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Abstract

Purpose—Segmentation of multiple organs-at-risk (OARs) is essential for MR-only radiation 

therapy treatment planning and MR-guided adaptive radiotherapy of abdominal cancers. Current 

practice requires manual delineation that is labor-intensive, time-consuming, and prone to intra- 

and inter-observer variations. We developed a deep learning (DL) technique for fully automated 

segmentation of multiple OARs on clinical abdominal MR images with high accuracy, reliability, 

and efficiency.

Methods—We developed Automated deep Learning-based Abdominal Multi-Organ 

segmentation (ALAMO) technique based on 2D U-net and a densely connected network structure 

with tailored design in data augmentation and training procedures such as deep connection, 

auxiliary supervision, and multi-view. The model takes in multi-slice MR images and generates 

the output of segmentation results. 3.0-Tesla T1 VIBE (Volumetric Interpolated Breath-hold 

Examination) images of 102 subjects were used in our study and split into 66 for training, 16 for 

validation, and 20 for testing. Ten OARs were studied, including the liver, spleen, pancreas, left/

right kidneys, stomach, duodenum, small intestine, spinal cord, and vertebral bodies. An 

experienced radiologist manually labeled each OAR, followed by reediting, if necessary, by a 

senior radiologist, to create the ground-truth. The performance was measured using volume 

overlapping and surface distance.

Results—The ALAMO technique generated segmentation labels in good agreement with the 

manual results. Specifically, among the 10 OARs, 9 achieved high Dice Similarity Coefficients 

(DSCs) in the range of 0.87–0.96, except for the duodenum with a DSC of 0.80. The inference 

completed within one minute for a 3D volume of 320×288×180. Overall, the ALAMO model 

matched the state-of-the-art techniques in performance.

Conclusion—The proposed ALAMO technique allows for fully automated abdominal MR 

segmentation with high accuracy and practical memory and computation time demands.

Keywords

deep learning; image segmentation; abdomen; MRI

1. INTRODUCTION

Over the past few years, there is a keen interest in the integration of magnetic resonance 

(MR) alone into radiation treatment planning and even the therapy workflow, i.e., MR-

guided adaptive radiotherapy, to leverage its superior soft-tissue contrast [1–3]. The 

abdomen, however, represents a challenging treatment site for pursuing these applications, in 

part due to the presence of many organs-at-risk (OARs) and challenges in contouring them. 

Contouring OARs on abdominal MR images still heavily relies on manual, tedious 

procedures that are time-consuming and intra-/inter-observer variation-prone [4–6]. 

Computer-aided automated multi-organ segmentation would be a compelling approach to 

the roadblock [7].

Early research on automated segmentation algorithms focused on mathematical modeling of 

the morphological information of organs. For instance, level-set [8], SNAKE [9], and graph 
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cut [10] focus on attracting descriptors to organ boundaries, driven by intensity gradient and 

neighborhood structures. However, these models usually rely on the consistent appearance of 

edges and intensity patterns as well as specific scale tradeoffs. Thus, they have limited 

applicability to MR datasets that commonly exhibit heterogeneous image quality due to the 

variations in system models and manufacturers, sequence parameter settings, or field 

shimming conditions [11]. Atlas-based approaches [12] were investigated as an alternative 

solution. However, their heavy dependence on the quality and size of atlas and the 

consistency between the target and atlas samples, along with relatively long processing time 

needed for performing multiple registrations (for example, 7 minutes in [13]), have impeded 

widespread use in clinics.

Recently, data-driven approaches, particularly deep learning developments have gained 

intense popularity. Deep networks incorporate representation as part of the learning, in 

contrast to hand crafted features in conventional regression methods [7]. In medical 

segmentation problems, it is common to adopt a supervised learning setting, where images 

and the corresponding clinical manual labels are used during training, and the resultant 

network is used to infer the labels automatically on new images. Their superior ability to 

model the complexity in multi-organ shapes, context information, and the inter-subject 

varieties has been demonstrated on several benchmark datasets [14, 15]. [16, 17] have made 

very good reviews on using deep learning (DL) and artificial intelligence techniques for 

segmentation in medical images. Especially, MR image segmentation for the brain [18], 

heart [19], and breast [20] have been investigated. However, there are few studies focused on 

abdominal MR segmentation [21–24]. Despite substantial improvement over the years, the 

performance in automated abdominal MR segmentation still does not match up to the human 

performance, particularly in complex-structure organs such as the stomach and duodenum 

[23]. Most of the previous studies utilized 2D neural networks for organ segmentation. 

However, single-channel 2D models that analyzes one slice at a time are insufficient to 

analyze 3D complex structures in volumetric medical images. 3D networks may be more 

suitable [25]. However, the high computation cost and memory consumption limit the size 

and field of view of a 3D network, which may drastically compromise the performance of a 

3D network in a segmentation task that requires sufficient contextual information [26]. This 

motivates our investigation of a multi-slice setting with multi-channel network structure. 

Another challenge for the application of DL in abdominal MR is overfitting, primarily 

caused by the small data size. With a sample size in the order of hundreds or less, increasing 

the network complexity may not lead to a performance gain. We hypothesize that a 

meticulously designed network structure with more effective use of the existing nodes, such 

as skip connections [27], is likely to be beneficial for expanding the representation power 

without risking overfitting. Moreover, improvement in training procedures, such as utilizing 

data augmentation and deeply supervised learning [28] may be helpful.

In this work, we proposed a convolutional neural network (CNN) based fully automated 

multi-organ MR segmentation technique, namely ALAMO (Automated deep Learning-

based Abdominal Multi-Organ segmentation). This technique builds on a multi-slice 2D 

neural network to account for the correlative and complementary information between 

adjacent slices in the intrinsic 3D space while avoiding the heavy computation burden 

associated with 3D neural networks. Novel multi-view training and inference were 
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developed to effectively alleviate outliers in the preliminary segmentation predictions. To 

improve robustness and reduce overfitting risk, we also investigated the value of various 

setup options, including network normalization, data augmentation, and deeply supervised 

learning, which have not been explored together in the particular context - the whole-

abdomen multi-organ MR segmentation problem. The thorough technical investigation and 

assessment would provide insights into DL network optimization in solving this problem. 

The ALAMO technique, with optimized supervised learning, is intended to possess the 

potential to serve as a clinically practical and highly accurate, robust automated 

segmentation system in the settings of MR simulation as well as MR-guided adaptive 

radiotherapy of abdominal cancers.

2. METHODS

2.1. MR Data

This work was built on the water-phase images from a routinely used breath-hold 3D 

abdominal MR sequence - DIXON T1-VIBE (Volumetric Interpolated Breath-hold 

Examination) [29]. All images were acquired using 3.0-Tesla systems (MEGNETOM Skyra/

Prisma and Biograph mMR, Siemens Healthineers, Erlangen, Germany) equipped with 18-

channel body matrix coils. A total of 102 cases with the diagnosis of no or <2cm abdominal 

lesions were retrospectively enrolled by reviewing our Picture Archiving and 

Communication System (PACS) with Institutional Review Board approval and inclusion 

(adult of all ages; had abdominal MR for clinical indications between Jan 01, 2008 and Jun 

01, 2019; had a T1-VIBE scan) and exclusion (T1-VIBE images corrupted by motion 

artifacts; focal lesion size > 2cm; history of diffusive abdominal disease; major surgery 

previously performed in the abdomen) criteria. They were split into 66 for training, 16 for 

validation, and 20 for testing. Each original T1-VIBE image set consisted of 72–80 

transversal slices with a spatial resolution of 1.1–1.3 mm in each 2D transversal slice and 

2.0–4.0 mm in slice thickness. All 3D image sets were pre-processed with their spatial 

resolution interpolated into 1.2 mm isotropic. Note that the abdominal MR examination of 

each patient may involve other sequences, such as half-Fourier single-shot turbo spin-echo 

(HASTE), short-TI inversion recovery (STIR), and diffusion weighted imaging (DWI), but 

they were not used in the current segmentation task.

Human labeling was performed by two experienced and board-certified radiologists. Before 

initiating the labeling process, a training session with 5 additional cases was used to discuss 

segmentation routines and consensus criteria. During the labeling process, the radiologist 

with 5 years of experience labeled 10 organs (liver, spleen, pancreas, left/right kidneys, 

stomach, duodenum, small intestine, spinal cord, and vertebral bodies) using an open-source 

software application, ITK-SNAP [30]. The senior radiologist specializing in body imaging 

(with >15 years of experience) reviewed the raw images and contour sets and made 

necessary adjustments to finalize contours. Adjustment occurred in approximately 20% 

cases, mostly at the interface of the duodenum and small intestine.
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2.2. Deep Learning Models and Framework

The ALAMO technique adopts the popular U-net structure to capture both high-resolution 

local textures and low-resolution context information with the encoder-decoder multi-scale 

structure [25, 31].

To capture the third-dimension information in a 2D network, we introduced a multi-slice 

input with a multi-channel 2D network structure. Twenty contiguous slices obtained from 

the whole 3D volume serve as the input at the first layer, a multi-channel convolutional 

layer, of the network. The ALAMO structure is illustrated in Figure 1.

To prepare the input data, we first performed pixel-wise dataset standardization (i.e., 

subtracting the mean signal intensity of the 3D dataset from each voxel followed by division 

by the standard deviation of the signal intensity of the 3D dataset). Stacks of 20 contiguous 

transversal slices in a matrix size of 256×160 were then randomly sampled from the whole 

3D volume that was typically 320×288×180. Random up-down or left-right flipping was 

finally applied at a probability of 50% for standard data augmentation.

2.3. Evaluation Metrics

Four metrics were used to evaluate the segmentation accuracy against the ground truth (i.e., 

human annotation), including Dice Similarity Coefficient (DSC) [32], Jaccard Index [33], 

Mean Surface Distance (MSD), and 95% Hausdorff Distance (95HD) [34]. We use Python’s 

scipy.stats.ttest_rel for all paired, two-tailed t-test comparisons. Bonferroni correction was 

used to account for multiple comparisons when applicable.

2.4 Investigation of Structure and Implementation Variations

Thorough technical investigation and assessment were performed step by step here with the 

goal of achieving a clinically practical and highly accurate, robust automated segmentation 

system. With all these steps finished, we further performed experiments comparing our 

multi-slice input (20 slices and 40 slices) approaches to the single-slice input approach and 

an experiment evaluating the finalized technique against a reference.

2.4.1 Dense Connections in Convolutional Blocks—Our network blocks were 

configured as either plainly-stacked layers or densely-connected layers, corresponding to 

PlainUnet and DenseUnet, respectively. Previous work [26, 27, 35] have shown that 

DenseNet is less prone to overfitting and also helps to alleviate vanishing gradient issues in 

backpropagation. In this work, we investigated its impact by optimizing a DenseUnet and 

evaluating it against the PlainUnet [31]. Setup parameters, including the number of filters, f, 
in the first resolution level in PlainUnet and the growth-rate, k, in DenseUnet, underwent 

investigations.

2.4.2 Network Normalization—On top of image data standardization, we also explored 

different methods of network normalization on the feature maps. Network normalization is a 

widely used approach to help accelerate convergence, stabilize gradients, and alleviate 

overfitting to training data. Specific implementation options include batch normalization 

(BN) [23, 25, 26, 36], Instance normalization (IN) [37], and layer normalization (LN) [38]. 
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However, recent studies have shown that the batch size heavily affects the normalization 

performance [36, 38]. In this work, we can only fit a single sample per batch due to large 

image matrix size and memory limitations (11 GB), which is a common scenario in whole-

abdomen image segmentation. Therefore, we expect a moderate role of BN, with simple 

sample-driven statistics. Specifically, we investigated the effect of using BN, using BN with 

the training mode during testing [25], as well as IN and LN.

2.4.3 Further Augmentation—We investigated the effect of random projective 

deformation as additional options for data augmentation, where the image was transformed 

by a projection matrix (rotation angle: −0.05 -- + 0.05 rad, shearing scale: −0.3 -- +0.3, 

projective scale: −0.003 -- + 0.003) at a probability of 50.

2.4.4. Auxiliary Prediction in Deeply Supervised Training—To address the 

vanishing gradient issue in the backpropagation process, it would be beneficial to direct 

gradients for optimizing the layers at each resolution level. Deeply supervised training [28] 

is an approach to add auxiliary side predictions to down-sampled labels directly from the 

output of each resolution. Therefore, we explored this option by adding extra layers for low-

resolution predictions in the decoder branches, as illustrated in Figure 1. The network was 

optimized to produce not only full-resolution segmentation masks but also multiple low-

resolution masks. During the testing phase, the model only computed the final full-resolution 

output with no additional computation burden for the auxiliary prediction.

2.4.5 Multi-view Training, Inference, and Majority Voting—Processing 2D slices 

[31, 39] from a single fixed view lacks intrinsic consideration of 3D structure information. 

Even the stack formulation may still be sensitive to the specific slice orientation. Multi-view 

may help to leverage the information more effectively [26]. Existing work utilizes multi-

view by training independent filters on each view. However, we observed overfitting due to 

the introduction of additional parameters in this setting. We rationalize that organs may be 

oriented slightly differently for the imaging coordinates during acquisition and propose to 

use the same set of filters in different views to be invariant to the digital coordinates. 

Specifically, we trained the network on transversal, coronal, and sagittal views at a ratio of 

4:1:1. Each view provided a 3D segmentation prediction, and a simple majority voting 

strategy was applied to combine the three predictions into the final segmentation as shown in 

Figure 2. Three GPUs were used in parallel for this purpose.

2.5. Network Implementation

The network was implemented from ground-up in Tensorflow (v1.15) [40] deep learning 

packages and trained with ADAM [41] optimizer. The learning rate was set to be 1e-4, and a 

decay rate of 0.9 was applied after every 50k iterations. Our models converged well at 1000k 

steps (roughly 700 epochs) and we used those checkpoints for evaluation. A workstation 

equipped with multiple Nvidia RTX 2080 TI Graphis Process Units (GPUs), was used for 

both training and testing.
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3. RESULTS

3.1. Impact of Dense Connections and Network Size

As shown in Table 1, when the network size increased, the runtime and parameter number 

increased in both DenseUnet and PlainUnet. In general, the PlainUnets were outperformed 

by DenseUnet by a notable margin, while the latter only used a fraction of the parameters 

thanks to its more efficient architecture. Furthermore, merely adding more parameters in 

PlainUnet did not considerably improve the performance. The DenseUnet with k=48 

provided the best results in a reasonable runtime. Therefore, we use it as the baseline in our 

later experiments.

3.2. The Effect of Different Normalization Methods

Table 2 reports the effect of different normalization methods, including a) no normalization, 

b) BN with the training mode in inference phase, c) BN with the testing mode in inference 

phase, d) LN, and e) IN. It turned out that “no normalization” provided the best results (DSC 

= 0.897±0.059; MSD = 1.353±0.669) and the fastest inference time (8.3 seconds).

3.3. The Effect of Additional Augmentation, Deep Supervision, and Multiview.

Table 3 reports the impact of progressively introducing 1) further augmentation with 

projective deformation (PD), 2) deep-supervised training (DS), 3) multi-view training 

(MTT), and 4) multi-view inference (MTI) with a majority voting in this experiment. After 

incorporating all the above techniques, significant performance improvement was observed 

over the baseline model. The parallel GPU implementation for inference with a subsequent 

majority voting resulted in an inference time determined by the slowest runtime among three 

views, which was just slightly longer than single-view inference.

3.4. The Effect of Multi-Slice Training

Table 4 reports the performance when a different number of 2D slices are used in multi-slice 

input. The DenseUnet trained with the 20-slice input has significantly improved the 

segmentation results in both DSC and MSD metrics compared to that with the single-slice 

input. However, with adding more slices, the 40-slice DenseUnet did not obtain significant 

improvement over the 20-slice input counterpart.

3.5. The performance of the finalized ALAMO method

Our finalized ALAMO method incorporated all above determined training & testing 

techniques in a non-normalized DenseUnet with 20-slice 2D data input. The performance of 

the proposed DenseUnet and popular PlainUnet are summarized in Table 5. The proposed 

DenseUnet significantly (p<<0.001) outperformed the PlainUnet in terms of DSC, Jaccard 

Index, MSD, and 95HD. DSC > 0.90 was obtained in most of the organs except for the 

duodenum (0.80) and the small intestine (0.87). A randomly selected test case is shown in 

Figure 3. The multi-view DenseUnet provided the best segmentation quality than both the 

PlainUnet and the single-view DenseUnet, particularly in the challenging organs such as the 

small intestine and duodenum. Their per-organ performance measured by DSC and MSD are 

illustrated with box plots in Figure 4.
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4. DISCUSSION

In this work, we presented a deep learning-based technique ALAMO for fully automated 

multi-organ segmentation on abdominal MR. ALAMO builds on 2D DenseUnet and 

incorporates tailored design in data augmentation and training procedures, utilizing multi-

slice input, deep connection, auxiliary supervision, and multi-view. Our results showed that 

ALAMO might be a strong candidate to provide state-of-the-art performance. The major 

novelty and contribution of this work lies in two aspects. On the methodology aspect, we 

have introduced a novel multi-view approach to enhance the segmentation quality and 

robustness of the 2.5D (2D stack) Unet modules. In contrast to existing work with multipath 

approaches [42], we propose to use shared filter coefficients in our multi-view settings, 

which also has the benefit of being economical in the number of free parameters. On the 

practical aspect, this study offers an unprecedented extensive investigation on the roles of 

various structure optimization and parameter optimization to address this important clinical 

task of organ segmentation. Statistical tests are performed along the way and practical 

recommendations are provided. Overall, this study offers an effective, robust, and feasible 

pipeline that can be reproduced in a practical clinical system without much hardware/

software burdens.

While a 3D network may better suit the nature of medical imaging [43, 44], it is also 

associated with a much higher risk of overfitting and prohibitive demands in memory and 

computation time. Moreover, the variations in the size of the organs and their relative 

geometric locations also make it necessary to have both high-resolution and large-space 

support in the network configuration, which is challenging to achieve with a 3D network. 

Even though it is possible to address such demands with a multi-resolution or hierarchical 

scheme, further complexity in the overall pipeline will be introduced. In this work, we 

demonstrated that a multi-slice-multi-scale 2D network, when carefully designed and 

optimized, provided a clinically viable alternative.

Two popular networks, PlainUnet and DenseUnet, were compared. We showed that 

DenseUnet used much fewer parameters and offered more accurate segmentation results and 

slightly reduced computation time compared to PlainUnet. By adding multiple skip 

connections within the convolutional blocks, we forced the network to reuse its weights, thus 

dramatically reducing the number of parameters for a similar performance. A smaller 

network size not only makes training easier but also makes the model less prone to 

overfitting to the training data and more robust on unseen test data. This is critically 

important for MR-based DL applications due to typically limited data size.

The use of normalization resulted in an insignificant performance gain in the single-sample 

batch setup. This is in accordance with the recent study that suggested the dependence of the 

normalization performance on the batch size [25, 38]. In time-sensitive applications, such as 

adaptive planning in MRgRT, non-normalization would be an appropriate choice that comes 

with a small computation burden and thus dramatically fast speed.

Combining three different views further boosted up our network’s performance. Forcing the 

network to train on different 2D views and then fusing them can remove certain 
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misclassified regions otherwise appeared in the single-view output. Especially for the small 

intestine and duodenum that have irregular shapes and are difficult to distinguish from 

complicated backgrounds, the multi-view network has a better performance compared to the 

single-view network. Additionally, since we used the same model across different views, the 

network has fewer parameters than those where multiple models are used in parallel with 

independent filters. The reduction in parameters is theoretically beneficial for mitigating the 

overfitting problem and thus potentially important for this particular DL application.

Our last experiment also validated the hypothesis that a multi-channel 2D network with 

multi-slice (both 20-slice and 40-slice) data input performs better than a 2D network with 

single-slice data input. However, with the current network design, using 40 slices as input 

did not improve the final accuracy, and the 20-slice input appeared to be a good fit for the 

DenseUnet (k=48). Moreover, it is noteworthy that DSC, when already close to 1, may not 

be a sensitive enough metric to the improvement in performance by multi-slice input. When 

it comes to the “error rate” (1 - DSC), however, the difference between the single-slice and 

20-slice inputs, calculated as (0.909–0.904) / (1–0.904), has a 5.2% difference, even though 

the absolute difference in DSC is simply 0.005.

There are not many studies on the multi-organ segmentation in abdominal MR with DL. Our 

work demonstrated a better or similar DSC in the abdominal organs to the limited number of 

existing studies on 0.35-Tesla TrueFISP images [23] and 3.0-Tesla T2-weighted images [24], 

especially in challenging organs such as the stomach and the duodenum. Despite a much 

lower resolution (1.2 mm vs. 0.5mm), our results are still very competitive compared to 

multi-organ segmentation on CT images that have better signal to noise ratio and spatial 

resolution [22]. Our segmentation of the organs like the duodenum and small intestine is 

much better than their CT-base segmentation (DSC: 0.80 vs. 0.75 in the duodenum, 0.87 vs. 

0.80 in the small intestine). For the most studied single organ - pancreas, our DSC of 0.88 is 

still on par with recent state-of-the-art deep learning-based segmentation works [45–48].

We believe there is still room to improve in our network, particularly for organs like the 

small intestine and duodenum. First, to strike a good balance between computational 

complexity in 2D and richer geometry context in 3D networks, we will explore the 

hierarchical multi-resolution 3D approach. Second, the current T1-weighted data has poor 

boundary conspicuity in some organs, leading to some uncertainties in expert labeling and 

potentially unstable network performance. Adding other contrast weightings such as T1-

weighted fat phase and T2-weighted images as multi-channel input to a re-configured 

network might further improve the segmentation.

There are some limitations in our work. First, the quantity of image data is limited and 

particularly we had only 20 cases for testing. Further validation with a more large-scale 

cohort dataset would be highly needed. Second, our ground truth was generated by human-

labeling from one reader followed by reediting, if necessary, from a senior reader. Inter- and 

intra-observer variability analyses were not possible, which should be addressed in future 

studies. Additionally, ground truth can be highly improved by, for example, having more 

experienced readers to reach consensus contours. Last, because of constraints by long 

training time, we were not able to perform multiple-folds cross validation experiments. 
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However, as a pilot experiments, our ALAMO has shown promising results despite all the 

limitations and will provide insights into future studies.

5. CONCLUSION

The proposed ALAMO technique allows for fully automated abdominal MR segmentation 

with high accuracy, and practical memory and computation time demands. This is an 

important first step to incorporate MRI-based simulation and daily MRI-based adaptive 

treatment planning in radiotherapy.
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Figure 1. 
Network structure: (a) The overall U-net structure with two convolution block options: (b) 

Plain Connected Block in PlainUnet or (c) Densely Connected Block in DenseUnet. In 

DenseUnet, the filter number (growth-rate) k=48; in the PlainUnet setting, the filter number 

starts at f=64 and doubles after pooling. Stem input is a single 3×3 convolutional layer with 

2k or f filters. Normalizations are applied before the Exponential Linear Units (ELU) and 

3×3 convolutional layers. 2×2 average pooling is used in the Transition Down, and a 

transposed-convolutional layer with 2×2 kernel and stride size of 2 is applied in the 

Transition Up. A 1×1 convolutional layer and softmax activation output the predictions for 

11 classes (background + 10 organs). At each resolution, the auxiliary prediction is used for 

deeply supervised training.
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Figure 2. 
An example of the probability maps from three different view inferences. We fused three 

probability maps into one final segmentation result by the majority voting strategy.
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Figure 3. 
Segmentation results on a random test case with manual label, PlainUnet (f=96), single-view 

(transversal) version of DenseUnet, and multi-view inference with majority voting: 

liver(red), spleen(gray), pancreas(green), right kidney(blue), left kidney(yellow), 

stomach(cyan), duodenum(purple), small intestine(white), spinal cord (blue) and vertebral 

bodies (dark brown). The first row shows the overall segmentation results, while the 2nd and 

3rd row show the zoom-in view of small intestine and pancreas and duodenum in better 

angels. The multi-view inference correctly segments the small intestine that is missed in 

single-view inference, as pointed by the blue arrow. Additionally, it produces a more 

accurate boundary of the pancreas and duodenum, as pointed by the white arrow. Both 

proposed DenseUnets provide better segmentation quality than the popular PlainUnet.
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Figure 4. 
Per-organ Dice similarity coefficient and mean surface distance box plot in test set (n=20) 

for PlainUnet (f=64), Single-View DenseUnet (k=48) and Multi-View Inference DenseUnet 

(k=48).
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Table 1.

(a) Dice Similarity Coefficient (DSC) and (b) Mean Surface Distance (MSD) between different network sizes 

of DenseUnet and PlainUnet on the test set. K is the growth rate of Densely Connected Block in DenseUnet, 

and f is the filter number of the first layer in PlainUnet. DenseUnet (k=32) runs faster than 100× larger 

PlainUnet (f=64) but still has comparable performance, showing the advanced densely connections help in 

overall performance. DenseUnet (k=48) gains the best performance while still maintains a fast run time. Best 

performances are highlighted in bold.

(a)

DenseUnet

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small 
Intestine

Spinal 
Cord

Vertebral 
Body

Spleen Mean Parameter 
Number

Runtime(s)

k24 0.956±0.013 0.791±0.082 0.947±0.006 0.941±0.013 0.868±0.048 0.686±0.083 0.780±0.135 0.873±0.028 0.834±0.037 0.931±0.030 0.861±0.084 1.55M 13.179

k32 0.955±0.011 0.772±0.107 0.939±0.012 0.941±0.011 0.871±0.052 0.696±0.093 0.789±0.105 0.884±0.019 0.887±0.018 0.936±0.021 0.867±0.083 2.74M 13.977

k48 0.960±0.009 0.828±0.074 0.940±0.009 0.951±0.008 0.889±0.046 0.732±0.076 0.790±0.103 0.866±0.028 0.889±0.017 0.934±0.018 0.878±0.071 6.12M 18.052

k64 0.959±0.012 0.799±0.086 0.952±0.008 0.950±0.009 0.889±0.046 0.708±0.091 0.796±0.107 0.886±0.024 0.882±0.026 0.929±0.025 0.875±0.079 10.83M 21.040

PlainUnet

f64 0.957±0.012 0.740±0.131 0.943±0.010 0.943±0.012 0.870±0.045 0.695±0.075 0.792±0.098 0.888±0.024 0.884±0.016 0.908±0.037 0.862±0.086 229M 15.903

f80 0.953±0.013 0.774±0.106 0.945±0.007 0.943±0.013 0.851±0.055 0.711±0.072 0.765±0.106 0.853±0.028 0.875±0.025 0.901±0.043 0.857±0.080 358M 30.623

f96 0.953±0.009 0.793±0.073 0.938±0.016 0.933±0.023 0.861±0.051 0.717±0.077 0.766±0.132 0.876±0.020 0.884±0.017 0.927±0.025 0.865±0.077 515M 38.859

(b)

DenseUnet

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small 
Intestine

Spinal 
Cord

Vertebral 
Body

Spleen Mean Parameter 
Number

Runtime 
(s)

k24 1.329±0.433 2.750±1.319 0.800±0.181 0.973±0.578 3.326±1.546 4.315±1.457 4.177±3.421 0.795±0.143 1.655±0.359 1.273±0.842 2.139±1.314 1.55M 13.179

k32 1.266±0.233 3.006±1.805 1.398±0.999 1.379±0.972 2.481±1.603 4.249±2.043 4.871±3.331 1.350±1.049 1.026±0.148 1.578±1.117 2.260±1.292 2.74M 13.977

k48 1.188±0.269 2.270±1.167 1.212±0.893 0.934±0.493 2.732±1.241 2.931±1.295 5.081±3.932 0.875±0.219 1.097±0.200 1.180±0.632 1.950±1.269 6.12M 18.052

k64 1.218±0.367 3.324±2.849 0.738±0.165 0.743±0.205 2.367±0.976 4.275±1.832 4.604±3.441 0.738±0.110 1.461±1.523 1.433±0.978 2.090±1.405 10.83M 21.040

PlainUnet

f64 1.318±0.367 2.664±1.395 1.212±0.796 1.121±0.669 2.799±1.100 4.352±2.010 4.760±2.888 0.811±0.264 1.089±0.219 1.666±1.042 2.179±1.346 229M 15.903

f80 1.459±0.376 2.603±1.201 1.069±0.584 1.332±0.962 3.070±1.225 3.708±1.607 5.161±3.245 0.977±0.184 1.257±0.271 2.041±1.487 2.268±1.300 358M 30.623

f96 1.470±0.283 2.792±1.307 2.576±1.865 1.822±1.263 3.130±0.941 4.332±1.767 5.122±4.012 1.211±0.488 1.743±1.340 1.667±0.859 2.586±1.228 515M 38.859
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Table 2.

(a) Dice Similarity Coefficient (DSC) and (b) Mean Surface Distance (MSD) (in units of mm) between 

different normalization methods (No Normalization [NoNorm], Batch Normalization [BN] in Train/Test mode, 

Instance Normalization [IN], and Layer Normalization [LN]) in DenseUnet (k=48) on the test set. “*” 

indicates significant difference (p < 0.05/8 = 6.25e-3 considering Bonferroni correction) when comparing each 

of the other scenarios to the NoNorm network. Without normalization, the network not only runs fastest but 

also obtains the best performance. Also, it is worth noting that using the training mode of BN during inference 

obtains a large performance improvement over using the testing mode of BN. We highlight the best 

performances in bold.

(a)

DenseUnet

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small 
Intestine

Spinal 
Cord

Vertebral 
Body

Spleen Mean P-value Runtime 
(s)

NoNorm 0.961±0.008 0.860±0.042 0.954±0.006 0.952±0.009 0.907±0.024 0.766±0.066 0.839±0.085 0.898±0.021 0.886±0.015 0.944±0.013 0.897±0.059 - 8.307

BN_TrainMode 0.960±0.009 0.828±0.074 0.940±0.009 0.951±0.008 0.889±0.046 0.732±0.076 0.790±0.103 0.866±0.028 0.889±0.017 0.934±0.018 0.878±0.071* 5.336e-07 18.052

BN_TestMode 0.957±0.011 0.801±0.105 0.935±0.023 0.923±0.040 0.861±0.059 0.626±0.117 0.734±0.159 0.857±0.042 0.871±0.014 0.883±0.096 0.845±0.096* 1.451e-06 9.703

IN 0.960±0.009 0.826±0.068 0.944±0.007 0.948±0.010 0.888±0.042 0.726±0.078 0.782±0.116 0.851±0.039 0.874±0.028 0.935±0.023 0.874±0.074* 8.155e-06 13.216

LN 0.960±0.011 0.818±0.076 0.950±0.007 0.951±0.007 0.884±0.055 0.704±0.112 0.834±0.071 0.896±0.016 0.898±0.012 0.940±0.013 0.883±0.076* 7.014e-04 13.503

(b)

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small 
Intestine

Spinal 
Cord

Vertebral 
Body

Spleen Mean P-value Runtime 
(s)

NoNorm 1.135±0.204 1.307±0.472 0.693±0.083 0.812±0.377 1.905±0.698 2.189±0.865 2.771±2.608 0.678±0.098 0.994±0.200 1.047±0.436 1.353±0.669 - 8.307

BN_TrainMode 1.188±0.269 2.270±1.167 1.212±0.893 0.934±0.493 2.732±1.241 2.931 
±1.295

5.081±3.932 0.875±0.219 1.097±0.200 1.180±0.632 1.950±1.269* 4.297e-07 18.052

BN_TestMode 1.370±0.290 2.265±1.153 1.006±0.449 1.058±0.572 3.420±2.691 4.192±2.462 3.890±2.526 0.933±0.254 1.211±0.340 2.129±2.216 2.147±1. 
196*

1.951e-07 9.703

IN 1.211±0.263 2.946±1.734 1.262±1.104 1.003±0.586 2.808±1.612 3.773±1.640 5.743±4.552 0.905±0.211 1.656±1.208 1.276±0.788 2.258±1.485* 4.803e-06 13.216

LN 1.179±0.282 1.726±0.841 0.714±0.138 0.808±0.218 2.078±0.882 2.653±1.144 3.476±3.081 0.691±0.140 0.922±0.142 1.259±0.740 1.550±0.886* 2.853e-04 13.503
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Table 3.

(a) Dice Similarity Coefficient (DSC) and (b) Mean Surface Distance (MSD) (in units of mm) for 

progressively adding different training and testing settings: projective deformation (PD), deep-supervised 

training (DS), multi-view training (MTT), and multi-view inference (MTI). “*” indicates significant difference 

(p < 0.05/8 = 6.25e-3 considering Bonferroni correction) when comparing each of the other scenarios to the 

baseline model - the non-normalized DenseUnet (k=48) network. Best performances are highlighted in bold.

(a)

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small 
Intestine

Spinal 
Cord

Vertebral 
Body

Spleen Mean P-value Time 
(s)

Baseline 0.961±0.008 0.860±0.042 0.954±0.006 0.952±0.009 0.907±0.024 0.766±0.066 0.839±0.085 0.898±0.021 0.886±0.015 0.944±0.013 0.897±0.059 - 8.31

+PD 0.962±0.008 0.864±0.034 0.953±0.007 0.952±0.007 0.913±0.027 0.775±0.055 0.846±0.091 0.898±0.024 0.895±0.016 0.944±0.011 0.900±0.056 7.377e-02 8.37

+PD
+DS

0.960±0.010 0.869±0.038 0.953±0.007 0.952±0.008 0.916±0.019 0.771±0.074 0.850±0.077 0.897±0.022 0.893±0.014 0.945±0.013 0.901±0.056 1.811e-02 8.32

+PD
+DS 

+MTT

0.961±0.011 0.870±0.042 0.954±0.007 0.954±0.009 0.913±0.022 0.782±0.069 0.860±0.063 0.895±0.017 0.895±0.011 0.945±0.014 0.903±0.053* 4.604e-03 8.33

+PD
+DS 

+MTT
+MTI

0.963±0.010 0.880±0.035 0.954±0.007 0.954±0.008 0.923±0.020 0.801±0.065 0.870±0.060 0.904±0.014 0.900±0.010 0.946±0.013 0.909±0.048* 7.801e-06 12.25

(b)

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small 
Intestine

Spinal 
Cord

Vertebral 
Body

Spleen Mean P-value Time 
(s)

Baseline 1.135±0.204 1.307±0.472 0.693±0.083 0.812±0.377 1.905±0.698 2.189±0.865 2.771±2.608 0.678±0.098 0.994±0.200 1.047±0.436 1.353±0.669 - 8.31

+PD 1.117±0.248 1.215±0.303 0.685±0.118 0.693±0.137 1.736±0.590 2.128±0.759 2.593±2.942 0.663±0.102 0.938±0.196 1.063±0.645 1.283±0.627 6.927e-02 8.37

+PD
+DS

1.194±0.296 1.169±0.368 0.681±0.103 0.734±0.180 1.618±0.429 2.262±1.007 2.744±2.860 0.667±0.088 0.948±0.119 1.221±0.869 1.324±0.661 1.654e-02 8.32

+PD
+DS 

+MTT

1.137±0.303 1.167±0.363 0.657±0.084 0.655±0.094 1.618±0.505 2.254±0.924 1.959±1.709 0.675±0.076 0.939±0.106 1.027±0.505 1.209±0.532* 2.939e-03 8.33

+PD
+DS 

+MTT
+MTI

1.072±0.268 1.027±0.273 0.655±0.087 0.645±0.090 1.338±0.308 1.831±0.873 1.960±2.671 0.630±0.070 0.892±0.098 0.941±0.321 1.099±0.451* 2.493e-06 12.25
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Table 4.

(a) Dice Similarity Coefficient (DSC) and (b) Mean Surface Distance (MSD) (in units of mm) of a different 

number of 2D stacked slice as input to the 2D DenseUnet. “*” indicates significant difference (p < 0.05/4 

=1.25e-2 considering Bonferroni correction) when comparing each of the other scenarios to the 20-slice 

setting. Multiple-slice input consistently provides better performance than single slice input; however, adding 

more slices does not significantly improve the results under the current network setting.

(a) Dice similarity coefficient (DSC)

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small 
Intestine

Spinal 
Cord

Vertebral
Body

Spleen Mean P-value

Single 
Slice

0.963±0.012 0.871±0.038 0.953±0.007 0.955±0.008 0.920±0.021 0.771±0.051 0.870±0.066 0.902±0.017 0.898±0.014 0.941±0.019 0.904±0.055* 1.638e-04

20 
Slices

0.963±0.010 0.880±0.035 0.954±0.007 0.954±0.008 0.923±0.020 0.801±0.065 0.870±0.060 0.904±0.014 0.900±0.010 0.946±0.013 0.909±0.048 -

40 
Slices

0.964±0.009 0.871±0.041 0.953±0.008 0.955±0.008 0.921±0.021 0.788±0.074 0.873±0.062 0.904±0.018 0.899±0.011 0.943±0.022 0.907±0.051 2.678e-02

(b) Mean surface Distance (MSD)

Liver Pancreas Right 
Kidney

Left 
Kidney

Stomach Duodenum Small
Intestine

Spinal 
Cord

Vertebral 
Body

Spleen Mean P-value

Single 
Slice

1.073±0.343 1.140±0.415 0.685±0.091 0.635±0.092 1.403±0.310 1.948±0.902 2.140±2.506 0.637±0.081 0.903±0.117 1.926±3.119 1.249±0.547* 1.632e-04

20 
Slices

1.072±0.268 1.027±0.273 0.655±0.087 0.645±0.090 1.338±0.308 1.831±0.873 1.960±2.671 0.630±0.070 0.892±0.098 0.941±0.321 1.099±0.451 0.909±0.048

40 
Slices

1.032±0.226 1.099±0.338 0.669±0.092 0.641±0.085 1.390±0.300 1.935±0.915 1.840±2.472 0.636±0.088 0.917±0.117 0.984±0.468 1. 114±0.446 3.014e-02
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Table 5.

Quantitative numbers of Dice Similarity Coefficient (DSC), Jaccard Index (Jacc), Mean Surface Distance 

(MSD), and 95 Hausdorff Distance (95HD) of our final ALAMO model (a) vs. best PlainUnet (b) (f=96) on 

the test set (n=20). “*” indicates a significant difference (p < 0.05/4 =1.25e-2 considering Bonferroni 

correction) when comparing the two models

(a) Proposed DenseUnet

Liver Pancreas Right Kidney Left Kidney Stomach Duodenum Small 
Intestine

Spinal Cord Vertebral 
Body

Spleen Mean P-value

DSC 0.963±0.010 0.880±0.035 0.954±0.007 0.954±0.008 0.923±0.020 0.801±0.065 0.870±0.060 0.904±0.014 0.900±0.010 0.946±0.013 0.909±0.048

Jacc 0.929±0.018 0.787±0.054 0.912±0.013 0.913±0.015 0.858±0.034 0.672±0.087 0.775±0.091 0.825±0.024 0.818±0.016 0.898±0.024 0.839±0.076

MSD 1.072±0.268 1.027±0.273 0.655±0.087 0.645±0.090 1.338±0.308 1.831±0.873 1.960±2.671 0.630±0.070 0.892±0.098 0.941±0.321 1.099±0.451

95HD 3.035±0.916 3.235±1.859 1.791±0.332 1.760±0.275 4.079±1.374 8.225±5.784 9.092±16.361 1.473±0.254 2.444±0.281 2.267±0.654 3.740±2.576

(b) PlainUnet (f=96)

Liver Pancreas Right Kidney Left Kidney Stomach Duodenum Small 
Intestine

Spinal Cord Vertebral 
Body

Spleen Mean P-value

DSC 0.953±0.009 0.793±0.073 0.938±0.016 0.933±0.023 0.861±0.051 0.717±0.077 0.766±0.132 0.876±0.020 0.884±0.017 0.927±0.025 0.865±0.077* 2.297e-09

Jacc 0.911±0.016* 0.663±0.099* 0.883±0.028* 0.875±0.039* 0.760±0.076* 0.564±0.093* 0.636±0.154* 0.780±0.032* 0.792±0.027* 0.865±0.042* 0.773±0.112* 1.150e-10

MSD 1.470±0.283 2.792±1.307 2.576±1.865 1.822±1.263 3.130±0.941 4.332±1.767 5.122±4.012 1.211±0.488 1.743±1.340 1.667±0.859 2.586±1.228* 5.413e-09

95HD 4.054±1.020 10.632±6.746 11.841±15.260 6.282±8.723 11.203±5.735 18.540±9.063 27.558±25.731 2.029±0.374 6.639±17.105 4.296±4.685 10.308±7.362* 6.739e-06
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