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Abstract

Background

Biological age may be estimated by proteomic aging clocks (PACs). Previous published

PACs were constructed either in smaller studies or mainly in white individuals, and they

used proteomic measures from only one-time point. In this study, we created de novo PACs

and compared their performance to published PACs at 2 different time points in the Athero-

sclerosis Risk in Communities (ARIC) study of white and black participants (around 75%

white and 25% black).

Medthods and findings

A total of 4,712 plasma proteins were measured using SomaScan in blood samples col-

lected in 1990 to 1992 from 11,761 midlife participants (aged 46 to 70 years) and in 2011 to

2013 from 5,183 late-life participants (aged 66 to 90 years). The de novo ARIC PACs were
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constructed by training them against chronological age using elastic net regression in two-

thirds of healthy participants in midlife and late life and validated in the remaining one-third

of healthy participants at the corresponding time point. We also computed 3 published

PACs. We estimated age acceleration for each PAC as residuals after regressing each PAC

on chronological age. We also calculated the change in age acceleration from midlife to late

life. We examined the associations of age acceleration and change in age acceleration with

mortality through 2019 from all-cause, cardiovascular disease (CVD), cancer, and lower

respiratory disease (LRD) using Cox proportional hazards regression in participants (irre-

spective of health) after excluding the training set. The model was adjusted for chronological

age, smoking, body mass index (BMI), and other confounders. We externally validated the

midlife PAC using the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 1 data. The

ARIC PACs had a slightly stronger correlation with chronological age than published PACs

in healthy participants at each time point. Associations with mortality were similar for the

ARIC PACs and published PACs. For late-life and midlife age acceleration for the ARIC

PACs, respectively, hazard ratios (HRs) per 1 standard deviation were 1.65 and 1.38 (both

p < 0.001) for all-cause mortality, 1.37 and 1.20 (both p < 0.001) for CVD mortality, 1.21 (p =

0.028) and 1.04 (p = 0.280) for cancer mortality, and 1.68 and 1.36 (both p < 0.001) for LRD

mortality. For the change in age acceleration, HRs for all-cause, CVD, and LRD mortality

were comparable to the HRs for late-life age acceleration. The association between the

change in age acceleration and cancer mortality was not significant. The external validation

of the midlife PAC in MESA showed significant associations with mortality, as observed for

midlife participants in ARIC. The main limitation is that our PACs were constructed in midlife

and late-life participants. It is unknown whether these PACs could be applied to young

individuals.

Conclusions

In this longitudinal study, we found that the ARIC PACs and published PACs were similarly

associated with an increased risk of mortality. These findings suggested that PACs show

promise as biomarkers of biological age. PACs may be serve as tools to predict mortality

and evaluate the effect of anti-aging lifestyle and therapeutic interventions.

Author summary

Why was this study done?

• Proteomic aging clocks (PACs), which are protein-based aging measures, may be used

to estimate an individual’s biological age and have been shown to be associated with

mortality and other health conditions. However, previous published PACs were devel-

oped in relatively small studies that mainly included white individuals.

• The aim of this study was to develop new PACs in a large population-based prospective

cohort of white and black participants that have approximately 5,000 proteins measured

in blood samples collected at midlife and late life and to compare the performance of

new and published PACs in midlife and late-life participants.
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What did the researchers do and find?

• We applied machine learning to develop new PACs among a group of healthy partici-

pants at midlife (aged 46 to 70 years) and late life (aged 66 to 90 years) in a prospective

population-based cohort study and validated these clocks in the remaining participants.

• We examined the association between the new PACs and mortality among 8,768 midlife

participants and 4,553 late-life participants irrespective of their health status. We also

examined the association between the change in PACs from midlife to late life and mor-

tality. We found that the midlife PAC and the late-life PAC and the change in PACs

from midlife to late life were associated with increased mortality by 20 to 68 percent.

• We examined whether midlife lifestyle factors and medical conditions were associated

with higher biological age in late life. We found that smoking, and having high BMI,

diabetes, hypertension, cardiovascular disease (CVD), and lower eGFR in midlife were

associated with a higher biological age in late life.

What do these findings mean?

• These findings suggest that PACs show promise as a biomarker of biological age. PACs

could be applied in clinical trials that evaluate the effect of anti-aging lifestyle and thera-

peutic interventions.

• The notable contribution of modifiable risk factors, such as smoking and BMI, and car-

diometabolic disorders to biological aging as identified by this study, may help to further

inform public policies targeted at prevention.

• The limitation of this study is that our PACs were created in midlife and late-life partici-

pants. It is unknown whether these PACs could be applied to young individuals.

Introduction

An individual’s extent of aging, i.e., how far an individual is into the aging process, cannot be

sufficiently measured by chronological age as individuals develop physiological dysregulations

at different chronological ages [1,2]. To better understand the extent of aging, researchers

introduced a term called “biological age” to capture how far individuals are into their aging

process. Biological age, according to the definition proposed by Baker and Sprott, is character-

ized by the “biological parameter[s] of an organism, either alone or in some multivariate com-

posite that will, in the absence of disease, better predict functional capability at some late age

than will chronological age” [3].

To estimate a person’s biological age, researchers have developed metrics called aging

clocks using epigenetic, transcriptomic, metabolomic, proteomic, and other biomarkers [4].

Aging clocks are strongly correlated with chronological age in healthy individuals. However,

in individuals with comorbidities or predisposing conditions, aging clocks deviate from chro-

nological age because these conditions impact levels of age-associated biomarkers [5,6].
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Studies show that aging clocks may be used to identify individuals who have a positive devia-

tion of biological age from their chronological age (called age acceleration) that may predict

their future risk of age-related conditions [5–7]. In addition, aging clocks may also track the

effectiveness of anti-aging interventions in clinical trials [5,8–10].

The most studied aging clocks are epigenetic clocks, such as Horvath clock, Hannum clock,

DNAm PhenoAge, and GrimAge [11–14]. However, there is a lack of understanding of the

underlying mechanisms of aging-related changes in DNA methylation sites. It remains unclear

what aspects of aging those clocks reflect [15]. Recently, new assays, such as the SomaScan

assay—a modified aptamer-based technology [16–18]—that measure thousands of proteins in

a small blood sample simultaneously have been developed. These assays make it possible to

construct proteomic aging clocks (PACs) [5–7,19]. The strength of PACs is that they include

proteomic-based biomarkers, an intermediate phenotype that is most proximal to age-related

diseases, and thus may provide more accurate information on aging and age-related patholo-

gies [5,20]. Importantly, proteins serve as a target in 96% of FDA-approved drugs [21]. There-

fore, in addition to predicting biological age and risk of diseases, proteins comprising PACs, if

causal, hold promise as targets of anti-aging drugs. Targeting age-related processes or patho-

logical manifestations instead of a single disease is advantageous as this approach may simulta-

neously reduce the development of multiple age-related diseases and potentially prolong

health span.

Several PACs have been developed using SomaScan assays, such as the PACs created by

Lehallier [2020] (N = 3,301, aged 18 to 76 years) [6], Tanaka [2018] (N = 240, aged 22 to 93

years) [5], and Sathyan [2020] (N = 1,025, aged 65 to 95 years) [19]. The descriptions of those

published PACs, including the number of proteins used to construct those PACs, are pre-

sented in S1 Table. Although those published PACs showed high correlations with chronolog-

ical age, they were developed either in relatively small studies or in studies included

individuals of European descent [5,6,19,22]. However, proteins associated with age and age-

related diseases vary by race and socioeconomic status [23–25]. Moreover, previously pub-

lished PACs were constructed using a one-time measure. Thus, it is necessary to develop PACs

in a large longitudinal study of diverse individuals and examine if the change in PACs over

time is associated with mortality independent of chronological age, smoking, and other life-

style and behavioral factors.

In this study, we developed new PACs in participants followed from midlife and late life

and examined their associations with mortality within a large population-based prospective

cohort of white and black, men and women, in the Atherosclerosis Risk in Communities

(ARIC) study. In ARIC, about 5,000 plasma proteins were measured using the SomaScan assay

(v4.0) from plasma samples collected at 2 different times (20 years apart). We aimed to com-

pare the midlife and late-life ARIC PACs developed in healthy participants (without major

age-associated diseases) with the published Lehallier’s, Tanaka’s, and Sathyan’s PACs. We

compared their correlations with chronological age and their associations with mortality from

all-cause, cardiovascular disease (CVD), cancer, and lower respiratory disease (LRD). In addi-

tion, using protein data measured at 2 different time points, we examined whether the change

in PACs from midlife to late life was associated with premature mortality. We also validated

the midlife ARIC PAC in the Multi-Ethnic Study of Atherosclerosis (MESA) study by examing

its correlation with chronological age and its association with mortality.
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Methods

Study population

This study included white and black, men and women, participants of the ongoing ARIC

study (RRID: SCR_021769), which was initiated in 1987 [26,27]. At Visit 1 (1987 to 1989),

15,792 volunteers aged 45 to 64 years were recruited from 4 US study centers, Washington

County, Maryland; suburban Minneapolis, Minnesota; Jackson, Mississippi; and Forsyth

County, North Carolina. Participants in the Minnesota and Maryland centers were primarily

white and the recruitment in Mississippi was restricted to black residents. ARIC was approved

by institutional review boards at each participating center and all study participants provided

written informed consent. To date, 10 visits have been completed [26]. ARIC participants have

received follow-up telephone calls annually from 1987 to 2012 and semi-annually after 2012,

with response rates of 83% to 99% for the follow-up calls among living participants who have

not withdrawn consent to be contacted [27]. There is also continuous surveillance of local hos-

pitals and linkage to the National Death Index (NDI).

Plasma collection

In this study, we used plasma samples collected at Visit 2 (1990 to 1992) from 11,761 partici-

pants aged 46 to 70 years (midlife) and at Visit 5 (2011 to 2013) from 5,183 participants aged

66 to 90 years (late life). The blood sample collection, processing, and storage in ARIC was

designed to minimize the spontaneous biochemical reactions after blood collection and is con-

sistent with the recommended practice for proteomics data analysis in epidemiological studies

[16,28,29]. After venipuncture, blood samples were put immediately in an ice water bath. Cen-

trifugation was performed within 10 min after venipuncture at room temperature (15 to

25˚C). After centrifugation, the aliquots were stored at −80˚C within 90 min from venipunc-

ture and were unthawed before this analysis.

Protein measurement and quality control

Plasma samples were analyzed using a SOMAmer (Slow Off-rate Modified Aptamers) based

capture array called SomaScan by Somalogic (Boulder, Colorado, United States of America)

[18,30–32]. The SomaScan platform uses single-stranded modified DNA-based aptamers to

capture conformational protein epitopes. The description of the SomaScan assay and the data

normalization process have been described previously [16,17,32].

Among the 5,284 available aptamers, we excluded aptamers with a Bland–Altman coeffi-

cient of variation (CVBA) greater than 50% or a variance of less than 0.01 on the log scale, or

binding to mouse Fc-fusion, contaminants, or non-proteins [33]. After the exclusion, 4,955

aptamers were included (at Visit 2 and Visit 5) which corresponded to 4,712 proteins. About

5% of proteins had more than 1 aptamer binding to the same protein. Each aptamer was

treated as a variable in the construction of PACs. The CVBA for split samples was 6% at Visit 2

and 7% at Visit 5. Protein measures, reported as relative fluorescent units (RFUs), were log2--

transformed to correct for skewness.

Identifying healthy participants

In this study, we created the midlife (Visit 2) and late-life (Visit 5) ARIC PACs in “healthy par-

ticipants” defined as participants without major age-associated diseases that are linked to pre-

mature mortality. Specifically, abnormal kidney function (i.e., estimated glomerular filtration

rate (eGFR) less than 60 mL/min/1.73 m2), cancer, chronic obstructive pulmonary disease

(COPD), CVD (heart failure, definite or probable stroke, or coronary heart disease [34,35]),
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diabetes, and hypertension. The definitions and assessments of these major diseases in ARIC

and the detailed process of identifying healthy participants are described in S1 Appendix. We

identified 4,489 midlife healthy participants at Visit 2 (38.2% of all Visit 2 participants, Fig 1)

and 945 late-life healthy participants at Visit 5 (18.2% of all Visit 5 participants, Fig 2).

Assessment of mortality and other characteristics of interest

Deaths were ascertained through annual (semi-annual since 2012) follow-up telephone calls to

participants or their proxies, surveillance of local hospitals, state records, and linkage to NDI

through December 31, 2017 for participants in Mississippi or through December 31, 2019 for

participants in other centers [36]. All-cause mortality was defined as death resulting from any

cause. CVD mortality, cancer mortality, and LRD mortality were defined based on the under-

lying cause of death using International Classification of Diseases, Ninth Revision, codes (ICD-

9 codes) 390–459 or International Classification of Diseases, Tenth Revision, codes (ICD-10

codes) I00–I99 for CVD deaths, ICD-9 codes 140–239 or ICD-10 codes C00-C97 for cancer

deaths, and ICD-9 codes 466 and 480–519 or ICD-10 codes J10-J98 for LRD deaths.

Other characteristics of interest included demographic and lifestyle characteristics, and

medical conditions. Namely chronological age, sex, race, study center, education, smoking sta-

tus, pack-years of smoking, alcohol intake, body mass index (BMI), physical activity, aspirin

use, hormone replacement therapy (HRT) in females (only at Visit 2; this variable is not avail-

able at Visit 5), diabetes, hypertension, CVD, and eGFR [26]. Education attainment was col-

lected at Visit 1. Physical activity was collected at Visit 1 (1987 to 1989) (used as physical

activity at Visit 2 (1990 to 1992) in this study) and Visit 5. The other variables listed above

were collected at both Visit 2 and Visit 5. Detailed procedures for assessing these characteris-

tics are described in S1 Appendix.

The MESA study

The MESA study is a prospective cohort of white, black, Hispanic, and Chinese participants. At

Exam 1 (2000 to 2002), 6,814 participants aged 45 to 84 years were recruited from 6 field centers:

Fig 1. Study population at Visit 2 (1990–1992; midlife, aged 46–70 years); ARIC. The midlife ARIC PAC was

constructed in a group of health participants in the training set and its asssociation with mortality was examined in all

remaining pariticpants irrespective of health. ARIC, Atherosclerosis Risk in Communities; PAC, proteomic aging

clock.

https://doi.org/10.1371/journal.pmed.1004464.g001
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Baltimore, Maryland; Chicago, Illinois; Forsyth County, North Carolina; Los Angeles, Califor-

nia; New York, New York; and Minneapolis, Minnesota. Each field center recruited approxi-

mately equal numbers of females and males from 2 or more of the racial/ethnic groups [37].

Details of the MESA study are available at the MESA website (https://www.mesa-nhlbi.org).

MESA has measured around 7,000 proteins using the SomaScan assay (v4.1), which

includes all the proteins from the SomaScan assay (v4.0) used in ARIC, from the blood samples

collected at Exam 1. Participants have been followed for up to 18 years with systematic ascer-

tainment and adjudication of mortality. Deaths from CVD, cancer, and LRD were classified

according to the underlying cause (ICD-10). Institutional review boards approved the study at

each field center, and all participants provided written informed consent [37].

Statistical analysis

Development of PACs. To construct ARIC PACs in midlife (Visit 2) and late life (Visit

5), we randomly selected two-thirds of healthy participants at each visit and used them as the

training set at the corresponding visit. The remaining one-third of healthy participants were

used as the test set (Figs 1 and 2). We utilized the training set to train PACs against chronologi-

cal age and obtain the appropriate hyperparameter values and weight for each aptamer:

chronological age ¼ b0 þ
Pn

i¼1
bi � aptameri, where aptameri is the level of the ith aptamer.

We used the test set to examine the Pearson correlation (r) between PAC and chronological

age and median absolute error (MAE) to validate each PAC.

Construction of midlife PACs in the Visit 2 training set. Using the Visit 2 training set,

following the methodology used in the previous studies [5,11,19], we constructed the midlife

ARIC PAC using elastic net regression (alpha = 0.5) and with log2-transformed proteins. We

also developed several PACs using other alpha values, and all these PACs were highly corre-

lated with each other and with the midlife ARIC PAC (r> 0.94). We finally chose an alpha

value of 0.5 because this value was used in all the previous studies. Following the methodology

used in previous studies, lambda value was selected based on 10-fold cross-validation in the

training set. We chose elastic net regression because it combines the penalties from both Lasso

Fig 2. Study population at Visit 5 (2011–2013; late life, aged 66–90 years); ARIC. The late-life ARIC PAC was

constructed in a group of health participants in the training set and its asssociation with mortality was examined in all

remaining pariticpants irrespective of health. ARIC, Atherosclerosis Risk in Communities; PAC, proteomic aging

clock.

https://doi.org/10.1371/journal.pmed.1004464.g002
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and Ridge regressions, and most previous aging clocks, including PACs and epigenetic clocks,

were constructed using elastic net regression. Using the Visit 2 proteomics data, we also

trained 4 other midlife PACs by applying different penalized regression methods and various

protein transformations (described in S2 Table). For instance, one of the created PACs

accounted for the potential nonlinear associations between proteins and chronological age by

including both the square and cubic terms of each aptamer. Those 4 PACs were strongly corre-

lated (r� 0.97) with the midlife ARIC PAC that was constructed using the simplest protein

transformation (S3 Table). Therefore, the simplest ARIC PAC was used for further

investigation.

In addition to the midlife ARIC PAC, we also computed 3 published PACs in midlife:

Lehallier’s [6], Tanaka’s [5], and Sathyan’s PACs [19]. In our study, we computed Sathyan’s

PAC (a published PAC developed using the same panel of SomaScan assay as in ARIC) using

the published weights. For Lehallier’s and Tanaka’s PACs, we had to estimate ARIC weights

specific to these PACs because ARIC did not include all the aptamers reported in these PACs

and the use of published weights is not suitable in such case (S1 Table). To estimate ARIC

weights, in the training set, we applied Ridge regression to train the available aptamers in

ARIC against chronological age. The lambda value for Ridge regression was selected based on

10-fold cross-validation in the traning set. We conducted a sensitivity analysis to test whether

using Ridge regression to compute published PACs influences the performance of those PACs

by applying 2 approaches to compute Sathyan’s PAC. In the first approach, we computed Sath-

yan’s PAC using the published weights. In the second approach, we estimated ARIC weights

for Sathyan’s PAC by applying Ridge regression. We found that Sathyan’s PAC computed

using these 2 approaches showed the same associations with mortality. Therefore, we conclude

that using Ridge regression to compute published PACs does not influence the performance of

PACs.

Construction of late-life PACs in the Visit 5 training set. Because hypertension is one of

the most common conditions in older persons in the United States [38], to construct the late-

life ARIC PAC, we additionally included participants with controlled hypertension as healthy

participants. Controlled hypertension was defined as the measured diastolic blood pressure

being below 90 and the measured systolic blood pressure being below 140 while the participant

is on medication [39]. Adding these participants increased the number of healthy participants

by 95% (462 participants) but did not change the PAC’s performance as shown in S4 Table.

Using the Visit 5 training set, we constructed the late-life ARIC PAC using elastic net

regression, the same approach as for the midlife ARIC PAC. In addition to the late-life ARIC

PAC, we computed the late-life Lehallier’s and Tanaka’s PACs using ARIC weights estimated

using the Visit 5 training set by applying Ridge regression as discussed above and we computed

the Sathyan’s PAC using the published weights.

Internal validation of PACs and examining associations with mortality. In the remain-

ing 8,768 participants (including the healthy participants in the test set and participants with

any major diseases or health conditions) at Visit 2 (Fig 1) and 4,553 participants at Visit 5 (Fig

2) after excluding the training set, we computed PACs at the corresponding visit as the

weighted sum of proteins determined in the training set. We internally validated each PAC in

the test set of healthy participants at the corresponding visits by computing the Pearson corre-

lation between PAC and chronological age at that visit and MAE.

In all the remaining participants at each visit, to capture the PACs’ effects independent of

chronological age, we created age acceleration for each PAC as residuals after regressing PAC

on chronological age [40]. Demographic and lifestyle characteristics, and medical conditions

were examined across quartiles of age acceleration as mean (SD) or percentage (%). To further

investigate PACs, we examined the associations between PACs and mortality. We used Cox
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proportional hazards regression to calculate hazard ratios (HRs) and 95% confidence intervals

(CIs) for mortality from all-cause, CVD, cancer, and LRD with age acceleration. For the associ-

ations with CVD mortality, cancer mortality, and LRD mortality, deaths from other causes

were treated as competing events using the Fine and Gray method [41,42]. We modeled age

acceleration as a continuous variable because there was no evidence of nonlinearity observed

when we applied cubic splines. For each participant, the total person-years were determined

from the date of blood collection (at Visit 2 or Visit 5, depending on the analysis) until death,

censoring, or the end of follow-up (either December 31, 2017 for participants from Mississippi

or December 31, 2019 for participants from other centers), whichever occurred first. The pro-

portional hazards assumption, examined by the graphical methods using log-log survival

curves with age acceleration dichotomized at the median, was not violated in any regression

models. The model was adjusted for chronological age, sex, joint terms for race and study cen-

ter (black participants from Mississippi; black participants from any other centers; white par-

ticipants from Maryland; white participants from North Carolina; and white participants from

Minnesota), education, BMI, smoking status, pack-years of smoking, alcohol intake, physical

activity, HRT (at Visit 2 only), diabetes, hypertension, CVD, and eGFR (fully adjusted model).

These variables were associated with either age acceleration or risk of mortality. To confirm

these variables as potential confounders, we computed the magnitude of R squared by regress-

ing age acceleration for both the midlife and late-life ARIC PACs on these variables at the cor-

responding visits in the model adjusted for chronological age (S5 Table). We did not adjust for

aspirin use because aspirin use had no association with midlife or late-life age acceleration for

the ARIC PACs and aspirin use explained <0.0015 of variance in both midlife and late-life age

acceleration (S5 Table). In this study, we found that HRs (95% CIs) for mortality were the

same in the age-adjusted and fully adjusted models. Thus, we reported results for the fully

adjusted model.

We also examined whether the change in age acceleration from midlife (Visit 2) to late life

(Visit 5), computed as the age acceleration for the late-life ARIC PAC minus the age accelera-

tion for the midlife ARIC PAC, was associated with mortality using Cox proportional hazard

regression. For each participant, the total person-years was determined from Visit 5 date until

death, censoring, or the end of follow-up. For this analysis, we additionally adjusted for midlife

age acceleration. Also, we examined whether the associations with mortality were modified by

midlife age acceleration (continuous variable) using a multiplicative term between the change

in age acceleration and midlife age acceleration. For the change in age acceleration, we only

examined the change based on the ARIC PACs because the ARIC PACs and published PACs

showed similar associations with all mortality types at each visit.

In addition to studying the associations with mortality, we examined if midlife lifestyle

characteristics and medical conditions (Visit 2) were associated with late-life age acceleration

(Visit 5). This analysis was conducted using multivariable linear regression and midlife partici-

pants’ lifestyle characteristics and medical conditions including: chronological age, sex, race,

education, BMI, smoking status, pack-years of smoking, alcohol intake, physical activity (at

Visit 1), HRT use, diabetes, hypertension, CVD, and eGFR were included into the model

simultaneously.

We did a sensitive analysis to test whether the exclusion of the training set influenced the

associations between PACs and mortality because the distribution of outcome was slightly

changed after excluding the training set. We examined this by comparing the associations

between age acceleration for Sathyan’s PAC and mortaliy in all participants and in participants

after excluding the training set. We used Sathyan’s PAC rather than other published PACs

because all the proteins reported in Sathyan’s PAC were measured in ARIC and we were able

to calculate Sathyan’s PAC using published weights.

PLOS MEDICINE Development and validation of proteomic aging clocks

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004464 September 24, 2024 9 / 27

https://doi.org/10.1371/journal.pmed.1004464


We also examined whether sex, race, or chronological age (in tertiles) modified the associa-

tions of age acceleration with all-cause mortality, CVD mortality, and cancer mortality by

including a multiplicative term between age acceleration and the variable of interest in the cor-

responding models. We did not examine LRD mortality due to the limited number of LRD

deaths. Additionally, we examined the association between age acceleration for the midlife

ARIC PAC and the 10-year risk of death as this may be important for clinical screening. We

tested the 10-year risk for midlife PAC only, because the follow-up period starting from late

life was less than 10 years. Here, we examined the midlife ARIC PAC only, because the ARIC

PACs and published PACs showed similar associations with all mortality types. Moreover, we

applied the midlife ARIC PAC to late-life participants and applied the late-life ARIC PAC to

midlife participants and then examined the asosociation with all-cause mortality.

External validation of the midlife ARIC PAC in the MESA study. We applied the mid-

life ARIC PAC to 4,288 participants who had proteomic data and aged 46 to 70 years at Exam

1 and examined the correlation between the midlife ARIC PAC and chronological age. We

then calculated age acceleration for the midlife ARIC PAC and examined the associations of

age acceleration with mortality from all-cause, CVD, cancer, and LRD until 2018. Moreover,

we examined the association with all-cause mortality stratified by race/ethnicity (white, black,

Chinese, and Hispanic). We did not examine the association with CVD, cancer, and LRD mor-

tality stratified by race/ethnicity due to the limited numbers of deaths in Chinese and Hispanic

participants. We adjusted for the same covariates in the model as in ARIC. We did not apply

the late-life ARIC PAC to MESA Exam 1 because the late-life ARIC PAC was developed in a

population on average older than the MESA Exam 1 participants. We also applied Lehallier’s

PAC to MESA participants and examined its association with mortality. We applied only 1

published PAC in MESA because all the published PACs showed similar associations with

mortality in ARIC. We selected Lehallier’s PAC rather than other published PACs because

Lehallier’s PAC showed the highest correlation with chronological age in the published paper

(S1 Table).

In this study, PACs were constructed using R (version 4.1.2, package “glmnet”), and all the

other analyses were performed using SAS 9.4 (RRID: SCR_008567). Statistical significance was

considered if a two-sided p-value <0.05. The formulas (intercept and weights for proteins) for

the PACs used in this study can be found in S2 Appendix.

Results

Midlife PACs. Elastic net regression selected 788 aptamers for the midlife ARIC PAC

(Table 1), and 67% (N = 524) of these 788 patamers were significantly associated (p< 0.050)

with chronological age in a single protein model. In our study, we trained our PACs using elas-

tic net regression that included all 5,000 proteins in one model. It is possible that the signifi-

cance of each individual protein may change after accounting for other proteins included into

the same model. Unfortunately, there is no way to check p-values in elastic net regression as

the model provides only weights for proteins but not p-values, making it difficult to interpret

statistical significance [43]. In the Visit 2 test set, the midlife ARIC PAC was correlated with

chronological age (r = 0.80, MAE = 2.19 years, Table 1 and Fig 3A). Of the 3 midlife published

PACs, Lehallier’s PAC (r = 0.76, p< 0.001, Table 1 and Fig 3B) had a slightly higher correla-

tion with chronological age than Tanaka’s (r = 0.66, p< 0.001) and Sathyan’s PACs (r = 0.58,

p< 0.001) (S6 Table and S1 Fig). The midlife ARIC PAC was strongly correlated with the mid-

life Lehallier’s (r = 0.89, p< 0.001), Tanaka’s (r = 0.77, p< 0.001), and Sathyan’s PACs

(r = 0.71, p< 0.001) (S3 Table).
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After excluding the Visit 2 training set, the remaining 8,768 participants in midlife were on

average 58.1 ± 5.7 years old, 54.6% were female, and 27.1% self-identified as black. Distribu-

tions of midlife characteristics (Visit 2) across quartiles of midlife age acceleration are shown

in Tables 2 and S7. Among the remaining participants in midlife, the range of age acceleration

was from −14.0 to +24.2 years for the midlife ARIC PAC. The distributions of characteristics

including HRT use, CVD, and eGFR were in the same direction across age acceleration for the

midlife ARIC and published PACs (Tables 2 and S7). However, the distributions of sex, race,

education, BMI, current smoking, aspirin use, hypertension, and diabetes were different across

different PACs (Tables 2 and S7). The difference may be because different PACs capture differ-

ent aspects of aging.

Among those 8,768 participants at Visit 2, 5,294 died by 2019 (1,734 died due to CVD,

1,516 died due to cancer, and 522 died due to LRD) with a mean follow-up of 21.42 years

(SD = 8.17, range: 0.01 to 29.90 years). Age acceleration for the midlife ARIC PAC and pub-

lished PACs showed associations of similar magnitude with all mortality types (Tables 3 and

S8). For the midlife ARIC PAC, a one SD (SD = 2.94 years) increase in age acceleration was

associated with a 38% increased risk of all-cause mortality [95% CI: 1.34, 1.42, p< 0.001], a

20% increased risk of CVD mortality [95% CI: 1.14, 1.27, p< 0.001], and a 36% increased risk

of LRD mortality [95% CI: 1.22, 1.51, p< 0.001] (Table 3). Neither age acceleration for the

midlife ARIC PAC nor published PACs was associated with cancer mortality (Table 3).

Late-life PACs. Elastic net regression selected 135 aptamers for the late-life ARIC PAC

(Table 1), and 73% (N = 98) of these 135 aptamers were significantly associated (p< 0.050)

with chronological age in a single protein model. In the Visit 5 test set, the late-life ARIC PAC

was correlated with chronological age (r = 0.71, p< 0.001, MAE = 2.36 years, Table 1 and Fig

4A). The late-life Lehallier’s PAC had a correlation of 0.63 (p< 0.001) with chronological age

Table 1. Pearson correlations between the midlife and late-life ARIC PACs and Lehallier’s PACs and chronologi-

cal age and MAE, ARIC.

The midlife ARIC PAC and Lehallier’s PAC; Visit 2 (N = 2,993 in training set, N = 1,496 in test set)

midlife ARIC PAC midlife Lehallier’s PAC

Number of aptamers in PAC 788 415

Hyperparameter value (lambda) 0.11 1.03

Correlation in the training seta 0.92 (p < 0.001) 0.82 (p< 0.001)

Correlation in the test seta 0.80 (p < 0.001) 0.76 (p< 0.001)

MAE in the training seta 1.50 2.13

MAE in the test seta 2.19 2.39

The late-life ARIC PAC and Lehallier’s PAC; Visit 5 (N = 630 in training set, N = 315 in test set)

late-life ARIC PAC late-life Lehallier’s PAC

Number of aptamers in PAC 135 415

Hyperparameter value (lambda) 0.46 4.42

Correlation in the training seta 0.84 (p < 0.001) 0.84 (p< 0.001)

Correlation in the test seta 0.71 (p < 0.001) 0.63 (p< 0.001)

MAE in the training seta 1.47 1.71

MAE in the test seta 2.36 2.37

aAmong healthy participants at Visit 2 and Visit 5, we randomly selected two-thirds of healthy participants at each

visit and used them as the training set at the corresponding visit; the remaining one-third of healthy participants at

each visit was used as the test set at the corresponding visit.

ARIC, Atherosclerosis Risk in Communities; MAE, median absolute error; PAC, proteomic aging clock.

https://doi.org/10.1371/journal.pmed.1004464.t001

PLOS MEDICINE Development and validation of proteomic aging clocks

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004464 September 24, 2024 11 / 27

https://doi.org/10.1371/journal.pmed.1004464.t001
https://doi.org/10.1371/journal.pmed.1004464


(Table 1 and Fig 4B) and the late-life Tanaka’s and Sathyan’s PACs had correlations of 0.59

(p< 0.001) and 0.70 (p< 0.001) with chronological age, respectively (S6 Table and S2 Fig). In

the Visit 5 test set, the late-life ARIC PAC was strongly correlated with the late-life Lehallier’s

(r = 0.84, p< 0.001), Tanaka’s (r = 0.79, p< 0.001), and Sathyan’s PACs (r = 0.84, p< 0.001)

(S9 Table).

After excluding the Visit 5 training set, the remaining 4,553 participants in late life were on

average 76.5 ± 5.3 years old, 56.3% were female, and 19.7% self-identified as black. Distribution

of late-life characteristics (Visit 5) across quartiles of late-life age acceleration are shown in

Tables 4 and S10. Among the remaining participants in late life, the range of age acceleration

was from −7.5 to +17.0 years for the late-life ARIC PAC. The distributions of characteristics

including having a college-level education, physical activity, CVD, and eGFR were in the same

direction across age acceleration for the late-life ARIC and published PACs (Tables 4 and S10).

However, the percentages of white participants, never smokers, and never drinkers, and having

hypertension and diabetes were different across different PACs (Tables 4 and S10).

Among those 4,553 participants at Visit 5, 1,123 died by 2019 (348 died due to CVD, 278

died due to cancer, and 128 died due to LRD) with a mean follow-up of 6.89 years (SD = 1.78,

range: 0.07 to 8.58 years). Age acceleration for the late-life ARIC PAC and 3 published PACs

were similarly associated with all mortality types (Tables 5 and S11). For the late-life ARIC

PAC, a one SD (SD = 2.61 years) increase in age acceleration was associated with an increased

risk of all-cause mortality [HR (95% CI) = 1.65 (1.52, 1.79), p< 0.001], CVD mortality [HR

(95% CI) = 1.37 (1.18, 1.58), p< 0.001], cancer mortality [HR (95% CI) = 1.21 (1.02, 1.44),

p = 0.028], and LRD mortality [HR (95% CI) = 1.68 (1.32, 2.12), p< 0.001] (Table 5).

Fig 3. Pearson correlation (r) between the midlife ARIC PAC and Lehallier’s PAC and chronological age in the Visit 2 test set of healthy participants. The x-

axis depicts chronological age. The y-axis represents PAC. (A) The midlife ARIC PAC was constructed using healthy participants from ARIC. The correlation

between the midlife ARIC PAC and chronological age was 0.80 (p< 0.001). (B) Lehallier’s PAC was computed using ARIC weights obtained from Ridge regression

based on proteins available in ARIC. The correlation between midlife Lehallier’s PAC and chronological age was 0.76 (p< 0.001). ARIC, Atherosclerosis Risk in

Communities; PAC, proteomic aging clock.

https://doi.org/10.1371/journal.pmed.1004464.g003
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Associations of the change in age acceleration from midlife to late life with mortality.

The median timespan between Visit 2 and Visit 5 was 20.8 years, ranging from 18.6 to 23.5

years. Among the 2,707 participants who survived up to Visit 5 (after excluding the training

sets at Visit 2 and Visit 5), the midlife and late-life ARIC PACs were correlated with each

other (r = 0.69, p < 0.001) and 48.4% of participants had a greater age acceleration in late

life compared to midlife. Among those 2,707 participants, 736 died by 2019 (237 died due to

CVD, 172 died due to cancer, and 94 died due to LRD) with a mean follow-up of 6.72 years

(SD = 1.88, range: 0.07 to 8.58 years). In the fully adjusted model (additionally adjusted for

midlife age acceleration), the change in age acceleration from midlife to late life was

Table 2. Midlife participants’ characteristics across quartiles of age acceleration for the midlife ARIC PAC and Lehallier’s PAC; ARIC.

Midlife ARIC PAC Midlife Lehallier’s PAC

Q1

(N = 2,192)

Q2

(N = 2,192)

Q3

(N = 2,192)

Q4

(N = 2,192)

P-

valuec
Q1

(N = 2,192)

Q2

(N = 2,192)

Q3

(N = 2,192)

Q4

(N = 2,192)

P-

valuec

Age acceleration (min to max),

years

−14.0 to

−1.9

−1.8 to

−0.2

−0.3 to

+1.7

+1.8 to

+24.2

−15.1 to

−2.0

−1.9 to

−0.2

−0.1 to

+1.8

+1.9 to

+26.5

Mean age acceleration, years −3.44 −1.04 0.68 3.79 −3.58 −1.04 0.77 3.84

Chronological age, years (SD) 58.3 (5.8) 57.9 (5.8) 57.8 (5.7) 58.3 (5.6) 0.071 58.2 (5.8) 58.1 (5.8) 58.1 (5.6) 58.1 (5.6) 0.884

Female, % 55.6 51.6 55.4 55.8 0.015 53.2 53.2 55.5 56.5 0.060

White, % 72.8 75.7 75.2 67.9 <0.001 69.8 75.6 74.2 72.2 <0.001

Education, %

Less than high school 21.8 21.8 22.9 30.0 <0.001 22.0 22.9 24.9 26.6 <0.001

High school/vocational 41.1 40.9 43.2 40.6 39.8 42.4 40.9 42.6

College 37.1 37.4 33.9 29.3 38.2 34.6 34.1 30.7

BMI, kg/m2 (SD) 28.2 (5.1) 28.3 (5.1) 28.3 (5.6) 28.6 (6.3) 0.127 28.5 (5.3) 28.4 (5.4) 28.2 (5.5) 28.4 (5.9) 0.579

Smoking status, %

Current smoker 22.3 23.2 22.4 24.2 0.062 21.6 23.3 23.6 23.4 0.055

Former smoker 36.6 38.4 39.1 39.6 36.8 38.3 38.5 39.9

Never smoker 41.1 38.4 38.6 36.2 41.5 38.4 37.8 36.5

Pack-years of smoking among ever

smokers, pack-years (SD)

28.5 (22.8) 30.4 (23.4) 29.9 (22.0) 32.5 (24.1) <0.001 28.4 (22.3) 29.5 (23.1) 30.3 (23.0) 32.9 (23.7) <0.001

Alcohol intake, %

Current drinker 57.4 58.2 54.9 48.3 <0.001 54.8 56.8 55.9 51.2 0.002

Former drinker 21.6 20.9 20.8 26.5 22.7 20.4 21.2 25.3

Never drinker 20.9 20.9 24.3 25.2 22.5 22.6 22.7 23.5

Physical activitya, scores (SD) 2.48 (0.8) 2.45 (0.8) 2.42 (0.8) 2.33 (0.8) <0.001 2.46 (0.8) 2.44 (0.8) 2.41 (0.8) 2.38 (0.8) 0.025

Aspirin use in the preceding 2

weeks, %

51.1 51.2 54.5 52.7 0.075 48.7 53.1 52.4 55.3 <0.001

Ever user of HRT (females only), % 50.2 47.0 41.2 36.3 <0.001 48.8 45.9 42.7 37.3 <0.001

Diabetesb, % 15.1 16.9 20.1 29.2 <0.001 17.0 16.4 20.2 27.8 <0.001

Hypertensionb, % 42.6 46.2 49.4 55.8 <0.001 44.9 48.4 47.4 53.4 <0.001

CVDb, % 11.8 13.9 16.4 21.5 <0.001 11.8 13.7 15.6 22.8 <0.001

eGFR, mL/min/1.73 m2 (SD) 98.0 (11.1) 97.3 (12.6) 96.3 (13.3) 90.9 (19.6) <0.001 97.3 (12.1) 97.2 (12.5) 95.8 (14.1) 92.3 (19.2) <0.001

aPhysical activity at Visit 1 was assessed using a leisure-time sprots index that ranged from 1 to 5. We assumed physcial activity scores were the same at Vist 1 and Visit

2. We reported physical activity scores with 2 decimal places to illustrate the trend more effectively.
bAll diseases are prevalent diseases.
cP-values were calculated using chi-square tests for categorical variables and using ANOVA tests for continuous variables.

ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HRT, hormone

replacement therapy; PAC, proteomic aging clock; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1004464.t002
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associated with all-cause mortality, CVD mortality, and LRD mortality, but not cancer mor-

tality. HRs (95% CIs) per one SD of the change in age acceleration were 1.71 (1.52, 1.94),

p< 0.001 for all-cause mortality, 1.38 (1.13, 1.68), p = 0.001 for CVD mortality, 1.46 (1.05,

2.04), p = 0.025 for LRD mortality, and 1.30 (0.98, 1.71), p = 0.062 for cancer mortality

(Table 5). Midlife age acceleration did not modify the associations between the change in

age acceleration and all-cause mortality (p-interaction for the multiplicative term = 0.264),

Table 3. The associations between age acceleration for the midlife ARIC PAC and Lehallier’s PAC and mortality; ARIC (1990–2019).

No. of participants No. of deaths Total person-years HR (95% CI)a per one SD of age acceleration

Midlife ARIC PAC p-value Midlife Lehallier’s PAC p-value

(SD = 2.94 years) (SD = 3.00 years)

All-cause mortality 8,768 5,294 182,630 1.38 (1.34, 1.42) <0.001 1.34 (1.30, 1.38) <0.001

CVD mortality (Fine and Gray model) 8,768 1,734 182,630 1.20 (1.14, 1.27) <0.001 1.19 (1.13, 1.25) <0.001

Cancer mortality (Fine and Gray model) 8,768 1,516 182,630 1.04 (0.98, 1.10) 0.280 1.05 (0.99, 1.12) 0.260

LRD mortality (Fine and Gray model) 8,768 522 182,630 1.36 (1.22, 1.51) <0.001 1.30 (1.17, 1.45) <0.001

a The model was adjusted for chronological age, sex, joint terms for race and study center (black participants from Mississippi; black participants from any other centers;

white participants from Maryland; white participants from North Carolina; and white participants from Minnesota), education, BMI, smoking status, pack-years of

smoking, alcohol intake, physical activity (at Visit 1), hormone replacement therapy, diabetes, hypertension, CVD, and eGFR at Visit 2.

ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; CI, confidence interval; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate;

HR, hazard ratio; LRD, lower respiratory disease; PAC, proteomic aging clock; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1004464.t003

Fig 4. Pearson correlation (r) between the late-life ARIC PAC and Lehallier’s PAC and chronological age in the Visit 5 test set of healthy participants, ARIC.

The x-axis depicts chronological age. The y-axis represents PAC. (A) The late-life ARIC PAC was constructed using healthy participants from ARIC. The correlation

between the late-life ARIC PAC and chronological age was 0.71 (p< 0.001). (B) Lehallier’s PAC was computed using ARIC weights obtained from Ridge regression

based on proteins available in ARIC. The correlation between late-life Lehallier’s PAC and chronological age was 0.63 (p< 0.001). ARIC, Atherosclerosis Risk in

Communities; PAC, proteomic aging clock.

https://doi.org/10.1371/journal.pmed.1004464.g004
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CVD mortality (p-interaction = 0.644), LRD mortality (p-interaction = 0.256), or cancer

mortality (p-interaction = 0.578).

Association between midlife participants’ characteristics and late-life age accelera-

tion. In the multivariable analysis of midlife participants’ characteristics (Visit 2), we found

that being current smokers, never drinkers, or having diabetes, hypertension, CVD, a higher

BMI, higher pack-years of smoking, lower eGFR or lower physical activity in midlife were

associated with higher late-life age acceleration (Table 6).

Comparison of the associations between age acceleration and mortality in the full

cohort and the cohort subset after excluding the training set. The magnitudes of associa-

tions of age acceleration for Sathyan’s PAC in both midlife and late life with mortality in all

Table 4. Visit 5 participants’ characteristics across quartiles of age acceleration for late-life ARIC PAC and Lehallier’s PAC; ARIC.

Late-life ARIC PAC Late-life Lehallier’s PAC

Q1

(N = 1,138)

Q2

(N = 1,138)

Q3

(N = 1,139)

Q4

(N = 1,138)

P-

valuec
Q1

(N = 1,138)

Q2

(N = 1,138)

Q3

(N = 1,139)

Q4

(N = 1,138) P-

valuec

Age acceleration (min to max), years −7.5 to

−1.8

−1.7 to

−0.2

−0.1 to

+1.4

+1.5 to

+17.0

−9.1 to

−1.8

−1.7 to

−0.2

−0.1 to

+1.5

+1.6 to

+14.4

Mean age acceleration, years −3.03 −0.97 0.59 3.40 −3.03 −0.93 0.62 3.34

Chronological age, years (SD) 76.9 (5.1) 75.9 (5.0) 76.1 (5.3) 76.7 (5.4) <0.001 76.7 (5.2) 76.3 (5.1) 76.0 (5.2) 76.8 (5.5) <0.001

Female, % 57.7 57.5 57.1 52.9 0.061 62.2 59.8 53.9 49.5 <0.001

White, % 75.9 83.0 82.5 79.6 <0.001 78.6 80.5 81.9 80.1 0.251

Education, %

<High school 13.7 11.7 15.2 17.0 0.012 11.3 13.3 14.8 18.2 <0.001

High school/vocational 41.3 44.4 42.1 42.6 41.7 42.8 42.7 43.2

College 44.9 43.8 42.7 40.4 47.0 43.9 42.5 38.6

BMI, kg/m2 (SD) 29.1 (4.9) 28.8 (5.2) 28.6 (5.7) 28.6 (6.7) 0.145 28.8 (5.0) 28.6 (5.3) 29.2 (6.2) 28.7 (6.1) 0.186

Smoking status, %

Current smoker 4.0 5.1 6.8 10.0 <0.001 3.6 6.7 6.4 9.2 <0.001

Former smoker 54.5 56.8 50.1 50.8 54.4 50.3 54.1 53.6

Never smoker 41.4 38.1 43.2 39.1 42.0 43.0 39.5 37.2

Pack-years of smoking among ever

smokers, pack-years (SD)

10.9 (16.3) 11.9 (19.0) 12.7 (21.8) 15.4 (22.3) <0.001 10.5 (16.8) 12.1 (21.2) 12.2 (19.0) 16.0 (22.2) <0.001

Alcohol intake, %

Current drinker 53.2 50.6 49.1 46.1 0.009 53.0 50.6 49.0 46.6 0.118

Former drinker 28.3 30.8 28.4 31.0 28.7 29.0 29.7 31.2

Never drinker 18.5 18.6 22.5 22.8 18.3 20.4 21.3 22.2

Physical activitya, scores (SD) 2.70 (0.8) 2.64 (0.8) 2.56 (0.8) 2.39 (0.8) <0.001 2.71 (0.8) 2.64 (0.8) 2.54 (0.8) 2.39 (0.8) <0.001

Aspirin use in the preceding 2 weeks,

%

68.8 69.8 71.0 73.0 0.141 69.0 69.7 71.3 72.6 0.234

Diabetesb, % 40.5 36.3 34.0 39.2 0.090 32.4 35.3 38.5 43.8 <0.001

Hypertensionb, % 75.5 74.9 75.6 82.1 <0.001 72.7 76.2 77.0 82.2 <0.001

CVDb, % 19.9 24.7 29.8 38.4 <0.001 19.6 23.3 28.4 41.5 <0.001

eGFR, ml/min/1.73 m2 (SD) 77.9 (13.8) 73.6 (14.9) 70.6 (16.7) 59.9 (20.2) <0.001 76.2 (14.3) 73.6 (15.9) 70.5 (16.8) 61.6 (20.3) <0.001

aPhysical activity was assessed using a leisure-time sprots index that ranged from 1 to 5. We reported physical activity scores with 2 decimal places to illustrate the trend

more effectively.
bAll the diseases are prevalent diseases.
cP-values were calculated using chi-square for categorical variables and using ANOVA for continuous variables.

ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; PAC, proteomic aging

clock; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1004464.t004
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participants at each visit were comparable to the magnitudes of those associations in partici-

pants after excluding the training set (S12 Table). This results indicate that the exclusion of the

training set did not influence the association between PACs and mortality.

Proteins included in PACs. There are 49 common aptamers (with a non-zero weight)

included in both the midlife and late-life ARIC PACs, accounting for 6.2% of all proteins in the

midlife ARIC PAC and 36.4% of all proteins in the late-life ARIC PAC (S3 Fig). Nine proteins

were found in common across the 3 published PACs and either the midlife or the late-life ARIC

PACs: pleiotrophin (PTN), a disintegrin and metalloproteinase with thrombospondin motifs 5

(ADAMTS-5), macrophage metalloelastase (MMP12), cell adhesion molecule-related/down-

regulated by oncogenes (CDON), growth differentiation factor 15 (GDF15), immunoglobulin

superfamily containing leucine-rich repeat protein 2 (ISLR2), Kallikrein-7 (KLK7), Lactoperoxi-

dase (LPO), and R-spondin-4 (RSPO4). These proteins have functions in inflammation, play a

role in cell growth and survival, and are related to immune function (S13 Table).

We also identified 20 proteins in each ARIC PAC (midlife and late-life) based on the largest

absolute weights of their constituting aptamers (S14 Table). We found 6 proteins whose corre-

sponding aptamers had the largest absolute weights in both ARIC PACs: transgelin (TAGL),

Table 5. The associations of age acceleration for the late-life ARIC PAC and Lehallier’s PAC and the change in age acceleration from midlife to late life with mortal-

ity; ARIC (2011–2019).

No. of

participants

No. of

deaths

Total person-

years

HR (95% CI)a per one SD of age acceleration

Late-life ARIC PAC

(SD = 2.61 years)
p-

value

Late-life Lehallier’s

PAC

(SD = 2.54 years)

p-

value

All-cause mortality 4,553 1,123 29,356 1.65 (1.52, 1.79) <0.001 1.58 (1.46, 1.72) <0.001

CVD mortality (Fine and Gray

model)

4,553 348 29,356 1.37 (1.18, 1.58) <0.001 1.38 (1.19, 1.62) <0.001

Cancer mortality (Fine and

Gray model)

4,553 278 29,356 1.21 (1.02, 1.44) 0.028 1.19 (1.02, 1.40) 0.031

LRD mortality (Fine and Gray

model)

4,553 128 29,356 1.68 (1.32, 2.12) <0.001 1.57 (1.21, 2.03) <0.001

The change in age acceleration from midlife to late lifeb

No. of

participants

No. of

deaths

Total person-

years

HR (95% CI) per one SD of the change in

age acceleration

(SD = 2.91 years)

p-

value

All-cause mortality 2,707 736 17,081 1.71 (1.52, 1.94) <0.001 NAc

CVD mortality (Fine and Gray

model)

2,707 239 17,081 1.38 (1.13, 1.68) 0.001

Cancer mortality (Fine and

Gray model)

2,707 172 17,081 1.30 (0.98, 1.71) 0.062

LRD mortality (Fine and Gray

model)

2,707 94 17,081 1.46 (1.05, 2.04) 0.025

aThe model was adjusted for chronological age, sex, joint terms for race and study center (black participants from Mississippi; black participants from any other centers;

white participants from Maryland; white participants from North Carolina; and white participants from Minnesota), education, BMI, smoking status, pack-years of

smoking, alcohol intake, physical activity, diabetes, hypertension, CVD, and eGFR at Visit 5.
bThe associations for the change in age acceleration was examined among the 2,707 participants who survived until Visit 5 after excluding the training sets at Visit 2 and

at Visit 5 and the model was additionally adjusted for midlife age acceleration.
cThe associations between the change in age acceleration and mortality were examined using the ARIC PACs only because the ARIC PACs and published PACs showed

similar associations with all mortality types.

ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; CI, confidence interval; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate;

HR, hazard ratio; LRD, lower respriatory disease; PAC, proteomic aging clock; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1004464.t005
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WNT1-inducible-signaling pathway protein 2 (WISP-2), chordin-like protein 1 (CRDK1), col-

lagen alpha-1(XV) chain (COF1), complement component C1q receptor (C1QR1), and pleio-

trophin (PTN).

Associations between age acceleration and mortality stratified by sex, race, and chrono-

logical age. The results for the associations between midlife PACs and mortality stratified by

sex, race, and chronological age are presented in S15 Table and S4 Fig. Chronological age (in

tertiles) statistically modified the associations of age acceleration for both the midlife ARIC

PAC and 3 published PACs with CVD mortality (p-interactions� 0.004), and the association

was strongest among participants aged 47 to 54 years (first tertile) (S15 Table and S4 Fig).

The results for the associations between late-life PACs and mortality stratified by sex, race,

and chronological age are presented in S16 Table and S5 Fig. Sex statistically modified the

Table 6. Associationa between midlife participants’ characteristics and late-life age acceleration, i.e., age accelera-

tion for the late-life ARIC PAC; ARIC.

Midlife participants’ characteristicsb Coefficients P-value or P-trendc

Chronological age −0.03 <0.001

Male 0.05 0.652

Black −0.67 <0.001

Education

<High school Ref (0) 0.267

High school/vocational −0.21

College −0.16

BMI 0.04 <0.001

Smoking status

Never smoker Ref (0) <0.001

Former smoker −0.25

Current smoker 0.32

Pack-years of smoking 0.01 <0.001

Alcohol intake

Never drinker Ref (0) 0.044

Former drinker −0.14

Current drinker −0.27

Physical activity −0.08 0.131

Hormone replacement therapy

Female never user Ref (0) 0.043

Female ever user −0.23

Male 0

Hypertension 0.45 <0.001

CVD 0.45 0.006

Diabetes 1.04 <0.001

eGFR −0.03 <0.001

aThe association was examined among the 4,553 participants who had information on the late-life ARIC PAC (after

excluding the Visit 5 training set), and participants’ characteristics were included into model simultaneously.
bPhysical activity at Visit 1 was assessed using a leisure-time sprots index that ranged from 1 to 5. We assumed that

physical activity scores remained the same at Visit 1 and Visit 2. All the other characteristics were collected at Visit 2.
cP-value for continuous variables and P-trend for categorical variables.

ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; CVD, cardiovascular disease; eGFR, estimated

glomerular filtration rate; PAC, proteomic aging clock.

https://doi.org/10.1371/journal.pmed.1004464.t006
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association between age acceleration and cancer mortality (p-interactions� 0.038) for the late-

life ARIC PAC as well as the 3 published PACs, and the association was stronger and significant

in women for all PACs (S16 Table and S5 Fig). In addition, chronological age (in tertiles) signif-

icantly modified the association between age acceleration and CVD mortality (p-interac-

tion = 0.036) for the late-life ARIC PAC but not the published PACs (S16 Table and S5 Fig).

Association between age acceleration for the midlife ARIC PAC and 10-year risk of

death. Among the 8,768 participants in midlife, a total of 1,137 participants died within 10

years, including 430 deaths attributed to CVD, 434 to cancer, and 85 to LRD (mean follow-

up = 9.43 years, SD = 1.78, range: 0.01 to 10 years). In the fully adjusted model, a one SD

(SD = 2.94 years) increase in age acceleration for the midlife ARIC PAC was associated with

an increased risk of all-cause mortality [HR (95% CI) = 1.49 (1.41, 1.58), p< 0.001], CVD

mortality [HR (95% CI) = 1.47 (1.33, 1.62), p< 0.001], cancer mortality [HR (95% CI) = 1.21

(1.09, 1.34), p< 0.001], and LRD mortality [HR (95% CI) = 1.95 (1.60, 2.38), p< 0.001].

Application of the midlife ARIC PAC to late-life participants and application of the

late-life ARIC PAC to midlife participants. When we applied the midlife ARIC PAC to

late-life participants in ARIC, per one SD increase in age acceleration was associated with a

48% increase in the hazard of all-cause mortality [95% CI: 1.36, 1.63, p< 0.001], which was

weaker compared to the association for the late-life ARIC PAC in late-life participants [1.65

(1.52, 1.79), p< 0.001]. When we applied the late-life ARIC PAC to midlife participants, per

one SD increase in age acceleration was associated with a 40% increase in the hazard of all-

cause mortality [95% CI: 1.36, 1.45, p< 0.001], which was comparable to the association for

the midlife ARIC PAC in midlife participants [1.38 (1.34, 1.42), p< 0.001] but weaker com-

pared to the association in late-life participants.

External validation of the midlife ARIC PAC in the MESA study. Among 4,288 partici-

pants who were 46 to 70 years old and had proteomics data at Exam 1, 48.0% were female, and

38.5% self-identified as white, 26.9% as black, 23.0% as Hispanic, and 11.6% as Chinese. A

total of 660 participants died by 2018 (155 died due to CVD, 239 died due to cancer, 49 died

due to LRD) with a mean follow-up of 16.00 years (SD = 3.32, range: 0.17 to 18.43 years).

The correlation coefficient between the midlife ARIC PAC and chronological age was 0.83

(p< 0.001) at Exam 1. In the fully adjusted model, a one SD (SD = 2.86 years) increase in age

acceleration for the midlife ARIC PAC was statistically significantly associated with all-cause

mortality [HR (95% CI) = 1.45 (1.34, 1.56), p< 0.001] in MESA, similar to the association in

ARIC. The association between age acceleration for the midlife ARIC PAC and all-cause mor-

tality in MESA appeared to be similar in white [HR (95% CI) = 1.35 (1.17 to 1.56), p< 0.001]

and black participants [1.36 (1.19, 1.56), p< 0.001] and those associations were similar to the

associations with all-cause mortality in white [1.36 (1.31, 1.41), p< 0.001] and black partici-

pants [1.40 (1.32, 1.50), p< 0.001] in ARIC. However, in MESA, the associations with all-

cause mortality in white and black participants were weaker than the associations in Chinese

[1.74 (1.28, 2.38), p< 0.001] and Hispanic participants [1.83 (1.57, 2.13), p< 0.001]. One SD

increase in age acceleration for the midlife ARIC PAC was also associated with CVD mortality

[HR (95% CI) = 1.45 (1.22, 1.72), p< 0.001], and LRD mortality [HR (95% CI) = 1.56 (1.26,

1.93), p< 0.001], but not cancer mortality [HR (95% CI) = 1.12 (0.97, 1.27), p = 0.149] in

MESA, similar to the association for the midlife ARIC PAC in ARIC. In MESA Exam 1, Lehal-

lier’s PAC was correlated with chronological age (r = 0.79, p< 0.001). One SD increase in age

acceleration for Lehallier’s PAC was associated with all-cause mortality [HR (95% CI) = 1.32

(1.22, 1.42), p< 0.001], CVD mortality [1.43 (1.19, 1.72), p< 0.001], and LRD mortality [1.47

(1.16, 1.87), p< 0.001], but not cancer mortality [1.03 (0.89, 1.18), p = 0.730]. The associations

between Lehallier’s PAC and mortality in MESA were similar to the associations for the mid-

life ARIC PAC in MESA.
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Discussion

In a large prospective community-based study of white and black individuals, the ARIC study,

we tested 3 published PACs [5,6,19] and constructed and validated de novo PACs in midlife

(46 to 70 years) and late life (66 to 90 years), using 4,955 aptamers measured by the SomaScan

assay (v.4). Both the midlife and late-life ARIC PACs were developed in healthy participants

and were strongly correlated with chronological age. Correlations between chronological age

and the ARIC PACs were 0.80 in midlife and 0.71 in late life, which were slightly stronger com-

pared to the correlations between chronological age and the 3 published PACs (Lehallier’s,

Tanaka’s, and Sathyan’s), respectively (r = 0.58 to 0.76 in midlife and r = 0.59 to 0.70 in late

life). All the HRs for the associations with mortality, including mortality from all-cause, CVD,

cancer, and LRD, were very similar for the ARIC and published PACs in midlife and late life,

respectively. Notably, the associations with all-cause mortality, CVD mortality, and LRD mor-

tality were significant at each visit but stronger in late life than in midlife, and the associations

with cancer mortality were significant in late life only. The change in age acceleration from

midlife to late life had associations of similar magnitude with all-cause mortality and CVD

mortality when compared to the associations for the late-life ARIC PAC. The HR estimate for

LRD mortality was slightly lower for the change in age acceleration compared to the late-life

ARIC PAC, but the confidence intervals for these 2 estimates largely overlapped. The change

in age acceleration was not associated with cancer mortality. The external validation of the

midlife ARIC PAC in the MESA study showed high correlation with chronological age. In

addition, the midlife ARIC PAC showed significant associations with mortality, as observed in

ARIC midlife participants.

In midlife, we applied different penalized regressions and various transformations of pro-

teins to develop 5 de novo ARIC PACs, including a PAC that accounted for nonlinear associa-

tions between proteins and chronological age. These 5 PACs were highly correlated with each

other. Thus, among these 5 PACs, we selected the midlife ARIC PAC, constructed using the

simplest protein transformation, i.e., log2-transformed without any further transformation.

We selected the PAC with the simplest protein transformation because, if validated, it would

be easier to use this PAC in future studies. We also constructed the late-life ARIC PAC using

the same method as employed for the midlife ARIC PAC. In our study, elastic net regression

selected 788 aptamers for the midlife ARIC PAC and 135 aptamers for the late-life ARIC PAC.

The smaller number of aptamers for the late-life ARIC PAC may be because of the smaller

training set at Visit 5 (N = 630) compared to the Visit 2 training set (N = 2,993). A larger train-

ing set allows penalized regressions to select more proteins, including those with a modest

association with age. This is in agreement with Sathyan’s PAC of 162 proteins, which was

developed using the same SomaScan assay as in our study with a training set of 500 partici-

pants [19].

We compared associations of the midlife and late-life ARIC PACs and published PACs

with mortality. Although different PACs included different proteins, age acceleration for both

the ARIC PACs and published PACs showed comparable associations with mortality at each

time point. Our findings for all-cause mortality in midlife participants were similar to the find-

ings in the InCHIANTI study (N = 459, chronological age: 21 to 98 years) by Tanaka and col-

leagues. In their study, they reported a significant association between age acceleration for

Tanaka’s PAC and all-cause mortality after adjusting for chronological age, sex, and study site

[HR (95% CI) per 1 SD = 1.29 (1.11 to 1.50)] [22]. Since the published PACs and our ARIC

PACs consist of different number of proteins but are similarly associated with mortality, it

appears that not the number of proteins drive the performance of PACs.
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Lehallier’s PAC and Sathyan’s PAC were developed in primarily white individuals, while

the ARIC PACs were developed in a cohort of white and black participants. Although proteins

associated with age varied by race [23–25], the use of a biracial population as the training set

did not improve the performance of PACs, i.e., the ARIC PACs and published PACs showed

associations of similar magnitude with mortality in the ARIC study. Moreover, in ARIC, race

(white/black) did not modify the association between age acceleration and mortality. In paral-

lel, in MESA, the association between age acceleration and mortality appeared to be similar

among white and black participants and mirrored those in ARIC, but those associations were

weaker compared to the associations with mortality in Chinese and Hispanic participants.

However, the sample sizes for Chinese (58 deaths occurred by 2018) and Hispanic participants

(145 deaths occurred) are limited in MESA. Future studies that include a large population

from other racial/ethnic groups would help to understand whether our ARIC PACs could be

applied to other racial/ethnic groups to predict mortality.

In our study, for both the ARIC PACs and published PACs, their midlife age acceleration

showed weaker associations with all mortality types than late-life age acceleration. Moreover,

when applying the midlife ARIC PAC to late-life participants, the association with mortality

for midlife ARIC PAC was weaker compared to the association for the late-life ARIC PAC in

late-life participants. These may be because midlife PACs were constructed using blood sam-

ples collected at midlife and failed to capture all the changes in aging that happen after midlife.

The weaker association with mortality for midlife age acceleration may also explained by the

potential regression dilution bias due to the longer follow-up of up to 29.9 years since midlife

[44]. This is also supported by the results from our analyses: (1) when the follow-up was

restricted to 10 years for midlife participants, the estimates for association with mortality

became much stronger; and (2) when applying the late-life ARIC PAC to midlife participants,

the association with mortality for late-life ARIC PAC in midlife participants was weaker com-

pared to the association in late-life participants. It appears that both the panel of proteins in

PACs and the length of follow-up may influence the associations between PACs and mortality.

Tanaka’s PAC was developed in 120 participants aged 22 to 93 years while Sathyan’s PAC

was developed in 500 participants aged 65 to 95 years. We found that Tanaka’s PAC, Sathyan’s

PAC, and the ARIC PAC showed similar and significant associations with mortality in ARIC.

However, the correlations of Tanaka’s PAC and Sathyan’s PAC with chronological age had dif-

ferent patterns in midlife and late-life participants. In ARIC, Tanaka’s PAC was similarly cor-

related with age in midlife participants (within the age range of Tanaka’s population) (r = 0.66)

and late-life participants (within the age range of Tanaka’s population) (r = 0.59), but these

correlations were much lower compared to the correlation of 0.94 with age reported in their

original paper [5]. In ARIC, Sathyan’s PAC had a higher correlation with age in late-life partic-

ipants (within the age range of Sathyan’s population) (r = 0.70) compared to the correlation in

midlife participants (outside the age range of Sathyan’s population) (r = 0.58). The correlation

in late-life participants in ARIC for Sathyan’s PAC was a little bit lower compared to the corre-

lation of 0.79 reported in their original paper [19]. These findings suggest that it may be

slightly better to apply PACs to individuals within the age range of the population used to

develop them, but they may also work when applied to individuals outside the age range.

Our findings showed that midlife individuals who were current smokers (compared to

never smokers), as well as those with higher (versus lower) BMI, lower (versus higher) eGFR,

and age-related diseases, such as CVD, hypertension, and diabetes in midlife, were associated

with higher age acceleration in late life. This is important given the modifiability and prevent-

ability of these factors, which may inform public health policies that aim to decrease the aging

process. In addition, a larger change in age acceleration from midlife to late life was associated

with an increased risk of all-cause mortality, CVD mortality, and LRD mortality. Future
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studies should incorporate multiple time points in applying PACs to model the change in age

acceleration over time.

The strengths of this study include that the ARIC cohort includes a diverse sample compris-

ing both white and black individuals, while previous studies of PACs either had small sample

sizes or included mainly white individuals [5,6,19]. Also, we compared multiple PACs regard-

ing their correlation with chronological age and their associations with mortality and validate

the ARIC PAC by examining its association with mortality using the MESA study, an external

cohort that differed in characteristics from ARIC. In addition, with the availability of proteo-

mics data from 2 distinct visits (20 years apart) in ARIC, we were able to examine the associa-

tion between the midlife to late-life change in age acceleration and mortality. Moreover, we

adjusted for a broader range of confounders while previous studies of PACs only adjusted for

demographic factors [19,22]. Our study has several possible limitations. First, the possibility of

protein degradation during long-term storage cannot be excluded. However, in ARIC, the

blood samples were frozen right after their collection, stored under controlled conditions, and

have never been thawed, reducing the possibility of degradation. Furthermore, a previous

ARIC study of proteomics demonstrated a similar coefficient of variation for proteomics in

blood samples collected at Visit 2 (1990 to 1992, stored for a longer time) and at Visit 5 (2011

to 2013, stored for a shorter time) (CVBA = 6% at Visit 2 and 7% at Visit 5), suggesting no evi-

dence of severe protein degradation [16,45–47]. Second, ARIC measured proteins in plasma,

rather than other tissues, which limited the generalizability of our PACs to proteins from other

tissues. Third, our ARIC PACs were constructed in midlife and late-life participants. It is not

known whether our PACs can be applied to young individuals.

In the United States, the average human life expectancy has increased by 30 years during

the 20th century. This increased life expectancy has given rise to the number of individuals liv-

ing with age-related diseases and disabilities, which in turn lead to reduced health span, lower

quality of life, and increased healthcare costs in the United States. Our results underscored the

potential of PACs to serve as a blood biomarker for biological age. As the aging process and

age-related diseases share the same basic molecular mechanisms, it is expected that targeting

the aging process would reduce mortality and slow down the development of several age-

related diseases simultaneously, potentially prolong health span. Currently, no gold standard

measures of biological age exist; thus, there is a need in new metrics for measuring biological

age, such as PACs. PACs could be used to predict age-related diseases, determine modifiable

behavioral factors that drive accelerated aging and create disease-specific risk calculators [48].

In the future, PACs could help to identify optimal candidates for existing and emerging anti-

aging interventions including lifestyle and therapeutic interventions that are currently in clini-

cal trials or under development (including senolytics and senomorphics) [49]. Also, PACs

could be applied as surrogate endpoints in clinical trials that study the effect of anti-aging

interventions [50]; using PACs instead of real outcomes would substantially decrease the

length and cost of those trials. Findings from those trials may help identify the best anti-aging

interventions and inform physicians’s treatment decisions, as well as develop public health pol-

icies that aim to reduce the aging process and development of age-related diseases, potentially

promoting health span.

In conclusion, we developed de novo midlife and late-life PACs in a diverse population of

white and black individuals and showed that these PACs were associated with mortality risk.

The magnitude of these associations is similar to the associations observed for previously pub-

lished PACs, both in midlife and late life. Moreover, the change in age acceleration from mid-

life to late life showed comparable associations with mortality as the late-life PAC. The

external validation of the midlife PAC showed significant associations with mortality. Future

PLOS MEDICINE Development and validation of proteomic aging clocks

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1004464 September 24, 2024 21 / 27

https://doi.org/10.1371/journal.pmed.1004464


studies are recommended to investigate the potential use of PACs as biomarkers for biological

age and risk stratification for age-related disease.
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