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Section 1. Introduction

The outstanding feature in the deve iopment of nucleon-nucleon
scattering experiments since 1953 is the use of polarized beams. Initial
nucleon-nucleon polarization experiments were reported in 1954 by Oxley,
Cartwright and Rouvina and two years later triple scattering experimente were
performed by Chamberlain, Segré, Tripp, Wiegand and Yf:silantis. These,
and subsequent similar experimentas, ha.vé been the de‘cisive factors in the
comparative successes of recent phenom'ebological analyses and will
accordingly receive a major emphasis in this article.

In typical polarization experiments the internal proton beam of a
cyclotron is scattered from a target such as carbon and the scattered protons
are found to have their spins partially aligned in a direction normal to the
scattering plane, with generally mc;re having spin up than down for a left
scattering. A beam such ao this, in which the spins are partially aligned,
is said to be polarized, and if it is caused to strike a (second) target of, say,
liquid hydrogen the second scattering cross section generaily exhibits an
agimuthal asymmetry. The measurement of this asymmetry is the object of

the so-called double-scattering polarization experiments. In the more
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comp‘ltéf‘&tai}g triple-scattering experiments the protons emerging from the
second collision are allowed to scatter still again and the asymmetry after
this third scattering process io measured. In variations of the experiment
magnetic fields may be interposed between the various scatterings.

In these experimcntui the final measured asymmetry dependo upon
the properties of the various interactiomsinvolved and upon the geometric
configuration. It is the object of the formalism discussed in this part tc
exhibit in 2 simple way the dependence of the observed quantities on the
characteristic parameters describing these two factoro. A nonrelativistic
treatment is given firet, hut thio is later extended to the relativiotic cace.
At the outset tﬂe two nucleons are conoidered distinguiaixable with the effects
of undistinguishability being brought in later.

The discussion is based upon the use of the density matrix, which
was introduced in this connection by Wolfenstein & Aslikin (1) and by D.alitz (2).
This device greatly simplifies the analysis, both mathematically and conceptually.
and is the basie of all contemporary work in the field. The next section is
devoted to a deacx"iption of the density matrix formalism in nucleon-nucleon

scattering.

Section 2, Statistical Mixtures and the Density Matrix

The spin vectty of a Pauli particle is defined here as the expectation
value of the Pauli spin operator ¢ = igx +l£y + E%ﬁ . Thus if an arbitrary
normalized spin wave function is written in the form [cos g- exp (ia/2) .

sin g— exp (iB/2)] the spin vector is 2 unit vector with polar angle 8 and
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ezimuthal angle ¢ = (a - §)/2 . It is important, however, that the particles
injected into or emerging from a cyclotron are generally not all in the same
quantum state. The various individual spin vectors therefore have different
directions, generally, and the expectation value of the spin operator averaged
over the particles of the beam will be a vector of length less than unity. Tﬁig
4average over the particles of the beam of the individial unit spin vectors is‘v
called the pelarization vector of the beam.
In polarization experiments this beam polarization is the central

object; the measured quantities are directly related to it. Although it is poosible
to carry out calculations for each individual quantum state and then to perform
(classical)averages over the variouo particles, it is much easier to ;1eal directly
with statistical averages over the particles of the beam., The method is
described in this section. e
S If the fraction of beam particles in the pure quantum state | ¢i> !

is fi » the beam expectation value of an operator A is

<A> -2 & <¢i | A “’i> . (2.1

Often a bar is placed over the quantity on the left-hand side to signify that it is

wentum thates,
an average over individunl w it is convenient to re-expréss
2.1 in the form

(A) = Trpa, 2.2.

where Tr means trace and p is a Hermitian matrix called the density matrix.
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As is apparent from 2.1 and 2.2, the density matrix p can be represented

in the form
p = Z fi Pi .

where Pi is a projection operator which is unity when acting on the state
H’i> and gero when acting on states orthogonal to “"i > . |

From a more abstract point of view the fact that 2.1 can be cast in the
form 2.2 can be deduced as follows: The physical state of a system is . . . ;
determined by the expectation values of a complete set of Hermitian operators,
in an N-dimensaional space there are N2 independent Hermitian operators.
The corresponding Nz equations of the form 2.2 determine completely the
Hermitian matrix p, and by linearity this equation then determines the
expectation values of all other operators.

In treating scattering experiments it is important that the density
matrix can be used to characterize not only a collection of particles but g!ggﬁ
a single particle. For example, in a system of two particles the wave function

may take the form
g ('}Cl ’ XZ) = 31 ] l("l)‘pl(xz) +az¢ 2 (xl’¢2“x2) + .-

If the states (xz) are nonoverlapping (i.e., orthogonal) then the contributions
from the various ¢ i ("l) cannot interfere and must be combined according to
classical statistics. The densgity matrix is therefore appropriate for describing
the first particle alone if information regarding the second particle is unavailable.

If the states of the second particle are partially overlapping the situation is more
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complex, but the first particle is still characterized by some ;ienaity matrix,
ag the abatract argument ghows.

The dencity matrix defined above characteri-;gee a system at a giventime. As
time proceeds the denoity matrix changes--at least in the Schroedinger
reprenentétion. which is used throughout. In particular, if the states before
and after a scattering process are rolated by tbf =8 qli . then the denaity
maotrices characterizing the ocystem before and after the séatcerlng are related

LSRRt CRET

by

Pg © SPi sc ' 2.3, e

as is seen from Eqs. 2.1 and 2.2, For scattering experiments in which
the final particles are counted cutoide the unscattered beam, the incident
' beam must be subtracted out and one uses, instead of 2.3,
Pac =R ®; R", ’ 2.4,
where R =8 -1, The Pac defined in this way describes the scattered wave.
Equations 2.2 and 2.4 are the two fundamental cquations for treating the
scattering of statistical mixtures; Z.Z.Q%@@plied to both - éi and Pac determines
the connection to experiment, and 2.4 gives the dynamical content. |

In scattering experiments the momentum can usually be considered
well defined. Consequently, the operators A uced fn_. Eq. 2.2 canbe

¢

considered the product of an operator A s in spin spdce times an operator
P (E) that projects onto a state of relative momentum k. According to 2.2

the expectation value of a Dpin operator, A - in this momentum state is

-
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o re A, 2.2"

<A> = <P(E) Aﬂ) = PR
s/ k = <P(‘l£); . Trp QE)

«««««

momentum state .l.c. » and the spin-space density matrix p (.lg) is some as yet
arbitrary multiple of " <.l§ ]p l§> » the diagonzal momentum-space matrix
element of p. In 2.2' the trace is over apih states only, the sum over
momentum states present in 2.2 having been cancelled by the momentum-
state projection operator P (k).

Asgide from the undetermined normalization Eq. 2.2' can be considered
the definition of the spin density matrix p (k) . Indeed, if one introduces in the
four -dimensional spin space of the two Pauli particles thé sixteen independent |
matrixes 0 V) o (2) gefined by

n v

1) 5 2)
(won]o, Mo jm nt) eww o0y 2.5.
where m and n gpecify the spin states of the first and second particles
respectively, and Gyv 0y 03, and 0, are the Pauli spin matrices ard

the Pauli unit matrix, one obtains, using the orthogonality relations

1 ), @, 1), (2
T Tr O'H o, N a~p = 6‘”\ GVP . 2.6. ‘
§
the inverse of 2.2': _ \
p(k) = é- Trp (k)Z <a“(” 9, (2>k opm avm . 2.1,
#.V - fanad
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In this forwm the apin devnarity matrix is expressed directly in terms of Tr p (k)

and the sixteen expectation values <O““) g, (?‘)> k° Six of these,

Wy @Y W W @ L@
<0i 00 >§ ,,_<0i >5 and <°'o Oj >-k‘ _<0j >§-.

are the components of the polarization vectors for the first and second particles

respectively, and <°i“) O‘j(z)> k = Cij ('1.:_)

are nine parameters related to a correlation between spin expectations in the
two beamms. These fifteen parameters can be considered as specifying the
spin state of the combined two-particle system.
Turning to the dynamical side, the momentum-space matrix element
<‘1§‘ | R |5'> is a matrix in spin space whose elements, aside from a normalization
factor, are the scattering amplitudes for individual initial and final spin states.
In the description of polarization phenomena it is convenient to incorporatq this
normalization factor and deal aleo with the spin matrix M (5 , h:: )} whose
matrix elements are exactly the scattering amplitudes in various final spin
states for fixed initial spin states. In termo of M (.15. . ’l‘(: ) and the »p (5)

defined in 2.2’ Eq. 2.4 becomes
' ' & '
Py ) = Mk k)p ()M (k.k), 24

where the freedom in the normalization of the 9(5) has been exploited.
With this choice of normalization the differential cross section becomes
simply

Trp Tr Mk, k') p; M (k, K')

F = 16, 6)= g5

2.8
TP Tr p,

\
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whiek

&E> is the straightforward generalization to the case of polarized initial

particles of the usual rule of summing over the final states and averaging

q
over the initial etates.
The operator M(k, E(:) is a matrix in the spin space of the two
particles and, like p(k), it can be expanded in terms of the O’L(l) Uv(z) :
M, &) = 2 MFY k&) o, Mg, @ 2.9
]
In the center-of-mass frame, where k and k are the only vectors upon which
the M"Y (k, k.) can depend, the most general function of the form 2.9
invariant under rotations and spatial reflections is
. t
Mk, k) =
a+b @ N ) reg neg®
+m (@ Ng®. 0 + 5@ pg®. ) pagt. ko k)
+n ). po? p . gl ko). k)
FAREER S Y CA¥ J s CRRICALE Ty 3 2.10

J

Here § . _13 are unit orthogonal vectors in the directions Ex_lf. k' + .lf. .

and 5-‘15: respectively, and the coefficients a, b, **- , £ are scalar

functions of the vectors 5 and k'
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For proton-proton scattering, in which the two particles are identical,
b=0 and j=1, since M must be symmetric under interchange of the two
particles. The same conditions would be satisfied also for n-p scattering
if charge independence Were strictly maintained. |

It was pointed out by Wolfenstein &sﬁ&bhkin(” that the requirement of
time-reversal invariance implies the vanishing of § and £ ., As is shown later,
this requirement directly implies the invariance of M(k, ‘l.:_') underr‘tt‘;zﬁww
nimuweoua substitutions k <— -5' and ¢ < - ¢ . Sikoexthe terms
multiplying j and £ change sign under this transformation while j and 1 ,
like the ayaiiable scalars k-k, k'. k' and k. E' , are invariant, j and !
must vanish. Thus the combined requirements of invariance under ;otation.
apactial reflection, and time reversal imply that the scattering matrix M can
be expressed in terms of the six (five for p-p) remaining complex acal#r

pararx;;ters in Eq. 2.10. These parameters are called the Wolfenstein parameters.

For fixed energy, they are functions of the single scalar variable 2:_\‘ lc" of. .
equivalently, of the polar scattering angle 8§ . They are, of course, independent
of the initial and final polarizations; these latter quantities eﬁter the theory only
through the initial and final density matrices Py (‘l_ié:) and Pac (k).

An alternative way of writing the M matrix has been given by

Wolfefxstein '(-3) :
Mk, E'L = BS + C(gm +o¥) . N
+ %G(gu). I‘Sg‘(z,. K +g(1>. E.?.(Z) ‘p) T
+%H(2(1).§g‘(2)‘ K - g(l)' 22(2)‘2, T

N ne® Ny T 2.10
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The quantities 8 and T in this equation are the singlet and triplet projection
operators, %- (1 - gu_‘)“."i'g(z)) and i- (3 +g‘l)° 2(2) ) respectively and the
coefficients B, C, G, H, and N are agd¥in functions of the scattering angle
6 , but now with the symmetry properties B (8) = B(r - 8), C(8)= C(x - 8) 7 G(6)
z - G(w ~ 9), H0)=H(w -6), and N(6)= - N(n - 8) for the isotopic triplet
cage. The isotopic singlet amplitudes have the oppoéite symmetries.

described :

The formaliomﬂabove is the basis of the discussions in the following

sections and, indeed, of all contemporary discussions of polarization phéhqmena.

Section 3, Posgsible Experiments

In principle 256 experiments can be performed on the nucleon-
nucleon systemn at a single scattering angle. The final spin-space density
matrix depends on sixteen independent real scalar paraméters and each of these
depends linearly through Eq. 2.4' on each of the 16 real scalar parameters that
determine the initial density matrix. In terms of the 256 scalar coefficients

z . k) SR 31

Bo Vikhp w' -

1 (1), ) g (1) o (2),* '
= 3 Tr 0" Ov MQ‘E, ‘l_z. ) Gx OP M (5. 5 )
the relation between initial and final expectation values is simply

116.4) <aﬁmov(2)>§, ® Zuving %.5’)(%‘” 0p(2)>g ' 3.2

The experimental problem is to fix the initial expectation values and
measure the final ones. This determines the Z's, which in turn give information

on the nucleon-nucleon interaction through Eq. 3.1 .
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The initial polarisation is fixed and the final cnes measured, generally,
by making auxiliary scattering before and after the principal nucleon-nucleon
scattering. These auxiliary scatterings can be treated by using a formalism
analogous to the one described above. If, for simplicity, the initial auxiliary
scatterer is taken to have spin zero and if invariance under spatial reflection
is assumed, this initial acattering is described by a two-by-two spin matrix of

the form _

as discussged by Wolfenstein (4) in an earlier volume. Inserting this into
2.4 and using 2. 2' one obtains for the polarization vector after the scattering

of an initially unpolarized beam the expression

<o>. [znealbl*/(laltzau|b1[2)]§1=_=Plr_ﬁ. 3.4
SM‘

Here N; is the normal to the {irst scattering plane and the quantity Py,
whiéh gives the magnitude of the polarization vector, is called the polarizing
power of the reaction. The subscripts 1 identt%s the quantities as pertaining
to the initial scattering.

Agpossible third scattering acts as an analyzer, If the final target is
also taken to have spin zero it will be represented by a matrix like that in
Eq. 3.3 , but now with subscripts 3 to denote the third scattering. Inserting

this matrix into 2.4’ , one obtains, for the differential cross section 2.8 ,

-

[
|
I3 2 Ip3 [1*a3l,- <2>§_ ' 3.5
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where
2 2
103 = |a3 | + |b3 I 3.6
and
&
a, 103 = 2 Re a, b3 . 3.7

Here 103 is the differential cross section for the third scattering when the
incident beam is unpolarized, and a; is called the analyzing power of the
reaction., According to 3.5 the deviation from azimuthial symmetry after
the final scattering is a measure of <_O_> K ° I‘\_{s y» the compdnent perpendicular‘
to the final scattering plane of the polari:ation vector of the incident beam of the
final reaction,

| The fact that the vectors appearing in Egs. 3.4 and 3.5 are the
normals to the scattering plane is a consequence of the assumed invariance
of the interaction under spatial reflection; the normal is the only axial vector
that can be formed from the initial and final relative momentum vectors. The
equality of polarizing and analyzing powers for a given reaction, which is seen
from Eqs. 3.4to 3.7, was shown by Wolfenstein & Ashikin (1) to be a general
consequence of the assumed invarances under rotation, reflection, and time
reversal, true even for targets of nonzero spin. This equality is often tacitly
assumed and the polarizing and analyzing powers, undifferentiated, are called
the polarization function of the reaction.

According to Eq. 3.4 the polarization vector after the scattering

of an initially unpolarized beam is normal to the line of flight of the nucleon.
To obtain polarization components along the line of flight the beam can be

passed through a magnetic field. Relativiotic formulas for the precession
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rate are given by Bargmann, Michel & Telegdi (5). Magnetic fields may
also be used to rotate a longitudinal component of the final polarization
vector into a measureable transverse component.

At present no expariments in which the target nucleon is polarized
have been performed. When polarized targets become available the dependence
on the initial correlation parameters can be investigated. Since there can be
no correlation between the orientations of individual target and beam nucleons,
the initial correlation parameter is simply the product of the individual

polarizations:

/ 2)) , 1) - (2) '
<°i*()av(>_l§_ =<°M(>.l§_' <0v >l‘.

The dependence of final expectation values on this term may be isolated by

performing experiments with various combinations of the signs of <0p (”>k'

o

and <0 V(2)> K and then averaging with an appropriate ly signed weighting
factor to elir;;ina.te the unwanted terms. [ As in many of these experiments
it must be remembered that the differential cross section appearing on the
left of 3.2 generally depends on the initial spin expectation values, so that
the relation between the initial and final spin expectation values, unlike the
relationship between the two density matrices, is not linear, ]

In order to measure the final correlation parameters, <0i O‘j> Kk
one can reacatter both outgoing nucleons. Contrary to the case for the -
initial atate, the orientations of the two nucleons can now possess correlations,
and the correlation parameter is expected to differ from the product of the
individual polarizations. It is therefore necessary to consider simultapeoutdy

the scattering of both particles.
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If the two particles are considered a single system the final

scattering process is described by the product scattering matrix

(1) (1) ) 1, . (2 (2) 4(2)  (2)
where for simplicity the final targets' are again assumed spinless. Substituting
this expression into 2.8 and identifying the P; of that equation with p (k) ,

the final density matrix of the nucleon nucleon collisibn, one obtains (6) after

some rearrangement the coincidence cross section

(1)(2) 1), (2) 1) / 611) (1) 2 2 2
I 7 = lgg Igs [”‘3( <9. >3§ C Nyt ey )<.‘.’.( )>‘1_<_‘ Ny
: |
v o, a3(z)<£:g). N, o) §3(z)>£j . ‘s,

" Here the analyzing powers, c3(i’ , are ZRe 5‘3(" b3(i)*/( 'aB“)lZ + {b3m IZ .

as before. The final correlation parameter <Gi(l) oj‘2’> K ° ('Jij (5)

can again be ieoiﬁted by a\}eraging over appropriate combinations of the

censes of §3(” and §3LZ) . For example,

(L, L)+ (R,R) - (L,R) - R, L) {a‘il)n (Z)J -1
(L, L) + (R,R) + (L, R) + (R, L) 2

where (L,R) represents the number of times that the first of the nucleons
from the nucleon-nucleon collision scatters left at its subsequent final
scattering and the other nucleon scatters right, etc. In order to establish

that the two nucleons come from a single nucleon-nucleon scattering event

high-speed coincidence circuits are used.
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Certain of the more common experimental quantities have been given
names which are now fairly standard in the field. In terms of the z's defined in
3.1 and 4.1 the simplest of the 256 observables is ZQ(,‘IS_';O,O;O,O) = 10(6) , which
is the differential cross section for an initially unpolarized beam. If Particle 2
is considered to be the target particle, the quantities next in order of experimental
simplicity are Z(l;\, }5_',1;14 0,0, 0)}/10 (6) and Z(}‘(‘, ‘15;0, O;I:{, 0)/10(6), the polarizing
and analyzing powers respectively. As mentioned before, these are the magnitude
Bf the polarization vector after the scattering of an initially unpolarized beam and the
coefficient of azimuthal asymmetry after the scattering of a completely polarized
bearmn. The simplest of the triple scattering experiment measures Z(}_c_, 5‘ ;‘_I:I. O;I:I_, 0){0(6),
which determines the dependence of the normal component of the polarization vector
after the nucleon-nucleon scattering on the normal component before the scattering,
where the normal is defined relative to the nucleon-nucleon scattering plane. This
observable is denoted by D and called depolarization. In the D experiment all
three scattering planes are evidently coplanar. The quantities Z(k, E' K, 0;N X K. .O)IO(G)

and Z(k, k";K, 0;K

in O)IO (8) are denoted by R, for rotation, and A respectively,

where K.

in is a unit vector in the direction }5 . In the experiment that measures

R, the nucleon-nucleon scattering plane is perpendicular to the first scattering plane
and hence contains the initial polarization vector. The third scattering plane contains
the final laboratory momentum, of course, and is perpendicular to the nucleon-nucleon
scattering plane. The normal to this third plane is then g, the unit vector along

k - k', provided small relativistic corrections are neglected. In the "A'" triple
scattex:ing expei-iment a magnetic field is used to precess the spin of the incident

particle in order to give it a component the line of flight. The final scattering plane

is perpendicular to the nucleon-nucleon scattering plane as in the R experiment.
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The only other experiments yet performed are the correlation
experiments which measure Z(l‘i,.'lg'; N, N' 0, 0)/I0 (6) = CNN and

Z(k, k";K, P; 0, 2)/}0 (6) =C In the formertthe two final scattering planes

KP’

are parallel to the nucleon-nucleon scattering plane and in the latter they are

perpendicular to it. The vector P appearing in- CKP specifies the direction

perpendicular to the laboratory velocity of the recoil target nucleon, again

neglecting relativistic corrections. For identical particles the final momentum k

refers, of course, to the particle identified as the scattered incident particle.

Correlation experiments in which the initial nucleon is polarized
appear feasible although none have yet been carried out. The symbol CABC
has been used for the relevant quantity Z(k, k';B, C;A, O)/Io' (9).

The quantities obtained by replacing in the above expressions for A

“dhd R the vector K by P are called A' and R' respectively. The vector

f is a unit vector along the laboratory velocity of the scattered nucleon, again
neglecting rela..tivistic corredtionss. Thus in order to measure A' or R'
the scattered beam from the nucleon-nucleon reaction can be passed through
a magneticv field. |

The experimental quantities defined above can be expressed in terms
of the Wolfenstein parameters by inserting 2.10 or 2.10' into 3.1 and
performing the matrix multiplication. Results have been given by many authors

(References 2 and 6 through 12). A list is given in Table I.

Section 4. Theoretical Relations Between Experiments

Although the 256 experiments are experimentally independent there
are theoretical relationship between them. The results of presumably
related experiments would be useful as checks on either the theoretical

assumptions or the experimental results.
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The theoretical assumptions, aside from basic quantum mechanics,
are the invariances under rotaiions, reflections, and time reversal. The
basic principles of quantum mechanics already imply 224 relations amofxg
the 256 observables, for the 256 observables are functions of the 16 complex
M:matrix elements, as one sees by Eq. 3.1. The specific consequences
fbllowing from these relations alone have apparently not been examined.

’ The requirem;nt of invariance under space reflection implies the
vani,:"ahing of half of the 256 Z coefficients, since half are pseudoscalars. A
nonzero value of any one of the 128 pseudoscalar Z coefficients would constitute
unambiguous proof that parity is not conserved in the interaction that produces
the scattering.

The consequences of time-reversal invariance may be expressed in

a sirnple form if one introduces the definition

l. . ]
Z(k,k ;A BiC, D) = g-_v Z, vinp WEVAB C, Dy 4l

AN p
In this expreosionif A, B, C or D is replaéed by a zero the corresponding

index of ‘Z“. Vi A, p is to be taken to be zero. Then invariance under time

reversal implies

Z (k K'i A, Bi G, D) = Al-K, -ki -C; -D; -A, -B), iz

where plus and minus gero are considered equivalent. Equation 4.2 gives
128 conditions, the simplest of which is the equality of polarizing and analyzing

power mentioned before. To derive this equality notice first that the analyzing
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power A(k, ‘lg'; 0, 0; IiO)/IQ » being a scalar linear in N, wmust, by rotation
and space-reflection invariance, be of the form 5)( ._].’.‘.-' . }’_\'_’ titmes a function
of the scalar products of 5‘ and }_(_' . It is therefore equal to

Z(-g. -k; 0, 0; -N, 0)/10 which, by 4.2, is equal to the polarizing power
Z.(E. g; !i, 9.; 0, 0). Anocther consequence of the same threq invariances is a
relationship between A, R, A'_, and R’ , alao first deduced by Wolfenstein (3).

To'derive this relation one takes from 4.1 the relation
Coe ey
Z(k, k:K 0;P;0) = Z(-k', -k: P, 0; KO), | 4.3

where the linearity in the last four variables has been used, The right-

hand side, being a scalar linear in both P and K, must change aign when the
first two arguments are changed to k and lc' respectively, as one pees by
enumerating the possible forms. Both sides of 4.3 can then be expressed in
terms of A, R, A', end R', and the relation (A+R')/(A'-R) = tan(6/2)
follows. ‘

If rotation, opace-reflection, and time ~revercal invariances a:'é all
maintained there are for the p-p system :_5(: one scattering angle only nine |
indepefxdent scattering experiments; the M matrix and hence aisa the
obgervables are determined by the five complex Wolfenstein parameters, and
the over-all phase of M is irrelgvant. For the n-p system there af& also
nine independent experiments if charge independence is assumed-~otherwise
eleven. o QCaﬂﬁT‘ﬁg mtg oQ '

AtA90 deg two of the Wolfenstein parameters of 2.10 vanish for
p-p ocattering and five experimento‘lare sufficient to fix M up to the over-all

phase. Also at this angle the combination lo (- Cnn) is determined completely
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by the absolute value of singlet scattering amplitude and therefore measures
this quantity. Details are giver in Reference (6). For n-p scattering at 90 deg

Mon-—
the situation is also very favorable, since there are only two,vanishing isotopic

singlet amplitudes. /

By virtue of the symmetry properties of the Wolfenstein parameters
appearing in Eq. 2.10' » experimental observables at 8 and w-8 can both'_'
be expressed in terms of the scattering amplitudes.at 6. For some types oé
éxperiments--such as p-p differential cross sections and polarizations-~the
two experiments do not give independent information, but for others--such asfp
p-p triple scattering experiments--the observables at the two scattering angles
are given by different expreassions in terms of the Wolfenstein parameters and
furnish independent conditions on them. For n-p scattering the symmetries
involve the isotopic singlet and triplet parts of the Wolfenstein parameters
separately which in effect doubles the number of unknowns and renders the
experiments at § and w-0 essentially independent unless isctopic spin
invariance is assumed. In this latter case n-p and p-p experiments can be
analyzed simultaneouily, and nineteen experiments at the two angles are
sufficient to determine the five isotopic singlet and five isotopic triplet parts
of the Wolfenstein parameters up to an over-all phase., This is discussed in
detail by Golovin.szhelepov. Nadezhden & Satarov (11). e

Some relations between ecxperimental observables imposed by unitarity

are discussed in the next section,.

Section 5. Unitarity and Phase Shifts

The important fact that the 5 matrix is unitary has not been incorporated

into the formalism developed above. A standard way of including unitarity is to
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decompose the scattering amplitudes into partial waves. Unitarity is then
easily expressed by using phase sghifts, as is discussed below. The partial-
wave expansion is also useful because only the lower partial waves contribute
significantly to the scattering and the reaction can be approximately described
by a small finite number of parameters.

The S matrix, by its definition, depends only on the asymptotic form
of the wave function; it is a transformation in the spin-angle variables, the
radial dependence being essentially known. To simplify the writing it is
convenient, therefore, to suppress the radial factor iL jL (kr), where

@

jL(kr) is the spherical Bessel function. Specifically, lL m; S 1 ml'SZ' m2>

will represent the state having spin quantum numbers (S, , m) ) and
(SZ s mZ) for the first and second particles, respectively, and a gpatial
dependence Yf‘n (6,9) (il"jL (kr)), where Y{f’ (6,¢) is the spherical
Bessel function as defined in Blatt and Weisskopf (13). The symbol

<L. m, 31 ™3 SZ' 2 l¢> will represent the amplitude of this state.

)) e eikr/Zikr the scattering

AR

Since the asyptotic outgoing part of (i jL (ker
amplitude becomes, using these conventionas,

o )

lY}/Z \ 1 m . .
f58, . (0.8)= 3y (o Y 7V 6,4) (LomiS) m) 8, m, lRlin>

{H]

- <e,¢ 1L.m> < vwiS,,m38,,m, |R Iin)

2'{%{' <6.¢;Sl.ml;82,m2 ]R|1n> . g.1.

"

where the symbol <8.¢ [L.m > = Y]:n (6,4), the summation convention,

/ | Luiosnsyss
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and the completeness relation | L, m) <L. m [ = 1 have been used.
According to the above conventions the state represented by |6 ', ) '>
is (4 w)'l times a plane wave moving in the direction ( 8'. 4:') as one sees

from the Gegenbauer expansion (Ref. 13) ,
. L m ™m o Lt gt
L k5 ) Y™ (0,00 (1 (6, '0% = exp iK' - x/av . £2.
L,m

Combining thie fact with Eq. (5.1 and the definition of the M. matrix, one

obtains the important relationship

-

Mk K) = g (0 ¢ |R le?..¢'>. XY

The most convenient phase shifts are related to the matrix elements

of R in the representation where J, the total angular momentum, is diagonnl:

"I'hese states are characteriged by quantum numbers J, L, S, M, where 8§
is 0 or 1 for the singlet or triplet states respectively and M is----t}i’é. zZ |
component of the total %gula.r momentum J. Trauﬁforming from this
representation, one obtains for the matrix elemento of IM (.l::_. 5') in the

singlet-triplet representation
.1t L] L]
S, mg [M(k;k-) |S', m g
1 (N
= %{E <6.¢;S. mg | R le', ¢ :8, ms>

= SX <e. ¢S, mg |L, 8", I, M> < .6, I, M|R|L'S"" ] M'>

<L' snn Jl M"VI 91'4)!' 'S'm;.)> . &4
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The transformation functions occurring in 5.4 “C: sums of products of

spherical harmonics and Clebech-Gordan coefficients:

<s, $: 8 mg | L, 8" 7, M>

<9, ¢ ! L., m> ‘<L. m;S mg ! L, S". J, M>

Y ¢m ,
i L YL (o, ¢) CLS (J, M; mnms ) 638" ’ 55.

in

m

-

where Cig (3 Mjm, mg) = <L. m;S, mg | L, 8, J, M> is the Clebach-
Gordan coefficient ag defined in Blatt and Weisskopf (15).

Equations §.4 and 4.5 allow the M-matrix elements to be expressed
in terms of the R-matrix element <LS.TM lR lL' s 7 M‘> . Because total
angular momentum and its Z component are conserved these R-matrix
elements must vanish unleas J = J' and M = M'. Moreover, because of
rotational invarianc;e the matrix elements are independent of M, as follows
from Schur's lemma. For a fixed J the possible values of L are L=1J
and L =J%1, where the second class can occur only in the triplet case.
Also the two classes cannot be coupled because of conservation of parity.

For brevity we introduce for the nonvanishing matrix elements of

the class L = J %1 the definitions

<J:¢:l, 1,i3, M |R|J%1,1, 7], M> = RJ“’ 7 5.6.

J J

<J¢l,l.J.M|R[J$l,l,J.M>=R& =R", g.1.
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and, for the clasas L =17,

<J. 1, J, M|R|J, 1, 3, M> =Rjg;.

<J. 0, , M|R |J, 0, J.M>=RJ. . g8,

1,1 1 - 1 L S
<1.~ztz-.J.M[R|J.z-+f.J.M>—Rt aR °.

g9

J

The equalities R+J = R " = RJ

and R'.7 = R = R

vJ

stated here express the fact that the R matrix is symmetric in this representation,
msh is a consequence of time-reversal invariance discussed in the next
section, The off -diagonal element R'J vanishes for the p-p system, as
the antisymmetry of the wave function precludes states having the same L
but different total spin, If isotopic spin is conserved the R'J &lso vanishes
for the n-p system, since for the same L the two epin states have different
isotopic spin.

| EE By carrying out the arithematic implied in §.4 and §.5 and using
the abbfeviations 4.6 through §.9, one obtains the expressions for the M-
matrix element given in Table II. Table II refers specifically to the n-p
case. F;)r the p-p case only the antisymmetric states contribute, and in
these a factor of two must be added, as is discussed in Section 7. For the
p-p case the Coulomb effects must also be included. Explicit p-p fort;:ulas

are given in Ref. 14. An extensive discussion of relativistic Coulomb

corrections is given by Breit (15).
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Equation .4 and gs give the decomposition of R into partial
waves, However, the unitarity condition on S =R + 1 has not yet been
invoked. By our choice of representation the only non-diagonal, nonvanishing

J and R' J . Thus by grouping in pairs

matrix elements of R are the R
the two states L =J %1 for §=1 and the two states S = 21- & % for
L =J, the R matrix breaks intc a series of two~by-two matrices, all
other element vanishing. The matrix S=R +1 also must have this form,
‘and the condition that S be unitary is equivalent to the condition that e_ach.
of the two-by-two submatrices be unitary. '

A symmetric, unitary two by two matrix has three degrees of freedom

and can be expressed in terms of three real parameters in either of the forms

»
7

e . 2id
cos € - sin € e -0 co8 € gin €
sin € cos € 0 e216+ -sin € cos €
or
ew- 0 cos 2¢€ 1 8in2¢ ‘ ew" 0
0 eia"‘ isin2 & cos 2 € 0 ew"' .

Here the individual matrices are all unitary and the forms are obviously
symmetric.

The first form has been used by Blatt and B&edenharn and the real
parameters 0, 6+ and € are often called the Blatt and Biedenharn (type)
phase shifts, or rhix{hg parameter for the case of ¢ . The two matrices’xon
the outside can be considered the transformation to the representation where
S is diagonal. As the elements of a diagonal unitary matrix must be pure

phase factors, they may be defined to be e 210, .



UCRL-9281

The parameteré of the a;cond form are called ''bar' phase shifts
and are useful for several reasons (14). First, these phases are proportional
to the R-matrix elements in lowest order and approach zero as R goes to
zero, Second, the parameter € gives a measure of the amount b{ which
orbital angular momentum is not conserved in the sense that a pa"r.ticle
entering in one orbital state has a probability sinz 2€ of being in the other
state when it emerges. Third, in the Born approximation the phases are
given by simple_zﬁ.:at‘r.ix elements of the interaction energy and hen:t:e obey
simple interval rules. Fourth, Coulomb effects can be subtrattéd to lowest
order by subtracting the Coulomb phases from the total bar phases. The
essentia'l difference between the two types of phases is that the mixing is in
the asymptotic region for the Blatt and Biedenharn phases and at the core for
bar phases. Equations relating the two types are given in References (6) and
(14).

The equations given above and in Table II allow the matrix elements
of M in the single-triplet representation to be expressed in terms of phase
shifts. Since the observables are expressed in terms of the Wolfenstein
parameters, the relationship bef{ween the M-matrix elements and the
Wolfenetein parameters are still needed. These may be obtained by taking
traces of the expresoion for M given in 2.10 to obtain explicit:formulas
for the Wolfenstein parameters. Carrying out the trace operations and
using the well-known connection between the single -particle and the singiet-
triplet representations, ‘one obtains the ;asulta given in Table 1II. Intermediate

steps are given in Ref. (6).
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An alternative way of obtaining the connection between the Wolfenstein
parameters and the phase shifts has been given ”by Wright (16) and by Bakke
and Steck (17). The general phase-shift formalism for the n«p system is devel-
oped in a review article by Blatt and Biedenharn (18). General phase-shift
formulas are also given by Breit and Hull (19).

The unitarity condition can also be introduced without using phase

shiftg. In particular the relation
s =1 = R+1) (R +1) = RR +R +R" +1
implies for all 6, ¢ and all 8' ¢' the equation

. <3. ¢ IR + R* IG' ¢/0\= <8', ¢| IR '8"¢">‘<9“¢“ 'Re' 9'¢'> ) |

53
Using the relation ¥ between R and M, one obtains immediately

) 2
/ 2k v {2k " noosw
i\'—-;) 2 Im M(Q,0Q) =(ﬁ) ] an M(a,a )M (2,0 ).

Multiplying this by Op(l) Ov(z) and taking one-quarter the trace, one finds

m MY (,0') = gk jdn"% Tr (M (02") M® (8"0) o““) o).

g.10.

Although §.10 contains sixteen equations, only six of these (five for

p-p ) are independent. The same invariance conditions that allow Mg-yand

t

3
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hence the left-hand side to contain only six (five)degrees of freedom also
constrain the right-hand side correspondingly. Since the phase enters in

5.10, and hence is no longer arbitrary, the six (five) unitary conditions

reduce the number of arbitrary angle-dependent functions required to specify

the M matrix to six (five) and thus, as pointed out by Puzikov, Ryndin, and
Smorodinsky (9), six (five) independent experiments, performed at all angles,
ware sufficient to determine M at all angles. If inelastic processes are
considered the unitarity condition involves the additional states, and the
argument is no longer complete.

This result regarding the number of experiments needed to determine

the scattering matrix, though often quoted, is rather academic. In practice,

if data at many angles are to be analyzed simultaneously a phase-shift analysis'
is used. A maximum angular momentum is usually chosen, and this fixes the
number of powers of cos 8 in the various observables, and hence the number of
parameters to be experimentally determined. The number of phases is also
fixed. An analysis by Ypsilantis (10) shows that for L max >0 three types of
;;c‘perimen'ts--cross section, polarization, and one triple-scattering experiment--
are more than sufficient to determine the phases in principle. For Lmax =0
one experiment at one angle is evidently sufficient for the p-p or n-n case,
>since there is only one phase shift. For the p-p case cross-section measure-

ments involve interference with the approximately known Coulomb amplitude, and

this also tends to reduce the number of types of experiments needed.

Section 6. Consequences of Time-Reversal Invariance

The fundamental consequence of time-reversal invariance is

(Reference 13, page 529)
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<a|5|h> =<bT|S‘a,I;,> , | 6.1.

where a and b are time-independent (t = 0) basis vectors and ar bT
are their respective time-inverse states. In the notation of Section 5 the
time inverae of the state | L.m> io (_1)L~m l L, -m> . The (-I)L

comes from the required complex conjugation of the radial part iL j L (kr)

i ahd the remaining changes come from the relation (Ref. 13)

m%
L

of the state '|"J’.' M) is defined to be (-1)""M |J. - M) . The spinis

YT (6i:4) = (-1)™ Y, "™ (6,4). For the case with spin the time inverse
hereby reversed, as one requires for a time-reversed state, and the consistency
of the definition with the composition law of angular momenta is guaranteed by

~ the symmetry law for Clebsch-Gordan coefficients

Cig(dh -M;-m, -m )= (-1)I-M+L-m+S-m ) .

LS (I.M; m, m ) .
In some earlier treatments of time reversal this consistency condition was
not maintained, as was pointed out by Huby (20). Inserting the definition for

the time -reversed state into Equation 6.1 , one obtains

<L. s, . M|s|L' s, 5 M>

=<L' s'J -M|s|LsSJ, -M> (-1)27-2M 6.2.

2J-2M

Since the matrix element is independent of M and (-1) is unity,

the symmetry of the matrix ¢z~ follows.
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It should be noted that a unitary transformation does not generally
leave a symmetric matrix symmetric, and a change of basis, even by phaose
iactor:; | g)enerally destroys the symmetry of 8.

The time inversce of a Pauli opin state, | %— . & é- > , is
s | i- .+ %>. that is, | XT>= io, |x ) The condition of time=
reverpal invariance applied to th; R matrix can therefore be written in the

form
<Ex ,la(g(l). g(z)’ tk. x> -

<_. KL 10,0, @) g o), ) Mg @) |y, x>

-<~ 5' . x' |R (ozmgm czm . czm g(z’ ozm ) |-k, x >

H
'
.y
>
-]
QA
o
13
Q
N~
~
x
x -

Thus time-reversal invariance implies
<.§ [ reg®. g i) = (x| RC-g™ L 0@ -x )) 63

as was stated earlier. Equation 4.2 can be obtained by using similar methods,
A discussion of time-reversal invariance and its consequences is given by
Shirokov {21). Consequences of time irreversibility are discussed by

S

Phillips (22).
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Section 7. Symnmetrization

In the above the two particles have been assumed distinguishable,
If, as in p-p scattering, the @‘ermi particles are identical, the amplitudes
in thee symmetric states are zero and those in the antisnymmetric states are
twice those for nonideni‘i_ﬁnl particles. |

It is perhaps not immediately clear that this factor ﬁwo should not
be rather the square root of two, If one simply writes tis.e familiar anti~ .
oymmet:ized wave function ‘}“ [ (x) 5 ¥ (~x) ], orits generaliged - | #39
veroion with spins, it is V2 that occurs. Ao the question involved here PO

seema to arise often in practical work a discuosion of the problem scems

PRF A

warranted. N :
If identical particles are considered to differ from distinguichable SR

particles only in that they happen to start in an antinymm.eti'izad state and

remain oo because the interaction is symmetrical, then in an incident plane

wave the amplitudes in the cymmetrical and antieymmetrical spin-orbit

partial wave stateo are 0 or 2 times their normal values respectively,

a8 indicated above. However-. the detecting npparatus measures both particleo;- ‘*-»&&R;‘S‘i;y

and thiﬁ introduces an additional and independent factor of two in the measured -

particle denoities. The wave function can be normalized i:o the measured

denoities if an additional factor of ﬁ ie supplied. L
In a somowhat more sophisgticated view the identical nature of '

indistinguishable particles is ingrained more deeply in the mode of

description. A wave function and a second wave function obtained from -

it by an interchange of partic‘le coordinates are considered to represent not

different stﬁtes, but rather the same otate rhultipled by minug one. The
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caxé be
effect of this is that in summing over a complete set of states mﬁmuat/\take‘m

to include each state only once. For instance, the normalization condition

becomes

where 6 (xl . x'z ) is gero for xy less than X, and one for x; not less
than x,. This {actor 8 (:\:l . xz) ensures that a state contributos only once
to the sum over states. The normalized plane wave is than  exp (ikx) - exp (-ikx),
and the totally antisymmetric partial-wave amplitudes are twice normal. Since
the particles are conaideted identical there is no additional factor due to the
counter's being able to dhtact either one. This gecond approach is the wave-
function transcription of what happens in field theory.

The most eatisfactory method of treating identical pafticlea is to
use quantum field theory. The formalism is completely defined and there is
no question of interpretation or vxewpoint For k ¥ 0 the normalized plane
wave state is given by |¢> = a¥ (k) as (-k) l0> , where "~ (k) and
a° (-‘15) are operators that create particles in states k and -k respectively.
The wave function is <0 K (x, ) ¥ (x) HJ> = exp (ikx) - exp (-ikx) ,
where x =x; - X, s and where the quantization volume is taken to be unity,
When the Dyson-Wick (23) expansion of the § matrix is applied to this initial
state the acattering amplitude is found tobe £(0,¢) =£u (8,9¢) -fu (w-6,é+w),
where the two terms on the right-hand side come from the forward and backward
ocattered particle respectively, for 6 Lu/2.

The factor of two occurring for identical particles must apparently

be included also for n-p states if the isotopic spin formalism is used, for
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in this a?proach the neutzon and proton are considered different states of
the same particle. However, this two is cancelled by a one-ht;l:.; if the
formalism is applied consistently. For instance, the S-matrix takes the
form POAO + plAl ,» where PO and Pl are projection operators for the
isotopic sifxglet and triplet states and Ao and Al are the corresponding
amplitﬁnde:.wvvvhich include the factor 2. » The matrix element of Pl between
two p-p states is unity but between two nep states is one half,

The factor of two has been discussed in detail by Breit and Hull
(19) and in Ref. (6).

Section 8. Relativistic Formaliom

In the formalism described above the nucleons are represented by
two-component opin functions instead of the relativia'tic four -component
spinors. The M matrix of the two-component formaliam can be obtained
from the relativiotic formalism, by multiplying the relativistic scattering
matrix by the free-particle spinors, provided the center-of-mass frame
is used. ===~ for a Dirac particle with momentum p the spinors
for the two possible apin state are ‘b‘al (2) and L P (g) » where a is the
Dirac spinor index and 1 and 2 are indices labeling the two spin states.

These v Q) may be expressed as matrix elements of the matrix
1/2
u(p) = (-ip:y +PMIB/[2M(py +M)] /", 8.1,
where the spinor and spin indices run over rows and columns respectively,

Stated differently, the u, (B.) are obtained by operating on the propeor spin

states w; = (1, 0,0,0) and w, = {0,1,0,0) with the Lorentz transformation
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\

6;1?'1 R =<-ip'wawﬂ’/[zu(pomn‘”. 8.2.

gm’;ln‘“JG -Hv.t\'f ‘“1 eaw
which transforms o spin otateyfrom i3 valuegin the particle rest frame to, 0
value in the frame where the particle has momentum B With these definitions
it is not hard to see that if the center-ocf-mass frame is used the reduced

Pauli-type scattering matrix

- (1 - {2 , 1 ' 2 '
M ikt © “i( )‘P.x)“j( )(.2207( uk( )‘Rx’ uy )(gz). 8.3.

wherew_l is the relativistic scattering matrix and where spinor indices
are suppiéa‘aed. possesses the same transformation properties under
rotations, spatial reflections, and time reversal as it has in the non-
relativistic theory. Thus the same group theoretical arguments may be
ap,pli-‘edwand the nonrelativistic theory is formally unchanged.

According to the above connection the spin vector of the non-
relagiviétic treatment can be ggquated to the relativistic spin vector provided
the .l'atter is measured in the particle rest ftaxne related to the reaction
center-ofemass fra‘m;”by’tge inverse of the Lorentz transformation 8.2.
Conversely, the rela%i%et?i‘c spin vector, which, according to Michel and
Wightman (24)*.'\ is a pseudo vector whose fourth component vanishes in the
particle rest frame, can be obtained by applying the Lorentz transformation
8.2 to the spin vector of the 'nonrelgtivistic treatment. The relativistic spin
vector in the laboratory frame may then be obtained by a second Lorentz
transformation. |

If the outgoing particle for one reaction is the incident particle for

a second reaction, the second reaction must be described in its own rest
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frame if the two-component forrnalism is to be applicable. The relativistic
spin vector in this second center-of-maso frame may be obtained by a

Lorents transformation from the laboratory frame. Finally the three-

) *,

component spix; vector u‘eeded £_o; Jthe two-component formalism is obtained

by a transformation from this second center-of-mass frame back to the
particle rest frame. Although this sequence of four Lorentz transformation
‘bringa vectors backﬂ'_._g‘o their values in the particle rest frame, the final

rest frame is rotat;zurelative to the original one. This rotation is discussed
in some detail in Reference (25), where explicit formtlas.are given.
Discussions of the connection between the relativistic and nonrelativistic
formulationp have also been given by Steck (26} , Garren (27) and Breit (15).
A more formal general approach to the question of the relativistic description

of polarized particles is given by Chou Kuang Chao and Shirkov (28).

St ANy
e



’5 ﬂ';. UCRL"9281

Table I

Experimental observables in terms of Wolfenstein Parameters (The Wolfenstein
E‘arametera'are as defined in Eqs. 2.10 and 2.10'with b of the former oet to zero,
The observables are defined in section 3. Complete lists are given in

References 9 and 12 . Expressions for the general case where space
reflection and time-reversal invariances are not imposed are given By the

author in the Lawrence Radiation Laboratory Report UCRL-8859. (Unpublished)

g'rhe consequences of these invariances are discussed there in some detail. )

o )

1 2 2 1 2 1 2.1 2
I,z - |B| +2(€j + ~|G-N|"+ - |[N|"+=|H
o= Lol ezlel®s Llan®e NP n

© s |a|? ¢ |m]%+ 2|e|? + 2|g|% + 2|n)?
°P=2R§6$N=2Rec$(a+m)

1 2 12
1,(1-D) = " |G-N-B| € + |H]|

I

=4 |g|®+4[n|?

IR = 1 Re [(G-N)°® (N+H) + B® (N-H) ] cos 6/2
2

+1m[ €° (B+G-N) | sin 6/2
= [ lalz - lml2 -4 Rehg ] cos /2
+2Reic (a - m") sin 8/2

1pA=- * Re[ (G-N)" (N+H) + B” (N-H) } sin 0/2
2 ) -

+Iml € (B+G-N) ] cos 8/2

=« |a|z - lmlzoéRe hg" } sin 6/2

+ 2 Re ic (a‘a - m*) coo 8/2

Fr3
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Table I (dntinued)

I,R' = - Imlos” (B+G-N) } cos 6/2 + L Re ((G-N)” (N-H) + B* (N+H)} sin 0/2
it ‘ R 2

= - 2 Re ic (a-m)"t cos 6/2 + ( [a[z - lm[z + 4 Re gh*) sin 6/2

1A'= L Re {(G-N)" (N-H) + B"(N+H) } cos 6/2 + Im¢ " (B+G-N) sin 6/2

2 :
= ( Ialz - lm]z +4 Re gh") cos 6/2 + 2 Re ic (a-m)” sin 6/2

-
I, Gyp = - 2 Re i CH =4 Reich

1 1

1, (1-C 1 G-neBjP 4+ L |G-n-B|?
4 4

NN T
= la-mlz + 4|g|z

* Yl
Ip CNnn = 21 iCN = 2Igic (atm)

1

1 G 2 15[(0-N+B) (G-N-B)" - 4 NH" |
s =

0 “NKP "~ ~
=-21ml (a-m) g+ (a+tm) b}

. _ l ' o h . |
L CNxKin NP~ ‘g CO“(G/Z}IKQ%[ N(G-N-B) « (G-N+B)H ]

+ ain(@/l)lfg[ic (G-N-B)*]
=2 cos(B/Z)Irxjrxlx[ (a.-vm)g‘:l + (a-m) h* 1

+4 sin(e/z)rsﬂg ¢ gj
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Table II. (continued)

a
The R-matrix elements are defined in Section 5 with the added constraints that

le for j <0 and B.j for j €0 are zero. The le {6) are the associated

Legendre polynomials as defined in Reference 13. The subscripts s and

1, 0, -1 designate the singlet and triplet states respectively. Invariance

under time reversal, space reflection and rotacions.v and isotopic spin rotations

is assumed. The sign conventions in this table are in agreement with Eq. 4.4

of the text. In References (14) and (18) the Rj are defined to have the opposife
‘€VDM ‘HNO%O? 'fﬁ'.s ‘*Gb’ea

signA acedibio-popome In the tables and graphs of Part III the conventions of

Reference (14) are used, however.




Table III

Relations Involving Wolfenstein Pa‘?rametern. (The Wolfenstein Paramecters

are defined in Eqo. 2.10 and 2.10. The subscripts s and 1, 0, -1 or M,
designate singlet and triplet states i'eopectiv-ely. The M - matrix elements

. are evaluated at ¢ = 0, Invariance under time reversal, space reflection and

rotations, and ioot.opic spin rotations are assumed.)
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Table III (continued)

a:i—(B+\G+N)
1
g=z(G-B-N)

m=7(3N-B-q)

<2

Y]

'
o o

b




N

Expressions for the Wolfenstein parameters for the n-n system. The conven-

tions for the sign of Rj are the same ao in References 10 and 14. See these

references for a description of the changes required for p-p scattering.
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Table 1V. (continued)
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