (l) aJ'2>),!: = Cij (!) 

can again be isoha.ted by averaging over appropriate combinations of the 

oenses of ~3 (1) and ~3~) • For example, 

CNN = (L, L) + (R, R) • (L, R) - (R, L) 

(L, L) + {R, R) + (L, R) + (R, L) 

where (L. R) represents the number of times that the first of the nucle;o:ri-s 

from the nucleon-nucleon collision scatters left at its subsequent final 

scattering and the other nucleon scatters right, etc. In order to establish 

that the two nucleons come from a single nucleon-nucleon scattering event 

high-speed coincidence circuits are used. 
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Certain of the more common experimental quantities have been given 

names which are now fairly standard in the field. In terms of the z's defined in 

3.1 and 4.1 the simplest of the 256 observables is Z~, !' ;0, 0;0, 0) ~ I
0

(9) , which 

is the differential cross section for an initially unpolarized beam. If Particle 2 

is considered to be the target particle, the quantities next in order of experimental 

simplicity are Z(k, Is: ;N, 0, 0, O);'I 0 (9) and f.(k, k;O, 0 ;N, O)/I0 (9), the polarizing 
~ ....,_ .,._,..., --. 

and analyzing powers respectively. As mentioned before, these are the magnitude 

t)f 'the polarization vector after the scattering of an initially unpolarized beam and the 

coefficient of azimuthal asymmetry after the scattering of a completely polarized 

beam. The simplest of the triple scattering experiment measure a Z ('!_. '!_' ;!!} , 0; "t!• 0 ~ (B), 

which determines the dependence of the normal component of the polarization vector 

after the nucleon-nucleon scattering on the normal component before the scattering, 

where the normal is defined relative to the nucleon-nucleon scattering plane. This 

observable is denoted by D and called depolarization. In the D experiment all 

three scattering planes are evidently coplanar. The quantities Z (k, k' ;K, 0 ;N X K. ,O)I
0

(9) 
.... ..... ..... .-..1n 

and Z(~ !' ;~, O;~in , O)I0 (9) are denoted by R, for rotation, and A respectively, 

where K ·n is a unit vector in the direction ~ . In the experiment that measures 
-1 -

R, the nucleon-nucleon scattering plane is perpendicular to the first scattering plane 

and hence contains the initial polarization vector. The third scattering plane contains 

the final laboratory momentum, of course, and is perpendicular to the nucleon-nucleon 

scattering plane. The normal to this third plane is then K, the unit vector along -
k - k', provided small relativistic corrections are neglected. In the "A" triple - -
scatte~ing experiment a magnetic field is used to precess the spin of the incident 

particle in order to give it a component the lire of flight. The final scattering plane 

is perpendicular to the nucleon-nucleon scattering plane as in the R experiment. 
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The only other experiments yet performed are the correlation 

experiments which measure Z(_!, _! 1
; ~· ~· 0, 0)/10 (8) = CNN and 

Z(!_, _!' ;~, f: .2_. ,2.>/!o (8) = CKP" In the formertthe two final scattering planes 

are parallel to the nucleon-nucleon scattering plane and in the latter they are 

perpendicular to it. The vector P appearing in CKP specifies the direction 
'·'· ..... 

perpendicular to the laboratory velocity of the recoil taTget nucleon, again 

neglecting relativistic corrections. For identical particles the final momentum k 

refers, of course, to the particle identified as the scattered incident particle. 

Correlation experiments in which the initial nucleon is polarized 

appear feasible although none have yet been carried out. The symbol C ABC 

has been used for the relevant quantity Z~, !' ;~, ,9 ;~, 0)/10 · (8). 

The quantities obtained by replacing in the above expressions for A 

::·and R the vector K by P are called A' and R' respectively. The vector - -
P is a unit vector along the laboratory velocity of the scattered nucleon, again -
neglecting relativistic cor·reettoM•. Thus in order to measure A' or R' 

the scattered beam from the nucleon·nucleon reaction can be passed through 

a magnetic field. 

The experimental quantities defined above can be expressed in terms 

of the Wolfenstein parameters by inserting 2.10 or 2.10' into 3.1 and 

performing the matrix multiplication. Results have been given by many authors 

(References 2 and 6 through 12). A list is given in Table I. 

Section 4. Theoretical Relations Between Experiments 

Although the 256 experiments are experimentally independent there 

are theoretical relationship between them. The results of presumably 

related experiments would be useful as checks on either the theoretical 

assumptions or the experimental results. 
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The theoretical aosumptions, aside from basic quantum mechanics, 

are the invnriances under rotations, reflections, and time reversal. The 

basic principles of quantum mechanics already imply 224 relations among 

the 256 observable&, for the ZS6 observable& are functions of the 16 compl~~. 

N-matrix elements, as one sees by Eq. 3.1. The specific consequences 
• 

fOllowing from these relations alone have apparently not been examined. 
~ 

The requirement of invariance under space reflection implies the 

vaniohing of half of the Z56 Z coefficients, since half are pseuc,ioscalars. A 
' 

nonzero value of any one of the 12.8 pseudoscalar Z coefficients would constitute 

unambiguouo proof that parity is not conserved in the interaction that produces 

the scattering •. · .. 

The consequenceo of time-reversal inv.ariance may be ex):;resse·d in 

a simple form if one introduces the definition 

Z (k, lt
1 

; A, Bi C, D) s. ~ .................. Z .,. tlr, k') A B C" D ...• 
~.v;~p ~- ~ v " p 4.1. 

In this expreosion if A, B, C or D is replaced by a zero the corresponding .. .... .... ... 
index of Z , v; 1\., p 

• 1-L 
io to be taken to be zero. Then invariance under time 

reversal implies 

Z (k, k1
; A, B; C, D) = A( ·k' , -k; -C; ·Di -A, -B), ... ... - ~ .... ... ..... .,. ... ... ... .... 4'.2 

where plus anci minus zero are considered equivalent. Equation 4.Z gives 

1Z8 conditions, the simplest of which is the equnlity of polarizing and analyzing 

power mentioned before. To derive this equality notice first that the analyzing 
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power A(k., k
1

; 0, 0; N 0)/10 , being a scalar linear in N, must, by rotation ... .. -. ... 
and space -reflection invariance, be of the form k X k-, • N times a function ... ~ .. 
of the scalar products o! k 1 and k' . It is therefore equal to - -t 
Z ( -~, -}:_; 0, 0; ... ~· 0)/10 which, by 4.Z, is equal to the polarizing po~~r. 

' Z.(k, k ; N, 0; 0, 0). Another consequence of the same three. invariances ia a 
...... 4M .... 

' ' relationship between A, R, A , and R , also first deduced by Wolfen&tein (B). 

To derive this relation one takes from 4.1 the relation 

,. . . '•. " ' 
Z (k., k ; M, 0; P; 0) =: Z ( -k , -k: P, 0; K 0), .. .. ... - ... ... ... ... 4.! 

where the linearity in the laat four variablea has been used. The right· 

hand side, being a. scalar linear in both P and K. must change sign when the - -• first two arguments are changed to k and k reopectively, as one oees by - -
enumerating the possible forme. Both sides of 4.3 can then be expressed in 

terms of A, R, A
1

, and R
1

, and the relation (A+R
1
)/(A1 -R) a tan(6/Z) 

follows. 

If '~otation, apace-reflection, and time -reveroal invariances are all 

maintained there are for the p•p system ot one scattering angle only nine 

independent scattering experimento; the M matrix and hence also the 

obaervablee are determined by the five complex Wolfen.stein parameters, and 

the over-all phase of M is irrelovant. For the n-p system there·a~l: aloo 

nine independent experiments i! charse independence ie assumed--otherwise 

eleven. 
4.. SC AiftY~ ~~~ .~ 

At/~0 deg two of the Wolfenstein parametero of ' l.lO vanish for 

p-p ocattering and five experimento/are sufficient to fix M up to the over-all 

phase. Aloo at this angle the combination 10 (1 .. Cnn) _ is determined completely 
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by the absolute value of singlet _scattering amplitude and therefore measures 

this quantity. Details are given in Reference (6). For n-p scattering at 90 deg 
.,_ow-

the situation is also very favorable, since them are only tw~vanishing isotopic 

singlet amplitudes. 

By virtue of the symmetry properties of the Wolfenstein parameters 

appearing in Eq. ' 2.10 , experimental observab lee at 6 and w-8 can both 

be expressed in terms of the scattering amplitudes,at 8. For some types of 

experiments--such as P·P differential cross sections and polarizations·-the 

two experiments do not give independent information, but for others--such asp 

p-p triple scattering experimento--the observables at the two scattering angles 

are given by different expreaslons in terms of the Wolfenstein parameters and 

furnish independent conditions on them. For n-p scattering the symmetries 

involve the isotopic singlet and triplet parts of the Wolfenstein parameters 

separately which in effect doubles the number of unknowns and renders the 

experiments at 6 and w-8 essentially independent unless isotopic spin 

invariance is assumed. In this latter case n-p and p-p experiments can be 

analyzed simultaneou~ly, and nineteen experiments at the two angles are 

sufficient to determine the five isotopic singlet and five isotopic triplet parts 

of the Wolfenstein parameters up to an over-all phase. This is discussed in 

detail by Golovin. Dzhelepov, Nadezhden It Satarov (11). 

Some relations between e.,..xperimental observable& imposed by unitarity 

are discussed in the next section. 

Section 5. Unitarity and Phase Shifts 

The important fact that the S matrix. io unitary has not been incorporated 

into the formalism developed above. A standard way of including unitarity is to 
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decompose the scattering amplitudes into partial waves. Unitarity is then 

easily expressed by using phase shifts, as is discussed below. The partial-

wave expansion is also useful because only the lower partial waves contribute 

significantly to the scattering and the reaction can be approximately described 

by a small finite number of parameters. 

The S matrix, by its definition. depends only on the asymptotic form 

of the wave function; it is a transformation in the spin-angle variables, the 

radial dependence being essentially known. To simplify the writing it is 

convenient, therefore, to suppress the radial factor iL jL (kr), where >if 

j L(kr) is the spherical Besael function. Specifically. I L, m; sl, m 1: Sz· mz > 
will represent the state having spin quantum numbers (5 1 , m 1 ) and 

(Sz , m 2 ) for the first and second particles, respectively, and a spatial 

dependence Y ~ ( 6 , +) (iL jL (kr)). where Y ~ (8, +) is the spherical 

Bessel function as defined in Blatt and Weiookopf (13). The symbol 

(L, m; Sp m 1; s2, m 2 I~) will represent the amplitude of this state. 
•
1 ikr 

S. th t t' t · t f (iLjL (kr)) ie e /Zikr the scattering mce e as yp o 1c ou gomg par o 

amplitude becomes, using these conventiono, ''(\A-l ~ t) 

$.1. 

where the symbol (a. f I L, m ) = Y J: (8, +), the summation convention, 

i>r ··.< • ....:...f. '.0 I. .u:. : 
,~ ~.t> ~1-~ 1~ 
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and the completeness relation I L, m) ( L, m I= 1 have been uaed. 

According to the above conventions the state repreoented by 19 1, + ') 
•1 , t I 

is (4 '11') tlmes a plane wave moving in the direction ( 6 , + ) as one sees 

from the Cegenbauer expansion (Ref. 13) , 

' .L m m 1 1 * . 1 / L 1 jL(kr)YL (8,+)(YL (8,4t)) =exp1~ •J. 411'. §'.Z. 

L,m 

Combining tbi:e fact with Eq. !CS.l and the definition of the t-4. matrix, one 

obtains the important re lationahip 
.. 

The moat convenient phaoe shiftl are related to the matrix .et.emento 

' of R in the representation where J, the total angular momentum, is dlagono.l. 

These stateD are characterimed by quantum numbers J, L, S, M, where S 

is 0 or 1 fox: t-he singlet or triplet otates respectively and M is·thi Z 

component of the total :~gular momentum J. Tranoforming from this 

repreaentation, one obtains for the matrix elemento of M (k, k
1

) in the --
singlet-triplet representation 

= ir[ ( 6, +; s, m5 I R 181 
, + ; s'. m' 8 ) 

§.4. 
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Q.'ft 

The transformation functions occurring in ,$.4 ,(:) aume of products of 
I 

spherical harmonics and Clebsch-Gordan coefficients: 

(e, +; s, m 5 I L, s", J, M) 

= \ m 
L. Y L (8, +) CLS (J, M; m, m 8 ) OSS" 
m,L 

s.s. 

where CLS ( J, M; m, ms) = < L, m; s. mg I L, S, J, M) is the Clebsch-

Gorda.n coefficient as defined in Blatt and Weisekopf (13). 

Equations .S.4 and &.5 allow the M-matrix elements to be expressed 

in terms of the R-matrix element < LSJM I R I L' s' l M') • Because total 

angula.r momentum and its Z component are conserved these R -matrix 

elements must vanish unless J = l and M = M' . Moreover, because of 

rotational invariance the matrix elements are independent of M, as follows 

from Schur's lemma. For a fixed J the possible values of L are L = J 

and L = J : 1 , where the second class can occur only in the triplet case. 

Also the two classes cannot be coupled because of conservation of parity. 

For brevity we introduce for the nonvanishing matrix elements of 

the class L = J :t: 1 the definitions 

(J:td, l,iJ, MIRIJ:t:l,l,J, M) = RJst:l,J, $.6. 
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and, for the class L = J, 

(J. 1, J, M I R I J, 1, J, M) = RJJ' 

(J, 0, J, M I R I J, 0, J, M) = RJ, §.8. 

(J. ~ :t: } • J. M I R I J. } + } • 
\ > ' J ' J J, M = R * 111 R .. 

., 

§.9. 

stated here express the fact that the R matrix is symmetric in this representation, 

~his a conseque~ce of tim~-reversal invariance discussed in 'the next 

•J section. The off-diagonal element R vanishes for the p•p system, aa 

the antieymmetry of the wave function precludes states having the same L 

but different total spin. If isotopic spin is conserved the R' J •tso vanishes 

for the n•p system, since for the same L the two spin statee have different 

isotopic spin. 

By carrying out the arithematic implied in 5.4 and $.5 and using 

the abbreviations §.6 through !{.9, one obtains the expressions for the M

matria element given in Table II. Table II refers specifically to the n•p 

case. For the p-p case only the antiaymmetric states contribute, and in 

these a factor of two must be added, as is discussed Jn Section 7. For the 

p-p case the Coulomb effects must also be included. Explicit p•p fol"mulas 

are given in Ref. 14. An extensive discussion of relativistic Coulomb 

corrections is given by Breit (15). 

·... ·~ 
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:Equation $.4 and !f.s give the decomposition of R into partial 

waves. However, the unitarity condition on S = R + 1 has not yet been 

invoked. By our choice of representation the only non-diagonal, nonvanishing 

J ' J matrix elements of R are the R and R • Thus by grouping in pairs 

1 1 
the two states L = J :It 1 for S = 1 and the two states S = t :t 2" for 

L = J, the R matrix breaks into a series of two-by-two matrices, all 

other element vanishing. The matrix S = R + 1 also must }U,J.ve this form, 

and the condition that S be unitary is equivalent to the condition that each 

of the two-by-two submatrices be unitary. 

A symmetric, unitary two by two matrix has three degrees of freedom 

and ca.n be expressed in terms of three real parameters in either of the forms 

.. .! ··~ . 1 

cos t: - sinE' 

sin t: cos E' (

' c~o e 

•Sln E' 

sin t: 

cos e 

or 

i6 0 e cos z. i 

0 e io+ i sin Z. i 

Here the individual matrices are all unitary and the forms are obviously 

symmetric. 

The first form has been used by Blatt and Biedenharn and the real 

parameters 0 .• 6+ and f: are often calle:d the Blatt and Biedenha.rn (type) 

phase shifts, or mixing parameter for the case of € • The two matrices; on 

the outside can be considered the transformation to the representation where 

S is diagonal. As the elements of a diagonal unitary matrix must be pure 

phase factors, they may be defined to be e ZiO:~: . 

> 
(' 
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. 
' The parameters of the aecond form are called "bar" phase ahifto 

and are useful for several reasons (14). Firat, these phases are proportional 

to the R-matrix elements in lowest order and approach zero as R goes to 

zero. Second, the parameter i gives a measure of the amount b¥ which 

orbital angular momentum is not conserved in the mense that a particle 

. z -entering in one orbital state has a probability sin Ze of being in the other 

state when it emerges. Third, in the Born approximation the phases are 

given by simple matrix elemmts of the interaction energy and hence obey 

simple interval rules. Fourth, Coulomb effects can be subtratted to lowest 

order by subtracting the Coulomb phases from the total bar phases. The 
. 

essential difference between the two types of phases is that the mixing is in 

the asymptotic region for the Blatt and Bie~enharn phases and at the core for 

bar phases. Equations relating the two types are given in References (6) and 

(14). 

The equations given above and in Table II allow the matrix elements 

of M in the oingle-triplet representation to be expressed in terms of phase 

shifts. Since the oboervables are expressed in terms of the Wolfenstein 

parameters, the relationship be~een the M-matrix elements and the 

Wolfenatein parameters are still needed. Tb.eae may be obtained by taking 

traces of the expresoion for M given in Z.lO to obtain explicit':lormulas 

for the Wolfenstein parameters. Carrying out the trace operations and 

using the well-known connection between the single-particle and the :singlet-
.. 

triplet reprecentations, one obtains the results given in Table tn. Intermediate 

steps are given in Ref. (6). 
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An alternative way of obtaining the connection between the Wolfenstein 

parameters and the phase shifts has been given by Wright (16) and by ~akke 

and Steck (17). The general phase-shift formalism for the n•p system is devel· 

oped in a review article by Blatt and Biedenha?n (18). General phase-shift 

formulas are also given by Breit and Hull (19). 

The unitarity condition can also be introduced without using phase 

shifts. In particular the relation 

ss* = 1 0 0 * = (R + 1) (R + l) = RR + R + R + 1 

' t implies for all 8 , + and all 6 + the equation 

/, * t ,, I I t .. ") I ,, II 0 t t ) - \8, • I R + R IB +/= \8 . + IR IB • \8 + IR IB • . 

S.3 
Using the relation ~ between R and M, one obtains immediately 

z lm M(Q,0°) ·(~) 
2 J t1 II * tt I 

do M(n,o )M (n .n ). 

Multiplying this by <JIJ. (l) av (Z) and taking one-quarter the trace, one finds 

lm MI'Y (0, 0°) = ~ J d a" i Tr (M (no") M
0 (a" n') 0'1' (I) O'v (Z) ) . 

$.10. 

Although ,9".10 contains sixteen equations, only six of these (five for 

p-p ) are independent. The same invariance conditions that allow M!P4oand 

t 
\ 
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hence the left-hand side to contain only six (five)degrees of freedom also 

constrain the right-hand side correspondingly. Since the phase enters in 

5.10, and hence is no longer arbitrary, the six (five) unitary conditions 

reduce the number of arbitrary angle -dependent functions required to specify 

the M matrix to six (five) and thus, as pointed out by Puzikov, Ryndin, and 

Smorodinsky (9), six (five) independent experiments, performed at all angles, 

·:.;are sufficient to determine M at all angles. If inelastic processes are 

considered the unitarity condition involves the additional states, and the 

argument is no longer complete. 

This result regarding the number of experiments needed to determine 

the scattering matrix, though often quoted, is rather academic. In practice, 

if data at many angles are to be analyzed simultaneously a phase-shift analysis 
I 

is used. A maximum angular momentum is usually chosen, and this fixes the 

number of powers of cos 6 in the various observables, and hence the number of 

parameters to be experimentally determined. The number of phases is also 

fixed. An analysis by Ypsilantis ( 1 0) shows that for L max > 0 three types of 
'f.~--

experiments- -cross section, polarization, and one triple -scattering experiment--

are more than sufficient to determine the phases in principle. For L = 0 max 

one experiment at one angle is evidently sufficient for the p-p or n-n case, 

since there is only one phase shift. For the p-p case cross -section measure-

menta involve interference with the approximately known Coulomb amplitude, and 

this also tends to reduce the number of types of experiments needed. 

Section 6. Consequences of Time-Reversal Invariance 

The fundamental consequence of time -reversal invariance is 

(Reference 13, page 529) 
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6.1. 

where a and b are time-independent (t = 0) basis vectors and aT bT 

are their respective time-inverse states. In the notation of Section 5 the 

time, inverse of the atate I L, m) io (-l)L-m I L, •m) . The (·l)L 

comes from the required complex conjugation of the radial part i L j L (kr) 

r:f,{~~hd the remaining changes come from the relation (Ref. 13) 

m* . m -m Y L (~,, ') = (·1) Y L (8, +). For the case with spin the time inverse 

of the stnte 1·1, M) is defined to be (·1)J-M I J, - M) . The spin is 

hereby reversed, as one requires for a time-reversed state, and the consistency 

of the definition with the composition law of angular momenta is guaranteed by 

the symmetry law for Clebach-Oordan coefficients 

CLS (J, -M; -m, -m
0

) = (-l)(J-M+L-m+S-mo) CLS (J,M; m, m
8

). 

In some earlier treatments of time reversal this consistency condition waa 

not maintained, as was pointed out by Huby (20). Inserting the definition for 

the time-reversed stAte into Equation 6.1 , one obtains 

< L, S, J. M I s I L '. s'' J. M) 

= ( L' s' J, ·M 1 s 1 L s J •• M) {-1)21• 2M • 6.z. 

Since the matrix element is independent of M and (•1) ZJ·ZM is unity, 

the symmc,try of the matrix d:s..: ::::l follows. 
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It should be noted that a unitary transformation does not generally 

leave a symmetric matrix symmetric, and a change ol. basis, even by phaoe 
&lli~J 

factora4 generally destroys the symmetry of S. 

The time inverae of a Pauli opin state, I j. • • } ) , is 

1 1 ) \ \ • I r t + ! • thtl.t is, I XT / = iOl I X ) . The condition of time-

reveroal invariance applied to the R matrix can therefore be written in the 

form 

<~)( I ~ <!11
). ! 111 

) If )( > . 
(· ~.' • x'lo/'az(Z) R <.!(1)• .!!(Z)I "z(l) "z(Z) I· t• x) 
I. k' 

= \ -
X • I R (a (l) a(l) a (l) ' a (1) a(Z) a (Z) ) 1- k X \ 

z - Z z - Z -· I 

= ~!· x' IR<-~:_«1 1 .,! 121 1 I·!· x) 
= (_ k' x I R ( - a(l) • ·a (Z) ) I - k. x' ) 

\ - tiM ... ... 

Thus time -reversal invariance implies 

a.s was stated earlier. Equation 4.2. can be obtained by using similar methods. 

A discussion of time-reversal invariance and its consequences is given by 

Shirokov (21 ). Consequences of time irreversibility are discussed by 
.. : ','"" / ~ t~l· 

PhiUips (2.2.). 

. ' ~I 
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~.ection 7. flnetnetrization 

In the above the two partielt)o have been asoumed distinguishable. 

U, ao in p-p scattering, the Fermi particles are identical, the amplitudes 
' 

f 

in the symmetric otatea al'e zero and those in the antlsymmetric states are 

twice those for nonident'tijnl partie les. 

It is perhaps not immediately clear that tbio factor two should not 

be rather the square root of. two. Jl one· simply writes the familiar anti• . 

o~~.etJ;,i,;ed wave function /; ( ttt (x) ~. + (•x) ] , or its generali~:ocl 
veroic;m .,.;ith opino, it is V'2 that occuro~ Aa the queotion involved here .. :'· 

seemo to arise often in practical work a diecuoaion of the problem aoemo 
. ~ 

warranted. •'1'1 

If identical particles are considered to differ from: dtotinsuiohAble 

particles only in that they happen to atart in an antiaymmettized state and 

remain oo because the interaction is oymmetrical, theu in an incident plane 

wave tu amplitudes in the oymmetric:al and antieymmetrical apin-orbit 

partial wave atatea are 0 or {Z timeo their normal values respectively, 

• ~. 1' • 

, . 
• <', ;,. 

';. ~ ' . ~. 

,· ··~ I ~ 

aa inc:Ucat.~d above. Hc•wever, the detecting o.ppar&tus measureD both particloo.-;''HI . .;·~~~~ 

and thio introduces an additional o.nd independent factor of two in the measured 

particle denaltiea. The wave function can be normalized to the measured 

denaitieo tf an additional factor of {2 ie oupplied. 

In a somewbt more sophioticated view the identical nature of 

indiotinguiohable particleo is ingrained more deeply in the moc:lo of 

deocription. A wave function and a second wave function obtained from 
-

it by an interchange of particle coordinates are considered to repreoent not 

different states, but rather the same otate multipled by minuc one. The 
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CA<f. be, 
effect of this is that in summing over a complete set of stateo c::::l,l\ muetl\tako"""-

to include each state only once. For instance, the normalization condition 

becomes 

where 8 (x1 , xl ) is zero for x 1 leas than x1 and one for x 1 not less 

than x2 . This factor 6 (x1 , xz) ensures that a atnte contributoa only once 

to the sum over otates. The normalized plane wave is than exp (ikx) • exp (-ikx). 

and the totally antiaymmetric partial-wave amplitudes are twice normal. Since 

the p._~t~c:,lef} are considered identical there is no ac!ditional !actor due to the 

counter's being able t~::a-.tect either one. This ~econd approach is the wave• 
t~o'\ 

function transcription of what happens in field theory. 

The most satisfactory method of treating identical particles io to 

uae quantum field theory. The formalism is completely defined and there is 

no queation of interpretation or viewpoint. For k 4 0 the normaUzed plane 

wave state ie given by I+) = a • (!l a"' 1-!l I o-) , where n'" (~ and 
a> 

a (-k) are operators that create particles in states k and -k respectively. - - -
The wave function is < 0 I "' (xz ) + (x1) I~) = exp (lkx) - exp (-ikx) , 

where x = x 1 .. x2 , and where the quantization volume is taken to be unity. 

When the Dyson-Wick (23) expansion of the S matrix is applied to this initial 

state the acattering amplitude is found to be t ( 8, +) = fu (6, +)- fu ( v- 6~ + + " ) , 

where the two terma on the right•h&nd side come from the forward and backward 

scattered particle respectively, for 6 L•/Z. 

The factor of two occurring fol' identical particles muat apparently 

be included also lor n•p states if. the isotopic epin formalism ia used, for 

' •1·~ 
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in thio approach the neut11on and proton are considered different 111tatee of 
•; .:· 

the same particle. However, this two is cancelled by a one-half if the 

formalism is applied conoistently. For instance, the 5-matrix takes the 

form P 0A0 + P 1A 1 , where P 0 and P 1 are projection operators for the 

isotopic ainglet and triplet otates and A0 and A 1 are the corresponding 
... . .. -·~':, .. ~ . 

amplitudes, which include the factor Z •. The matrix element of P 1 between 

two p-p states is unity but between two n•p states is one half. 

The factor of two has been dbcussed in detail by Breit and Hull 

(19) and in Ref. (6). 

Section 8. Relativistic Formaliom 

In the formaliom described above the nucleone are represented by 

two-component apin functions instead of the relativistic four-component 

spinors. The M matrix of the two-component formalism can be obtained 

from the relativlotic formalism, by multiplying the relativistic scattering 

matrix by the free-particle spinoro, provided the center-of-masa frame 

is used. e:;:::: ::::~ fOr a Dirac particle with momentum E. the apinors 

for the two possible spin state are uc&l (E,) and uc&Z (t) , where 4 is the 

Dirac opinor index and 1 and Z are indices la'beUng the two spin states. 

These ucd W) may be expressed as matrix elements of the matrix 

u(p) = (- i f. . :X. + f) M) fl I [ z M <Po + M) ] 
1 
/Z • 8.1. 

where the spinor and spin indices run over rows and columns respectively. 

Stated differently, the u1 (E) are obtained by operating on the proper spin 

states w 1 = ( 1, 0,0, 0 ) and Wz = (0, 1, 0, 0) with the Lorentz transformation 

·, 
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~-l (f.) =(-ip· y+~M)f//[2M(p0 +M)]l/l. 8.Z . 

.t"'r'iiAI• ~,,.,. ·-+\-. e\.,. 
which transformo o spin otatoAfrom ~11vnluesin the particle rest frame to~ 

value in the frame where the particle has momentum 2: With these definitions 

it ts not bard to see that if the center-of-mass frame is used the reduced· 

Pauli-type scattering matrix 

8.3. 

where lJ( is the relativistic scattering matrix and where spinor indices 

are suppressed, possesses the same transformation properties under 

rotations, spatial reflections, and time reversal ae it has in the non-

relativistic theory. Thus the same group theoretical arguments may be 

ap~lied and the nonrelativistic theory is formally unchanged. 

According to the above connection the spin vector of the non-

relat,ivistic treatment can be -Qquated to the relativistic spin vector provided 

the latter is measured in the particle rest frame related to the reaction 

center-of.m;ua frame-by the inverse of the Lorentz transformation 8.2 . 
.. · 

Conversely, the retati~ietk spin vector, which, according to Michel and 

Wightman (Z4)'f is a pseudo vector whose fourth component vanishes in the 
\. 

particle reot frame, can be obtained by applying the Lorentz transformation 

8.2 to the spin vector of the nonrel~tivistic treatment. The relativistic spin 

vo-et&r in the laboratory frame may then be obtained by a second Lorentz 

tranoformation. 

If the outgoing particle for one reaction is the incident particle for 

a second reaction, the second reaction must be described in its own rest 

t 
, I 

i 
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frame if the two.,component formalism is to be applicable. The relativiotic 

opin vector in thio .second centor·of-muo fra.me may be obtained by a 
I . 

Lorentz transformation from the labe>rati>ry frame. Finally the three• 
:. ~. 

8 L~ 

componEDt spin vector needed for the two-component formalism is obtained 

by a transformation from this second center-of-mass frame back to the 

particle rest frame. Although thio sequence of four Lorentz transformation 

bringo vectors back to their values in the particle rest frame, the final 
~ ~·i·:,~::_.: 

reot frame is rotated rotative to the original one.. This rotation iu discusoed 

in some detail in Reference (Z5 ), where explicit formalarh1Ue Biven. 

Discussions o£ the connection between the relativistic and nonrelativiotic 

formutatio~s have also been given by Steck (a6) • Garren (l7) and Breit (15). 

A more formal general approach to the question of the relativistic description 

of polarized partie lea is given by Chou Kuang Chao and Shirkov (Z8). 

; .. ~ 

I~ 
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Table I 

Experimental observables in terms of Wolfenotein,arameters (The Wol!enotein 

~arameterG are as defined .in Eqs. Z.lO and Z.l0 1with b of the former oet to zero. 

The observable a are defined in section 3. · · Complete liots are given in 

Referenceo 9 and 12 • Expressions for the general case where space 

reflection and time-reversal invarianceo are not imposed are given by the 

author in the Lawrence Radiation Laboratory Report UCRL-8859. (Unpubliohed) 

/,The conoequences of these invariances are diocusaed there in some detail.) 

I0 = 1 Ia I z + z I c I z + .!. I a .. N I 2 + ! I N I z + ! I HI 2 

4 . 4 l z 

= lalz + lmlz + Zlclz + Zjgjz + Zlhlz 
<a * 10P= l Re c; N = Z Re c (a+ m) 

I0 (1-D) = ! IG-N-BI 2 + IHI 2 

4 

= 4 jgjz + 4jhjz 

1
0

R = ! Re [ (G-N) * (N+H) + B • (N-H) l cos 6/Z 
z 

• + 1m [ ® (B+G-N) } sin 6/Z 
n'l 

= [ I a I 2 
.. I m I 2 

- 4 Re hg 
0 1 cos 6/2. 

• * + 2 Re ic (a - m ) sin 8/Z 

1 • • 
t
0

A = - - Re ( (G-N) (N+H) + B (N-H) } sin 6/Z 
l 

ICl . 
+ I:.~Ji.>.[ C: .<B+O-N) J cos 6/2. 

= - [ I a I Z - I m I Z .. 4 R.e hg * l ein 6/ Z 

* • + Z Re ic (a - m ) coo 8/Z 

":. I 

\ 
\ 
\ 

' 

\ 

\ 
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Table I (aintinued) 

t • 1 0 • 
10 R' :: - IJR o:' (B+G-N) ] cos 9/1. + z Re { (0-N) (N-H) + B (N+H)} ain 9/Z 

=- 2 R.e ic (a-m)* cos 0/2 + ( lal 2 - lml 2 + 4 Re gh *)sin 9/1. 

1 • • * I 0A' = - Re { (G-N) (N-H) + B (N+H) } cos 9/l + Iw~ (B+O-N) ain 8/1. 
2 ~~~ 

= ( Ia! Z- lml 2 + 4 Re gh *)cos 8/2 + Z Re ic (a-m)* sin 8/Z 

. 0 * 10 a: KP = • Z Re 1 CH = 4 Re i ch 

10 < 1-cNN) = ! I G-N+Bii~ + 1 
1 G-N-B 1

2 

4 4 

=\a-mil+ 4lgll . ~ 
10 CNNN = 2 lm iCN :: 2 Im ic (a+m) 

1 • • 
10 CNKP = -

4 
lfl[ (0-N+B) (0-N-B) - 4 NH } 

. [ 0 .l = - Z Irri (a-m) g + (a+m) h · 1P, , 

10 CNxK. ~ p = ! coo{8/Z)Ifl"l' [ N(G-N-B):t ... (0-N+B)Hill l 
-~n 1. ., 

+ sin(B/Z)I.mEc (G-N-B>*) 
; 

= 2 coa(8/2)Ip1 [ (a+m)g 
111 + (a-m) h • 1 .. n 

• 



Table U. 

H r-t\4~ ~ k\e'\oy1 e"''G 'I:~ "l"~v~£ o\ ~- M•AY','A ~le""' ~ h . - , == :: 
m .Wlb¥at• ... -W•"'- /• ,:_,..-.,._.:,., •• 'Q,.~,.~~~~~~- ... -

-1 !Zl+l' 
M88(9, +) = (ik) !; P,(8) i\-r; R.t• 

-1 M11(9, +) = (ik) k P
1

(6) 

{.1.1.+1) (1' 
.. \4l(!+l~RiJl + 4Jj 1\.C!l .. l 

+! f(Hl)U+Z))-1/Z RH1 + ~ [U·l)l)·1/Zal·1} 

M .. l-1(9,+) = Mll(6, ·+). 
M .. 11(8,+) • M 1_1(9, ... ). 

Mot< 9·+l =- Mo ... t< 8• -+). 
M10(9, t) = • M -10(9, ·+). 
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Table U. (continued) 

The R-ma.trix elements are defined in Section 5 with the added constraints that 

R1j for j < 0 and Rj for j ~ 0 are zero. m The P1 (6) are the associated 

legendre polynomials as defined in Reference 13. The subscripts s and 

1, 0, -1 designate the singlet and triplet states reepectively. lnvariance 

under time reversal, space reflection and rotations, and isotopic spin rotations 

is assumed. The sign conventions ln this table are in agreement with Eq. 4.4 

of the text. In Ref~,.renceo ( 14} and ( H~) the Rj are defined to have the opposite 
.f,-oM "th o~o~ "'fh,& -table, 

signA ~~Owpopoo.. In the tables and graphs of Part W the conventions of 

Reference ( 14) are used, however. 



Table UI 

Relatione Involving Wolfenstein Parametero. (The Wolfenstoin Parameters 
f . 

• t 

are defined ln Eqo. l.lO and. Z. 10. The eubscripto e and 1. 0, -1 or Mij 

de.oignate singlet and triplet states reopectlvely. The M .. matrix elemento 

• are evaluated at + = 0. Invarlance under time reversal, space reflection and 
. 

rotations, and iaotopic spin rotations aro aosumed.) 

1 (l) (Z) . (l) ('zt.-: 1 
g = w Tr M ~ • P u · P + t1 • Kcr · K} =,. (M11 + M 1 l -M ) 

0 - -- - - -- - .. - ss 

B =M es 



Table Ill (continued) 

a :: ! (B + G + N) 

1 
g = 4' (G • B - N) 

c=C 

1 
h = • z:H 



• I 

'f ' 

Table IV . 
..... l 

Expressions for the Wol!enstein parameters for the n .. n Gystem. The conven• 

ti.ons for the sign of Rj are the oame ao in Referenceo 10 and 14. See theae 

references for a deocriptlon of the chaugea required for p-p scattering. 

B =+ilk {{8R0 -Z01tz+l~7R4] 
+[60R2-z70R4)coe~9~315R4 coo 46}, 

(: = .. ~{[16a10+24R 11 •40R 12 -40R32 .. 14R33 

+S4a34+54R54+ 11a55 .. 6sa56]+fzoott32 

. 1 2 +70.a.33 ... z70l\!4 -756R54/·154R55+910R56 coo 8 

+( 1134R54+Z3Ill55-136SR56]coa 4'fi}. 
1 

H =mk {[ 1 6a10 ·24R ll +8R lZ -sa32 + 14R33 -6.1.34 
. z 4 

+6a54-11R55+SJt56 .. (3Z"6)R +(4W5)R ] 

+[ 40R32 -701\33+JO:a34 -841\54+ 154R55 ·70R56 

+{BeN 6,R2 -(456-J S)a 4]coe2e+r 126R.54 

.. z3ta55+tosa56 +(SOW 5Ul4)coa 4e}, 

N = -t;~ {[t6a10+z-ta11+s6Ru 

-136R32 ·14Jl33-UJ6R34+Z94R54+ ll.R.55 

+3S5tt56 +( 16-J 6)R Z -(ZW S)R 4] coe8 

+(200R32+70R33+Z90R34-1316ll.54 - 154R55 -1610R56 +{56 ..j 5)R4] cos 3e 

+[ 1134R.54+l3lR.55+ 1407a
56

] cos 59}. 

G-N +~{[4Sa11+48:RlZ 
+ 32tt32 - 308R33 ·60it34 -48R.54 +638tt55 



Table IV. ( conti.Dued) 

+70R56 -(32...} 6)R 2 
+( 4&.J 5)R 4 ] coa9 

+f 4 20R33+ 140R34+ llZR54 

4 3 
-277ZR55-420R56-(11Z~5)R ]cos e 

5 +[- OR54+Z3lOR55t46ZR56]cos 6 }. 
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