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Neuroimaging-based Artificial Neural Network 

Predicts Conversion of Cognitive Impairment 

Spectrum in Alzheimer’s Disease 

Xiao Gao 

Abstract 

Alzheimer’s Disease (AD) represents the most frequent (60-80%) subtype of dementia and is one 

kind of progressive spectrum disorder without effective treatment so far. In the last decades, great 

efforts from all over the community have been made on the early diagnosis of AD at its preclinical 

stage, Mild Cognitive Impairment (MCI). Recently, a series of machine learning studies have 

successfully constructed several computational models in predicting conversion of cognitive 

impairment but seldom foresee beyond 4 years. Thanks to Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database, in this study we extracted cognition feature from several clinical 

outcomes. We then took advantage of structural MRI data and one Network Diffusion Model 

(NDM) raised by our group for subject-specific prediction of future cognition features. One 

supervised classification neural network was trained with ground-truth baseline and time-of-

interest data but applied with predicted future cognition features. This established machine 

learning framework has demonstrated descent sensitivity and specificity in prediction of MCI-to-

AD conversion (0.890 ± 0.083 and 0.923 ± 0.045) and healthy control (HC)-to-AD conversion 

(0.900 ± 0.074 and 0.744 ± 0.154) 5 years post baseline. To the best of our knowledge, we are the 

very first groups working on long-term prediction of AD spectrum conversion from both HC and 

MCI. 
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1. Introduction 
Recently, a connectome-based Network Diffusion Model (NDM) proposed by our group was able 

to successfully estimate the progression of regional atrophy over time for patients with 

Alzheimer’s Disease (AD) and other neurodegenerative disorders (Raj et al. 2015).  The goal of 

this study is to go beyond the estimation of atrophy patterns and leverage the NDM’s prognostic 

capabilities to predict the subjects' future clinical cognitive states via deep learning (i.e., using 

several artificial neural network architectures for feature-extraction, feature-regression, and 

classification of future mental states). One of our primary objectives is to predict if/when 

susceptible individuals with mild cognitive impairment or even normal cognition will ultimately 

be diagnosed with AD.  

 

This study poses an innovative machine learning framework that may aid in (i) clinical decisions, 

(ii) in pharmacological and non-pharmacological interventions during pre-dementia stage, (iii) in 

the interpretation of the underlying mechanisms of AD progression, and (iv) in helping dementia 

patients and their families to make timely plans for future. 

  

Background and Significance 

Dementia is an umbrella term for a broad range of progressive neurological disorders where 

multiple high-level brain functions are impaired, such as memory, orientation, comprehension, 

calculation, learning, language capability and judgement. Deficits can also take place in other areas, 

such as emotional control, social behavior and motivation. In 2015, over 47 million people around 

the world were estimated to be living with dementia, and this number might exceed 130 million 

by 2050 (Prince et al. 2015). Dementia incorporates a series of neurodegenerative disorders that 
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are characterized by progressive loss of cognitive function, among which Alzheimer’s Disease 

(AD) represents the most frequent (60-80%) subtype.  

 

In the last decades, the overall biomedical community became greatly interested on the early 

diagnosis of dementia. The concept of mild cognitive impairment (MCI) was first introduced 30 

years ago by the Mayo Clinic during one longitudinal study of AD (Reisberg et al. 1988), to 

identify the intermediate stage of cognitive impairment that is often, but not always, a transitional 

phase from cognitive changes of normal ageing to those typically found in dementia. Since then, 

many thousands of studies have been reported, in a huge effort to identify biomarkers that could 

reliably predict the conversion from MCI to AD, including a variety of randomized controlled 

trials of medications (Petersen et al. 2005; Feldman et al. 2007; Thal et al. 2005; Winblad et al. 

2008). One successful identification of such a biomarker would allow future clinical research to 

refine patient sub-grouping and to assess whether potential clinical interventions may change the 

natural history of the disease at its very preclinical stage.  

 

AD Spectrum Biomarkers and Neuropsychology Examination 

Fox et al. (Fox 1999) were the first group to use sMRI to report cerebral atrophy in a longitudinal 

study of asymptomatic individuals at high risk of the familial AD1. Other biomarkers for dementia 

were also proposed, such as functional MRI (fMRI), Diffusion Tensor Imaging (DTI), Arterial 

Spin Labeling (ASL), and F-FDG PET (Mintun et al. 2006; Mosconi et al. 2006; Johnson et al. 

2012; Ewers et al. 2013; Dubois et al. 2016). Although these more advanced neuroimaging 

methods may provide a more detailed description of metabolic/functional changes on the demented 

                                                
1  which is one autosomal dominant dementia characterized by early-onset before 65 years of age 
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brain, sMRI-based atrophy analysis remains as the major routine method for most AD clinical 

studies due to its accessibility and low cost. 

  

In addition to neuroimaging biomarkers, a comprehensive neuropsychological examination of the 

patient also plays an important role in the clinical diagnosis and staging of dementia. The grading 

for one kind of clinical test can reflect the cognitive performance of susceptible subjects within 

certain domains, such as memory, executive functions, language, attention and visuospatial skills. 

So far, however, there has been no specific neuropsychological biomarker capable of 

independently providing a comprehensive outline of mental state and accurate long-term prognosis. 

One sturdy strategy of combining the diagnostic and prognostic power of variable 

neuropsychological indices is needed for better delineation of each subject’s cognition state.  

 

Machine Learning prediction of AD spectrum conversions 

Machine Learning is "the scientific discipline that focuses on how computers learn from data. It 

arises at the intersection of statistics, taking its advantage on efficient computing algorithms, and 

seeks to learn relationships between phenomenon and hypothesis" (Rahul et al. 2015). If we learn 

an underlying rule from past truth, it becomes possible for us to predict future events with certain 

confidence. Due to decades of continuous studies on AD, great hope has been placed on machine 

learning algorithms to transfer a large array of multi-disciplinary data into future clinical practice 

and to predict AD spectrum conversions. The main machine learning attempts until 2015 were 

summarized by (Moradi et al. 2015):   

"(...) Recently, several computational studies have been reported on predicting the 
conversion to AD in MCI patients by utilizing various types of ADNI data such as MRI 
(e.g. Ye et al., 2011; Filipovych and Davatzikos, 2011; Batmanghelich et al., 2011), 
positron emission tomography (PET) (Cheng et al., 2012; Shaffer et al., 2013), 
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cerebrospinal fluid (CSF) biomarkers (Cheng et al., 2012; Davatzikos et al., 2011; Shaffer 
et al., 2013), and demographic and cognitive information (...) ".  

Table 1:   Relevant results from preceding studies  

Earlier studies 
Performance in MCI-AD prediction 

Conversion time 
Sensitivity Specificity 

Salvatori et al. (2018) 83% 87% 0-24 months 

Moradi et al. (2015) 87% 74% 0-36 months 

Misra et al. (2013) 67% 69% 0-48 months 

 

Most of the studies listed in Table 1 extract features from baseline neuroimaging and 

neuropsychological test data to detect MCI-to-AD conversion early on. Fig. 1 provides a schematic 

for their general pattern regarding the progressive degeneration of cognitive state in AD. The area 

covering the cognition feature plane encompasses all extracted features from neuroimaging, 

neuropsychological or demographic data. Such a respective from preceding studies is somewhat 

limited, since a non-longitudinal dataset could hardly inform the progression-rate of one subject’s 

cognitive impairment. Thus, their results may be regarded as one kind of stereotyped average-

estimation of future cognitive state based on baseline input.  
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Figure 1: General disease progression pattern. 

 

However, to our current knowledge, none of these studies have provided an accurate long-term 

prognosis beyond 48 months after baseline. Moreover, they focus solely on the prediction of MCI-

to-AD conversion and disregard Healthy Control (HC)-to-MCI and HC-to-AD conversions, which 

account for a significant portion of the overall conversions.  

 

One of main challenges in studying AD-spectrum conversions is that each subject’s long-term 

cognitive state change may vary, and they typically do not follow a stereotypical progression. See 

Fig. 2 for a schematic of this concept.  
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Figure 2: Subject-specific AD progression patterns hardly follow a general/stereotypical pattern.  

 

 

        Figure 3: Three outcomes of diagnosis prediction using general progression model. 
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While applying a stereotypical progression model to each patient’s baseline data may be acceptable 

for short-term predictions (1-2 years), the outcome of long-term diagnostic predictions yields 

significant type I and type II errors, as schematized in Fig. 3. One potential solution to this long-

term prediction problem is to develop a computational disease model to extract vector information 

from baseline scalar data in order to estimate the disease progression rate. The addition of a disease 

vector feature would not only provide patient-specific prediction of future mental state, but also 

make it possible to enroll future ground-truth data as new training variables fed into machine 

learning algorithms.  

 

Before detailing our computational strategy, it is worthwhile to recollect some key aspects of the 

AD pathological progression and its cumulative effect on brain morphometry and clinical 

staging. 

 

AD pathology and the network diffusion model 

According to Braak model (Braak and Braak 1996), the progression of Alzheimer’s Disease 

(AD) is highly stereotyped, which could be explained by transsynaptic or transneuronal spread of 

misfolded b-amyloid and tau proteins, starting from entorhinal cortex and hippocampus until 

isocortical association areas. Morphological changes accompanying this pathological progression 

has solid support from MRI evidence, including both cross-sectional and longitudinal 

morphometric studies. (Fischl et al. 2002; Klauschen et al. 2009; Smith et al. 2004). Which is of 

concern, several longitudinal studies also confirm that such progression follows vulnerable fiber 

pathways rather than spatial proximity, closely mirroring Braak pathological stages (Apostolova 

and Thompson 2008; Apostolova et al. 2007; Thompson et al. 2003; Whitwell et al. 2007). 
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Standing on these findings, a network diffusion model (NDM) was recently proposed by our 

group to mathematically predict future patterns of regional atrophy and metabolism resulting 

from trans-neuronal transmission on the brain’s connectivity network (Raj et al. 2015). This 

model accurately predicts time-of-interest future regional atrophy starting from subject’s baseline 

sMRI. Rooted in this time-sensitive model connecting pathological accumulation with 

morphometric change, as a logical assumption, if we can construct the correlation between 

MCI/AD subject’s neuroimaging morphometric progression and relative cognition feature 

change, it would open the possibility predicting the time window when AD spectrum conversion 

would happen for long-term prognosis. 

 

In the current study, we focus on predicting future diagnosis within ADD spectrum, i.e. HC, 

MCI, and AD, at time-of-interest (1, 3, and 5 years) from baseline by using artificial neural 

network trained by both baseline and future-time-point cognition features extracted from ADNI 

data. One human connectome template is used to construct NDM in aid of exploiting 

progression-rate information from baseline sMRI and further helping predict future cognition 

features. 

 

2. Methods 
Data collection and grouping 

The data involved in this study was obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (http://adni.loni.usc.edu/). ADNI is a public-private, large multisite 

longitudinal study with the goal of tracking AD biomarkers and accelerate prevention and 

treatment of the disease. Over 2,000 subjects have been recruited from more than 50 intuitions 
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across the U.S. and Canada during 4 project phases from ADNI-1, through ADNI-Go and ADNI-

2, to the on-going ADNI-3.  

 

The current study utilizes 9,960 diagnostic records from 2,004 subjects from all phases available 

until the time of publication and is mostly based on the ADNIMERGE dataset 2. This dataset also 

contains subjects’ demographic information, Apolipoprotein E4 (APOE4) genetic test outcome 

and records of clinical neuropsychological tests. See Table 2 for details.  

 
Table 2: Clinical predictor variables required for cognitive feature-extraction 

 

We limit our dataset initially to the 1729 subjects with at least one diagnosed visit with post-

processed sMRI information, which include voxel count of 86 brain regions (parcellated according 

to Desikan-Killiany atlas) and the corresponding scanning dates. The original source was 

                                                
2 contributed by Michael C. Donohue and Chung-Kai Sun from UC San Diego. 

Demographic data 

Age 
Gender 

Marriage 
Education years 

Cognitive tests 

ADAS11 
ADAS13 
APOE4 

CDR 
FAQ 

MMSE 
RAVLT_forgetting 
RAVLT_immediate 
RAVLT_learning 

RAVLT_perc_forgetting 
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contributed and uploaded by Miriam Hartig et al. from the University of California, San Francisco. 

Finally, only sMRI data that passed their quality-control was used in this study. Since diagnosis 

are based on the evidence presented on the latest visit alone, we treat each visit and its 

corresponding clinical record as an independent observation.  

 

For the purposes of constructing different computational models, the 1729-subject observation 

pool was divided into five training datasets: (i) cognition feature-extraction, (ii) sMRI feature-

extraction, (iii) future cognition feature-regression, (iv) future sMRI feature-regression, and (v) 

future diagnosis-prediction. Specificities for each model are summarized in Table 3.   

 
Table 3: Five computational models with different candidate algorithms and data recruitments 

Target Computational 
Model 

Candidate Algorithms 
Data recruitments for 

baseline visit 
Data recruitments for 

future visit 

Cognition feature-
extraction  

Multinomial logistic 

regression 

With complete cognitive 

tests from 

diagnostically steady 

subjects 

- 

sMRI feature-
extraction 

Network Diffusion 

Model + autoencoder 

neural network 

With post-processed 

sMRI 
- 

Regression of future 
cognition-feature 

Linear regression or 

regression neural 

network 

With post-processed 

sMRI and complete 

cognitive tests  

With complete cognitive 

tests  

Regression of future 
sMRI-feature 

Regression neural 

network 

With post-processed 

sMRI and complete 

cognitive tests 

With post-processed 

sMRI and complete 

cognitive tests 

Prediction of future 
diagnosis 

Classification neural 

network 

With post-processed 

sMRI and complete 

cognitive tests 

With post-processed 

sMRI and complete 

cognitive tests 
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Cognition feature-extraction 

In the case of cognition feature-extraction, we want such a feature to be easily extracted as can 

sturdily reflect the relationship between available cognition indices and corresponding diagnosis 

and can be easily handled for the regression of future progression. Starting from this motivation, 

multinomial logistic regression is considered as our first choice, whose output is only two log-

odds telling which diagnosis could be made with the highest probability, i.e. ln(PMCI/PHC) and 

ln(PAD/PMCI) in this study. Because we want to combine the diagnostic powers from the most 

essential clinical tests and demographic information, the enrolled observations should be 

equipped with complete cognitive tests and demographic records, totally 14 entries as shown in 

Table 2.  

 

Meanwhile, in order to get rid of the noise from fluctuated clinical performance of diagnosis-

converted subjects, only subjects holding the same diagnosis across the whole follow-up is 

recruited into the queue of logistic regression. One experimental logistic regression was run 

firstly with 14 entries mentioned above, for the purpose of determining the essential variables 

best at telling AD from HC or MCI, whose p-value should be less than 0.05 for at least one log-

odds in this study. As long as these significant clinical predictors decided, another logistic 

regression was operated for the extraction of cognition-feature. The outcome logistic regression 

model and two log-odds of each subject would be saved for standby application. 

 

Construction of atrophy-factor vector and diffusion-rate vector 

All sMRI data used in this study were collected from ADNI database, post-processed by Miriam 

Hartig et al. using FreeSurfer version 5.1. ADNI-1 has both 1.5T and 3T sMRI scans while 
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ADNI-GO and ADNI-2 only have 3T data. Most sMRI data were acquired by using non-

accelerated scan while about 8.8% data acquired via accelerated scan. In consideration of 

variable control, neither ADNI-1 1.5T nor accelerated scan was included in this study. No 

ADNI-3 processed sMRI data is available online by the time of publication. 

 

Beginning with this dataset, brain atrophy factor was calculated for each of the 86 brain regions 

determined by Desikan-Killiany atlas. First, in order to cancel the influence from different 

subject brain sizes, each subject’s 86-size brain volume vector was divided by its whole 

intracranial volume, leading to one 86-size normalized volume vector. Afterwards, all subjects 

with steady HC diagnosis across their entire follow-up were selected from sMRI feature-

extraction dataset, therefore the average normalized volume and corresponding standard 

deviation could be calculated for each brain region based on normal controls. Given these 86 

means and standard deviations, one region-wise normalization was operated followed by one 

sigmoid transform, leading to one 86-size atrophy factor vector for each observation.  

 

Considering atrophy factor is merely one scalar feature of one subject’s brain atrophy at one 

certain time point, NDM was used here to estimate atrophy diffusion rates among different brain 

regions, which leads to one 86-size diffusion rate vector for every practical observation. Within 

one such a diffusion rate vector, each value represents the summation of atrophy factors 

transmitted to one certain brain region, setting off from all other connected brain regions in a 

connectome-weighted way. 
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Feature-extraction of atrophy-factor and diffusion-rate 

Because of limited sample size in terms of long-term follow-up, in order to prevent could-be 

overfitting it is necessary to condense the predictor vectors of both atrophy factor and diffusion 

rate via feature-extraction. In addition, one purified feature vector is more handy and sturdy for 

future regression, which would do much favor in estimation of future atrophy pattern. 

 

Owing to these reasons, one sparse autoencoder was operated to extract atrophy feature and 

diffusion feature from each subject’s atrophy factor and diffusion rate. Basically, autoencoder is 

one single-hidden-layer fully connected neural network with one predictor vector as its both 

input and output layer and the size of its hidden-layer determines the size of feature vector 

extracted from the input predictor. 

 

Three autoencoder neural networks were designed with different hidden layer sizes, i.e. 86, 20, 

and 5, and thus their encoded feature vectors are referred to as 86-size, 20-size, and 5-size 

feature vector in turn. Some essential hyperparameters of autoencoder used in this study are 

listed in Appx. Table 1. Which should be noted, every inferior feature vector was encoded from 

its immediate superior feature vector. For example, one 86-size atrophy-feature was extracted 

from the subject’s 86-size atrophy-factor, while the corresponding 20-size atrophy-feature was 

extracted from the 86-size atrophy-feature vector instead of the 86-size atrophy-factor. 
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Figure 4: Architecture of autoencoder neural network. The input layer and output layer have 

equal size, but the hidden layer size is not necessarily the same. 

 

Regression of future cognition-feature 

The 2 log-odds resulted from the logistic regression before are considered as the cognition 

features of each observation. In order to estimate patient-specific cognition change pattern in 1 

year, 3 years, and 5 years post baseline, a group of observation pairs have been enrolled provided 

that the involving subjects have comprehensive cognition-feature, atrophy-feature, and diffusion-

feature for baseline observation along with cognition-feature for one future time-of-interest (1,3, 

or 5 years). 

 

Two candidate regression models, i.e. linear regression and regression neural network, were 

tested for their performance in future prediction of cognition-feature, which shared the same 

input as baseline cognition-feature and baseline atrophy-feature with/without diffusion-feature. 
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The target variable is one of the 2 log-odds at future-time-point, for each of which one 

independent regression would be constructed.  

 

With respect of linear regression strategy, the adopted algorithm is stepwise regression, which is 

a systematic method adding and removing predictors from a linear model according to their 

statistical significance in explaining the target variable. In this study, for each step or iteration of 

regression model fitting, one F-test was operated to calculate the change in the sum of squared 

error by adding one significant term (if p<0.05) or removing one redundant term (if p>0.1). Only 

linear terms were explicitly included in this linear regression model, excluding cross-product or 

higher order terms. 

 

In terms of regression neural network, the input layer size depends on which kind of feature 

vector is used. For instance, if 20-size atrophy-feature is called upon without using of 20-size 

diffusion-feature, the input layer size would be 22 (20 baseline atrophy-feature + 2 baseline log-

odds). Totally 2 hidden layers are created for this log-odds regression neural network, both of 

which hold the same size of input layer. The output layer size is 1, corresponding to one of the 

future 2 log-odds. 

 

Regression of future atrophy-factor and atrophy-feature 

In the current study, one subject’s brain atrophy pattern is determined by its 86-size atrophy 

factor vector or different sizes of atrophy feature vectors (86, 20, or 5-size). We assume that the 

knowledge of both baseline and future-time-point atrophy outlines is going to provide a more 

specific simulation of one subject’s disease progression than merely knowing its baseline 
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situation. Thus, another regression neural network was constructed for the estimation of each 

subject’s future brain atrophy starting from the input of baseline atrophy-state as well as atrophy-

diffusion originating from NDM. 

 

The architecture’s input layer is regulated by the feature vector fed in, which generally is 

composed of one baseline atrophy factor/feature vector and one corresponding diffusion 

rate/feature vector in equal length. The output layer is the time-of-interest (1, 3, or 5 years) 

atrophy factor/feature of the same subject, whose size remains the identical to input atrophy 

factor/feature vector. As for two hidden layers included, the first one is in paired size of the input 

layer, which is also the relationship between the second hidden layer and output layer.    

 

To validate that NDM can bring forth more beneficial clues to future atrophy simulation, another 

collateral neural network has been tested with diffusion rate/feature vector removed from the 

input layer while saving other components and hyperparameters untouched. 

 

Prediction of future diagnosis 

At very first, we want to evaluate the diagnostic performance of the 2 predicted log-odds 

deriving from future cognition feature-regression. Principally, this sort of diagnosis is decided by 

3 probable combinations of signs of the 2 log-odds, as shown in Table 4. Two sets of predicted 

log-odds (linear-regression-based and neural-network-based) have been tested separately. 
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Table 4: Three combinations of signs of 2 log-odds and corresponding diagnoses    

 HC MCI AD 

1st log-odds - + + 

2nd log-odds - - + 

 

Subsequently, we are more interested in introducing both baseline and future-time-point disease 

features into one classification neural network, identifying different cognition progression 

patterns within the disease spectrum, HC, MCI, or AD.  Within this neural network architecture, 

the input layer consists of (i) baseline atrophy-feature, (ii) baseline cognition-feature, (iii) future-

time-point atrophy-feature, and (iv) future-time-point cognition-feature. The size of the first 

hidden layer is the same of input while the second and also the last hidden layer is in half size of 

its sister. The output layer is one 3-bin logical vector with one 1-entry indicating the future 

diagnosis and another two 0-entries, i.e. HC is represented by [1 0 0] while MCI by [0 1 0] and 

AD by [0 0 1].  

 

This classification neural network was trained by ground-truth baseline and future-time-point 

features with 70% of dataset for training and another 20% for validation. The rest 10% of dataset 

was saved for testing in a 10-fold way, i.e. for each iteration out of ten, 90% of dataset was used 

for training and validation while 10% for testing. The final performance was defined as the 

average of these 10 outcomes. Meanwhile, which is more of clinical interest, the diagnostic 

performance of this classification model has also been 10-fold tested by an identical dataset 

except replacing the ground-truth future atrophy-feature and cognition-feature with regression-
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based features. Based on such a test, the ensemble performance of (i) feature-extraction, (ii) 

future feature-regression and (iii) future diagnosis-prediction could be evaluated. 

 

Another collateral neural network has also been constructed with all future-time-point data 

removed from the input layer, in the interest of identifying how many benefits this diagnosis 

prediction model derives from future information. 

 

3. Results 
Demographic characteristics of different training datasets 

Totally eight training datasets have been structured for variable target computational models. 

Two datasets only focus on single-time-point visit data in consideration of feature-extraction, i.e. 

sMRI feature and cognition feature. The other six sub-pools are drawn for 2 types of regression 

models. Sample size for each training model is summarized in Figure 5. 

 

Figure 5: Data division to 2 feature-extraction datasets and 2 types of feature-regression datasets 
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As shown in Appx. Table 2, for these two feature-extraction datasets focusing on single-time-

point observations, there is no significant difference (p>0.05) in diagnosis-proportion, age, or 

male-to-female ratio between sMRI feature-extraction and cognition feature-extraction datasets, 

using Friedman test. 

 

In the case of double-time-point training datasets, there are 9 potential cognition progression 

patterns during follow-up, which include (i) 3 steady forms (steady-HC, steady-MCI, and steady-

AD), (ii) 3 progressive conversions (HC-to-MCI, MCI-to-AD, and HC-to-MCI), and (iii) 3 anti-

conversions (MCI-to-HC, AD-to-MCI, and AD-to-HC). Regarding so far there has been no 

effective treatment for AD-spectrum disease, the occurrence of anti-conversion is blamed on 

uncertain diagnosis or misdiagnosis in this study and thus its 3 subtypes are seen as one 

cognition progression pattern.  

 

For each pair of these two feature-regression/diagnosis-prediction datasets with the same time-

of-interest (1, 3, or 5 years), there is no significant difference in progression-pattern proportion, 

age, or male-to-female ratio (p>0.05, Friedman test). (Shown in Appx. Table 3~5). 

 

Cognition feature-extraction 

One experimental multinomial logistic regression has been employed using 14 demographic and 

cognitive variables, leading to 7 significant predictors of cognition feature with p-value < 0.05 

for at least 1 log-odds, shown in Appx. Table 6. 
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Based on these 7 essential indexes, one following logistic regression gave rise to the cognition 

feature-extraction model. Thereafter, every observation’s cognition state would only be 

represented by 2 log-odds out of this logistic regression model. Relevant coefficients and p-

values are shown in Appx. Table 7.  

 

Feature-extraction of atrophy-factor and diffusion-rate 

After atrophy-factor and atrophy diffusion-rate calculated for each practical observation, they 

were thrown into a series of autoencoder neural networks, whose hidden-layer-sizes decrease 

from 86, to 20, and to 5 in turn. During this process, each observation’s brain atrophy pattern and 

pathological diffusion model were encoded and saved within different hidden layers. After that, 

one backward decoding manipulation was performed to decide how much valuable information 

had been prevented in different sizes of feature vectors, by comparing the similarity between the 

reconstructed atrophy-factors or diffusion-rates and the original 86-size vectors. Correlation 

coefficients were calculated for such comparison, shown in Appx. Table 8~9. As we can see 

here, whatever for atrophy-feature or diffusion-feature, the deeper autoencoder network used, the 

smaller feature-vector started with, the harder it is to recover the original data completely.  

 

Regression of future log-odds 

Two strategies (stepwise linear regression and neural network) were tested for the regression of 

future-time-point 2 log-odds with the input of different sizes of atrophy-features with/without 

diffusion-features. In general, for long-term follow-up (3 and 5 years), the inclusion of diffusion-

features always brings about better regression performance (R-squared) than merely using 
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atrophy-features (Appx. Table 10~17) (p = 0.000). However, when predicting log-odds 1 year 

after baseline, little improvement could be achieved by adding diffusion-features (p = 0.527). 

 

When comparing the regression power from different sizes of feature vectors, the 86-size 

atrophy-factor and 86-size atrophy-feature have sturdier outcome in long-term cases (Appx. 

Table 10~13) than 20-size and 5-size feature vectors (Appx. Table 14~17) (p = 0.000). 

Meanwhile, the application of neural network would provide these two 86-size vectors with 

further advancement in regression outcome versus using stepwise linear regression (p = 0.033). 

 

To sum up, one optimal strategy for regression of future cognition-feature (log-odds) turns out to 

be making use of NDM and neural network architecture with the input including 86-size atrophy-

factor or 86-size atrophy-feature. In consideration of simplifying variable control, only 86-size 

atrophy-factor was used for log-odds-regression purpose in the following study. 

 

Regression of future atrophy-features 

Because of limited sample size for future-atrophy-regression dataset, only 298 pairs of 

observations for 5-year follow-up (Appx. Table 5), smaller feature vectors are preferred to 

larger ones in order to prevent overfitting. At the same time, which is a similar story to future-

log-odds-regression, the regression outcomes (R-value) took advantage from the input of 

diffusion-features, but only in the case of 86-size atrophy-factor and 86-size atrophy-feature 

other than those 2 smaller feature vectors (Appx. Table 18~21) (p = 0.046). It seems purified 

diffusion-feature cannot provide adequate information helpful for estimation of future atrophy 

pattern. As a result, there is a trade-off between small atrophy-features and large atrophy-features 
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when it comes to the prediction of atrophy progression; the final option among these features still 

needs testing by their performance in the following diagnosis-prediction later. 

 

Prediction of future AD spectrum diagnosis 

Quick impression of different diagnosis-prediction strategies 

Aiming at a rough idea of the performance of different diagnosis-prediction strategies, 80% 

available observations were randomly selected for model construction, including intra-group 

validation (60% for training + 20% for validation), while the rest 20% for testing. No K-fold 

validation was included here for cheap test. The outcome is shown in Table 5. 

 

Table 5: Diagnostic performance of different computational models at 3 future-time-points 

Strategy 
 Computational model 

Total Accuracy 
With NDM involved Without NDM involved 
1y 3y 5y 1y 3y 5y 

 
Using predicted 
future log-odds 
only 

 
Logistic regression + stepwise 
linear regression (86-size atrophy 
factor) 

0.803 0.703 0.637 0.801 0.705 0.636 

Using double-
time-point log-
odds and 
atrophy-feature 

Neural network  
(86-size atrophy factor) 

0.752 0.713 0.678 0.746 0.707 0.654 

Neural network  
(86-size atrophy feature) 

0.828 0.708 0.691 0.821 0.675 0.661 

Neural network  
(20-size atrophy feature) 0.821 0.808 0.832 0.808 0.801 0.768 

Neural network 
(5-size atrophy feature) 

0.830 0.778 0.732 0.831 0.750 0.728 

 

The 2 future log-odds out of linear regression demonstrated surprisingly decent diagnostic 

accuracy when predicting the diagnosis 1 year later, but the performance retrogressed abruptly in 

long-term cases (3 and 5 years). Furthermore, the addition of diffusion-rate seems to provide no 

help but noise to linear regression of future log-odds. 
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As for classification neural network fed with double-time-point cognition-features and atrophy-

features, the 20-size atrophy feature did the sturdiest job in diagnosis-prediction for all 3 future-

time-points. To be reiterated here, all these neural networks were trained and validated with (i) 

ground-truth baseline features and (ii) ground-truth future-time-point features, while tested with 

(i) ground-truth baseline features but (ii) regression-based future cognition-feature and atrophy-

feature. All future cognition-features resulted from another regression neural network mentioned 

in preceding text, inputted with baseline cognition-feature, 86-size atrophy-factor and 86-size 

diffusion rate. The final outcome suggests that neural network can make the best use of NDM for 

in improving the total prediction accuracy (p = 0.04). 

 

Diagnosis-prediction using regression-based log-odds only 

Both linear-regression-based and neural-network-based log-odds are predicted with the input of 

baseline log-odds, 86-size atrophy-factor and diffusion-rate. These two computational models 

have been tested for their diagnostic performance with 10-fold validation, and Student’s t-test 

was applied to compare several important sensitivities and specificities between two strategies, 

especially in terms of progressive-MCI (MCI-to-AD). Anti-conversion cases will not be covered 

in this study. 

 

For prediction of diagnosis 1 year after baseline, Appx. Table 22~23, the total diagnostic 

accuracy of stepwise-linear-regression (0.794 ± 0.044) is better than that of neural-network-

regression (0.740 ± 0.087), p = 0.001. Neural-network-regression demonstrated quite lower 

sensitivity to steady HC (p = 0.000), suggesting it is more inclined to classify susceptible 
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subjects into higher diagnosis of dementia, which could be supported by its higher sensitivity to 

cases of MCI-to-AD, i.e. progressive-MCI (p = 0.009). 

 

For 3-year-interval diagnosis-prediction, Appx. Table 24~25, the total accuracy of neural-

network-regression (0.714 ± 0.119) caught up with stepwise-linear-regression (0.687 ± 0.080), p 

= 0.249. In fact, such a tie should be mainly explained by the precipitous decline of linear-

regression performance. Neural-network-regression model has shown both higher sensitivity 

(0.754 ± 0.256, p = 0.007) and higher specificity (0.802 ± 0.108, p = 0.016) for progressive MCI 

than stepwise linear regression. 

 

When using predicted future log-odds to predict mental state 5 years after baseline (Appx. Table 

26~27), the outcome is expressly fairish. Notably, the total accuracy of neural-network-

regression model (0.710 ± 0.093) is significantly higher (p = 0.001) than that of stepwise-linear-

regression (0.632 ± 0.107). At the same time, neural-network-based regression of log-odds also 

presented better sensitivity (0.902 ± 0.190, p = 0.003) to progressive MCI, with acceptable 

specificity (0.812 ± 0.244) at the same time. However, such a log-odds based classification 

model was not robust enough to handle different sets of testing data, with sensitivity and 

specificity performance fluctuating turbulently across 10-fold validation. 

 

Diagnosis-prediction using double-time-point log-odds and atrophy-features 

To overcome the performance flexibility of merely using log-odds for diagnosis-prediction, one 

classification neural network has been constructed and fed with the cognition-features and 

atrophy-features from both baseline and time-of-interest. Such a computational model was 

trained with ground-truth double-time-point data but tested with baseline variables and predicted 
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future feature vectors. The predicted future cognition-feature is the outcome of one regression 

neural network with input of baseline cognition-feature, 86-size atrophy-factor and 86-size 

diffusion rate; the predicted future atrophy-feature is in 20-size coming out of one regression 

neural network inputted with baseline 20-size atrophy-feature and 20-size diffusion-feature. 

 

As one collateral control of this double-time-point prediction model, another single-time-point 

classification neural network was built up using the same architecture but removing time-of-

interest information from the input layer. 10-fold validation was applied to estimate the 

performance of these two prediction models and Student’s t-test was used for comparison. The 

ultimate outcome turned out that both strategies demonstrated comparable accuracy for short-

term (1y) prediction while double-time-point neural network had significant advantage in long-

term (3y and 5y) prognosis accuracy (p = 0.431 for 1y, p = 0.000 for 3y, p = 0.000 for 5y). 

 

Regarding 1-year prognosis (Appx. Table 28~29), although single-time-point feature vectors 

promised similar prediction accuracy compared with double-time-point input (0.826 ± 0.061 vs. 

0.834 ± 0.015), most of its point score came from steady-diagnosis, inert to the detection of 

disease progression. With respect to double-time-point prediction model, it had higher sensitivity 

(0.594 ± 0.047, p = 0.000) and specificity (0.540 ± 0.034, p  =  0.029) in foresight of 

progressive-MCI, which could be explained by its innate inclination to observing disease 

progression. Nevertheless, neither of these two models has done a decent job in screening out 

susceptible HC subjects 1 year before their diagnostic conversion. 
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Concerning 3-year follow-up (Appx. Table 30~31), which is the span-of-interest for most earlier 

studies, double-time-point neural network exhibited satisfying sensitivity and specificity (0.844 ± 

0.047 and 0.855 ± 0.070) in the detection of progressive-MCI, which were much higher than the 

performance of single-time-point prediction model (p = 0.008 and 0.009). Moreover, for the very 

first time in this study, double-time-point prediction model provided the possibility of detecting 

MCI-susceptible HC subjects from cognitively normal community with passable sensitivity and 

specificity (0.673 ± 0.102 and 0.428 ± 0.115). 

 

As regards diagnosis-prediction 5 years after baseline (Table 6~7), double-time-point prediction 

model returns one excellent outcome in foreseeing conversion cases starting from either MCI or 

HC, shown in Table 6. The sensitivity and specificity of double-time-point neural network for 

progressive-MCI are significantly better than single-time-point (p = 0.022 and 0.007). With 

respect of HC-to-AD conversion screening, over 80% of sensitivity and 60% of specificity were 

offered by such a classification neural network fed with baseline and time-of-interest 

information. 
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Table 6: Diagnosis-prediction (5y) using double-time-point neural networks, total accuracy = 

0.845 ± 0.039 

 Sensitivity 

Baseline diagnosis  

Specificity 

Baseline diagnosis 

HC MCI AD  HC MCI AD 

Future 

diagnosis 

HC 
0.848 ± 

0.054 

0.600 ± 

0.350 
NaN 

 

HC 
0.945 ± 

0.019 

0.327 ± 

0.308 
NaN 

MCI 
0.680 ± 

0.119 

0.852 ± 

0.101 
NaN MCI 

0.477 ± 

0.065 

0.885 ± 

0.077 

0.000 ± 

0.000 

AD 
0.900 ± 

0.074 

0.890 ± 

0.083 

0.964 ± 

0.094 
AD 

0.744 ± 

0.154 

0.923 ± 

0.045 

1.00 ± 

0.000 

 

Table 7: Diagnosis-prediction (5y) using single-time-point neural networks, total accuracy = 

0.708 ± 0.175 

 Sensitivity 

Baseline diagnosis  

Specificity 

Baseline diagnosis 

HC MCI AD  HC MCI AD 

Future 

diagnosis 

HC 
0.861 ± 

0.152 

0.167 ± 

0.577 
NaN 

 

HC 
0.840 ± 

0.148 

0.167 ± 

0.816 
NaN 

MCI 
0.167 ± 

0.444 

0.684 ± 

0.412 
NaN MCI 

0.185 ± 

0.455 

0.740 ± 

0.378 

0.000 ± 

0.000 

AD 
0.458 ± 

0.850 

0.750 ± 

0.402 

0.771 ± 

0.733 
AD 

0.542 ± 

1.004 

0.743 ± 

0.411 

1.000 ± 

0.000 
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4. Discussion 
As a summary, by using the framework discussed above (Figure 6), the established 

computational model has proved decent performance in (i) detection of MCI-to-AD conversion 3 

and 5 years earlier, and (ii) detection of HC-to-MCI-or-AD conversion 3 and 5 years earlier. To 

the best of our knowledge, this is one of the very first studies focusing on long-term prediction of 

AD spectrum conversion starting from both HC and MCI. 

 

 

Figure 6: Diagram of framework constructed for diagnosis-prediction within AD spectrum based 

on regression of future cognition features 
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The same workflow has also been tested with future predictors removed from the final 

classification neural network, whose outcome was inferior to double-time-point input but still 

presented with comparable performance like earlier studies. Such a result, once again, suggests 

that single-time-point cross-sectional clinical data is not adequate enough for an accurate 

estimation of patient-specific disease progression. For all that, owing to the speed-extraction 

function of NDM, we can determine the pathological diffusion pattern among each subject’s 

brain regions and further helping estimate its future clinical state. 

 

On the other hand, the current study is nothing more than taking two cross-sections of one 

subject’s cognitive change and is far from a time-sensitive model in outlining comprehensive 

disease progression. One of many reasonable solutions is turning to multimodality neuroimaging 

methods, like perfusion-weighted MRI and amyloid-PET, for multi-dimensions of disease 

description. Besides, although neural network is competent in regression-task, in the field of 

classifier it is usually overrun by support vector machine (SVM), which explicitly determines 

optimal decision boundaries between hyperplanes. In the future, several candidate machine 

learning algorithms, like SVM or random forest, would be made use of for further research.   
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Appendix 
Table 1: Hyperparameters of autoencoder for sMRI feature-extraction 

 86-size feature vector 20-size feature vector 5-size feature vector 

Hidden layer size 86 20 5 

L2 Regularization 0.001 0.001 0.001 

Sparsity Regularization 1 1 1 

Sparsity Proportion 0.25 0.25 0.25 

Input-hidden layer 

transfer function 
log-sigmoid log-sigmoid log-sigmoid 

Hidden-output layer 

transfer function 
pure linear pure linear pure linear 

Maximum number of 

training epochs 
2000 2000 2000 

 

Table 2: no significant difference (p>0.05, Friedman test) in demographic characteristics 

between two feature-extraction datasets 

Target 

Computational 

Model 

Characteristics 

of dataset 
HC MCI AD 

Number of 

involving 

subjects 

sMRI feature-

extraction 

(autoencoder) 

Number of visits 1526(32.82%) 2192(47.15%) 931(20.03%) 

776 males + 639 

females 
Age 75.26±11.66 73.36±14.97 74.84±13.03 

Males/Females 743/783 1300/783 496/435 

Cognition 

feature-

extraction 

(logistic 

regression) 

Number of visits 1923(36.74%) 2263(43.34%) 1048(20.02%) 

608 males + 503 

females 
Age 76.06±12.40 74.52±15.49 75.71±14.70 

Males/Females 923/1000 1363/900 604/444 
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Table 3: No significant difference (p>0.05, Friedman test) in demographic characteristics 

between two 1-year feature-regression/diagnosis-prediction datasets 

Target 

Computational 

Model 

Characteristics 

of dataset 
steady HC steady MCI steady AD HC-to-MCI MCI-to-AD HC-to-AD anti-conversion 

Number of 

involving 

subjects 

Regression of 

future 

cognition-

feature 

Number of visit 

pairs 

830(29.24%) 1244(43.82%) 473(16.66%) 40(1.41%) 199(7.01%) 1(0.00%) 52(1.83%) 

681 males + 

543 females 
Baseline Age 75.59±11.44 73.55±14.78 74.63±14.56 75.32±12.78 74.38±14.88 85.21 69.01±15.29 

Males/Females 406/424 748/496 265/208 27/13 109/90 0/1 31/21 

Regression of 

future sMRI-

feature and 

diagnosis-

prediction 

Number of visit 

pairs 
737(30.25%) 1054(43.27%) 397(16.30%) 32(1.31%) 177(7.27%) 1(0.04%) 38(1.56%) 

639 males + 

516 females 
Baseline Age 75.46±11.31 73.43±14.65 74.43±14.66 75.85±13.29 74.03±14.89 85.21 68.69±14.46 

Males/Females 359/378 636/418 223/174 23/9 96/81 0/1 24/14 

 

Table 4: No significant difference (p>0.05, Friedman test) in demographic characteristics  

between two 3-year feature-regression/diagnosis-prediction datasets 

Target 

Computational 

Model 

Characteristics 

of dataset 
steady HC steady MCI steady AD HC-to-MCI MCI-to-AD HC-to-AD anti-conversion 

Number of 

involving 

subjects 

Regression of 

future 

cognition-

feature  

Number of visit 

pairs 

399(30.98%) 486(37.73%) 78(6.06%) 62(4.81%) 186(14.44%) 10(0.78%) 67(5.20%) 

363 males + 

306 females 
Baseline Age 75.63±10.52 72.35±14.47 72.91±13.22 77.33±10.12 74.28±13.79 79.19±9.26 68.39±15.32 

Males/Females 182/217 303/183 42/36 30/32 111/75 7/3 32/35 

Regression of 

Future sMRI-

feature and 

diagnosis-

prediction                   

Number of visit 

pairs 
287(39.86%) 219(30.42%) 43(5.97%) 33(4.58%) 107(14.86%) 4(0.50%) 27(3.75%) 

232 males + 

170 females 
Baseline Age 75.97±9.78 73.10±14.59 72.01±12.18 77.49±9.78 73.76±14.07 82.17±9.27 68.96±14.82 

Males/Females 130/157 147/72 24/29 17/16 65/42 3/1 21/6 
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Table 5: No significant difference (p>0.05, Friedman test) in demographic characteristics 

between two 5-year feature-regression/diagnosis-prediction datasets 

Target 

Computational 

Model 

Characteristics 

of dataset 
steady HC steady MCI steady AD HC-to-MCI MCI-to-AD HC-to-AD anti-conversion 

Number of 

involving 

subjects 

Regression of 

future 

cognition-

feature 

 

Number of visit 

pairs 

212(37.32%) 160(28.17%) 22(3.87%) 44(7.75%) 81(14.26%) 20(3.52%) 29(5.11%) 

172 males + 130 

females 

Baseline Age 75.37±9.31 72.55±15.27 71.44±10.83 76.88±8.24 73.63±13.44 77.28±6.49 69.49±15.48 

Males/Females 99/113 109/51 10/12 25/19 54/27 10/10 17/12 

Regression of 

Future sMRI-

feature and 

diagnosis-

prediction 

Number of visit 

pairs 

135(45.30%) 62(20.81%) 11(3.69%) 25(8.39%) 48(16.11%) 13(4.36%) 4(1.34%) 

92 males + 65 

females 

Baseline Age 75.35±8.70 74.38±15.27 70.84±6.24 75.48±6.39 73.39±13.34 77.92±6.80 79.24±6.51 

Males/Females 60/75 47/15 5/6 15/10 32/16 7/6 4/0 
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Table 6: Logistic regression of baseline diagnosis using 14 demographic and cognitive 

predictors 

Total 

accuracy = 

86.81% 

Age Gender 
Years of 

Education 
Marriage APOE4 ADAS11 ADAS13 

RAVLT 

immediate 

RAVLT 

learning 

RAVLT 

forgetting 

RAVLT 

 perc_forgetting 
FAQ CDR MMSE 

p-value for 

log-odds 1 
0.000 0.818 0.160 0.640 0.003 0.531 0.000 0.001 0.133 0.803 0.160 0.176 0.000 0.168 

p-value for 

log-odds 2 
0.001 0.073 0.570 0.917 0.042 0.009 0.000 0.012 0.129 0.138 0.475 0.000 0.000 0.000 

 

 

Table 7: Logistic regression of baseline diagnosis using 7 essential demographic and cognitive 

predictors 

Training Accuracy = 

86.53% 

Testing Accuracy = 

87.33% 

 Age APOE4 ADAS13 
RAVLT_imme

diate 
FAQ CDR MMSE 

p-value for log-odds 1  0.000 0.004 0.000 0.000 0.195 0.000 0.258 

p-value for log-odds 2 0.000 0.006 0.000 0.225 0.000 0.000 0.000 

coefficients for log-odds 1 0.568 -0.356 -0.531 0.346 -0.060 -1.401 0.071 

coefficients for log-odds 2 0.2202 -0.344 -0.430 0.157 -0.094 -0.244 0.278 
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Table 8: Original atrophy factor vs. reconstructed atrophy factor using autoencoder of 86, 20, or 

5-size hidden layer  

 86-size hidden layer 20-size hidden layer 5-size hidden layer 

 R-value p-value R-value p-value R-value p-value 

Training 0.978 0.000 0.817 0.000 0.673 0.000 

Testing 0.973 0.000 0.796 0.000 0.639 0.000 

 

Table 9: original diffusion rate vs. reconstructed diffusion rate using autoencoder of 86, 20, or 5-

size hidden layer   

 86-size hidden layer 20-size hidden layer 5-size hidden layer 

 R-value p-value R-value p-value R-value p-value 

Training 0.983 0.000 0.838 0.000 0.711 0.000 

Testing 0.981 0.000 0.832 0.000 0.705 0.000 
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Table 10: Stepwise linear regression of future log odds with 86-size atrophy factor 

 

R-squared for log-odds 1 R-squared for log-odds 2 

86-size atrophy factor + 

86-size diffusion rate + 

baseline 2 log-odds 

86-size atrophy factor 

+ baseline 2 log-odds 

86-size atrophy factor 

+ 86-size diffusion rate 

+ baseline 2 log-odds 

86-size atrophy factor 

+ baseline 2 log-odds 

1 year 0.865 0.865 0.907 0.907 

3 years 0.744 0.742 0.787 0.787 

5 years 0.691 0.683 0.719 0.718 

 

Table 11: Neural network regression of future log odds with 86-size atrophy factor 

 

R squared for log-odds 1 R squared for log-odds 2 

86-size atrophy factor + 

86-size diffusion rate + 

baseline 2 log-odds 

86-size atrophy factor 

+ baseline 2 log-odds 

86-size atrophy factor 

+ 86-size diffusion rate 

+ baseline 2 log-odds 

86-size atrophy factor 

+ baseline 2 log-odds 

1 year 0.865 0.849 0.906 0.874 

3 years 0.807 0.703 0.834 0.783 

5 years 0.811 0.748 0.708 0.817 
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Table 12: Stepwise linear regression of future log odds with 86-size atrophy feature 

 

R squared for log-odds 1 R squared for log-odds 2 

86-size atrophy feature 

+ 86-size diffusion 

feature + baseline 2 log-

odds 

86-size atrophy rate + 

baseline 2 log-odds 

86-size atrophy feature 

+ 86-size diffusion 

feature + baseline 2 log-

odds 

86-size atrophy feature 

+ baseline 2 log-odds 

1 year 0.867 0.865 0.908 0.908 

3 years 0.747 0.745 0.795 0.788 

5 years 0.704 0.688 0.730 0.718 

 

Table 13: Neural network regression of future log odds with 86-size atrophy feature 

 R squared for log-odds 1 R squared for log-odds 2 

 

86-size atrophy feature 

+ 86-size diffusion 

feature + baseline 2 log-

odds 

86-size atrophy feature 

+ baseline 2 log-odds 

86-size atrophy feature 

+ 86-size diffusion 

feature + baseline 2 

log-odds 

86-size atrophy feature 

+ baseline 2 log-odds 

1 year 0.838 0.859 0.899 0.873 

3 years 0.787 0.768 0.835 0.788 

5 years 0.774 0.777 0.811 0.739 
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Table 14: Stepwise linear regression of future log odds with 20-size atrophy feature 

 R squared for log-odds 1 R squared for log-odds 2 

 

20-size atrophy 

feature + 20-size 

diffusion feature + 

baseline 2 log-odds 

20-size atrophy 

feature + baseline 2 

log-odds 

20-size atrophy 

feature + 20-size 

diffusion feature + 

baseline 2 log-odds 

20-size atrophy 

feature + baseline 2 

log-odds 

1 year 0.865 0.864 0.906 0.906 

3 years 0.740 0.737 0.784 0.783 

5 years 0.676 0.663 0.696 0.687 

 

Table 15: Neural Network regression of future log odds with 20-size atrophy feature 

 

R squared for log-odds 1 R squared for log-odds 2 

20-size atrophy 

feature + 20-size 

diffusion feature + 

baseline 2 log-odds 

20-size atrophy 

feature + baseline 2 

log-odds 

20-size atrophy 

feature + 20-size 

diffusion feature + 

baseline 2 log-odds 

20-size atrophy 

feature + baseline 2 

log-odds 

1 year 0.856 0.867 0.912 0.909 

3 years 0.752 0.714 0.752 0.744 

5 years 0.744 0.636 0.738 0.699 
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Table 16: Stepwise linear regression of future log odds with 5-size atrophy feature 

 

R squared for log-odds 1 R squared for log-odds 2 

5-size atrophy 

feature + 5-size 

diffusion feature + 

baseline 2 log-odds 

5-size atrophy feature 

+ baseline 2 log-odds 

5-size atrophy feature 

+ 5-size diffusion 

feature + baseline 2 

log-odds 

5-size atrophy feature 

+ baseline 2 log-odds 

1 year 0.862 0.862 0.904 0.904 

3 years 0.729 0.726 0.774 0.771 

5 years 0.643 0.639 0.672 0.672 

 

Table 17: Neural Network regression of future log odds with 5-size atrophy feature  

 

R squared for log-odds 1 R squared for log-odds 2 

5-size atrophy 

feature + 5-size 

diffusion feature + 

baseline 2 log-odds 

5-size atrophy 

feature + baseline 2 

log-odds 

5-size atrophy feature 

+ 5-size diffusion 

feature + baseline 2 

log-odds 

5-size atrophy feature 

+ baseline 2 log-odds 

1 year 0.825 0.862 0.868 0.893 

3 years 0.741 0.739 0.800 0.764 

5 years 0.676 0.611 0.712 0.711 
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Table 18: Neural network regression of future 86-size atrophy factor using baseline 86-size 

atrophy factor with/without 86-size diffusion rate 

Baseline 86-size atrophy 

factor + 86-size diffusion rate 
R-value p-value 

Baseline 86-size 

atrophy factor 
R-value p-value 

1 year 0.907 0.00 1 year 0.906 0.00 

3 years 0.872 0.00 3 years 0.855 0.00 

5 years 0.835 0.00 5 years 0.756 0.00 

 

Table 19: Neural network regression of future 86-size atrophy feature using baseline 86-size 

atrophy feature with/without 86-size diffusion feature 

Baseline 86-size atrophy feature 

+ 86-size diffusion feature 
R-value p-value 

Baseline 86-size 

atrophy feature 
R-value p-value 

1 year 0.788 0.00 1 year 0.888 0.00 

3 years 0.755 0.00 3 years 0.601 0.00 

5 years 0.552 0.00 5 years 0.548 0.00 
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Table 20: Neural network regression of future 20-size atrophy feature using baseline 20-size 

atrophy feature with/without 20-size diffusion feature 

Baseline 20-size atrophy feature + 

20-size diffusion feature 
R-value p-value 

Baseline 20-size 

atrophy feature 
R-value p-value 

1 year 0.893 0.00 1 year 0.906 0.00 

3 years 0.857 0.00 3 years 0.877 0.00 

5 years 0.775 0.00 5 years 0.792 0.00 

 

Table 21: Neural network regression of future 5-size atrophy feature using baseline 5-size 

atrophy feature with/without 5-size diffusion feature 

Baseline 5-size atrophy feature + 

5-size diffusion feature 
R value p-value 

Baseline 5-size 

atrophy feature 
R value p-value 

1 year 0.933 0.00 1 year 0.933 0.00 

3 years 0.885 0.00 3 years 0.803 0.00 

5 years 0.827 0.00 5 years 0.813 0.00 
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Table 22: Diagnosis-prediction (1y) using future log-odds out of stepwise-linear-regression, total 

accuracy = 0.794 ± 0.044 

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.819 ± 

0.059 

0.261 ± 

0.294 
NaN HC 

0.973 ± 

0.029 

0.096 ± 

0.138 
NaN 

MCI 
0.522 ± 

0.569 

0.824 ± 

0.073 

0.500 ± 

1.155 
MCI 

0.12 ± 

0.170 

0.879 ± 

0.031 

0.033 ± 

0.141 

AD 
0.00 ± 

0.00 

0.463 ± 

0.097 

0.899 ± 

0.123 
AD NaN 

0.484 ± 

0.191 

0.992 ± 

0.036 

 

Table 23: Diagnosis-prediction (1y) using future log-odds out of neural-network-regression, 

total accuracy = 0.740 ± 0.087 

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.678 ± 

0.197 

0.479 ± 

0.530 
NaN HC 

0.974 ± 

0.028 

0.121 ± 

0.149 
NaN 

MCI 
0.632 ± 

0.453 

0.785 ± 

0.126 

0.800 ± 

0.894 
MCI 

0.091 ± 

0.104 

0.892 ± 

0.052 

0.124 ± 

0.426 

AD 
0.00 ± 

0.00 

0.527 ± 

0.123 

0.872 ± 

0.180 
AD 

0.00 ± 

0.00 

0.497 ± 

0.216 

0.998 ± 

0.015 
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Table 24: Diagnosis-prediction (3y) using future log-odds out of stepwise-linear-regression, total 

accuracy = 0.687 ± 0.080 

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.641 ± 

0.118 

0.347 ± 

0.484 
NaN HC 

0.917 ± 

0.119 

0.257 ± 

0.385 
NaN 

MCI 
0.643 ± 

0.378 

0.768 ± 

0.137 

0.667 ± 

1.155 
MCI 

0.202 ± 

0.164 

0.773 ± 

0.068 

0.375 ± 

0.957 

AD 
0.000 ± 

0.000 

0.631 ± 

0.131 

0.962 ± 

0.138 
AD NaN 

0.696 ± 

0.268 

0.989 ± 

0.070 

 

Table 25: Diagnosis-prediction (3y) using future log-odds out of neural-network-regression, 

total accuracy = 0.714 ± 0.119 

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.653 ± 

0.169 

0.524 ± 

0.407 
NaN HC 

0.910 ± 

0.126 

0.287 ± 

0.238 

0.000 ± 

0.000 

MCI 
0.670 ± 

0.431 

0.756 ± 

0.176 

1.000 ± 

0.000 
MCI 

0.215 ± 

0.146 

0.838 ± 

0.091 

0.417 ± 

0.983 

AD 
0.143 ± 

0.756 

0.754 ± 

0.256 

0.916 ± 

0.223 
AD 

0.5 ± 

1.414 

0.802 ± 

0.108 

1.00 ± 

0.000 
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Table 26: Diagnosis-prediction (5y) using future log-odds out of stepwise-linear-regression, total 

accuracy = 0.632 ± 0.107 

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.542 ± 

0.142 

0.200 ± 

0.343 
NaN HC 

0.911 ± 

0.158 

0.261 ± 

0.670 
NaN 

MCI 
0.740 ± 

0.456 

0.703 ± 

0.254 

1.000 ± 

0.000 
MCI 

0.222 ± 

0.165 

0.736 ± 

0.232 

1.000 ± 

0.000 

AD 
0.233 ± 

0.689 

0.776 ± 

0.173 

1.000 ± 

0.000 
AD 

0.800 ± 

0.894 

0.726 ± 

0.296 

1.00 ± 

0.000 

 

Table 27: Diagnosis-prediction (5y) using future log-odds out of neural-network-regression, 

total accuracy = 0.710 ± 0.093 

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.663 ± 

0.175 

0.524 ± 

0.694 
NaN HC 

0.921 ± 

0.112 

0.333 ± 

0.510 

0.000 ± 

0.000 

MCI 
0.623 ± 

0.462 

0.704 ± 

0.218 

0.000 ± 

0.000 
MCI 

0.258 ± 

0.232 

0.843 ± 

0.221 

0.000 ± 

0.000 

AD 
0.567 ± 

0.781 

0.902 ± 

0.190 

0.917 ± 

0.360 
AD 

0.722 ± 

0.882 

0.812 ± 

0.244 

1.00 ± 

0.000 
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Table 28: Diagnosis-prediction (1y) using double-time-point neural network, total accuracy = 

0.834 ± 0.015  

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.861 ± 

0.041 

0.194 ± 

0.122 
NaN HC 

0.976 ± 

0.002 

0.090 ± 

0.052 
NaN 

MCI 
0.513 ± 

0.044 

0.852 ± 

0.014 

0.500 ± 

0.00 
MCI 

0.139 ± 

0.035 

0.901 ± 

0.009 

0.067 ± 

0.017 

AD 
0.800 ± 

0.843 

0.594 ± 

0.047 

0.929 ± 

0.020 
AD 

1.00 ± 

0.00  

0.540 ± 

0.034 

0.995 ± 

0.000 

 

Table 29: Diagnosis-prediction (1y) using single-time-point neural network, total accuracy = 

0.826 ± 0.061  

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.902 ± 

0.074 

0.260 ± 

0.725 
NaN HC 

0.967 ± 

0.051 

0.074 ± 

0.229 
NaN 

MCI 
0.327 ± 

0.829 

0.843 ± 

0.061 

0.500 ± 

1.00 
MCI 

0.102 ± 

0.264 

0.880 ± 

0.078 

0.067 ± 

0.281 

AD 
0.000 ± 

0.000 

0.482 ± 

0.158 

0.898 ± 

0.106 
AD 

0.00 ± 

0.00  

0.476 ± 

0.197 

0.995 ± 

0.023 
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Table 30: Diagnosis-prediction (3y) using double-time-point neural network, total accuracy = 

0.864 ± 0.026  

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.904 ± 

0.050 

0.641 ± 

0.093 
NaN HC 

0.963 ± 

0.014 

0.547 ± 

0.114 
NaN 

MCI 
0.673 ± 

0.102 

0.865 ± 

0.066 
NaN MCI 

0.428 ± 

0.115 

0.879 ± 

0.022 

0.000 ± 

0.000 

AD 
0.250 ± 

0.408 

0.844 ± 

0.047 

0.986 ± 

0.024 
AD 

0.500 ± 

0.591 

0.855 ± 

0.070 

1.000 ± 

0.000 

 

Table 31: Diagnosis-prediction (3y) using single-time-point neural network, total accuracy = 

0.771 ± 0.079 

 Sensitivity 

Baseline diagnosis 

 

Specificity 

Baseline diagnosis 

HC MCI AD HC MCI AD 

Future 

diagnosis 

HC 
0.912 ± 

0.144 

0.432 ± 

0.769 
NaN HC 

0.916 ± 

0.106 

0.202 ± 

0.298 
NaN 

MCI 
0.292 ± 

0.663 

0.702 ± 

0.144 
NaN MCI 

0.235 ± 

0.431 

0.788 ± 

0.197 

0.000 ± 

0.000 

AD 
0.000 ± 

0.000 

0.723 ± 

0.283 

0.933 ± 

0.322 
AD 

0.000 ± 

0.000 

0.706 ± 

0.358 

1.000 ± 

0.000 

 

 



Xiao Gao
49




