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ABSTRACT OF THE DISSERTATION

Disentangling physical and biological drivers of optical signals for improved monitoring of

evergreen needleleaf photosynthesis

by

Zoe Amie Pierrat

Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2023

Professor Jochen P. Stutz, Chair

The largest source of uncertainty in global climate models is terrestrial carbon cycle feed-

backs. One of the most important but most poorly understood vegetation types in the global

carbon cycle is evergreen needleleaf forests (ENFs). To address this challenge, a growing ap-

preciation for the stress physiology of photosynthesis has inspired emerging techniques to

detect ENF photosynthetic activity with optical signals. This includes the use of solar-

induced chlorophyll fluorescence (SIF), a small light signal emitted by plants during the

photosynthetic process. SIF has shown a marked improvement over traditional reflectance-

based vegetation indices in tracking ENF photosynthesis. However, SIF, as well as other

optical signals, in ENF are complicated by photon-plant interactions over complex canopy

structures (physical) and unique adaptations to deal with the seasonal stress of winter while

retaining their needles (biological).

In this dissertation, we identify the physical and biological drivers of optical signals

in ENF and connect remote sensing observations with physiological processes to improve

monitoring of evergreen needleleaf photosynthesis. In Chapter 2, we provide a broad overview
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for non-specialists of the biological basis for using optical signals to track evergreen needleleaf

photosynthesis. We then explore these topics in more detail by using tower-based remote

sensing data across four ENF sites which span the climatic gradient experienced by ENF

(details in Chapter 3). In Chapters 4 and 5 we zoom in to a single site in Canada and explore

the temporal dynamics of different optical metrics and their biological underpinnings. In

Chapter 6 we then show how to combine multiple metrics across multiple sites to improve

predictions of forest carbon uptake.

Ultimately this work advances our understanding of ENF photosynthesis and our ability

to predict the fate of ENFs in a changing climate. Future work will help scale and integrate

the understandings gleaned in this dissertation to satellite and modeling frameworks.
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To Mother Earth

“I always knew there was an order to this

The wind in the trees whispering mathematics”

- Willow Smith (curious/furious)
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lution (Section 2.3). Satellite-based remote sensing is the only way we can detect
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resolutions (Section 2.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

x



2.2 Overview of ENF sites used in this overview. Part a) shows the spatial ex-

tent and percent cover of ENFs across North America, as well as the loca-
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rived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Inter-
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forest in Colorado (US-NR1, 2.8 °C, 40.0 °N), and a longleaf pine forest in Florida

(OSBS, 21.1 °C, 29.7 °N). Part b) shows images of the four sites across seasons

highlighting that canopy structure does not change with season in ENFs. Images

are obtained from the PhenoCam Network (https://phenocam.nau.edu/webcam/)

and brightened for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Overview of the mechanisms controlling the daily and seasonal physiology of ev-

ergreen needleleaf forests as well as their environmental controls. The summer

and winter examples highlight the biological mechanisms associated with most

extreme environmental conditions ENFs experience at higher latitudes and alti-

tudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Pigments collected from a) DEJU, b) US-NR1, and c) OSBS field sites. The
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larger seasonal variability in xanthophyll conversion state than the warm site

(OSBS). Pigment analysis is performed by collecting needle tissue from 8-10 dif-

ferent trees at each site, immediately flash-frozen in liquid nitrogen (LN2) and

stored in a -80o freezer until analysis. Pigments are then extracted in acetone

and analyzed by HPLC as described in Bowling et al. (2018). . . . . . . . . . . . 13
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photosystem II yield (ϕP) during the warm season (DoY 100-250) fit with a third

order polynomial showing 95% confidence intervals. Data is in good agreement

with the theorized relationship from Magney et al. (2020) and observed relation-

ship in Maguire et al. (2020). We observe an inverse relationship under low-light
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sensing observations are typically made. b) Seasonal co-variation between ϕF and

ϕP. The PAM measurements were recorded every 10 seconds with a saturating

pulse every 2 hours using a Walz Monitoring PAM (MONI-PAM). MONI-PAM

heads were affixed to four needle clumps on branches of three different trees, fac-

ing all cardinal directions. The data were averaged on a two-hourly basis from

August 2021 through fall 2022. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Midday (10:00-14:00) stand-level a-d) Air Temperature, e-h) PAR, i-l) NEE, m-
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. Gray dots

are individual data points, colored lines are average inter-annual midday values
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2.8 Tower-based remote sensing combined with leaf-level pigment data and eddy-

covariance derived GPP. a-d) NDVI and chlorophyll concentration, (e-h) PRI

and xanthophyll conversion state, (i-l) CCI and chlorophyll/carotenoid ratio, m-

p) Gcc and GPP, and q-t) SIF and GPP. NDVI, PRI, CCI, and SIF data were

collected using PhotoSpec. Additional measurement and data processing details

from PhotoSpec can be found in Grossmann et al. (2018); Magney et al. (2019a);

Pierrat et al. (2022a, 2021a). Gcc data were obtained from the PhenoCam Net-

work (https://phenocam.nau.edu/webcam/). Shaded blue regions indicate days

where snow on the canopy obscures remote sensing observations. . . . . . . . . . 24

2.9 a-d) Average summer (June-September) and winter (December-March) MODIS
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CHAPTER 1

Introduction

1.1 Motivation and Science Questions

Carbon cycle feedbacks are the largest source of uncertainty in future climate projections.

These carbon cycle uncertainties are largely driven by uncertainties in terrestrial ecosystem

feedbacks (Friedlingstein et al., 2014, 2022). Among the most poorly understood are ever-

green needleleaf forests (ENFs) which store a significant amount of carbon (an uptake of 2

billion tons of CO2 each year, Köhl et al., 2015) and are one of the vegetation types most

sensitive to environmental change (Thurner et al., 2014; Bonan, 2008). Therefore, under-

standing environmental controls on ENF productivity is critical to predicting the future of

these forests and their role in the global carbon cycle (Anav et al., 2015; Parazoo et al.,

2018).

Climate change has progressively altered the winter environment of ENFs with increased

temperature, altered precipitation, and earlier snowmelt in many locations (Bowling et al.,

2018). These changes have led to an earlier spring green-up across the northern hemisphere

(Barichivich et al., 2013; Piao et al., 2011). This earlier spring onset and longer growing sea-

son could lead to increased total ecosystem carbon uptake, or to an earlier depletion of water

resources and restricted carbon uptake (Trahan and Schubert, 2016). Therefore, improved

understanding of the spring onset, drivers of this onset, and plant’s response to water stress

is critical for understanding the future of this ecosystem. Despite it’s importance, climate

models currently fail to accurately predict the onset of spring photosynthesis (Commane
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et al., 2017; Peng et al., 2014; Parazoo et al., 2018; Richardson et al., 2010). This is partly

due to difficulties in accurately measuring the onset of spring photosynthesis and partly due

to uncertainties in understanding the environmental controls on the timing and rate of spring

photosynthetic recovery (Jeong et al., 2011, 2017).

Optical metrics are a powerful tool for understanding plant productivity and environmen-

tal controls on productivity across space and time (Frankenberg and Berry, 2017; Gamon

et al., 1997, 2016; Jeong et al., 2017; Tucker, 1979). However, traditional optical remote

sensing measures sensitive to canopy greenness often fail to predict photosynthetic carbon

uptake (also known as gross primary productivity, GPP) in ENF which remain annually

verdant (Magney et al., 2019a; Walther et al., 2016; Jeong et al., 2017). In contrast, satellite

observations of solar-induced chlorophyll fluorescence (SIF) have been shown to be an excel-

lent proxy for GPP across a variety of ecosystems (Frankenberg and Berry, 2017; Sun et al.,

2018, 2017). In ENFs, structurally complex canopies, spatial inhomogeneities, varied vege-

tation cover, and high solar zenith angles complicate remotely sensed observations and make

these systems particularly difficult to study from satellite observations alone. As a result,

small-scale leaf and tower-based measurements have highlighted nuance to the relationship

between SIF and GPP, thereby raising questions over its utility as a proxy for GPP (Maguire

et al., 2020; Marrs et al., 2020; Kim et al., 2021). In summary, photon-plant interactions over

complex canopy structures (physical) create significant challenges for interpreting remotely

sensed optical signals and connecting them to plant productivity (biological).

Tower-based spectrometer systems can take measurements at finer spatial and temporal

scales than spatially averaged once-per-day satellite overpasses, but not as fine as leaf level

measurements (Grossmann et al., 2018; Gamon, 2015). Therefore, they allow for a deeper

investigation of the physical and biological drivers of optical metrics while aiding our ability

to scale measurements from the leaf/needle to orbit. Tower-based SIF spectrometer systems

have already provided valuable insights into the SIF-GPP relationship in cropping (Magney

et al., 2019b; He et al., 2020), temperate (Kim et al., 2021; Yang et al., 2017, 2015), and
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sub-alpine evergreen systems (Magney et al., 2019a; Cheng et al., 2020; Seyednasrollah et al.,

2020). However, there is a significant need for such measurements in ENFs, particularly in

the boreal ecozone where site-level observations are extremely limited.

By disentangling the physical and biological drivers of optical signals in evergreen needle-

leaf forests with tower-based spectrometer systems, this dissertation builds a framework for

understanding and monitoring evergreen needleleaf photosynthesis in a changing climate.

Specifically, I seek to answer:

1. What environmental conditions drive changes in photochemical and biochemical regu-

lation of photosynthesis in ENFs?

2. What are the fundamental biological and physical processes influencing observed opti-

cal metrics?

3. How do the relationships among different optical metrics and underlying biologic pro-

cesses change across varying temporal scales?

4. How can we improve our ability to track ENF photosynthesis by combining optical

metrics?

1.2 Outline

In order to answer my main motivating science questions, this dissertation is structured as

follows:

Chapter 2 gives a broad overview designed for non-specialists on the biological basis for

using optical signals to track evergreen needleleaf photosynthesis. This overview is based on

Pierrat et al., 2023 in review, and summarizes how fundamental plant biological and bio-

physical processes control the fate of photons from leaf to globe, ultimately enabling remote

estimates of ENF photosynthesis. We demonstrate this using data across four ENF sites
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spanning a broad range of environmental conditions and link leaf- and stand-scale observa-

tions of photosynthesis (i.e., needle biochemistry and flux towers) with tower- and satellite-

based remote sensing. This overview summarizes the more detailed knowledge gleaned in

Chapters 4, 5, and 6 and places the work in the broader context of multi-scale observations

for an integrated understanding of evergreen needleleaf biology.

Chapter 3 provides a methodological overview for data used in this dissertation, including

that used in Chapters 2, 4, 5, & 6. We describe the field locations in more detail including

elevation, mean annual temperature, precipitation, over and understory vegetation, and soil

characteristics. We also describe the instrumentation used to collect tower-based remote

sensing data (PhotoSpec) and a broad overview of the processing details. We describe the

meteorological data available at the sites, including eddy-covariance data, soil moisture and

temperature, and air temperature data. Here, we provide the details of eddy-covariance

gap-filling and partitioning to get to GPP.

Chapter 4 focuses on the spring transition in the boreal forest and is based on Pierrat

et al. (2021a). Because the boreal forest is a major contributor to the global climate sys-

tem, and a key biome for ENF, reducing uncertainties in how this forest will respond to

a changing climate is critical. One source of uncertainty is the timing and drivers of the

spring transition. Remote sensing can provide important information on this transition,

but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest

stands (both deciduous and evergreen species) complicate interpretation of these signals. We

collected tower-based remotely sensed data (reflectance-based vegetation indices and SIF),

stem radius measurements, gross primary productivity, and environmental conditions in a

boreal mixed forest stand. Evaluation of this data set shows a two-phased spring transition.

The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked

by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and

increased available soil moisture. The second phase is a reduction in bulk photoprotective

pigments in evergreens, marked by an increase in the Chlorophyll-Carotenoid Index. Decid-
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uous leaf-out occurs during this phase, marked by an increase in all remotely sensed metrics.

The second phase is controlled by soil thaw. Our results demonstrate that remote sensing

metrics can be used to detect specific physiological changes in boreal tree species during

the spring transition. The two-phased transition explains inconsistencies in remote sensing

estimates of the timing and drivers of spring recovery. Our results imply that satellite-based

observations will improve by using a combination of vegetation indices and SIF, along with

species distribution information.

Chapter 5 focuses on the diurnal and seasonal dynamics of SIF, vegetation indices, and

gross primary productivity in the boreal forest and is based on Pierrat et al. (2022a). Re-

mote sensing of SIF provides a powerful proxy for GPP. It is particularly promising in

boreal ecosystems where seasonal downregulation of photosynthesis occurs without signif-

icant changes in canopy structure or chlorophyll content. The use of SIF as a proxy for

GPP is complicated by inherent non-linearities due to both physical (illumination effects)

and ecophysiological (light use efficiencies) controls at fine spatial (tower/leaf) and temporal

(half-hourly) scales. To study the SIF-GPP relationship, we investigated the diurnal and

seasonal dynamics of continuous tower-based measurements of SIF, GPP, and common veg-

etation indices at the Southern Old Black Spruce Site (SOBS) in Saskatchewan, CA over the

course of two years. We find that SIF outperforms other vegetation indices as a proxy for

GPP at all temporal scales but shows a non-linear relationship with GPP at a half-hourly

resolution. At small temporal scales, SIF and GPP are predominantly driven by light and

non-linearity between SIF and GPP is due to the light saturation of GPP. Averaged over

daily and monthly scales, the relationship between SIF and GPP is linear due to a reduction

in the observed PAR range. Seasonal changes in the light responses of SIF and GPP are

driven by changes in light-use-efficiency which co-vary with changes in temperature, while

illumination and canopy structure partially linearize the SIF-GPP relationship. Addition-

ally, we find that the SIF-GPP relationship has a seasonal dependency. Our results help to

clarify the utility of SIF for estimating carbon assimilation in boreal forests.
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Chapter 6 combines SIF and VIs using random forest models to improve GPP predic-

tion across ENF sites and is based on Pierrat et al. (2022b). The success of remote sensing

measurements can be attributed to their ability to capture valuable information on plant

structure (physical) and function (physiological), both of which impact GPP. However, no

single remote sensing measure provides a universal constraint on GPP and the relationships

between remote sensing measurements and GPP are often site specific, thereby limiting

broader usefulness and neglecting important nuances in these signals. Improvements must

be made in how we connect remotely sensed measurements to GPP, particularly in bo-

real ecosystems which have been traditionally challenging to study with remote sensing. In

this chapter we improve GPP prediction by using random forest models as a quantitative

framework that incorporates physical and physiological information provided by SIF and

vegetation indices (VIs). We analyze 2.5 years of tower-based remote sensing data (SIF and

VIs) across two field locations at the northern and southern ends of the North American

boreal forest. We find (a) remotely sensed products contain information relevant for un-

derstanding GPP dynamics, (b) random forest models capture quantitative SIF, GPP, and

light availability relationships, and (c) combining SIF and VIs in a random forest model

outperforms traditional parameterizations of GPP based on SIF alone. Our new method for

predicting GPP based on SIF and VIs improves our ability to quantify terrestrial carbon

exchange in boreal ecosystems and has the potential for applications in other biomes.

Chapter 7 closes by revisiting my main motivating science questions and summarizing the

work presented in this dissertation. I discuss future research directions inspired by this work

and long-term aspirations. Ultimately advancements in vegetation remote sensing, such as

those presented in this dissertation, lead to improved monitoring of ecosystems and reduced

uncertainty in their role in the global carbon cycle.
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CHAPTER 2

The biological basis for using optical signals to track

evergreen needleleaf photosynthesis

2.1 Why should we care about tracking evergreen needleleaf pho-

tosynthesis?

Evergreen needleleaf forests (ENFs) are one of the largest forest biomes in the world and

are an important sink in the global carbon cycle (Smith et al., 2009). Notably, the carbon

sequestration potential of ENFs is high, with an uptake of ∼2 billion tons of CO2 each year

(Köhl et al., 2015). They also provide critical ecosystem services, including climate regula-

tion, wildlife habitat, sustenance, and timber (Keenan et al., 2015; Felipe-Lucia et al., 2018).

Anthropogenic climate change has shifted baseline environmental conditions for ENFs, but

the impacts of these changes on carbon budgets and ecosystem services remain uncertain (Liu

et al., 2020a). Rising temperature and carbon fertilization have increased canopy greenness

in some ENFs, suggesting enhanced potential for photosynthetic carbon uptake (Wang and

Friedl, 2019; Berner et al., 2020). However, the future of ENF carbon assimilation is threat-

ened by a myriad of climate-related factors including widespread drought (Bentz et al., 2019;

Anderegg et al., 2020; Trugman et al., 2021), changes to growing season length, increased

wildfire potential, and biotic agents of mortality (Anderegg et al., 2015; Kautz et al., 2017).

In regions where warmer springs and drier summers are becoming more prevalent, ENFs have

become more productive in the spring and less productive in the summer/fall, ultimately

impacting long-term trends in the seasonality, magnitude, and sign of net carbon exchange
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(Buermann et al., 2018; Fisher et al., 2018; Butterfield et al., 2020). Our understanding of

the ENF carbon cycle is encumbered by limited observations of plant photosynthesis (i.e.,

carbon assimilation) at high spatio-temporal resolutions globally. Consequently, our predic-

tions of the future carbon cycle remain highly uncertain, with some Earth System Models

(ESMs) suggesting that the terrestrial biosphere may even transition to a net carbon source

by the end of the twenty-first century (Friedlingstein et al., 2022).

Optical remote sensing plays a critical role in detecting changes in evergreen photosyn-

thesis and can provide an important constraint on our ability to predict and understand

the future of ENFs (Schimel et al., 2019). Remote sensing can help scale leaf- and site-

level observations across both space and time, enabling more robust quantification of ENF

photosynthesis across the globe. Optical remote sensing is sensitive to both changes in

plant physiology and the biophysics of how incident photons are reflected or emitted from

vegetation (Zeng et al., 2022).

The goal of this Overview is to review the fundamental biological and physical processes

that inform the use of optical remote sensing data for tracking photosynthesis in ENFs.

We provide non-specialists with an understanding of how these data can be used to better

inform our understanding of the ENF carbon cycle. To do this, we use a suite of data

(Figure 2.1) collected from four ENF sites spanning a climate gradient across North America

(Figure 2.2). We begin by reviewing the mechanisms controlling the diurnal and seasonal

dynamics of photosynthesis in ENFs and the physical and physiological controls on the fate

of absorbed light at the leaf/needle level (Section 2.2). These biological mechanisms are then

scaled to the canopy level using a variety of different measurement approaches. We show

how an integrated measurement approach can provide a more complete picture of carbon

assimilation at the canopy scale (Section 2.3). We further scale these measurements and

their biologic underpinnings to the biome level with satellite-based remote sensing (Section

2.4). We end this overview by discussing the need for multi-scale and multi-disciplinary

research - spanning from leaf-level biology to physics and remote sensing - for advancing our
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understanding of the processes underpinning global change impacts on ENFs (Section 2.5).

Figure 2.1: Summary of ways to measure ENF photosynthesis from the molecular to ecosys-

tem scale and data types highlighted in this overview. Pigment analyses provides direct

insight into light absorption and partitioning but has limited temporal resolution (samples

must be collected and processed manually) (Section 2.2). Continuous pulse amplitude mod-

ulated (PAM) fluorometry provides leaf-level information on the photosynthetic activity of

plant photosystems including information on the partitioning of light energy among different

pathways (Section 2.2). Tower-based remote sensing provides proxies for many variables re-

lated to photosynthetic carbon uptake including forest chlorophyll and xanthophyll pigment

content and net carbon uptake at a high spatiotemporal resolution (half-hourly, tree-canopy

scale) (Section 2.3). Eddy-covariance derived CO2 fluxes are the best available measure for

carbon uptake via photosynthesis (gross primary production, GPP) at the canopy scale and

can be derived at a half-hourly resolution (Section 2.3). Satellite-based remote sensing is

the only way we can detect photosynthesis at large spatial scales but is limited in its spatial

and temporal resolutions (Section 2.4).
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DEJU

Spring 
Equinox

Summer 
Solstice

Fall 
Equinox

Winter 
Solstice

Ca-Obs US-NR1 OSBS

a)

b)

Figure 2.2: Overview of ENF sites used in this overview. Part a) shows the spatial extent and

percent cover of ENFs across North America, as well as the locations of the four field sites

used in this study. ENF percent cover was derived from the Moderate Resolution Imaging

Spectroradiometer (MODIS) International Geosphere-Biosphere Programme (IGBP) Land

Cover 2019 dataset at 500m resolution (Friedl and Sulla-Menashe, 2019). The four sites

include boreal forest locations in Alaska (DEJU, mean annual temperature = 0.4 °C, latitude
= 63.9 °N) and Saskatchewan, Canada (Ca-Obs, 1.3 °C, 54.0 °N), a high elevation forest in

Colorado (US-NR1, 2.8 °C, 40.0 °N), and a longleaf pine forest in Florida (OSBS, 21.1 °C,
29.7 °N). Part b) shows images of the four sites across seasons highlighting that canopy

structure does not change with season in ENFs. Images are obtained from the PhenoCam

Network (https://phenocam.nau.edu/webcam/) and brightened for clarity.
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2.2 Needle-scale mechanisms controlling the daily and seasonal

physiology of evergreen needleleaf forests

Photosynthesis uses light from the sun to drive the conversion of carbon dioxide and water

into energy-rich organic compounds (sugars and starch). Through this process, plants use

solar power to sustain nearly all life on earth. Light, temperature, and the availability of

water control photosynthesis (Figure 2.3, Berry and Bjorkman, 1980; Farquhar et al., 1980).

Within a daily cycle, a plant’s ability to photosynthesize varies with changes in sunlight,

temperature, and evaporative demand. Over days to weeks, plants acclimate to their en-

vironment and allocate resources to optimize photosynthesis during the active season, thus

adjusting to seasonal changes (e.g., Logan et al., 1998; Huxman et al., 2003). To properly ex-

plain the mechanisms controlling the daily and seasonal photosynthetic physiology of ENFs,

we begin by discussing the fate of sunlight.

Light travels from the sun through Earth’s atmosphere and into a forest canopy. Only a

portion of the sun’s electromagnetic spectrum can be used to drive photosynthesis, known as

Photosynthetically Active Radiation (PAR, 400-700 nm). A portion of PAR is incident upon

soil, branches, and other non-photosynthesizing media, whereas the remaining fraction of this

light (fPARchl) is absorbed by chlorophyll molecules in foliage and is known as absorbed

photosynthetically active radiation (APARchl) such that:

APARchl = fPARchl × PAR (2.1)

Chlorophyll molecules have a unique spectral signature in that they reflect more light

in the green region of the spectrum and absorb strongly in the red and blue, thus plants

appear green. Optical metrics can approximate the fraction of light absorbed by chlorophyll

(fPARchl) by probing the ratios of reflected light in the red, blue and green spectral regions

(more in Section 2.3). While APARchl can vary seasonally due to changes in PAR, in ENFs,

11



Figure 2.3: Overview of the mechanisms controlling the daily and seasonal physiology of

evergreen needleleaf forests as well as their environmental controls. The summer and winter

examples highlight the biological mechanisms associated with most extreme environmental

conditions ENFs experience at higher latitudes and altitudes.

fPARchl tends to remain seasonally constant. This is because seasonal changes in chloro-

phyll content (Figure 2.4) and canopy structure are small. Therefore, we cannot rely on

optical metrics sensitive to fPARchl alone and need to understand not just how much light

is absorbed, but the fate of the energy of absorbed light.

When absorbing a photon, chlorophyll enters an excited state and will partition the

energy to one of four potential pathways: photochemistry, damage via the formation of

reactive oxygen species, thermal energy dissipation, and fluorescence (Figure 2.3 Niyogi,

1999). In order to maintain energy conservation, the yield of each pathway (ϕ) must add up

to 1 such that:

1 = ϕP + ϕD + ϕN + ϕF (2.2)

where ϕP is the yield of photochemistry, ϕD is the yield of damage, ϕN is the yield of thermal
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Figure 2.4: Pigments collected from a) DEJU, b) US-NR1, and c) OSBS field sites. The

chlorophyll pool remains relatively constant year-round at all 3 sites (DEJU, US-NR1, and

OSBS). The relatively cold sites (DEJU and US-NR1) exhibit much larger seasonal variability

in xanthophyll conversion state than the warm site (OSBS). Pigment analysis is performed

by collecting needle tissue from 8-10 different trees at each site, immediately flash-frozen in

liquid nitrogen (LN2) and stored in a -80o freezer until analysis. Pigments are then extracted

in acetone and analyzed by HPLC as described in Bowling et al. (2018).
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energy dissipation, and ϕF is the yield of fluorescence (Frankenberg and Berry, 2017). The

amount of photochemistry (which is tightly linked to subsequent carbon uptake) a plant can

perform depends on both the absorption of light by chlorophyll (i.e., APARchl), as well as

the partitioning of light among these four pathways such that:

Photosynthesis ≈ APARchl × ϕP (2.3)

and

ϕP = 1− ϕD − ϕN − ϕF (2.4)

Optical techniques can probe photosynthesis by approximating APARchl, ϕP, or both.

While ϕP cannot be directly observed with optical methods, we can rely on techniques that

are sensitive to other pathways - namely ϕN and ϕF - which tend to co-vary in predictable

ways with ϕP in ENFs as a response to environmental controls. Much of our understanding

of the partitioning of light among these pathways has come from pulse amplitude modulated

(PAM) fluorometry (Maxwell and Johnson, 2000). PAM fluorometry employs a pulsed mea-

suring source of weak light, in combination with saturating pulses of light, measuring the

subsequent fluorescence emissions to derive a variety of parameters that can tell us about

photochemical performance and how light energy is being partitioned (we refer readers to

Schreiber (2004) for details on PAM fluorometry). By understanding how ϕN and ϕF path-

ways operate in ENFs, we can relate the biology of photochemistry (ϕP) to what can be

detected with optical methods.

The dynamics of ENF photosynthesis are unique because they absorb light year-round,

but can experience seasonal stress in their ability to perform photosynthesis. For example,

sub-zero temperatures in winter (e.g., DEJU in Alaska, Ca-Obs in Canada, and US-NR1

in Colorado) inhibit enzyme activity and drive a lack of liquid water availability due to ice

forming in the soil, within the roots, the trunk, and the distal stems (Figure 2.3, Sevanto

et al., 2006; Bowling et al., 2018; Pierrat et al., 2021a; Nehemy et al., 2022). Repeated
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freeze-thaw events can also lead to damage to the water transport pathway via embolism

of xylem (Sperry and Sullivan, 1992). Due to the combination of cold temperature stress

and water limitation, many plants in cold locations down regulate the biochemical processes

of photosynthesis during winter (Figure 2.3, Adams et al., 2004). Because absorbed light

energy cannot be used for photochemistry, it must be sent down alternative energy pathways.

When a plant absorbs more light than can be used to drive photochemistry (ϕP), excess

energy can damage plant tissue (ϕD). Excited chlorophyll molecules can pass energy to

oxygen, transforming it into singlet oxygen (Niyogi, 1999). This is an unstable form in

the family of reactive oxygen species, which can irreversibly modify proteins, membrane

lipids, and chlorophyll itself, potentially setting off a cascade of harmful cellular oxidation

reactions (Logan, 2007). Singlet oxygen formation via energy transfer from chlorophyll is a

low-probability biophysical event (i.e., ϕD≈0 for healthy plants); however, it can occur at

appreciable and problematic levels when chlorophyll molecules remain in the excited state

when photochemistry is unable to “claim” that energy. It is advantageous, then, for plants

to have systems in place to deal with light absorbed in excess of what can be used to perform

photochemistry.

All plants possess a well-regulated pathway to safely divert excess absorbed light energy

as heat (Demmig-Adams and Adams, 2006). This pathway, known as thermal energy dissipa-

tion, is modulated by three xanthophyll pigment molecules, zeaxanthin (Z), antheraxanthin

(A), and violaxanthin (V), which interconvert through a process known as the xanthophyll

cycle (Demmig-Adams and Adams, 2006). Z and A undergo exothermic chemical reactions,

which facilitate the conversion of excitation energy into heat that can be dissipated to the

surrounding environment (Holt et al., 2004; Holzwarth and Jahns, 2014). The portion of

light energy dissipated via this pathway (ϕN) is controlled by the ratio of Z+A to chloro-

phyll. This ratio is modulated via enzyme-catalyzed interconversions between Z, A and V;

the latter pigment is unable to carry out energy dissipation (Niyogi et al., 1998). When

temperature allows enzymatic activity (i.e., during the warm season), plants interconvert
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xanthophyll pigments to dissipate light absorbed in excess (Figure 2.3, Demmig-Adams and

Adams, 1992). This type of dynamic thermal energy dissipation happens over shorter peri-

ods of time, from minutes to hours and can help plants prevent damage during short-term

stress and routine absorption of light in excess (e.g., midday).

ENFs also use a form of sustained thermal energy dissipation over winter (Demmig-

Adams and Adams, 1992; Huner et al., 1993). Because low temperature inhibits enzyme-

catalyzed interconversion of xanthophyll cycle pigments, evergreens retain high levels of Z+A

over winter in relation to the total xanthophyll pool (V+A+Z) ((Figure 2.3, Verhoeven,

2014). This induces a sustained form of thermal energy dissipation marked by an increase in

(Z+A)/(V+A+Z) evident in winter dormant ENFs (DEJU and US-NR1 in Figure 2.4 a, b).

In addition to the change in xanthophyll pigment ratios, ENFs also increase the total amount

of xanthophyll pigments which is most often quantified as the ratio between chlorophyll and

carotenoid pigments (including xanthophylls). Winter dormant ENFs thus exhibit a decrease

in chlorophyll/carotenoid ratios over winter (Figure 2.4 a,b). ENFs experiencing mild winters

(e.g., the OSBS site in Florida) do not require sustained energy dissipation, and therefore

do not exhibit dramatic seasonal variation in pigment pools (Figure 2.4 c). Because the

yield of photochemistry (ϕP) depends on the yield of thermal energy dissipation (ϕN), and

ϕN is modulated by xanthophyll pigment concentrations, we can use the spectral signatures

of xanthophyll pigments to probe photosynthesis (further explained in Section 2.3).

The final path for the energy of excited chlorophyll is fluorescence emission (ϕF) (Figure

2.3). Excited chlorophyll can fall back to its unexcited state with the emission of a red/near

infrared photon, i.e., fluorescence. The intensity of the fluorescence emission is thus a func-

tion of APARchl and the yields of alternative energy partitioning pathways. Fluorescence

never accounts for more than a small fraction (typically 1-3%) of APARchl and is not a

method for plants to safely dissipate appreciable excess energy. Rather, it is a byproduct

of chlorophyll excited electrons falling back to their ground state and varies in predictable

ways with ϕP, depending on the light environment. Under extremely low-light conditions,
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such as dusk and dawn, photosynthesis is typically limited by the amount of light absorbed

rather than biochemical capacities. Under light-limited conditions, light energy is thus al-

most entirely sent down the photochemistry pathway (known as photochemical quenching

‘PQ’ phase) with essentially no energy being dissipated as heat (ϕN≈0). During the PQ

phase, the yields of photochemistry (ϕP) and the yields of fluorescence (ϕF) will exhibit an

inverse relationship (Figure 2.5a, Equation 2.3, Porcar-Castell et al., 2014; Van Der Tol et al.,

2014; Magney et al., 2020; Maguire et al., 2020). Under moderate/typical-light conditions,

thermal energy dissipation mechanisms (ϕN, known as non-photochemical quenching ‘NPQ’

phase) regulate the amount of light used for photochemistry. Because ϕN pulls energy away

from ϕP and ϕF, during the NPQ phase ϕP and ϕF exhibit a direct relationship (Figure

2.5 a, Porcar-Castell et al., 2014; Van Der Tol et al., 2014; Magney et al., 2020; Maguire

et al., 2020). In ENFs where seasonal changes in sustained thermal energy dissipation (ϕN)

drive changes in ϕP and ϕF (Porcar-Castell, 2011) we observe strong covariation between

the seasonal cycles of ϕP and ϕF (Figure 2.5 b). Remote sensing observations of fluores-

cence also typically occur under ‘NPQ phase’ conditions and can serve as a robust proxy for

photosynthesis when averaged over longer temporal scales (i.e., seasonally).

2.3 Canopy-scale measures of photosynthesis and remote sensing

proxies

Carbon uptake via photosynthesis can be studied at the canopy scale with instruments

mounted above the vegetation on towers using the eddy covariance technique (reviewed by

Baldocchi (2020)). This technique uses high-frequency observations of atmospheric turbu-

lence to derive vertical fluxes of CO2 (and other variables) between a forest and the atmo-

sphere within a varying footprint range around the tower. The eddy covariance technique

provides a measure of the net CO2 flux (Net Ecosystem Exchange, NEE) which is the combi-

nation of CO2 uptake by photosynthesis (Gross Primary Production, GPP) and the release
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Figure 2.5: Continuous pulse amplitude modulated (PAM) measurements made at DEJU. a)

The relationship between normalized steady state fluorescence yield (ϕF) and photosystem II

yield (ϕP) during the warm season (DoY 100-250) fit with a third order polynomial showing

95% confidence intervals. Data is in good agreement with the theorized relationship from

Magney et al. (2020) and observed relationship in Maguire et al. (2020). We observe an

inverse relationship under low-light conditions and a direct relationship under moderate

light conditions where remote sensing observations are typically made. b) Seasonal co-

variation between ϕF and ϕP. The PAM measurements were recorded every 10 seconds

with a saturating pulse every 2 hours using a Walz Monitoring PAM (MONI-PAM). MONI-

PAM heads were affixed to four needle clumps on branches of three different trees, facing

all cardinal directions. The data were averaged on a two-hourly basis from August 2021

through fall 2022.

of CO2 through respiration (ecosystem respiration). NEE can be split into its component

parts (GPP and ecosystem respiration) using a wide variety of models based on a combina-

tion of temperature, sunlight, and evaporative demand (Reichstein et al., 2005; Desai et al.,

2008; Lasslop et al., 2010; Tramontana et al., 2020), all of which carry uncertainties (Wutzler

et al., 2018; Papale et al., 2006)).
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Carbon uptake via photosynthesis at the canopy scale can be described using the light-use

efficiency model of GPP (Monteith, 1972; Monteith et al., 1997):

GPP = PAR× fPARchl × LUEP (2.5)

where LUEP is the light-use efficiency of photosynthesis at the canopy scale (canopy level

ϕP). As at the leaf level, GPP is dependent on light (APARchl = PAR×fPARchl), tem-

perature, and the availability of water (both of which will impact LUEP) (Luyssaert et al.,

2007; Beer et al., 2010). This is observed across our four study sites. The first three sites

(DEJU, Ca-Obs, US-NR1) experience cold winters with sub-zero temperature (Figure 2.6

a-d) but differ in the amount of light they receive (Figure 2.6 e-h). During winter, these

cold weather sites are photosynthetically dormant (slightly positive NEE, no GPP) (Figure

2.6 i-p) and therefore use the thermal energy dissipation pathway (ϕN) to dissipate excess

energy. This results in a seasonal cycle in LUEP (Figure 2.6 q-t) where plants can safely

divert excess energy from sunlight while remaining photosynthetically dormant. The extent

to which ϕN is necessary to prevent damage also depends on the intensity of the light over

winter. Specifically, the high elevation of US-NR1 in Colorado ensures a cold winter - despite

the lower latitude – resulting in dramatically higher PAR in the winter compared to the more

northerly sites. This combination amplifies the need for sustained thermal energy dissipation

in comparison with more high-latitude sites. The warmest site, OSBS in Florida, photosyn-

thesizes year-round and thus does not employ sustained energy dissipation. Based on the

light-use efficiency model, canopy level remote sensing metrics for tracking photosynthesis

are typically sensitive to either fPARchl or approximate LUEP based on the partitioning of

energy into thermal dissipation (ϕN) or fluorescence (ϕF) pathways.

Reflectance-based vegetation indices are the most common type of optical measure capa-

ble of tracking changes in photosynthesis. These are typically calculated using a normalized
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Figure 2.6: Midday (10:00-14:00) stand-level a-d) Air Temperature, e-h) PAR, i-l) NEE,

m-p) GPP, and q-t) LUEP data from the 4 field sites. LUEP is approximated by assuming

fPAR≈0.5 and seasonally invariant, thus LUEP = GPP
PAR×0.5

. Gray dots are individual data

points, colored lines are average inter-annual midday values and shaded regions are the inter-

annual midday standard deviation.

20



difference formula:

Index =
ρ1 − ρ2
ρ1 + ρ2

(2.6)

where ρ1 and ρ2 are reflectance in the wavelength bands of interest. The first of these

reflectance-based metrics to be widely used was the Normalized Difference Vegetation Index

(NDVI) (Tucker, 1979). NDVI takes advantage of the difference in reflectance between

the red (sensitive to chlorophyll absorption; ∼620-670 nm) and near infrared (∼830-860

nm) regions of the spectrum (Figure 2.7 Tucker, 1979). It provides a good measure of

canopy structure, particularly the presence/absence of chlorophyll (Figure 2.8 a-d), and

thus fPARchl. The sensitivity of NDVI to fPARchl means that NDVI is a good proxy for

GPP in systems where changes in fPARchl are significantly greater than changes in LUEP

(Equation 2.5) and thus, canopy structure and carbon uptake are closely linked (e.g., crops,

deciduous ecosystems). However, it fails to detect changes in GPP in ENFs due to minimal

seasonal change in canopy chlorophyll content, and thus fPARchl (Magney et al., 2019a;

Pierrat et al., 2022a). In addition, NDVI is highly sensitive to the presence of snow cover

due to the large difference in reflectance between vegetation and snow in the NIR (Figure 2.7,

Figure 2.8 a-d), Myers-Smith et al., 2020). This complicates interpretation of NDVI in ENFs

which are commonly impacted by snow contamination within the sensor viewing window.

Derivations of NDVI that also use the difference between the red and near infrared regions of

the spectrum, such as the near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017,

2019) and the enhanced vegetation index (EVI), among others, have been able to account

for background and soil contamination, but still fail to capture changes in photosynthetic

phenology of ENFs due to the decoupling between chlorophyll content and photosynthesis

(Sims et al., 2006a; Garbulsky et al., 2010; Gamon et al., 2013).

Reflectance-based indices that are sensitive to xanthophyll pigment activity in ENFs

have shown a marked improvement in tracking the photosynthetic phenology of ENFs over

greenness-based metrics. This is because xanthophyll pigment activity modulates how much

light energy is sent down the thermal energy dissipation pathway (ϕN), which can inform
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Figure 2.7: Spectral regions where reflectance-based vegetation indices (VIs) are commonly

calculated (shaded gray), SIF retrievals are commonly performed (shaded red), and example

reflectance data of vegetation and snow normalized at 800 nm. Vegetation reflectance data

are from US-NR1 and processed following Cheng et al. (2020). Snow and soil reflectance data

are from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)

Spectral Library (Baldridge et al., 2009; Meerdink et al., 2019).
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LUEP/ϕP. The first of these to be developed, the Photochemical (or Physiological) Re-

flectance Index (PRI), exploits a narrow band at 531 nm (which is sensitive to the conver-

sion state of xanthophyll cycle pigments) in reference to a narrow band at 570 nm (which

does not change with xanthophyll interconversion) (Gamon et al., 1992, 1997). This is no-

ticeable in the difference in reflectance spectra in the 531 nm region from the US-NR1 site

(Figure 2.7) between summer (when Z concentrations are lower) and winter (when Z con-

centrations are higher). Over short temporal scales (e.g., over the course of a day in the

growing season), PRI is sensitive to rapidly reversible thermal energy dissipation dynamics

(ϕN) in ENFs, making it effective for tracking diurnal changes in LUEP (Gamon et al., 2015;

Yang et al., 2020). Over longer temporal scales (seasons), PRI is sensitive to sustained ther-

mal energy dissipation due to winter increases in Z + A pigments (Figure 2.8 e-h, Wong

and Gamon, 2015a,b). PRI is also highly sensitive to the presence of snow on the canopy

which presents a significant challenge in ENFs. It is also not presently measured from space-

borne platforms. The best available satellite proxy for PRI, the chlorophyll-carotenoid index

(CCI), was specifically developed to track the seasonal changes in the ratio of chlorophylls

to carotenoids (including xanthophyll pigments) using reflectance bands from the Moderate

Resolution Imaging Spectroradiometer (MODIS, Band 11 526-536 nm; and Band 1 620-670

nm, Gamon et al., 2016). By tracking the ratio of chlorophylls to carotenoids, CCI is also

able to track sustained energy dissipation in ENFs (Figure 2.8 i-l) and is thus a good proxy

for ENF carbon uptake (Gamon et al., 2016).

In addition to reflectance-based metrics which employ narrow wavelength bands, digital

repeat photography can be used to track seasonal changes in canopy color, and thus the

photosynthetic phenology of ENFs. Specifically, the Green Chromatic Coordinate (Gcc) can

be calculated from images as:

Gcc =
G

R +G+ B
(2.7)

where G, R, and B are the mean intensity of the green, red, and blue color channels (Richard-

son, 2019). Prior work has shown that Gcc is sensitive to the changes in canopy color asso-
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Figure 2.8: Tower-based remote sensing combined with leaf-level pigment data and eddy-

covariance derived GPP. a-d) NDVI and chlorophyll concentration, (e-h) PRI and xantho-

phyll conversion state, (i-l) CCI and chlorophyll/carotenoid ratio, m-p) Gcc and GPP, and

q-t) SIF and GPP. NDVI, PRI, CCI, and SIF data were collected using PhotoSpec. Addi-

tional measurement and data processing details from PhotoSpec can be found in Grossmann

et al. (2018); Magney et al. (2019a); Pierrat et al. (2022a, 2021a). Gcc data were obtained

from the PhenoCam Network (https://phenocam.nau.edu/webcam/). Shaded blue regions

indicate days where snow on the canopy obscures remote sensing observations.
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ciated with variation in leaf pigment ratios (including the ratio of chlorophyll to xanthophyll

pigments) in ENFs (Seyednasrollah et al., 2020). Due to this sensitivity, Gcc can probe

thermal energy dissipation, and thus tracks the seasonality of GPP. Start of season and end

of season transition dates derived from Gcc are well aligned with start of season and end of

season transition dates derived from eddy-covariance GPP as well as the onset of transpi-

ration, as determined by stem-radius measurements in ENFs (Seyednasrollah et al., 2020;

Nehemy et al., 2023). Gcc from our four experimental sites shows good agreement with the

seasonal cycle of GPP, but does not show a consistent ratio between Gcc and GPP (Figure

2.8 m-p). Snow cover impacts Gcc values by obscuring the canopy in the region of interest

and making it less green, but values only shift down by approximately 10% (Seyednasrollah

et al., 2020). A major advantage of Gcc is the ease of measurement at the canopy scale and

the accessibility of images and data from 600 sites globally with a standardized processing

approach through the PhenoCam Network (Richardson et al., 2018). This level of standard-

ization and accessibility is currently unavailable for most other canopy-level remotely sensed

data.

A more direct approach to probe photosynthesis remotely is the use of the fluorescence

emitted by excited chlorophyll. Under natural sunlight conditions, this is referred to as

sun- or solar-induced chlorophyll fluorescence (SIF). SIF has shown significant potential for

tracking GPP in ENFs (Figure 2.8 a-d, Magney et al., 2019a; Pierrat et al., 2021a, 2022a,b).

Canopy level SIF is expressed similarly to GPP (Equation 2.5) using the light-use efficiency

model as:

SIF = PAR× fPARchl × LUEF × f esc (2.8)

where LUEF is the light-use efficiency of fluorescence (ϕF integrated over all leaves/needles

within the sensor field of view) and f esc is the fraction of SIF photons that escape the canopy

and reach the detector. We can relate SIF and GPP by combining Equations 5 and 8:

GPP = SIF× LUEP

LUEF × f esc

(2.9)
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SIF and GPP are therefore linked by both shared drivers (APARchl = PAR×fPARchl),

as well as leaf-level biological parameters (ϕP and ϕF) that can be scaled to the canopy level

(LUEP and LUEF). Under typical conditions for remote sensing observations, when thermal

energy dissipation regulates photochemistry (‘NPQ’ phase) leading to co-variation between

ϕP and ϕF (Figure 2.5 a) and f esc is invariant, the
LUEP

LUEF×fesc
term becomes approximately

constant. This leads to a linear relationship between SIF and GPP (Sun et al., 2018).

Therefore, SIF generally does an excellent job tracking both the seasonality (Figure 2.8 q-t)

and diurnal dynamics of GPP (Pierrat et al., 2022a). Further, because SIF is an emitted

signal vs. a reflectance-based metric, it is less sensitive to the presence of snow (Figure 2.8

q-t) and cloud cover (Frankenberg et al., 2011; Mohammed et al., 2019; Chang et al., 2020).

The ability to use SIF as a proxy for GPP in ENFs has led to substantial advances in our

understanding of ENF carbon dynamics.

Studies at fine spatio-temporal resolutions (leaf and tower) have highlighted nuance to

the SIF-GPP relationship which can be attributed to a combination of decoupling between

ϕP and ϕF (and subsequently LUEP and LUEF) modulated by thermal energy dissipation

dynamics (Figure 2.5 a, Magney et al., 2020; Maguire et al., 2020; Marrs et al., 2020; Pierrat

et al., 2022a), and variation in f esc. In ENFs with strong seasonal temperature variations,

such as DEJU, Ca-OBS, and US-NR1, the GPP-SIF relationship changes throughout the year

due to sustained energy dissipation dynamics. In addition, in winter when photochemistry

shuts down at these sites, SIF still exhibits a small light response when GPP is absent, which

leads to a non-zero SIF signal and an increase in SIF prior to changes in GPP (Figure 2.8

q-t, Magney et al., 2019a; Pierrat et al., 2022a; Yang et al., 2022). The winter SIF light

response can be explained as persistent photosystem activity that does not reflect carbon

assimilation (ie. zero ϕP/LUEP and non-zero ϕF/LUEF). The nuances in the SIF-GPP

relationship does not preclude the use of SIF as a proxy for GPP, but it does motivate future

work to understand when and where divergence between SIF and GPP occurs and how we

can best account for it.
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Given that remote sensing metrics can contain information on both plant structure

(fPARchl, f esc) and function (light partitioning among ϕP, ϕN, and ϕF), combining mul-

tiple metrics can help paint a more complete picture of ENF photosynthesis. Specifically,

combining SIF with reflectance-based indices improves our ability to predict GPP beyond

the use of any one metric alone (Wang et al., 2020; Hikosaka and Tsujimoto, 2021; Pierrat

et al., 2022b; Wong et al., 2022). This can be attributed to the fact that while some metrics

are sensitive to similar physical parameters (fPARchl, f esc), they describe different physiolog-

ical parameters, i.e., reflectance-based metrics are sensitive to leaf/needle composition that

controls thermal energy dissipation (ϕN), while SIF depends on fluorescence yields (LUEF

and ϕF). In combination, these metrics provide a more complete description of the fate of

photons absorbed by canopies. Both statistical (Zeng et al., 2019; Cheng et al., 2020; Liu

et al., 2020b; Wong et al., 2022) and machine learning approaches (Bai et al., 2022; Pierrat

et al., 2022b) have been used to incorporate information from both SIF and vegetation in-

dices to predict GPP. There is not yet a universal quantitative framework for relating these

metrics, nevertheless, these approaches typically result in improved predictive capacity for

GPP over any single metric alone.

2.4 Global-scale satellite remote sensing of evergreen needleleaf

forests

The high cost of flux tower observations and restrictions on site suitability limit the locations

where eddy-covariance and other canopy-scale measurements can be applied. To scale site-

level observations across the terrestrial land surface, satellite remote sensing observations

are therefore necessary (Jung et al., 2011, 2020; Zeng et al., 2022). Satellite remote sensing

products (e.g., NDVI, CCI, SIF) are sensitive to the same underlying physical and physiolog-

ical processes that can be measured at the leaf/needle and site levels (Sections 2.2 & 2.3) but

offer expanded spatio-temporal monitoring of vegetation (Schimel et al., 2015; Zeng et al.,
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2022). The spatial resolutions of satellite products range from meters to kilometers and

temporal resolutions from sub-daily (geostationary) to daily and >8 days (global coverage)

depending on platform. Satellite observations offer applications for monitoring and under-

standing both short (diurnal, seasonal) and long term (annual, decadal) dynamics of whole

landscape/biome processes at a spatial scale much broader than a single site. Some satellite

missions also offer long-term data availability with certain missions dating as far back as

the 1970s (e.g., Landsat, Xiao et al., 2019). Long-term satellite records have been used to

evaluate changes in annual carbon uptake (Myneni et al., 2001; Dong et al., 2003) and phe-

nology (Zhang et al., 2003; White et al., 2009; Keenan et al., 2014). Additionally, monitoring

ecosystem function from space has applications for assessing long-term trends in forest stress

severity and recovery (e.g., fires, pests, drought, French et al., 2008; Eklundh et al., 2009;

Beck et al., 2011; Michaelian et al., 2011). The expansion of the spatio-temporal range that

satellite data provides, however, typically comes at the expense of spatio-temporal resolu-

tion. Therefore, it is necessary to consider both the spatial and temporal scaling benefits

and limitations of satellite data.

Satellite reflectance-based metrics, such as NDVI from MODIS and Landsat reflectance

data have been used for many years to monitor the global biosphere. For example, maps of

NDVI reveal the spatial and seasonal variation of ecosystem structure across North America

(Figure 2.9 a,b). However, care has to be taken with these observations, as satellites aggre-

gate optical signals from multiple sources in a given area, often called ground pixel, into a

single measurement (Zeng et al., 2022). This makes interpretation of reflectance-based ob-

servations challenging in structurally complex and heterogeneous ecosystems such as ENFs

with multiple overstory species and contributions from understory vegetation, soil, and snow

(Maguire et al., 2021). Mixed forest sites contain evergreen and deciduous trees with con-

trasting adaptive strategies (e.g., phenology, photosynthetic capacity, Givnish, 2002) – also

complicating the seasonal interpretation of satellite data. Depending on the dominant veg-

etation type, satellite remote sensing may be biased to the dominant optical signal based
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Figure 2.9: a-d) Average summer (June-September) and winter (December-March) MODIS

NDVI and TROPOMI SIF. Yellow stars represent site locations. e-h) 16-day MODIS NDVI

(unitless) and 16-day daily corrected TROPOMI SIF (in Wm-2sr-1µm-1) both averaged an-

nually from 2018-2021. Blue regions indicate days with snow present based on daily MODIS

NDSI. Winter maps show limited spatial coverage of the northern extent due to high solar

zenith angles leading to inadequate solar irradiation.

on density and leaf area (Atherton et al., 2017; Pierrat et al., 2021a). In sparse canopies,

understory plants, rock, and soil impact reflectance-based indices like NDVI. For this rea-

son, correction factors (Eitel et al., 2006) or new vegetation indices (e.g., EVI and NIRv)

are useful in minimizing the influence of understory components. Reflectance-based metrics

are also highly sensitive to cloud cover which may contaminate observations, even for partial

cover in a pixel, leading to data gaps (Walther et al., 2016; Cheng et al., 2022). Finally, the

sensitivity of reflectance-based metrics to snow (Figure 2.7), can lead to a seasonal signal in

reflectance-based metrics that is not associated with changes in photosynthetic phenology.

This is, for example, noticeable across three of our study sites (Figure 2.9 e-g). Despite these

limitations, global reflectance based remote sensing products have successfully been used to
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parameterize and constrain model predictions of carbon uptake (Gonsamo et al., 2012; Smith

et al., 2020), and remain one of our most important tools to reduce uncertainties in future

climate predictions (Friedlingstein et al., 2014, 2022).

The measurement of SIF from space has led to considerable advances in monitoring ENF

photosynthesis in recent years. Due to the underlying physical (APARchl = PAR×fPARchl,

f esc) and physiological drivers (LUEF) of SIF, SIF can reveal the spatial and seasonal vari-

ation of ecosystem structure and function across North America (Figure 2.9 c-h). SIF ob-

servations across our study sites show a comparable seasonal cycle to tower-based SIF and

eddy-covariance GPP (Figure 2.9 e-h) illustrating the potential of satellite SIF observations

over larger spatial scales. As an emitted signal, SIF has a lower sensitivity to cloud (Franken-

berg et al., 2014; Doughty et al., 2019) and snow cover (Luus et al., 2017), therefore making

it more robust across the seasons (Figure 2.9 e-g). This is especially important during the

onset of photosynthesis which often coincides with the snowmelt period (Pierrat et al., 2021a;

Nehemy et al., 2022). SIF has also shown significant potential for detecting the impacts of

drought, even before changes in canopy greenness (NDVI) are detected (Shen et al., 2021;

Mohammadi et al., 2022). This enables potentially real-time evaluations of ecosystem health.

In analogy with tower-based results, combining SIF with reflectance-based metrics has the

potential to overcome many of the limitations presented by any individual metric alone,

however, this has yet to be fully investigated.

Integrating satellite products from different sensors should also be considered with care as

overpass time and pixel locations may not align temporally and spatially, leading to spatio-

temporal mismatch (Gao et al., 2006; Alcaraz-Segura et al., 2010). In addition, the seasonal

variation in solar radiance and high solar-zenith angles results in unequal availability of satel-

lite data between winter and summer (Figure 2.9 a-d), which may bias interpretation of the

seasonality of photosynthesis. Forests at higher latitudes will also be more sensitive to sun-

sensor geometry, requiring post-processing steps such as bidirectional reflectance distribution

function (BRDF) and atmospheric corrections (Asner, 1998).

30



Satellites offer datasets that expand the spatio-temporal range of tower-based obser-

vations. Despite the challenges imposed by mixed-pixels, snow and cloud contamination,

satellites are essential tools to better monitor ENFs and to inform global carbon models.

More research is needed to fully understand and interpret satellite-based data products for

tracking photosynthesis in ENFs. There remains a need for mechanistic validations at a high

spatio-temporal resolution (Nelson et al., 2022) with measurements such as those discussed

in Sections 2.2 and 2.3.

2.5 Multi-scale observations for an integrated understanding of

evergreen needleleaf biology

Climate change is likely to have complex and multifaceted impacts on ENF photosynthesis,

which could alter the structure, composition, and productivity of these ecosystems in ways

that are not yet fully understood (Seidl et al., 2017). Understanding both the nuances and

potential of integrating the aforementioned measurements will create a more complete picture

of the ENF carbon cycle. This is critical as both climate change and land-use decisions

make the future of forests largely uncertain (Anderegg et al., 2020; Brodribb et al., 2020).

Long-term carbon storage and biodiversity of ENFs are hindered by interannual changes in

temperature and precipitation as well as disturbance events linked to extreme weather, biotic

agents, and large-scale demographic shifts (Allen et al., 2010; Seidl et al., 2017; Anderegg

et al., 2020). Both modeling and monitoring these changes have been challenging, with a

recent study suggesting wide divergence in projections of future global forest vulnerability

using the best available data and mechanistic models (Anderegg et al., 2022). Understanding

how climate-sensitive disturbances might impact ENF vegetation physiology going forward

will require multidisciplinary efforts for scaling and interpreting observations from the leaf

to the globe.

We can glean essential knowledge on the environmental and physiological controls on the

31



seasonality of ENF photosynthesis by combining fundamental theory of plant physiological

ecology with a diverse combination of observations at scales from conifer needle to flux tower

to satellite. In this paper, we have shown how pigment-based thermal energy dissipation of

excess sunlight is an integrative general property of ENFs response to adverse environmental

conditions over both mild and harsh winters. Additionally, we show that the steady-state

emission of chlorophyll fluorescence can be a physiological indicator of ENF photosynthesis.

Interpreting these processes from satellite data alone leaves out important nuances in these

signals due to the low spatio-temporal resolution of satellite measurements. Thus, without

careful measurements of, and expertise in, plant pigments, gas-exchange, and chlorophyll flu-

orescence at the site level interpretations of satellite products might over- or under-estimate

ENF photosynthetic seasonality. Co-located measurements of footprint-tower spectroscopy

and needle biochemistry can provide an explanation for how seasonal adjustments in needle

pigments and light energy partitioning are mechanistically linked to photosynthetic capac-

ity. These crucial ground observations enable developers of satellite data products to correct

for impacts of sun-sensor geometry and background noise that might confound researchers’

interpretation of SIF or pigment-based signals.

While eddy covariance currently provides the best ground-validation of remote sensing

derived ENF GPP products, both flux measurements and remote sensing products carry

uncertainties (Hollinger and Richardson, 2005; Tramontana et al., 2015). Because flux mea-

surements represent net exchanges of carbon, water and energy at the ecosystem scale, flux

data alone do not explicitly tell us the spatio-temporal contributions to, nor the partitioning

of fluxes between, different ecosystem components (Baldocchi, 2003). Linking remote sensing

with needle-scale measurements can help scientists interpret site-specific flux measurements

by providing contextual information on community composition and vegetation function,

and help scale estimate fluxes globally (Ustin et al., 2009). Taken together, seasonal mea-

surements of plant biochemistry/physiology, eddy-covariance, and remote sensing can help

paint a more complete picture on where uncertainties arise and how we might account for
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them going forward.

This overview shows how coordinated measurement campaigns (Figure 2.1) allow for

a better understanding of the environmental controls on ENF physiology and ultimately

how this can be scaled using remote sensing products. With the rapid proliferation of new

satellites and researchers using these data to draw conclusions about ecosystem response to

climate change, the need for multi-disciplinary efforts to better reconcile when, where, and

to what extent remote sensing can be used to track changes in the carbon cycle is critical.

The multi-disciplinary efforts discussed here comprised experts in plant ecophysiology, leaf

and tower-scale carbon flux observations, tower and satellite remote sensing. Going forward,

empirical data from these efforts should be used to help inform modeling efforts or used in

model-data fusion frameworks, requiring close collaboration with the ecosystem modeling

community (Stofferahn et al., 2019; Gettelman et al., 2022). Accurate scaling of carbon

cycle parameters from the site to the ecosystem to the biome is a major challenge but can

be accomplished by well instrumented and monitored sites that encompass a broad range of

ENFs. Doing so will ultimately enable scientists to better understand both the biological

and physical drivers of changes in ENF photosynthesis, and how we can accurately monitor

and measure these processes under future climate scenarios.
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CHAPTER 3

Methods: field locations, data collection and processing

In this chapter, we provide a general methodological overview of the sites, instrumentation,

and general data processing used throughout this dissertation. More details of measurements

and data processing can be found in specific chapters where relevant.

3.1 Field Locations

The data presented in this dissertation was collected across a network of field locations in

North American evergreen needleleaf forests spanning a latitudinal and climate gradient

(Figure 2.2, Table 3.1). The majority of this work (Chapters 2, 4, 5, 6, & 7) uses original

data collected at the Southern Old Black Spruce site (SOBS, FLUXNET ID Ca-Obs) in

Saskatchewan, Canada. We also collected original data from two sites within the National

Ecological Observatory Network (NEON) in Alaska at Delta Junction (DEJU, Chapters 2,

6, & 7) and Florida at the Ordway-Swisher Biological Station (OSBS, Chapters 2, & 7).

Finally, we present data previously collected in Colorado at Niwot Ridge (FLUXNET ID,

US-NR1). All sites are equipped with scaffolding towers well above the canopy height which

collect eddy-covariance and meterological data (Section 3.2).
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Table 3.1: Summary of climate and vegetation at field sites

Site DEJU Ca-Obs,

SOBS

US-NR1 OSBS

Lat/Lon 63.88°N,
145.75°W

53.98°N,
105.12°W

40.03 °N, 105.55
°W

29.69 °N,
81.99 °W

Elevation 517 m 629 m 3050 m 46 m

Mean Air

Temp.

0.4 °C 1.4°C 2.8 °C 20.9 °C

Mean

Precipitation

305 mm 427.7 mm 800 mm 1302 mm

Canopy

Height

10 m 16 m 13 m 23 m

Overstory

Vegetation

black and white

spruce (Picea

mariana & Picea

glauca)

mixed forest

stand with

stem density

predomi-

nantly (90%)

black spruce

(Picea

mariana) and

scattered

(10%) larch

(Larix

laricina)

lodgepole pine

(Pinus contorta),

Engelmann

spruce (Pinus

engelmannii),

and subalpine fir

(Abies

lasiocarpa)

predominantly

long-leaf pine

(Pinus

palustris)

with scattered

turkey oak

(Quercus

laevis)

Continued on next page
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Table 3.1: Summary of climate and vegetation at field sites (Continued)

Site DEJU Ca-Obs,

SOBS

US-NR1 OSBS

Understory

Vegetation

sedges, mosses,

and low-growing

shrubs including

lingonberry

(Vaccinium

vitis-idaea),

crowberry

(Empetrum

nigrum), bog

blueberry

(Vaccinium

uliginosum), bog

Labrador tea

(Ledum

palustre), false

toadflax

(Geocaulon

lividum) , and

bearberry

(Arctostaphylos

uva-ursi)

mixed feather

mosses

(Hylocomium

splendens,

Pleurozium

schreberi,

Ptilium

cristacastren-

sis), with

some peat

moss

(Sphagnum

spp.) and

lichen

(Cladina spp.)

mainly

non-vegetated

wiregrass

(Aristida

stricta

Michx.)

Soils gravelly glacial

till and outwash

covered by a thin

layer of loess

moderately-

to-poorly

drained with

a 20-30 cm

thick peat

layer overlying

waterlogged

sand

granitic-rocky-

podzolic soil,

loamy sand

overlain by a

shallow layer

(≈10 cm of

organic material)

well-drained

and sandy
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3.2 Data

3.2.1 Tower-based Remote Sensing: PhotoSpec

We collected tower-based remotely sensed measurements including red and far-red SIF and

reflectance based metrics (NDVI, NIRv, CCI, PRI) using PhotoSpec (see Grossmann et al.

(2018) for detailed instrument description). Measurements ran from August 2019-present

at DEJU, September 2018-present at Ca-Obs, June 2017-June 2018 at US-NR1, and March

2020-present at OSBS. The following sections describe the experimental setup at each site,

retrieval approach, and data processing.

Photospec was installed atop the scaffolding/eddy-covariance tower facing due north

at all sites. PhotoSpec has a narrow field of view (0.7°), 2-D scanning capabilities, and

simultaneously measures SIF and VIs at the same point in the canopy (Grossmann et al.,

2018). Individual measurements take approximately 20 seconds.

Reflectance-based vegetation indices (VIs) were calculated as follows, with ρnm:nm = the

average reflectance across a wavelength range in nm:

NDVI =
(ρ830:860 − ρ620:670)

(ρ830:860 + ρ620:670)
(3.1)

NIRv =
(ρ830:860 − ρ620:670)

(ρ830:860 + ρ620:670)
× ρ830:860 (3.2)

PRI =
(ρ569:571 − ρ520:532)

(ρ569:571 + ρ520:532)
(3.3)

CCI =
(ρ520:532 − ρ620:670)

(ρ520:532 + ρ620:670)
(3.4)

SIF was retrieved in the red (680-686 nm) and far-red (745-758 nm) wavelength ranges

using a Fraunhofer-line based retrieval (Grossmann et al., 2018; Magney et al., 2019b,a; He

et al., 2020). Retrieval errors are calculated as outlined in Grossmann et al. (2018) and

propagated through all calculations.
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To decouple the physical (light, structure, viewing and solar geometries) from the physio-

logical SIF signal, and account for variations in incident light and sun/shade fraction within

the field of view, we calculated SIFrelative (a proxy for SIFyield) in both the red and far-red

wavelength ranges as:

SIFrelative =
SIF
I

where I is the near-infrared (NIR) radiance in the SIF retrieval window (680-686 nm for red

and 745-758 nm for far-red) (e.g. Parazoo et al., 2020; Magney et al., 2019b).

We collected 1 second Photosynthetically Active Radiation (PAR) data and used these

data to remove PhotoSpec measurements where PAR conditions changed significantly (PARstd >

0.2×PARavg) over the PhotoSpec integration time. We excluded low-quality retrievals where

the SIF retrieval error was > 0.2 Wm-2sr-1µm-1 and where SIF < -0.1 Wm-2sr-1µm-1 or SIF

> 10 Wm-2sr-1µm-1. Finally, we only considered data where the Solar Zenith Angle (SZA)

< 80° to remove data where low light conditions increase retrieval uncertainty.

We developed a clear sky comparison metric, Df, to separate sunny (direct) from cloudy

(diffuse) illumination conditions (Pierrat et al., 2021b). Df reflects the deviation of PAR at a

given solar zenith angle from the expected PAR during a clear sky reference day so that Df =

1 is clear sky conditions. We used Df to classify measurements with Df<0.6 as cloudy (diffuse)

and Df>0.8 as sunny (direct). Df values were calculated for every PhotoSpec measurement

(∼20 second resolution) but averaged together in 30-minute windows to compare with canopy

averages.

We took canopy representative scans across all field locations with either a 30 or 60-

minute repeat time to compare with the temporal resolution of eddy-covariance data and

environmental variables. Data were then averaged to a half-hourly or hourly resolution for

either species-specific averages (Chapter 4) or canopy representative averages (Chapters 5,

6, 7). Data were then averaged again to a daily resolution or mid-day (10:00-14:00) daily

averages to explore seasonal trends and compare with satellite data.
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Days with significant snow cover were identified visually using phenocam images (https:

//phenocam.sr.unh.edu/webcam).

3.2.2 Eddy-covariance and meteorological data

Eddy-covariance and meterological data were collected across all four field locations and

processed as described in Table 3.2

Table 3.2: Summary of methods for measurement and data processing

Measurement SOBS/Ca-Obs DEJU, US-NR1, OSBS

GPP

Eddy-

covariance

Taken using a 3-D sonic

anemometer (CSAT3, Campbell

Scientific, Logan, UT) in

combination with a closed-path

infrared gas (CO2/H2O) analyzer

(LI-7200 analyzer, Li-Cor,

Lincoln, NE) operated in absolute

mode.

Obtained from National

Ecological Observatory Network

(NEON) (2022a) using a

Campbell Scientific CSAT-3 3-D

Sonic Anemometer and LI-COR -

LI7200 gas analyzer.

We performed quality assurance

on the data using the standard

Fluxnet-Canada method following

(Barr et al., 2004, 2006)

We performed quality assurance

on carbon fluxes based on

turbulent and storage fluxes

separately, using a bivariate

statistical procedure for each, to

overcome quality flag restrictions

in the ”expanded” NEON

eddy-covariance bundle.

Continued on next page
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Table 3.2: Summary of methods for measurement and data processing (Continued)

Measurement SOBS/Ca-Obs DEJU, US-NR1, OSBS

3% outliers (3% of rarest events

from the tails of each distribution)

were excluded from joint

probability distributions for all

available data for 1) turbulent flux

and PPFD, and separately for 2)

storage flux and time of day. NEE

data were considered valid if both

the turbulent and storage fluxes

passed this quality control step

(and NEE is equal to their sum).

Partitioning Data for NEE and meteorological

variables were filtered to remove

low turbulence (low friction

velocity) periods and then

gap-filled via the R package

REddyProc (Wutzler et al., 2018).

REddyProc was used to partition

NEE into GPP and Reco using

the method of Lasslop et al.

(2010), with air temperature used

as the driving temperature for

Reco.

Data for NEE and meteorological

variables were filtered to remove

low turbulence (low friction

velocity) periods and then

gap-filled via the R package

REddyProc (Wutzler et al., 2018).

REddyProc was used to partition

NEE into GPP and Reco using

the method of Lasslop et al.

(2010), with air temperature used

as the driving temperature for

Reco.

Air

Temperature

(Tair) &

Relative

Humidity

(RH)

Vaisala HMP45C probe at 6 m Vaisala HUMICAP Humidity and

Temperature Probe - HMP 155 at

22 m (National Ecological

Observatory Network (NEON),

2022b)

Continued on next page
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Table 3.2: Summary of methods for measurement and data processing (Continued)

Measurement SOBS/Ca-Obs DEJU, US-NR1, OSBS

Soil

Temperature

(Tsoil)

Type-T (copper-constan)

thermocouples at a 10 cm depth

Thermometrics - Climate RTD

100-ohm Probe at 6 cm depth

(National Ecological Observatory

Network (NEON), 2022c)

Soil

Volumetric

Water

Content

(SWC)

Cambell Scientific CS615 Water

Content Reflectometers at a 7.5

cm depth

Sentek - EnviroSCAN TriSCAN

at 6 cm depth (National

Ecological Observatory Network

(NEON), 2022d)
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CHAPTER 4

Tower-based remote sensing reveals mechanisms

behind a two-phased spring transition in a

mixed-species boreal forest

4.1 Introduction

The boreal forest is a major contributor to the global carbon and water cycles and is one

of the regions most sensitive to environmental change (Thurner et al., 2014; Bonan, 2008).

Climate change has led to an earlier spring onset and longer growing season, but the potential

impacts of this change on the annual carbon balance and seasonal vegetation phenology

remain uncertain (Schaefer et al., 2014; Fisher et al., 2018; Goetz et al., 2005; Fu et al., 2017;

Richardson et al., 2010). Contributing to this uncertainty, global climate models currently

fail to accurately predict the onset of spring photosynthesis (Commane et al., 2017; Peng

et al., 2014; Parazoo et al., 2018; Richardson et al., 2012). This is partly due to difficulties in

accurately measuring the onset of spring photosynthesis through remotely sensed products,

and partly due to uncertainties in understanding the environmental controls on the timing

and rate of spring photosynthetic recovery (Jeong et al., 2017, 2011). Overcoming these

challenges is therefore critical for understanding the fate of the boreal region in the context

of climate change.

Studying the boreal forest spring recovery is challenging, in large part, because it has

widespread mixed forest stands with both deciduous and evergreen species. Trees within
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these stands experience the same environmental conditions but exhibit vastly differing life

strategies in both their short-term (daily) functioning (Pappas et al., 2018) and their long-

term (monthly) seasonal dynamics (Reich, 2014). During fall, deciduous species drop their

leaves and go into a long-term winter dormancy before regrowing them in the spring. This

strategy allows deciduous plants to avoid both damage due to freezing and photodamage

caused by the absorption of winter sunlight which they are unable to use to drive photo-

synthesis. Evergreen trees, on the other hand, retain their needles, and must undergo bio-

chemical changes to downregulate photosynthesis in the winter months while still absorbing

appreciable sunlight (Ensminger et al., 2004). To do this, evergreens transition from rapidly

reversible non-photochemical quenching (NPQ), typical of summer, to sustained NPQ for

winter by changing their photoprotective pigments associated with the xanthophyll cycle

(Adams et al., 2004; Verhoeven, 2014). During winter, to support sustained NPQ, needles

accumulate and retain zeaxanthin and there is an overall increase in the xanthophyll pig-

ment pool size (Gilmore and Ball, 2000). Therefore, in spring, evergreens decrease their bulk

carotenoid pigments (including xanthophyll pigments), but maintain high levels of zeaxan-

thin and antheraxanthin so they can rapidly shift their photoprotective state during the day

for protection during high light conditions. Throughout the year, changes in chlorophyll

can be much smaller than changes in carotenoid pigments (Gilmore and Ball, 2000; Bowling

et al., 2018) and as a result, there is an increase in the ratio of chlorophyll to carotenoid

pigments (Chl:Car) in spring and a decrease in winter (Oh et al., 2013; Ottander et al.,

1995; Adams III et al., 2002; Öquist and Huner, 2003). The difference in the spring recovery

process between evergreen and deciduous species, and the multiple biochemical processes

evergreen species undergo, has led to several remotely sensed products, from the leaf to

the satellite scale, to investigate the spring transition, each with their own advantages and

disadvantages.

Greenness based indices such as the Normalized Difference Vegetation Index (NDVI) and

the Near-Infrared Reflectance from Vegetation (NIRv), among others (EVI, GEMI, SAVI,
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etc.), have been used to successfully track vegetation cover and productivity across biomes

(Tucker, 1979; Badgley et al., 2019). NDVI provides an estimate of canopy chlorophyll con-

tent in a pixel and therefore tracks the spring onset well in deciduous forests and grasslands

(Yang et al., 2017; Wang et al., 2019). However, NDVI is sensitive to non-vegetated surfaces

such as clouds, snow and water, and saturates at high leaf area index (LAI) - all of which

present challenges for decoupling vegetation productivity from other artifacts that are par-

ticularly present in the boreal forest (Gamon et al., 2013). NIRv goes a step beyond NDVI

in that it isolates the vegetated signal by amplifying the near-infrared reflectance, and is

therefore less sensitive to snow cover and other confounding signals (Badgley et al., 2017,

2019). However, greenness based indices do not provide plant functional information related

to photosynthetic activity or light use efficiency (LUE) (Gitelson and Gamon, 2015). There-

fore, they may fail to capture the photosynthetic activity of evergreen species that remain

green year round despite a complete downregulation of photosynthesis (Magney et al., 2019a;

Badgley et al., 2019; Sims et al., 2006b; Garbulsky et al., 2010).

Two other vegetation indices, the Photochemical Reflectance Index (PRI) and the Chloro-

phyll Carotenoid Index (CCI), are also promising metrics for detecting seasonal changes in

evergreen photosynthesis because they are connected to photosynthetic phenology of ever-

green conifers and have been shown to be viable indices for tracking seasonal photosynthetic

activity at leaf and canopy scales for evergreen species (Wong and Gamon, 2015b; Gamon

et al., 2016; Springer et al., 2017; Gamon et al., 1992). PRI acts as an indicator of short-term

xanthophyll cycle activity while CCI is sensitive to the seasonal behavior of bulk carotenoid

pigment pools - including the seasonal retention of xanthophyll pigments (Gamon et al.,

1992, 2016). However, several studies have shown that PRI can vary substantially over

longer time scales and the PRI/LUE relationship can change dramatically under changing

environmental conditions such as altered nutrient status, (Gamon et al., 1997), water sta-

tus (Filella et al., 2004; Sims et al., 2006a), and temperature (Porcar-Castell et al., 2012).

Furthermore, variability in PRI across different species outweighs biochemical responses of
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PRI in one species (Atherton et al., 2017). This poses a significant challenge for spatially

averaged measurements over mixed forest stands where changes in PRI could merely reflect

changes in species breakdown. These potentially confounding and decoupled effects pose

significant challenges for using PRI and/or CCI to determine the spring transition.

Finally, Solar-Induced Chlorophyll Fluorescence (SIF) is the small emission of red and

far-red light from excitepd chlorophyll-a molecules. It is frequently used as a proxy for GPP,

and has been used to represent the timing of spring GPP onset in Alaskan ecosystems from

satellite measurements (Parazoo et al., 2018; Commane et al., 2017; Jeong et al., 2017; Luus

et al., 2017; Walther et al., 2016). These satellite measurements, however, are spatially

averaged over multiple vegetation types at a much coarser spatial resolution than traditional

vegetation indices (e.g., 10 m - 500 m for Sentinel and MODIS reflectance; 2 km - 500 km

for OCO2, TROMOMI, GOME-2 SIF). Satellite SIF is therefore more susceptible to mixing

species specific information within the spring transition. In addition, spatial averaging is

often inconsistent between satellites, thus worsening the problem. In fact, satellite-based

morning overpasses show a delay in SIF onset relative to daily mean GPP from towers

(Parazoo et al., 2018). In contrast, tower-based measurements of SIF have shown slight

increases in SIF preceding changes in GPP, suggesting respiratory recycling of CO2 before

water transport and stomatal opening (Magney et al., 2019a). These contrasting results

highlight the need for a more in-depth investigation of the linkages between SIF and carbon

uptake during the spring transition.

To verify these remotely sensed products, photosynthesis, carbon uptake, and other plant

functions can be locally inferred by eddy-covariance (EC) measurements (Baldocchi et al.,

1988) as well as tree-specific stem radius measurements (Drew and Downes, 2009). EC mea-

surements of net ecosystem exchange (NEE), and derived measurements of GPP, can be used

to study reactivation of photosynthetic function. However, EC derived GPP is subject to

large uncertainties, particularly during the spring transition in arctic ecosystems and mixed

forest stands where initial fluxes can be especially small relative to the growing season max-
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imum (Parazoo et al., 2018; Baldocchi, 2003). Within the EC footprint, the spring recovery

of understory, deciduous, and evergreen species is captured in a spatially averaged prod-

uct that cannot distinguish between species-specific recovery (Baldocchi, 2003). Therefore,

EC derived GPP measurements are less effective at probing the species-dependent recovery

of the widespread mixed forest stands found in the boreal region. Assessment of stem ra-

dius change with dendrometers, on the other hand, provides hourly-resolution, tree-specific

measurements of growth and tree water relations (Zweifel and Häsler, 2001; Steppe et al.,

2006; Zweifel, 2016). Stem radius measurements have been widely recognized as a useful

indicator of drought stress but have more recently been used to study fundamental mecha-

nisms underlying whole-plant functioning and growth (De Swaef et al., 2015). Stem radius

change measurements can provide information on water uptake by trees during winter (Se-

vanto et al., 2006) and reveal a shift to springtime stem re-hydration (Turcotte et al., 2009).

Therefore, stem radius measurements can allow us to better understand the species-specific

spring recovery in mixed forest stands. Finally, the timing of the onset of growth from stem

radius measurements provides additional valuable information on long-term sequestration of

carbon and how this may change under future climate scenarios (Zweifel et al., 2010).

The variety of remotely sensed products and potential limitations of spatially integrated

GPP measurements have led to large uncertainties in the timing of the spring recovery in

needleleaf forests, and a broad range of proposed environmental controls for what drives

this recovery. Proposed drivers include warmer air temperatures, increases in plant available

soil water content, photoperiod, and thawing stems, needles, and soils (Ensminger et al.,

2004; Parazoo et al., 2018; Öquist and Huner, 2003; Tanja et al., 2003; Wu et al., 2013).

The exact controls of the spring recovery, however, remain uncertain (Ensminger et al.,

2004). By understanding how evergreen and deciduous species respond to the spring recovery

separately, we can better understand the information contained in spatially integrated remote

sensing measures and more accurately determine the specific environmental controls relevant

for the recovery of each species. Therefore, our ability to accurately determine the timing
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and drivers of the onset of the spring transition depends on our ability to utilize remote

sensing metrics sensitive to physiological changes occurring in the boreal forest during this

time.

The goal of this study is to explore how we can best utilize existing sets of remote sensing

metrics to better characterize the timing and drivers of the spring transition in a boreal mixed

forest. This includes utilizing a multivariate approach combining tower-based remote sensing

with tree-level ecophysiological data to characterize: the onset of photosynthesis, pigment

transitions, deciduous leaf-out, stem rehydration, the onset of transpiration, and the start

of radial wood growth for individual species. Specifically, we seek to answer:

1. How can tower-based remote sensing products be used to determine the spring transi-

tion and what physiological mechanisms are they sensitive to?

2. What environmental conditions are driving changes in photochemical and biochemical

regulation of the spring transition?

We explore the efficacy of remotely sensed metrics (NDVI, NIRv, PRI, CCI, and SIF)

for determining the spring transition for both deciduous and evergreen species in the boreal

forest. We compare co-located and concurrently recorded tower-based remote sensing metrics

and ground measurements of stem radius change and tower-based measurements of GPP, all

collected at a half-hourly resolution, to determine relevant physiological changes during the

spring transition, and which of these changes can be measured with remote sensing. Using

this information, we examine different environmental conditions that drive various stages

of the spring transition. We used a random forest model to quantify the importance of

different environmental conditions and qualitatively connected these conditions to periods

of increased productivity to provide an explanation for what controls the spring transition.
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4.2 Materials and Methods

4.2.1 Site Description: Southern Old Black Spruce

The study site (Southern Old Black Spruce, SOBS, Fluxnet ID CA-Obs) is located near the

southern limit of the boreal forest ecotone in Saskatchewan, Canada (53.98°N, 105.12°W)

(Figure 4.1). It is a mixed forest stand with stem density predominantly (90%) black spruce

(Picea mariana), and scattered (10%) larch (Larix laricina) (Pappas et al., 2020a). Average

canopy height at the site is∼16 m for larch and∼11 m for black spruce with a canopy leaf area

index of ∼3.8 m2m-2 (Chen et al., 2006). Wild rose (Rosa woodsii) and Labrador tea (Ledum

groenlandieum) are the main understory vegetation, with ground cover consisting mainly of

mixed feather mosses (Hylocomium splendens, Pleurozium schreberi, Ptilium cristacastren-

sis), with some peat moss (Sphagnum spp.) and lichen (Cladina spp.) (Gaumont-Guay

et al., 2014). The soil is moderately-to-poorly drained with a 20-30 cm thick peat layer

overlying waterlogged sand. The site is equipped with a twin scaffold tower at 25 m above

ground level (agl), approximately twice the height of the forest canopy.

4.2.2 Remote Sensing: PhotoSpec

We collected co-located remotely sensed products (NDVI, NIRv, PRI, CCI, red SIF, far-red

SIF) using PhotoSpec (see Grossmann et al. (2018) for detailed instrument description) in

the spring of 2019 and 2020. PhotoSpec was installed at the top of the scaffolding tower (25m

agl) facing due north. It has a narrow field of view (0.7 degrees) and a 2-D scanning capability

which permits independent measurements of both black spruce and larch, giving it a unique

advantage over spatially averaged satellite measurements. Our scanning strategy had three

’elevation scans’ (scanning vertically) at 35°W (10 measurements), 0°N (24 measurements),

and 35°E (10 measurements) that observed predominantly black spruce, and three individual

targets on a larch (Figure 4.1). Individual measurements take approximately 20 seconds and

the complete scan cycle repeats on a 30 minute loop.
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Figure 4.1: Field site location with PhotoSpec and support measurements at the Southern

Old Black Spruce (SOBS) site in Saskatchewan, Canada. PhotoSpec set up is shown with

an inset of the scanning strategy and measurement points on both black spruce and larch.

Vegetation indices were calculated as the following, with ρnm:nm = the average reflectance

across a wavelength range in nm:

NDVI = (ρ830:860 − ρ620:670)/(ρ830:860 + ρ620:670) (Tucker, 1979).

NIRv = (ρ830:860 − ρ620:670)/(ρ830:860 + ρ620:670)× ρ830:860 (Badgley et al., 2017)

PRI = (ρ569:571 − ρ520:532)/(ρ569:571 + ρ520:532) (Gamon et al., 1992)

CCI = (ρ520:532 − ρ620:670)/(ρ520:532 + ρ620:670) (Gamon et al., 2016)

SIF was retrieved in the red (680-686 nm) and far-red (745-758 nm) wavelength ranges using

a Fraunhofer-line based retrieval (Grossmann et al., 2018). Retrieval errors are calculated as
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outlined in Grossmann et al. (2018) and propagated through any calculation in this study.

Our retrieval approach is comparable to those in Magney et al. (2019b,a); He et al. (2020). To

decouple the physical (light, structure, viewing and solar geometries) from the physiological

SIF signal, and account for variations in incident light and sun/shade fraction within the field

of view, we calculated SIFrelative (a proxy for SIFyield) in both the red and far-red wavelength

ranges as:

SIFrelative = SIF/I

Where I is the near-infrared (NIR) radiance in the SIF retrieval window (680-686 nm for

red and 745-758 nm for far-red) e.g.(Parazoo et al., 2020; Magney et al., 2019b).

We collected 1 second Photosynthetically Active Radiation (PAR) data and used these

data to remove PhotoSpec measurements where PAR conditions changed significantly (PARstd >

0.2∗PARavg) over the PhotoSpec integration time. We then filtered all data points for NDVI

> 0.5 in order to remove points that were mostly obscured by snow or non-green vegetation

(soil, branches, stems), although this process left some measurements with mixed pixels.

A lower NDVI threshold (NDVI > 0.2) did not change results of our study and merely

increased the scatter and snow responses of vegetation indices. We excluded low-quality

retrievals where the SIF retrieval error was > 0.1 Wm−2sr−1µm−1 and where SIF < -0.1

Wm−2sr−1µm−1 or SIF > 10 Wm−2sr−1µm−1. Finally, we only considered data where the

Solar Zenith Angle (SZA) < 80° to remove data where low light conditions increase retrieval

uncertainty.

We calculated species specific averages over each 30 minute period which were again

averaged to report daily averages of SIFrelative and reflectance measurements for both black

spruce and larch in 2019 and 2020 (Figures 4.2 & 4.3).

Finally, days with significant snow cover, were identified visually using phenocam images

at the site (https://phenocam.sr.unh.edu/webcam/sites/canadaOBS/) and highlighted

in Figures 4.2 & 4.3. Our filtering strategy allowed us to effectively isolate remote sensing
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pixels predominantly filled with plants and identify periods with potential snow contamina-

tion.

4.2.3 Tree Water Status

4.2.3.1 Freeze/Thaw State: Dielectric Probes

The freeze-thaw state of the tree trunks was determined with dielectric probes inserted into

three tree trunks (two black spruce, one larch). Three ruggedized soil moisture sensors

(model GS-3; Decagon Devices, Pullman, Washington, USA) were installed directly into 5.6

cm pre-drilled holes (length of probes) within tree trunks, in order to provide a measure tree

relative dielectric constant and tree skin surface temperature. The probes are sensitive to

liquid water, as liquid water has a near constant dielectric constant compared to frozen water.

The dielectric constant (D) follows ambient temperature in winter, but is near constant when

trunks are thawed in the spring (Roy et al., 2020; Matheny et al., 2015). We defined a daily

range in the dielectric constant, ∆D = Dmax − Dmin, and classified trunks as frozen for

∆D > 0.3 and thawed for ∆D < 0.3 in 2019 and frozen for ∆D > 0.5 and thawed for

∆D < 0.5 in 2020 after reinstalling following probe failures in 2019. Re-calibration of the

∆D threshold in 2020 yielded no significant difference in the results.

4.2.3.2 Stem Radius: Dendrometers

We monitored stem radius change of 13 black spruce and 13 larch trees to determine water

storage dynamics and the onset of transpiration. We used automatic dendrometers (DC3;

Ecomatik, Dachau, Germany) to obtain half-hourly measurements of stem radius change at

breast height. The data were recorded using HOBOUX120-006M data loggers, where each

logger was connected to four dendrometers. The average stem diameter at breast height of

monitored trees was 13 cm for black spruce and 18 cm for larch. We converted dendrometer

measurements to µm and corrected for thermal sensitivity according to manufacturer’s spec-
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ifications. The recorded data were further processed to identify errors and sensor malfunc-

tioning as a result of wildlife chewing wires, logger battery failure, and moisture interference.

Identified periods of sensor malfunction and abnormal jumps were removed creating gaps in

the specific sensor data record, which remained unfilled.

We investigated stem radius diurnal cycles and hydraulic signals to determine the timing

of stem re-hydration and the onset of transpiration in the spring following the empirical

approach proposed by King et al. (2013). We obtained diurnal cycle information by sub-

tracting the daily mean from each measurement and removing growth trend. This provides

only reversible stem radius change, attributable to tree water relations. In winter, when

trees are dehydrated, the mean stem diurnal cycle shows a negative sinusoidal phase with

patterns of minimum stem radius observed in the morning and maximum stem radius ob-

served in the afternoon (daytime SRmax & nighttime SRmin). This cycle reflects changes in

temperature as it induces nighttime frost-shrinkage and daytime bark swelling (Kozlowski

and Winget, 1964; Loris et al., 1999; Tardif et al., 2001; Zweifel and Häsler, 2000; Ameglio

et al., 2001) and is an important mechanism for winter acclimation (Pearce, 2001; Wisniewski

et al., 2014). During the growing season, the mean stem diurnal cycle reverses and follows

a positive sinusoidal phase which reflects the balance between water loss from transpiration

at the canopy level and water uptake from the soil through the roots at night (Kozlowski

and Winget, 1964; Zweifel and Häsler, 2001). Therefore, trees experience stem expansion at

night when they refill internal storage and stem shrinkage during the day as water stores are

depleted by transpiration that increases the tree water deficit (daytime SRmin & nighttime

SRmax) (Zweifel et al., 2016; Steppe et al., 2006). Thus, tree radius varies daily because of

transpiration-induced changes in water storage and potential in the stem (Perämäki et al.,

2001). We used the shift in the diurnal cycle of tree trunk radii to indicate the onset of

transpiration in the spring (Sevanto et al., 2006; Pappas et al., 2020b; King et al., 2013).

We infer radial growth of the trees following the zero-growth (ZG) approach (Zweifel

et al., 2016). The ZG approach defines radial growth as the difference between the current
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measured stem radius (SRt) and the maximum measured stem radius in the past (SR0) so

that (SR = SRt − SR0). We determined the onset of radial growth when SR exceeded the

maximum radii from the previous growing season (SR > 0). The extracted growth signal

is the total radial increment in tree diameter in µm per day. This approach assumes that

radial growth only occurs when trees are fully hydrated without water deficit. This approach

results in comparable patterns to other methods to determine tree radial growth (B. Eller

et al., 2018).

4.2.4 Gross Primary Production

Eddy-covariance (EC) measurements of net ecosystem exchange (NEE) (µmol C m-2 s-1)

and friction velocity u* (m s-1) were made from atop the site’s 25m scaffold tower. The EC

system consisted of a 3-D sonic anemometer (CSAT3, Campbell Scientific, Logan, UT) in

combination with a closed-path infrared gas (CO2/H2O) analyzer (LI-7200 analyzer, Li-Cor,

Lincoln, NE)) operated in absolute mode. The 30-min eddy fluxes were computed using the

Eddy-Pro software (version 7.0.6, Li-Cor, Lincoln, NE). NEE was calculated as the sum of

the measured CO2 eddy flux at the instrument height and the change in CO2 storage in

the air layer between the instruments and the surface (Barr et al., 2006). Nighttime NEE

values were rejected under calm conditions using a u* threshold of 0.30 m s-1. Net Ecosystem

Production (NEP) was estimated as -NEE assuming no losses via dissolved organic carbon.

Finally, gaps in NEP were filled and NEP was partitioned into gross primary production GPP

(µmol C m-2 s-1) and total ecosystem respiration Re (µmol C m-2 s-1) using the standard

Fluxnet-Canada method (Barr et al., 2004). After processing, we report daily average GPP

for only 2020 (Figure 4.3 j), as 2019 GPP data were not recorded.

53



4.2.5 Environmental Variables

Air temperature and relative humidity were recorded in the canopy at 6 m height with a

Vaisala HMP45C probe. Soil temperature measurements were taken with Type-T (copper-

constant) thermocouples at two locations at a 10 cm depth below the living-moss layer and

averaged together. Soil volumetric water content (VWC) was recorded at two locations at

a 7.5 cm depth with Cambell Scientific CS615 Water Content Reflectometers and averaged

together. Vapour pressure deficit (VPD) was calculated from air temperature and relative

humidity. All environmental variables were recorded at a 30 minute time resolution and

averaged together for daily resolution.

4.3 Results and Discussion

4.3.1 Remote Sensing and Stem Radius Results

Daily time series of vegetation indices, SIFrelative, ∆D, stem radius, environmental conditions,

and GPP in 2019 and 2020 are presented in Figures 4.2 and 4.3, respectively. Snow days (as

identified with phenocam images) are highlighted with shaded vertical gray bars. Important

transitions in stem radius and water use are identified with vertical dashed lines and expanded

upon in Figures 4.4, 4.5 & 4.6. Shaded error bars indicate the 5 day moving mean of twice

the standard deviation of diurnal variability. In general, larch exhibit a larger standard

deviation than spruce due to a more limited number of data points. Our results highlight

the large seasonal differences between black spruce and larch and the variations between

remotely sensed products.

During the winter to spring transition, NDVI and NIRv are relatively invariant for black

spruce, but show rapid increases during larch leaf-out (Figures 4.2 a, b&4.3 a, b). Black

spruce NDVI decreases as a response to snow days, despite filtering for NDVI > 0.5. These

snow dates occur on April 7-10 and May 1-5 in 2019 (Figure 4.2 a), and March 31-April 2,
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April 7 & 8, and May 8 in 2020 (Figure 4.3 a). NIRv in black spruce does not show snow

variability (Figures 4.2 b & 4.3 b). Larch leaf-out on May 22 in 2019, and May 17 in 2020

was captured with NDVI and NIRv and is supported by visual inspection of the phenocam

data (Figures 4.2 a, b & 4.3 a, b).

PRI, CCI, red and far-red SIFrelative show ecophysiologically relevant changes for both

black spruce and larch (Figures 4.2 c, d, e, f & 4.3 c, d, e, f). Black spruce PRI increases as

a response to snow cover in 2019 and 2020 (Figures 4.2 c & 4.3 c). In 2020, these responses

are more subtle in the 5 day moving mean because periods of snow cover are much shorter

than in 2019. Black spruce PRI increases slightly beginning April 17, 2019 and April 25,

2020, followed by large increases beginning May 22, 2019 and May 17, 2020. The PRI signal

then levels off by June 1, 2019 and May 25, 2020. For larch, changes in PRI closely follow

the timing of the leaf-out in both 2019 and 2020. CCI shows remarkably similar patterns

to PRI, however, it is unaffected by snow cover in both 2019 and 2020. Black spruce CCI

shows small increases beginning April 17, 2019 and April 25, 2020, that coincide with the

small changes in PRI. CCI then decreases slightly in 2019 and levels off in 2020 for a short

period of time, before increasing again around May 22, 2019 and May 17, 2020. This second

increase in CCI is largely consistent with the larch leaf-out and the second increase in PRI.

Larch CCI again follows the timing of leaf-out (Figures 4.2 d & 4.3 d). Black spruce red and

far-red SIFrelative increase prior to larch leaf-out in both 2019 and 2020 (Figures 4.2 e, f &

4.3 e, f). In 2019, SIFrelative begins to increase starting April 17 and continues to increase

through April 25. After April 25, SIFrelative decreases through May 5 before increasing again

and leveling off by May 13 (Figure 4.2 e, f). In 2020, SIFrelative begins to increase on April 25

and continues to increase through May 2. SIFrelative then decreases slightly May 2 through

May 11, before increasing again slightly and leveling off by May 15 (Figure 4.3 e, f).

The daily range in the dielectric constant, ∆D, shows periods of frozen and thawed stems.

In 2019, stem thaw began April 13, followed by a brief freeze starting April 25, and a thaw

again on May 6 (Figure 4.2g). One of the black spruce trees remained thawed through the
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April 25-May 6 re-freeze, which suggests an uneven freeze-thaw distribution among trees,

although with only three points sampled this may merely be a reflection of tree diameter at

the measurement point. In 2020, stem thaw occurred April 18 and stems remained thawed

with a few exceptions on May 11, 12, and 15 (Figure 4.3). The freeze-thaw state of the stems

in both 2019 and 2020 closely follows increases and decreases in air temperature (Figures 4.2

i & 4.3 i) as well as increases and decreases in SIFrelative in black spruce.

Investigation of stem radius change shows typical patterns for winter and summer in both

black spruce and larch in 2019 and 2020. Monthly average diurnal cycle (Figure 4.4) shows a

temperature driven diurnal cycle in March, and a transpiration-induced cycle in June. King

et al. (2013) observed similar patterns in diurnal cycle of Norway spruce (Picea abies) and

European larch (Larix decidua) in the Swiss Alps.

During the transition months (April & May), the shift from temperature driven to

transpiration-induced diurnal cycle in stem radius is tracked at a daily resolution for both

black spruce and larch in Figures 4.5 a, d & 4.6 a, d for 2019 and 2020 respectively. Stem

radius change for both species follows diurnal changes in air temperature (typical of winter)

prior to April 13, 2019 and April 17, 2020. During this period in early spring, large variations

in air temperature between day and night also result in large stem radius change amplitudes

(Turcotte et al., 2009). This daily stem radius cycle is reversed on April 13 in 2019 and on

April 17 in 2020, when stem radius maximum values are observed at predawn and stems

have thawed according to ∆D. This indicates the onset of stem rehydration. Rainfall events

induced an increase in stem radius and tree water storage refill for both species on April 15

& 16, May 10 & 15, 2019, and May 21, 2020.

Black spruce show a clear onset of the transpiration-induced diurnal cycle in stem radius

on April 17 in 2019 and on April 25 in 2020 (Figure 4.5 a & 4.6 a). Larch do not show

any clear cycle (beyond occasional stem rehydration) until later in the season, with the

onset dates of May 22 in 2019 and May 18 in 2020 (Figures 4.5 d & 4.6). The switch to a

transpiration-induced diurnal cycle on April 17 in black spruce corresponds with the start
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Figure 4.4: Mean monthly diurnal cycle of larch (a) and black spruce (b) in 2019 and 2020.

Data show temperature driven diurnal cycle during March (winter) and a reversed pattern

in June (summer) showing transpiration-induced cycle.

of the increasing SIFrelative signals (Figure 4.2 e, f), while the transpiration-induced diurnal

cycle in larch corresponds with the timing of the leaf-out, as observed in all larch metrics.

GPP data, reported for 2020, begins to increase around the same time as the switch to

a transpiration-driven diurnal cycle in black spruce, and increasing black spruce SIFrelative

(Figure 4.3j). Furthermore, it shows a brief dip, consistent with the small dip in SIFrelative

from May 2 through May 11. GPP then continues to increase after the larch switch to a

transpiration-driven diurnal cycle on May 17, while black spruce SIFrelative levels off.

Stem radius measurements show the onset of radial growth occurring on June 13 for larch

and June 14 for black spruce in 2019 (Figure 4.2 h) and June 8 for black spruce and June 19

for larch in 2020 (Figure 4.3 h). The onset of growth does not correspond with any changes
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in remotely sensed metrics.

These results indicate two periods of ecological importance for the spring transition,

summarized in the first four rows of Figure 4.7. We propose the following ecophysiological

explanation for this two-phased transition and what each remotely sensed product tells us

about the spring transition.

4.3.2 Evaluation of Remotely Sensed Indices: A two-phase transition

During the spring transition, NDVI and NIRv show no physiologically relevant changes for

black spruce which reflects a lack of variation in chlorophyll content throughout the transition

(Magney et al., 2019a). Both indices do however successfully capture the larch leaf-out.

NDVI fails to capture photosynthetic activity in evergreen species, and has an overall high

sensitivity to snow cover (Magney et al., 2019a; Stylinski et al., 2002; Gamon et al., 2013)

which is reflected in our results. NIRv overcomes the general sensitivity to snow cover

(Badgley et al., 2017), making it a useful tool for separating snow and vegetation signals

in the boreal forest where snow cover is particularly prevalent. NIRv scales well at sites

where canopy structure co-varies with GPP (Baldocchi et al., 2020; Dechant et al., 2020).

This explains why it tracks the larch leaf-out so well but fails to capture photosynthetic

reactivation of black spruce, where canopy structure and crown architecture are a minor

and de-coupled fraction of carbon uptake (Pappas et al., 2018, 2020a). Because NDVI and

NIRv signals are mostly only variable for larch, and more specifically to changes in leaf

presence, we suggest that satellite NDVI and NIRv measurements will be largely driven by

the growth and senescence of the larch, or other deciduous species in the region. Other

measured remotely sensed products (PRI, CCI, SIFrelative) show two periods of physiological

changes that coincide with changes in stem radius and GPP.

The first phase of the transition is from April 13-May 23, 2019 and April 25-May 17, 2020.

It is characterized by a variable SIFrelative signal that closely tracks the freeze-thaw state of

the stems, slight increases in PRI and CCI, a transpiration-induced cycle in black spruce
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stem radius measurements, and elevated GPP (summarized in Figure 4.7). We propose that

this first period can be explained by the re-activation of the rapidly reversible xanthophyll

cycle and photosynthetic function in black spruce. Changes in black spruce red and far-red

SIFrelative during this time align closely with the shift from a temperature driven to a wa-

ter flux driven (both rehydration and transpiration-induced) diurnal cycle in stem radius

(Figure 4.7). Additionally, in 2020, this period coincides with the initial increase in GPP,

supporting our use of dendrometers for determining the onset of transpiration and carbon

uptake. In spring, the combination of transpiration (as shown by stem radius measurements

and supported by GPP) and photosystem II activity (as suggested by increasing SIFrelative),

suggests a change in photochemical efficiency and a reactivation of the rapidly reversible

xanthophyll cycle. We therefore interpret changes in SIFrelative (a proxy for SIFyield) as signi-

fying an increase in photochemistry and a subsequent drop in non-photochemical quenching,

consistent with Porcar-Castell et al. (2014). Finally, red and far-red SIFrelative signals agree

well because at seasonal timescales, the ratio of red to far-red SIF in evergreen needles is pri-

marily determined by chlorophyll concentration (Magney et al., 2019b), of which we observe

little change in black spruce (represented by invariant NDVI and NIRv signals). Therefore,

either red or far-red SIFrelative will be effective at capturing the first phase of the transition.

Magney et al. (2019a) reported an increase in SIF prior to an increase in GPP in a

subapline evergreen forest. This is not observed in our results (Figure 4.3). We suggest

that the discontinuity observed by Magney et al. (2019a) may be attributable to the fact

that GPP is spatially averaged over the flux footprint and will be influenced by recovery of

understory following soil thaw and snow melt. Therefore, the recovery of understory may

play a less important role at the SOBS site, however, the understory recovery has yet to be

explored.

The second phase of the transition is from May 24-June 1, 2019 and May 17-May 25,

2020 (Figure 4.7). It is characterized by additional increases in PRI and CCI in black spruce,

as well as the larch leaf-out and shift to a transpiration-induced stem radius cycle in larch.

64



Based on previous studies connecting PRI and CCI to changes in Chl:Car pigment ratios

(Cheng et al., 2020; Wong and Gamon, 2015a; Stylinski et al., 2002; Filella et al., 2009;

Garrity et al., 2011; Porcar-Castell et al., 2012), we interpret the increasing black spruce

PRI and CCI signals as reflective of a decrease in bulk carotenoid pigments, which indicates

a decrease in sustained photoprotection and a more permanent physiological shift for the

growing season. Changes in CCI represent the seasonal behavior of Chl:Car pigment ratios

(Gamon et al., 2016). Since NDVI is relatively invariant, we assume chlorophyll concentration

and canopy structure remain largely stable. Therefore, increases in CCI are driven by a

decrease in carotenoid concentrations (Gamon et al., 2016). PRI on the other hand is

influenced by three distinct processes: the short term response related to the operation

of the xanthophyll cycle, seasonally changing Chl:Car pigment ratios, and a shifting leaf

albedo during periods of deep cold (Wong and Gamon, 2015a; Gamon and Berry, 2012). In

spring, while the forest experiences both changes in the rapidly reversible xanthophyll cycle

and increasing Chl:Car pigment ratios, increasing Chl:Car pigment ratios are the dominant

driver of changes in PRI (Wong and Gamon, 2015a; Stylinski et al., 2002; Filella et al., 2009;

Garrity et al., 2011; Porcar-Castell et al., 2012). This is why changes in PRI during the first

phase of the transition with the reactivation of the xanthophyll cycle are smaller and more

variable than the subsequent changes during the second phase.

To further test our interpretation of PRI, and a reactivation of the rapidly reversible

xanthophyll cycle during the first phase of the spring transition prior to changes in pigment

ratios, we analyzed light response curves using the 30 minute average data for PRI vs. PAR

over a 10 day period during winter, spring, and summer in 2019 and 2020 (data not shown).

The winter light response curves showed no appreciable change in PRI at high light levels

indicative of sustained NPQ, as expected in winter (Gamon and Berry, 2012). Summer

PRI light response curves showed a clear decrease in PRI at high light levels, indicative

of rapidly reversible NPQ, as expected in summer (Gamon and Berry, 2012). Spring light

response curves during all phases of the spring transition were highly variable and therefore
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inconclusive. We attribute the variability of the spring light response curves to a mixture

of offsetting responses to temperature, direct/diffuse light conditions, and viewing direction

effects. Given these potential sources of error, and findings from previous studies on drivers

of PRI during spring (Wong and Gamon, 2015a; Porcar-Castell et al., 2012), we attribute

the changes in PRI as consistent with a shift in bulk Chl:Car pigment ratios, which is further

supported by our analysis of CCI.

This two-phased interpretation of the spring transition supports previous work which

proposes a decoupling of the reactivation of the diurnal xanthophyll cycle and increasing

Chl:Car pigment ratios for evergreens in spring, with the reactivation of the xanthophyll

cycle occurring as an early step (Wong and Gamon, 2015b; Porcar-Castell et al., 2012). We

observe a slow increase in CCI and PRI during the first phase of the transition. However,

these indices don’t dramatically increase and level off before the second stage of the spring

transition as we observe in the SIFrelative signals (Figures 4.2&4.3). Therefore, we propose

that the secondary (and more pronounced) increase in CCI and PRI signifies major changes

in the Chl:Car pigment ratios. This change in pigment ratios marks the second stage of

the spring transition as a more permanent shift away from sustained photoprotection for

the growing season. Finally, we propose that CCI is a more useful measure of seasonal

pigments behavior over winter and during the transition seasons compared with PRI due to

its resiliency against snow contamination, and its fewer potential drivers.

The onset of radial growth occurs after the two phases of the spring transition and is not

captured by any remote sensing metrics in this study. This is consistent with Eitel et al.

(2020), who showed changes in PRI prior to radial stem growth and Zweifel et al. (2010),

who showed photosynthetic carbon uptake before radial growth in evergreen species. This

highlights the inherent inability of remote sensing to account for long-term above ground

carbon storage and carbon partitioning following C assimilation through photosynthesis.
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4.3.3 Environmental Drivers of the Spring Transition

4.3.3.1 Statistical Identification of Important Environmental Drivers

To explore the environmental drivers of the two phases of the spring transition, we used

random forest models and a qualitative analysis of environmental conditions and the forest’s

ecophysiological response. A random forest model was chosen because it is non-parametric

and is more suitable for approximating nonlinear relationships in complex systems. We used

Matlab’s TreeBagger function to train 1000 random forest models, each with 100 regression

trees using the daily average data from March 20th-June 27th, for 2019 and 2020 separately,

to capture the full spring transition and to allow a qualitative comparison with the time

series of the two years. Input variables were daily averaged PAR, soil volumetric water con-

tent (VWC), soil temperature, air temperature, and vapor pressure deficit (VPD). Response

variables were either daily averaged red SIFrelative, far-red SIFrelative, PRI, or CCI, for both

black spruce and larch. We removed all data points that had snow contamination (as identi-

fied with visual examination of phenocam images and indicated in Figure 4.2). We averaged

the unbiased predictor importance estimates and out-of-bag R2 values of the 1000 trials to

arrive at the data presented in Figure 4.8.

The random forest model identified important environmental drivers for the spring tran-

sition, as characterized by remotely sensed products, shown in Figures 4.8 & 4.9. In black

spruce, the important predictor variables were different depending on the physiologically

sensitive remotely sensed response variable in question, with some small differences between

2019 and 2020. Black spruce red SIFrelative in 2019 and black spruce far-red SIFrelative in 2019

and 2020 are best predicted by soil temperature, soil VWC, and air temperature (Figures

4.8 a, c & 4.9 c). Black spruce red SIFrelative in 2020 has a more even distribution of depen-

dencies, with soil VWC and soil temperature most important (Figure 4.9a). We hypothesize

that black spruce red SIFrelative in 2020 shows slightly different predictor variables than all

other SIFrelative measurements because it is more poorly predicted (R2 = 0.66) than other
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SIFrelative measurements (black spruce red SIFrelative 2019 R2 = 0.87, black spruce far-red

SIFrelative in 2019 R2 = 0.71, black spruce far-red SIFrelative R2 = 0.87). Predictor impor-

tances for black spruce PRI and CCI are remarkably similar in 2019 and 2020 and have soil

temperature as the most important predictor (Figures 4.8 e, g & 4.9 e, g). In 2020 they also

show a strong dependency on soil VWC and larger dependencies on air temperature than

in 2019. The 2020 dependency is explained by a qualitative analysis of the environmental

conditions present in the time series. The random forest model identified soil temperature

as the dominant predictor for all larch variables in 2019 and 2020 (Figures 4.8 b, d, f, h &

4.9 b, d, f, h). Additionally, larch variables in 2020 show a greater dependence on soil VWC

(Figure 4.9 b, d, f, h). The results from the random forest analysis support a qualitative

analysis of the 2019 and 2020 time series (Figures 4.2 & 4.3) and daily breakdowns (Figures

4.5 & 4.6), and imply that the two phases of the spring transition are controlled by different

environmental conditions as explained below and summarized in Figure 4.7.

4.3.3.2 Environmental Drivers of the two-phased transition

Phase 1: The Onset of Black Spruce Photosynthesis The first phase of the spring

transition, the onset of black spruce photosynthesis, is marked by changes in black spruce red

and far-red SIFrelative which were best predicted by soil temperature, soil water content, and

air temperature in the random forest model. Figures 4.2 & 4.3 show that this period of time

for both 2019 and 2020 is characterized by the following environmental conditions: variable

air temperatures above and below zero, soil temperatures at zero, and slow increases in soil

water content following precipitation events (summarized in Figure 4.7). During this time,

changes in energy balance, including air temperature effects, drive the freeze-thaw state of

the stems (Figures 4.2 g, i & 4.3 g, i). Soil temperatures are approximately 0°C and do

not follow diurnal variations in air temperature as observed later in the season due to the

insulating properties of snow and the latent heat of frozen water (Figures 4.5 b & 4.6 b).

Soil water content increases during precipitation events on April 14, 15, 16 in 2019, which
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add water to the soil and aid in snow melt (Figure 4.5b). Following these precipitation

events, we observe rapid stem rehydration shown in Figure 4.5a, similar to what has been

previously observed with stem radius measurements following precipitation events (Tardif

et al., 2001; Kozlowski et al., 1962; Kozlowski and Winget, 1964). Finally, increases and

decreases in SIFrelative closely follow increases and decreases in air temperature and small

increases in soil water content during this time (Figures 4.2 e, f, i & 4.3 e, f, i). Therefore,

we propose that the first phase of the spring onset is driven by the combination of increases

in air temperature above 0°C, which thaws tree stems, coupled with small increases in soil

water content, due to either precipitation events or snow melt (Figure 4.7). These favorable

growing conditions drive the onset of photosynthesis in black spruce, and allow it to take

advantage of early spring prior to larch leaf-out and the completion of soil thaw.

These results are consistent with previous studies that suggest that frozen stems both

constrain the spring recovery and limit photosynthetic activity in winter, therefore making air

temperature a key driver of photosynthetic reactivation in boreal systems (Bowling et al.,

2018; Sevanto et al., 2006; Ensminger et al., 2004; Tanja et al., 2003). In a boreal Scots

pine stand in Finland, the onset of stand photosynthesis was triggered by a rise in air

temperature prior to complete soil thaw, much like what is observed at SOBS (Sevanto

et al., 2006; Ensminger et al., 2004). Furthermore, the role of frozen stems as a key blockage

to the water transport system, beyond availability of water, was highlighted in a Colorado

evergreen system by Bowling et al. (2018). At SOBS, spring temperatures have additionally

been most closely associated with inter-annual variability in GPP (Liu et al., 2019a). This

highlights not only the importance of the timing of the spring onset of photosynthesis for

the overall carbon balance, but also the importance of air temperature and the timing of

stem thaw as important predictors of the spring onset of photosynthesis (Liu et al., 2019a;

Bowling et al., 2018).

Severe intermittent low-temperature episodes during early spring have been found to not

only halt but reverse the physiological recovery (Ensminger et al., 2004). In 2019, a cold
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snap from April 25-May 1 froze tree stems and led to a subsequent drop in SIFrelative (Figure

4.2 i, g, e, f). This indicates a potential reversal of physiological recovery. There was a

similar period of cold in 2020 from May 2-May 11, however temperatures during this period

did not drop well below 0°C, and therefore did not lead to a freeze in the tree stems. The

subsequent drop in SIFrelative was therefore greatly reduced (Figure 4.3 i, g, e, f). Increased

air temperatures and the freeze/thaw state of the stems alone, however, is insufficient for

fully determining the reactivation of photosynthesis. This is highlighted by the difference in

timing between stem rehydration and the onset of transpiration in 2019 vs. 2020.

In 2019 and 2020, trunk thaw coincided with the timing of stem rehydration in both black

spruce and larch (Figures 4.2 & 4.3). This further supports the idea that air temperature

is a key driver for a tree’s access to water, through its influence on stem and soil thawing.

In 2019, strong rehydration patterns for both black spruce and larch followed major rainfall

events (4.73 mm total) and led to a rapid exponential increase in stem size (Figures 4.2 h

and 4.5 a). In 2020 only minor precipitation events (1.79 mm total) occurred and did not

lead to the same rapid increase in stem size (Figures 4.3 h and 4.6 a). Therefore, the black

spruce transpiration-induced cycle (and increases in SIFrelative) started only four days after

the onset of stem rehydration in 2019 (Figure 4.2). In 2020 it began seven days after the

onset of stem rehydration and followed a slight increase in available soil VWC. The increase

in available soil VWC was likely due to snowmelt or soil temperatures reaching a freeze/thaw

equilibrium (Figure 4.3). These observations highlight the importance of accessible soil water

content, in addition to thawed stems, for photosynthetic recovery and the role of early spring

precipitation events.

Trees are able to access small soil water reservoirs despite partially frozen soils because soil

temperatures at (or just below) 0°C do not inhibit photosynthesis or water uptake from the

soil (Bergh and Linder, 1999; Sevanto et al., 2006). Frozen soils do, however, limit maximum

sap flow and maximum photosynthetic capacity (Bergh and Linder, 1999), which limits the

amount of water they are able to extract. This may explain why the spring recovery happens
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in two distinct steps: before and after complete soil thaw, and why evergreens recover prior to

larch leaf-out. Soil temperature was identified as a dominant predictor for SIFrelative because

by the time soil thaw occurs, SIFrelative is already elevated from the first phase of the spring

onset, and therefore, soil thaw becomes a good predictor of elevated SIF.

Phase 2: Black Spruce Pigment Transitions and Larch Leaf-out The second phase

of the spring transition is characterized by completely thawed soils (Figure 4.7). Soil tem-

perature increases above 0°C and begins to follow diurnal changes in air temperature on

May 15, 2019 and May 16 2020. Shortly after, we observe changes in black spruce PRI and

CCI (Figures 4.2 c, d & 4.3 c, d), as well as larch leaf-out (Figures 4.2 a & 4.3 a) and larch

transition to a transpiration-induced diurnal cycle (Figures 4.5 d & 4.6 d). Therefore, com-

plete soil thaw is key for black spruce to make more permanent physiological shifts for the

growing season. They do this by increasing Chl:Car pigment ratios and reaching maximum

photosynthetic capacity, which is limited under frozen soil conditions (Bergh and Linder,

1999). Furthermore, with water access no longer limited, larch are able to use larger water

stores to begin the leaf-out process. In 2020, soil VWC was identified as an important pre-

dictor of changes in black spruce PRI, CCI, and larch metrics. Figures 4.3 i & 4.6 f show

that shortly after soil thaw occurs in 2020, soil VWC dramatically increases. We therefore

attribute increases in soil VWC, after soil thaw, to ice melt, making soil temperature the

dominant driver.

Soil thaw as a trigger for the spring photosynthetic onset has previously been reported

in deciduous forests (Baldocchi et al., 2005), and in Alaskan boreal systems across varied

vegetation types (Parazoo et al., 2018). Early photosynthesis prior to soil thaw, however, was

observed in predominantly evergreen systems (Parazoo et al., 2018). We suggest that since

GPP-based metrics are spatially integrated, they may show landscape thaw as the dominant

predictor for carbon uptake in mixed stand forests due to the influence of deciduous species

and understory recovery. Furthermore, this may also impact satellite-based measurements,

73



as the larch and other deciduous species have large crown areas compared with black spruce

(Pappas et al., 2018), and therefore may impact the satellite signal much more.

4.3.4 Further Implications

Our results, and previous work, show the complexities of wintertime photosynthesis and

the spring transition in needleleaf forests and uncertainties associated with future warming

scenarios. On the one hand, previous work in a boreal forest in Finland has suggested that

wintertime rates of photosynthesis in evergreen systems are possible through small water

reservoirs stored in the stems (Sevanto et al., 2006). However, Bowling et al. (2018) found

no evidence of wintertime photosynthetic activity in an evergreen system in Colorado despite

temperatures being warm enough to thaw stems. While we did not explore wintertime photo-

synthesis, our results suggest that if there are viable sources of water following precipitation

events or soil temperatures at 0°C in thermal equilibrium, wintertime photosynthesis may be

possible at the SOBS site. We acknowledge that sustained NPQ during winter may maintain

the forests dormant state and prohibit photosynthetic activity during winter (Bowling et al.,

2018). However, the recovery of SIF and photosynthetic function prior to the shift in bulk

pigment ratios suggests a potential, more dynamic, recovery of photosynthetic activity in

winter may be possible. On the other hand, a higher variability of freeze-thaw cycles (Mel-

lander et al., 2007) could have serious consequences for tissue mortality during springtime

frosts (Richardson et al., 2018), if the combination of thawed trunks and soils leads to an

earlier springtime reactivation, as suggested by our results. Frequent pigment sampling or

continuous PAM fluorescence (Porcar-Castell et al., 2012) at a daily or sub-daily resolution,

both over winter and during the spring recovery, would provide the necessary information

on the reactivation of the rapidly reversible xanthophyll cycle during these times. Further-

more, analysis of wintertime dendrometer and dielectric measurements combined with remote

sensing metrics may provide a better view of species-specific wintertime photosynthesis than

spatially integrated measures.
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The variability of the SIFrelative signal, and the reversal of photosynthetic recovery due

to severe cold weather events (described in Phase 1), means that care must be taken during

the spring transition to resolve remote sensing signals. Simple break point metrics that

determine a ’cutoff’ date for the spring recovery may fail to capture the dynamic nature

of evergreens during this time which may therefore account for many of the uncertainties

in the timing and drivers of the spring recovery. Furthermore, in mixed forest stands, the

different recovery strategies of deciduous and evergreen species will further complicate a

break-point method, and pose significant challenges for spatially integrated measures of the

spring recovery such as satellite measurements and EC derived GPP.

Our results highlight the necessity of spatially downscaling remote sensing metrics over

diverse landscapes during the spring onset. Based on our results, we propose that satellite

signals of NDVI and NIRv will be predominantly driven by deciduous dynamics, although

further work is necessary to explore these nuances. Furthermore, prior work (Atherton

et al., 2017), has shown how PRI is more variable between species than the biochemical

responses of each species individually, which will pose significant complications for PRI

from satellite measurements. The PRI signals of black spruce and larch agree well in our

study, however, further work is necessary to understand how spatial averaging of this data

complicates our understanding of LUE and pigment transitions. Finally, species specific

responses are spatially averaged in GPP and pose a significant challenge for breaking down

the SIF/GPP relationship in mixed forest stands. The larger crown area of deciduous species

may contribute to a much higher SIF signal than evergreen species, despite contributing less

to the GPP signal. Future work combining dendrometer, GPP, and remote sensing metrics

will help to clarify the role that individual species play in these signals.
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4.4 Conclusions

We explored the efficacy of remotely sensed metrics for determining the spring transition

for deciduous and evergreen species in the boreal forest and examined environmental con-

trols for the spring transition. We found that evergreen black spruce experience a two-phase

spring transition which can be observed using remote sensing metrics, and that these two

phases have different environmental controls. The first phase of the transition, the onset

of photosynthesis, was detected with relative solar-induced chlorophyll fluorescence and de-

pended on warm air temperatures to thaw the tree stems and an increase in plant available

water content in the soil through snow-melt or precipitation events. The second phase of

the transition, the change in bulk pigment ratios, was detected with vegetation indices PRI

and CCI and began after the soil had completely thawed which gave trees greater access to

water stored in the soil. Deciduous larch depended on soil thaw for leaf-out and all remotely

sensed metrics were able to detect the leaf-out. We suggest that inter-species differences in

the timing and drivers of the spring transition contained in integrated GPP-based estimates,

or spatially averaged satellite signals, may account for many of the differences and disagree-

ments on the timing and drivers of the spring transition in existing literature. Therefore,

incorporating trait information into such estimates is essential for understanding why these

differences exist. Finally, our results highlight the value of a multivariate approach combin-

ing continuous tree-level observations with tower-based remote sensing products as a way

to study physiological processes on a tree-by-tree basis. This approach provides insight into

the drivers of spatially averaged EC measurements and satellite observations.
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CHAPTER 5

Diurnal and seasonal dynamics of solar-induced

chlorophyll fluorescence, vegetation indices, and gross

primary productivity in the boreal forest

5.1 Introduction

Uncertainties in future climate projections are, in large part, due to an incomplete under-

standing of terrestrial carbon and ecosystem feedbacks (Friedlingstein et al., 2014). Among

the most poorly understood ecosystems is the boreal forest, which stores a significant amount

of carbon and is one of the regions most sensitive to environmental change (Thurner et al.,

2014; Bonan, 2008; Schaefer et al., 2014; Fisher et al., 2018; Goetz et al., 2005; Fu et al.,

2017). Therefore, a more complete understanding of environmental controls on boreal forest

productivity is critical for predicting future carbon cycle feedbacks in this ecosystem (Anav

et al., 2015; Parazoo et al., 2018).

Remotely sensed metrics are a powerful tool for understanding and scaling plant responses

to the environment across space and time (Frankenberg and Berry, 2017; Gamon et al., 1997,

2016; Jeong et al., 2017; Tucker, 1979). Vegetation indices (VIs) that measure greenness, such

as the Normalized Difference Vegetation Index (NDVI) or the Near-Infrared Reflectance from

vegetation (NIRv) have proven to be effective at tracking plant productivity in ecosystems

where chlorophyll content and carbon uptake are closely correlated, such as deciduous forests

and grasslands (Tucker, 1979; Badgley et al., 2017; Yang et al., 2017; Wang et al., 2019).
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These measures often fail to predict productivity in evergreen systems, such as the boreal

forest, where changes to photosynthesis often occur without significant changes in canopy

structure or chlorophyll content (Springer et al., 2017; Sims et al., 2006b; Magney et al.,

2019a; Walther et al., 2016; Jeong et al., 2017; Pierrat et al., 2021a). In contrast to greenness

based VIs, solar-induced chlorophyll fluorescence (SIF) is a particularly promising remote

sensing metric for tracking changes in gross primary productivity (GPP). SIF has been

reported to exhibit a linear relationship with GPP at the ecosystem scale across diverse

biomes when measured from satellites (Commane et al., 2017; Jeong et al., 2017; Luus et al.,

2017; Walther et al., 2016).

SIF has a mechanistic connection to photosynthetic activity (Magney et al., 2019a, 2020;

Porcar-Castell et al., 2014, 2021). In all plants, a photon of light absorbed by chlorophyll fol-

lows one of three potential pathways: it can be used to drive photochemistry (photochemical

quenching (PQ)), it can be dissipated as heat (non-photochemical quenching (NPQ)), or it

can be re-emitted as fluorescence (SIF) (Krause and Weis, 1991). The dynamic relationships

inherent in these three pathways determine the utility of SIF as a proxy for GPP (Magney

et al., 2020). Studies at the leaf level have shown that the yield of fluorescence and yield

of photochemistry are proportional under moderate light conditions (Porcar-Castell et al.,

2014; Van Der Tol et al., 2014). However, there is a limited understanding of the dynamics

of these processes at the canopy scale and under natural conditions such as seasonally vary-

ing NPQ and PQ in boreal ecosystems. Recent work has highlighted nuanced relationships

between fluorescence and photochemistry, thereby motivating further studies investigating

the utility of SIF as a proxy for GPP (Kim et al., 2021; Maguire et al., 2020; Marrs et al.,

2020; Dechant et al., 2020).

Fluorescence measured at the canopy scale under natural conditions (SIF) can be de-

scribed with the following equation:

SIF = APAR× LUEF × fesc (5.1)
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where APAR is the photosynthetically active radiation absorbed by chlorophyll defined

as:

APAR = PAR× fPAR (5.2)

PAR is photosynthetically active radiation and fPAR is the fraction of PAR absorbed by

chlorophyll. LUEF is the light use efficiency of fluorescence and f esc is the probability that

an emitted photon will escape the canopy. The impact of f esc and canopy structural effects

can be considered by calculating the theoretical emitted SIF at the leaf level, SIFtotal, as:

SIFtotal =
SIF

fesc
(5.3)

where SIF is the observed SIF signal from an instrument with a particular viewing ge-

ometry. f esc can be estimated in the far-red following Zeng et al. (2019):

fesc =
NIRv

fPAR
(5.4)

Theoretically, NIRv represents the fraction of near-infrared light that originates from

vegetation and minimizes the influence of soil or background reflectances (Badgley et al.,

2017). Thus, it is a good measure of canopy structure and chlorophyll content (Badgley

et al., 2017) and can be used for estimating f esc of SIF in the near-infrared (Zeng et al., 2019).

In cropping systems, the structural influences on SIF (APAR and f esc) have been shown to

be the dominant drivers of SIF variability (Dechant et al., 2020). In evergreen needleleaf

forests, f esc changes little over the seasonal cycle due to the fact that such forests remain

structurally invariant across seasons (Magney et al., 2019a; Stylinski et al., 2002; Badgley

et al., 2019; Sims et al., 2006a; Garbulsky et al., 2010). Little empirical evidence for this

assumption has been presented and significant questions remain over how f esc impacts SIF

over shorter temporal scales and under a variety of illumination conditions. Thus, additional
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analysis on how canopy structure and illumination conditions impact SIF is necessary.

Canopy integrated carbon uptake via photosynthesis, also known as Gross Primary Pro-

ductivity (GPP), can be expressed as:

GPP = APAR× LUEP (5.5)

where LUEP is the light use efficiency of photosynthesis (Monteith, 1972). LUEP is a

complex function of leaf biochemistry and APAR, and is often expressed as a hyperbolic

function of APAR (Michaelis and Menten, 1913):

LUEP =
GPPmax

c+APAR
(5.6)

where c is a coefficient in radiance units and GPPmax is the photosynthetic capacity of

the system (i.e. GPP of the canopy at light saturation). In practice, c represents the APAR

value at which GPP reaches half of GPPmax in a GPP light response curve. Therefore,

it depends on the electron transport rate as well as a plant’s rate of carboxylation, which

both vary based on plant responses to environmental conditions including temperature and

available water. We can combine Equations 5.1 and 5.5 by eliminating APAR to arrive at

(Guanter et al., 2014; Frankenberg and Berry, 2017):

GPP = SIF× LUEP

LUEF × fesc
(5.7)

Studies at the satellite scale over a variety of ecosystems have shown that SIF and GPP

are linearly proportional (Frankenberg and Berry, 2017; Sun et al., 2017, 2018). However,

the reason for the linear relationship is unclear, as LUEP has a non-linear relationship with

light (Equation 5.6). Further combining Equations 5.6 and 5.7, we find a more complete

functional relationship between SIF and GPP (Damm et al., 2015):
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GPP =
SIF×GPPmax

a+ SIF
(5.8)

where a = c × fesc × LUEF. Damm et al. (2015) notes that because this equation is an

approximation of the complex relationships between SIF and GPP, Equation 5.8 performs

best when a is assumed constant or SIF corresponds to APAR. This assumption is reasonable

under conditions where variations in LUEF are substantially smaller than variations in LUEP,

such as cropping systems (Van Der Tol et al., 2014). However, this assumption breaks

down in high latitude evergreen systems, such as the boreal forest, which experience strong

seasonal changes in LUEP associated with photochemical downregulation of photosynthesis

over winter (Middleton et al., 1997). Further, it is currently unclear how strong changes in

environmental conditions over the course of the season impact LUEF and LUEP. Therefore,

there is a critical need for experimental data to better quantify the SIF-GPP relationship in

systems with highly dynamic LUEP and environmental extremes in light and temperature.

Boreal evergreen needleleaf species experience strong seasonal changes in photosynthesis

as a consequence of the physiological stresses of winter as well as dynamic changes in PAR.

In order to avoid damage from excess light, both seasonally and diurnally, evergreen needle-

leaf plants utilize two forms of NPQ, which regulate the dynamics of photochemistry and

fluorescence (Verhoeven, 2014; Demmig-Adams and Adams, 1992).

The first form is rapidly reversible and therefore important during times of active photo-

chemistry and high photosynthetically active radiation (PAR). This form involves the rapid

conversion of the xanthophyll pigment violaxanthin (V) via antheraxanthin (A) into zeax-

anthin (Z) under excess light conditions (Müller et al., 2001; Murchie and Niyogi, 2011).

The inter-conversion between xanthophyll pigments has a unique spectral signature and can

therefore be measured remotely over shorter timescales (daily) using the photochemical re-

flectance index (PRI) (Gamon et al., 1992; Gamon and Berry, 2012; Wong and Gamon,

2015b,a). PRI is also a useful indicator for the second form of NPQ, sustained NPQ; how-

ever, significant questions remain over its utility for this purpose (Wong and Gamon, 2015b,a;
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Pierrat et al., 2021a).

Sustained NPQ is associated with seasonal downregulation of photosynthesis (Adams

et al., 2004; Öquist and Huner, 2003; Verhoeven, 2014; Jahns and Holzwarth, 2012; Adams

and Demmig-Adams, 1994). This form manifests as an increase in the overall pool size of

xanthophyll pigments (V+A+Z) and lutein (an additional carotenoid pigment with photo-

protective function) (Verhoeven, 2014; Jahns and Holzwarth, 2012), a dark-retention of xan-

thophyll pigments A and Z (Adams and Demmig-Adams, 1994), and a subsequent halt in

the light-dependent inter-conversion between xanthophyll pigments (Verhoeven, 2014; Öquist

and Huner, 2003; Adams et al., 2004). The ratio between chlorophyll and carotenoid pig-

ments therefore changes seasonally to support the winter downregulation of photosynthesis

and sustained NPQ (Adams et al., 2004; Ensminger et al., 2004; Porcar-Castell et al., 2012;

Wong and Gamon, 2015a). In evergreen systems, the remotely sensed chlorophyll-carotenoid

index (CCI) responds to a change in the ratio of chlorophyll to carotenoid pigments and is

therefore a potential remote sensing proxy for sustained NPQ (Gamon et al., 2016).

Our current understanding indicates that both the physical (f esc) and the ecophysiolog-

ical (LUEF, LUEP) drivers of the SIF-GPP relationship operate on varying temporal scales

and can be measured using a combination of remotely sensed indices. Therefore, a better

understanding of these drivers, both at a high temporal resolution and seasonally, is neces-

sary to assess the utility of SIF as a proxy for GPP in boreal ecosystems. In our study, we

seek to answer:

1. How do the relationships between SIF, VIs, and GPP change across varying temporal

scales?

2. How do the dynamics of LUEP, LUEF, and f esc impact the relationship between SIF

and GPP?

Tower-based spectrometer systems allow for a deeper investigation of the physical and

ecophysiological drivers of the SIF-GPP relationship and aid our ability to scale measure-
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ments from the leaf to orbit by filling the spatio-temporal gap between leaf level and satellite

level measurements (Grossmann et al., 2018). Here, we present data from a tower-based spec-

trometer system (Sections 5.2.1-5.2.4) and a statistical analysis (Section 5.2.5) to determine

the linkages between SIF and GPP at varying temporal resolutions (Section 5.3.1), to sta-

tistically connect changes in SIF and GPP to environmental controls (Section 5.3.2), and to

provide a seasonally resolved SIF-GPP parametrization (Section 5.3.3) for the implementa-

tion of this ecosystem in carbon cycle models. These results then elucidate the answers to

our scientific questions (Section 5.4).

5.2 Materials and Methods

Tower-based SIF spectrometer systems have already provided valuable insights into the SIF-

GPP relationship in cropping (Magney et al., 2019b; He et al., 2020), temperate (Kim et al.,

2021; Yang et al., 2017, 2015), and sub-alpine evergreen systems (Magney et al., 2019a;

Cheng et al., 2020). However, few measurements in boreal ecosystems have been reported

(Pierrat et al., 2021a). We collected tower-based SIF and vegetation index (VI) data along

with GPP and meteorological data from a boreal field site in Canada to answer our scientific

questions. Details of the site, observational methods, and analysis approach are discussed in

the following sections.

5.2.1 Site Description: Southern Old Black Spruce

The study site (Southern Old Black Spruce, SOBS, Fluxnet ID CA-Obs) is located near the

southern limit of the boreal forest ecotone in Saskatchewan, Canada (53.98°N, 105.12°W)

(Figure 5.1) (Jarvis et al., 1997). It is a mixed forest stand with stem density predominantly

(90%) black spruce (Picea mariana), and scattered (10%) larch (Larix laricina) (Pappas

et al., 2020a). Average canopy height at the site is ∼16 m with a canopy leaf area index

of ∼3.8 m2m-2 (Chen et al., 2006). Long-term (1981-2010) mean annual air temperature
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Figure 5.1: Field site location with PhotoSpec and eddy-covariance (EC) measurements at

the Southern Old Black Spruce (SOBS) site in Saskatchewan, Canada. PhotoSpec set up is

shown with an inset of the scanning strategy and measurement points on both black spruce

and larch. Adapted from (Pierrat et al., 2021a).

and total precipitation in the area are 1.4°C and 427.7mm respectively. There is an average

of 146 days with a snow depth of 1cm or more (Government of Canada, Prince Albert

Station, 2019). The site is equipped with a 26 m above ground level (agl) twin scaffold

tower, approximately twice the height of the forest canopy.

5.2.2 Remote Sensing: PhotoSpec

We collected remotely sensed measurements (NDVI, NIRv, PRI, CCI, far-red SIF) using

PhotoSpec (see Grossmann et al. (2018) for detailed instrument description) from September
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2018 to the end of December 2020. Photospec was installed at the top of the scaffolding tower

(26 m agl) facing due north. It has a narrow field of view (0.7°), 2-D scanning capabilities,

and can simultaneously measure SIF along with vegetation indices at the same point in the

canopy (Grossmann et al., 2018). Our scanning strategy had three ’elevation scans’ (scanning

vertically with 0° horizontally at the horizon) at 35°W (10 measurements, elevations -50° to

-23° in steps of 3°), 0°N (24 measurements, elevations -80° to -11° in steps of 3°), and 35°E

(10 measurements, elevations -70° to -25° in steps of 5°) and three individual targets on

a larch (Figure 5.1). This scan strategy and subsequent averaging is representative of the

forest because it reflects the stem density of the forest with ∼90% of targets hitting black

spruce and ∼10% of targets hitting larch. Individual measurements take approximately 20

seconds and the complete scan cycle repeats on a 30 minute loop to compare with GPP and

environmental variables.

Vegetation indices were calculated as follows, with ρnm:nm = the average reflectance across

a wavelength range in nm:

NDVI = (ρ830:860 − ρ620:670)/(ρ830:860 + ρ620:670) (5.9)

NIRv = (ρ830:860 − ρ620:670)/(ρ830:860 + ρ620:670)× ρ830:860 (5.10)

PRI = (ρ569:571 − ρ520:532)/(ρ569:571 + ρ520:532) (5.11)

CCI = (ρ520:532 − ρ620:670)/(ρ520:532 + ρ620:670) (5.12)

SIF was retrieved in the far-red (745-758 nm) wavelength range using a Fraunhofer-

line based fitting algorithm (Grossmann et al., 2018). The Fraunhofer-line based approach

makes SIF retrievals insensitive to atmospheric scattering and therefore robust even under

cloudy sky conditions (Frankenberg et al., 2011; Mohammed et al., 2019; Chang et al.,

2020). We collected 1 second PAR data from a LI-COR LI-190R sensor and used these data

to remove PhotoSpec measurements where PAR conditions changed significantly (PARstd >
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0.2×PARavg) over the PhotoSpec integration time. We excluded low-quality retrievals where

the SIF retrieval error (Grossmann et al., 2018) was> 0.2 Wm-2sr-1µm-1 and where SIF< -0.1

Wm-2sr-1µm-1 or SIF > 10 Wm-2sr-1µm-1. Finally, we only considered observations where the

Solar Zenith Angle (SZA) < 80° to remove data where low light conditions increase retrieval

uncertainty.

We used f esc to calculate SIFtotal (Equation 5.3) and to evaluate canopy structure and

illumination influences on SIF for each observation. We calculated f esc following Equation

5.4 using NIRv and fPAR, which was estimated as:

fPAR = 1− PARcanopy

PAR
(5.13)

where PARcanopy represents outgoing PAR (coming from the canopy) and PAR is the in-

coming PAR (pointing directly up). PARcanopy was calculated by integrating the calibrated

radiance between 400 and 700 nm measured from PhotoSpec and multiplying by π to convert

to hemispheric PARcanopy. PAR was calculated by averaging the 1 second LI-COR LI-190R

PAR measurements over the PhotoSpec integration time. We determined APAR following

Equation 5.2. We calculated LUEF following Equation 5.1 (LUEF = SIF
APAR∗fesc ) and LUEP

following Equation 5.5 (LUEP = GPP
APAR

).

We calculated averages over each 30-minute period across the full spatial scan to reflect

stem density of the canopy and match GPP observations. 30-minute spatial averages were

again averaged to report daily and monthly averages. Standard deviation of the diurnal

variability was significantly greater than measurement errors (Grossmann et al., 2018) and

is thus reported along with daily averages throughout the study.

Days with snow cover were identified visually using phenocam images from the site

(https://phenocam.sr.unh.edu/webcam/sites/canadaOBS/). Snow cover identification

was used to provide context to observed signals but data were not removed from the analy-

sis.
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5.2.3 Gross Primary Production

Eddy-covariance (EC) measurements of net ecosystem exchange (NEE) (µmol C m-2 s-1) and

friction velocity u* (ms-1) were made from atop the site’s 26m scaffold tower from July 2019

through the end of December 2020. The EC system consisted of a 3-D sonic anemometer

(CSAT3, Campbell Scientific, Logan, UT) in combination with a closed-path infrared gas

(CO2/H2O) analyzer (LI-7200 analyzer, Li-Cor, Lincoln, NE)) operated in absolute mode.

The 30-min eddy fluxes were computed using the Eddy-Pro software (version 7.0.6, Li-

Cor, Lincoln, NE). NEE was calculated as the sum of the measured CO2 eddy flux at the

instrument height and the change in CO2 storage in the air layer between the instruments and

the surface (Barr et al., 2006). Nighttime NEE values were rejected under calm conditions

using a u* threshold of 0.30 m s-1. Net Ecosystem Production (NEP) was estimated as -NEE

assuming no losses via dissolved organic carbon. Finally, gaps in NEP were filled and NEP

was partitioned into gross primary production GPP (µmol C m-2 s-1) and total ecosystem

respiration Re (µmol C m-2 s-1) using the standard Fluxnet-Canada method (Barr et al.,

2004).

5.2.4 Environmental Variables

Air temperature and relative humidity were recorded in the canopy at 6 m height with a

Vaisala HMP45C probe. Soil temperature measurements were taken with Type-T (copper-

constan) thermocouples at two locations at a 10 cm depth below the living-moss layer and

averaged together. Soil volumetric water content (VWC) was recorded at two locations at

a 7.5 cm depth with Cambell Scientific CS615 Water Content Reflectometers and averaged

together. Wind speed and wind direction were measured with an RM Young model 05103-10

wind monitor located at the top of the tower at a height of 26 m. Precipitation was measured

with a Geonor T-200B all-weather weighing precipitation gauge located on the roof of the

hut at a height of 3.5 m above ground level.
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5.2.5 Data Analysis: Curve Fitting and Random Forest Models

We applied the mechanistic equations for the relationships between VI’s, SIF, GPP, and PAR

at varying temporal scales by fitting curves to SIF/VI’s and GPP as well as the light response

curves of SIF and GPP. Fitting light response curves allowed us to extract information on

LUEF and LUEP from the fit parameters following Equations 5.1, 5.5, and 5.6. All fitting

was done using the fit function within Matlab’s curve fitting toolbox (MATLAB, 2021).

Fit parameters and goodness of fit statistics (R2 values) were also extracted using the fit

function. All fitted equations are provided within the results and in figure captions where

relevant.

We explored the significance of environmental variables as predictors for SIF and GPP

at diurnal and seasonal timescales using random forest regression models. We used Matlab’s

TreeBagger to create four random forest regression models to predict both SIF and GPP at

half-hourly and daily resolutions (HH-SIF, HH-GPP, Daily-SIF, Daily-GPP) thereby testing

the significance of environmental predictors across diurnal and seasonal scales respectively.

Random forest models were chosen due to their high degree of interpretability as well as their

non-parametric nature, making them more suitable for approximating nonlinear relationships

in complex systems (Breiman, 2001). Both SIF and GPP models were initially trained

using the following half-hourly or daily averaged environmental variables as features: PAR,

precipitation, soil volumetric water content (VWC) at 7.5 cm, soil temperature at 10 cm,

air temperature at canopy height (6 m), relative humidity at canopy height (6 m), friction

velocity (u∗), wind speed and wind direction above canopy (26 m), and one column of

random numbers for reference. Each model was built with the following sized datasets,

which reflect the number of available data during the overlapping collection period, July

24, 2019 to Dec 31, 2020: HH-SIF (25,296), HH-GPP (25,296), Daily-SIF (527), Daily-

GPP (527). All 4 models had 100 decision trees, used 70% of data to train, and were

sampled without replacement. We checked model performance using the R2 and out-of-bag

(OOB) scores and assessed the predictive power of each feature using the OOB predictor

88



importance estimates (Breiman, 2001). The OOB scores and predictor importance estimates

evaluate model performance on unseen data, thereby testing the models generalizability. We

then tested each model by systematically removing the lowest performing predictor, re-

training the model, and comparing the R2 and OOB scores (Section 5.3.2). This process

was repeated until only one predictor variable remained. The highest performing random

forest model for daily average GPP (5 predictors, Figure 5.4) was used to predict GPP from

September 9, 2018 (the start of PhotoSpec measurements) to July 24, 2019 (the start of GPP

data) and is presented for visualization in Figure 5.2. Modeled GPP was not used in any

additional analysis - merely to illustrate approximate GPP prior to the start of flux-tower

measurements.

5.3 Results

5.3.1 SIF and VIs as proxies for GPP from half-hourly to seasonal scales

PhotoSpec data (far-red SIF, CCI, PRI, NIRv, NDVI) and flux tower GPP highlight both

the dynamic nature of evergreen photochemistry at weekly to seasonal scales at the SOBS

site, as well as the utility of remotely sensed measures for explaining seasonal trends in GPP

(Figure 5.2).

GPP, PAR, and air temperature exhibit patterns consistent with historical data at SOBS

(Liu et al., 2019a) with the growing season extending from approximately late May to early

September and the peak of GPP in late July to early August for both 2019 and 2020.

Winter dormancy occurs approximately November through March (Pierrat et al., 2021a).

PAR values increase in spring, well before the start of the growing season, and explain

some of the daily to weekly variability in GPP during the growing season (Figure 5.2 f). Air

temperature above 0°C is associated with both the onset (Pierrat et al., 2021a) and cessation

of photosynthesis (Figure 5.2 g).

Greenness-based vegetation indices NIRv and NDVI show strong responses to snow cover
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R2 = 0.92

R2 = 0.58

R2 = 0.79
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R2 = -0.10

R2 = 0.90

R2 = 0.87

Southern Old Black Spruce 2018-2021 Timeseries

Figure 5.2: a) SIF, b) CCI, c) PRI, d) NIRv, and e) NDVI measurements from PhotoSpec,

f) PAR above the canopy (26 m), and g) air temperature at canopy height (6 m) compared

with tower-based GPP data for the study period. Solid lines are 5-day moving means of

daily averaged data. Shaded error bounds are the standard deviation of diurnal variability.

The gray GPP line with no shaded area is the 5-day moving mean of the Daily-GPP random

forest model’s predicted GPP. R2 values are the Pearson correlation coefficients between

the 5-day moving means of tower-based GPP and the plotted variable. All R2 values were

statistically significant with p-values < 0.005. Light blue background regions are days with

snow cover on the canopy as identified by phenocam images.
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and poor ability to track the seasonal cycle of tower-based (black line with error bars) and

modeled (gray line, Section 5.2.5) GPP (Figure 5.2 d, e). NIRv remains near constant

during fall, spring, and summer, despite the strong seasonal cycle of GPP (R2 = -0.04

for 5-day moving mean). However, NIRv shows a small gradual increase over the growing

season, which we interpret as consistent with changes in canopy structure and variability in

f esc (Zeng et al., 2019; Badgley et al., 2019). Additionally, NIRv exhibits strong, random,

variability over winter due to snow cover or other confounding effects. NDVI shows a stronger

correlation with GPP (R2 = 0.79). However, changes in NDVI are predominantly due to a

strong snow response of the NDVI signal, notably in early spring and over winter. For the

same reason, NDVI increases earlier and remains elevated longer than GPP. Over summer,

NDVI shows a slight seasonal curvature with peak NDVI matching peak GPP. Prior work has

shown that NDVI tracks photosynthetic phenology well in deciduous temperate ecosystems

(Yang et al., 2017), but not in evergreen needleleaf forests (Magney et al., 2019a) where

canopy structure and crown architecture have a minor and de-coupled influence on carbon

uptake (Pappas et al., 2020a). A species-specific analysis confirms that in the SOBS mixed-

stand forest, changes in NDVI and NIRv predominantly reflect changes in deciduous larch,

while evergreen NDVI and NIRv remain largely invariant (Pierrat et al., 2021a).

CCI and PRI track the seasonal cycle of GPP well but do not exhibit sharp changes

on the scale of days to weeks that we observe with GPP (Figure 5.2 b, c). During spring,

CCI and PRI are less responsive to variability in modeled (2019) and tower-based (2020)

GPP, and show a delay in the timing of their increase compared with GPP (40 days in 2019,

29 days in 2020) (Pierrat et al., 2021a). Over summer, CCI peaks in early July, prior to

maximum GPP in both 2019 and 2020. PRI shows a closer agreement with the summer

peak of GPP, but shows less variability over the summer months and is less effective at

tracking the seasonal trends in GPP. In fall, CCI shows good agreement with the seasonal

downregulation of photosynthesis, while PRI decreases prior to and more rapidly than GPP.

Over winter, CCI hovers around zero with a few periods of stronger variability below zero.
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This is potentially due to a small response to snow cover. PRI also shows strong responses to

snow over winter with increased values during periods of snow cover (Pierrat et al., 2021a).

This makes the interpretation of wintertime PRI values significantly more challenging.

SIF tracks tower-based and modeled GPP well, does not show strong responses to snow,

and shows similar or stronger correlations with GPP than all other vegetation indices and

environmental variables (R2 = 0.92) (Figure 5.2 a). In summer, daily to weekly variability

in SIF closely tracks variability in tower-based GPP, most notably at the end of September

2019 and June and July of 2020. In fall, SIF shows the same general decline as GPP. Over

winter, unlike GPP, SIF does not go to zero but remains low and less variable compared

to its overall seasonal change and the daily to weekly variability over summer. In spring,

SIF increases prior to changes in GPP for both years. This is consistent with Magney et al.

(2019a) and is explored further in Sections 5.3.3 & 5.4.2.

Because SIF, CCI, and NDVI showed the strongest correlations with GPP at a daily 5-day

moving mean resolution (R2 = 0.92, 0.90, 0.79 respectively), we explored their relationships

to GPP at varying temporal resolutions in more detail (Figure 5.3). Fitted equations and

parameters are summarized in Table A.1. Correlations between SIF, CCI, or NDVI and

GPP at monthly, daily, and half-hourly resolutions highlight the strengths and limitations

of each index.

At a monthly resolution, linear fits of SIF (a), CCI (d), and NDVI (g) all show strong

correlations with tower-based GPP (R2 = 0.94, 0.95, 0.82 respectively). At a daily resolution,

a linear fit of SIF shows the strongest correlation with GPP (R2 = 0.79), followed by CCI

(R2 = 0.75) and NDVI (R2 = 0.56). A non-linear fit between SIF and GPP did not improve

R2 values (R2 = 0.78 for Equation 5.8, Figure A.1).

At a half-hourly resolution, SIF, fit with Equation 5.8, shows the strongest correlation

(R2 = 0.64), while linear fits of CCI and NDVI both show low correlations (R2 = 0.02, 0.30

respectively). At a half-hourly resolution, SIF increases while GPP saturates at high PAR,

which leads to a higher degree of non-linearity (Figures 5.3 c, A.1 c, A.2). A linear fit for
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half-hourly SIF and GPP data resulted in a similar R2 value (R2 = 0.62 for linear, Figure

A.1 c). However, plotting summer data shows that there is in fact a high degree of non-

linearity associated with high PAR values (Figure A.2). CCI and NDVI primarily reflect

slower seasonal changes in leaf pigments and canopy structure, and therefore do not track

the strong variability of GPP with changes in PAR at half-hourly and daily resolutions. In

contrast, SIF and GPP both show variability within each season associated with changes in

PAR (Figure A.1).

In summary, when measured at higher temporal frequencies, the relationship between

GPP and all remotely sensed products decreases and the relationship between SIF and GPP

becomes increasingly non-linear. Despite this non-linearity, SIF significantly outperforms all

other remotely sensed indices as a proxy for GPP. This non-linearity is explored in further

detail in Sections 5.3.3 & 5.4.2.

5.3.2 Environmental drivers of SIF and GPP at half-hourly and daily resolu-

tions

We explored the explanatory power of several environmental parameters using random forest

models to determine which variables had the best predictive capacity for SIF and GPP at

diurnal and seasonal timescales. All four random forest models (HH-SIF, HH-GPP, Daily-

SIF, Daily-GPP) had good performance and high generalizability with all predictors included

and when only three predictors were included (Figure 5.4 a).

After systematically eliminating low importance predictors, the three most important

predictors for all four models were PAR, soil temperature, and air temperature (Figure

5.4b). HH-SIF and HH-GPP showed PAR as the most important predictor. However, using

PAR as the only predictor showed a notable decrease in performance (HH-SIF OOB R2 =

0.61 and HH-GPP OOB R2 = 0.31). These results highlight the fact that variability in SIF

cannot simply be explained by changes in PAR. Thus, while the variability in both SIF and

GPP over the course of a day (half-hourly resolution) is mostly driven by variability in PAR,
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Figure 5.3: The relationships between SIF, CCI, or NDVI, and GPP at monthly, daily, and

half-hourly resolutions. Solid black lines are linear fits except c) half-hourly GPP vs. SIF

which is based off Equation 5.8. Shaded gray regions are the 95% non-simultaneous functional

prediction bounds for the fit. R2 values are the degree-of-freedom adjusted coefficient of

determination of the fit. Fitted parameters and equations are summarized in Table A.1.
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Figure 5.4: Random forest model performance evaluation and predictor importance estimates

for all four models: (half-hourly) HH-SIF, HH-GPP, Daily-SIF, Daily-GPP. a) Shows OOB

R2 values for all four models with decreasing numbers of predictors included. b) is the

predictor importance estimates for all four models with all predictors included (ten total),

three, two, and one predictor included. Predictor importance estimates are normalized to a

scale from 0-1 based on the highest performing predictor.
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on a seasonal scale, SIF and GPP are regulated by other environmental factors related to

temperature.

Daily-SIF and GPP models confirm this seasonal temperature dependence, with air tem-

perature being the most important predictor for both models. Going from three to two

predictors, Daily SIF and GPP showed slight decreases in performance (OOB R2 of 0.94 to

0.92 and 0.89 to 0.87 respectively) and diverged in predictor importance rankings. With two

predictors, daily SIF was best predicted using PAR and air temperature, while daily GPP

was best predicted using air and soil temperature. Using only one predictor, both daily SIF

and GPP were primarily driven by air temperature.

The only notable drops in R2 and OOB R2 scores before 3 predictors were reached

occurred when removing wind direction from the HH-GPP model (OOB R2 = 0.72 to 0.69

going from 5 to 4 predictors, Figure 5.4 a). This change was not observed in the HH-SIF or

Daily-SIF models. While wind direction does not impact SIF, it determines the part of the

forest that is in the eddy-covariance footprint to which GPP is sensitive (Chu et al., 2021).

The change in R2 values thus highlights the importance of considering the GPP footprint in

heterogeneous and mixed-species canopies (such as the SOBS site) (Chu et al., 2021).

5.3.3 Light responses of SIF and GPP, and the impact of canopy structure on

SIF

Monthly light response curves of SIF and GPP (Figure 5.5) and f esc, LUEF, and LUEP

(Figure A.3), illustrate the diurnal and seasonal dynamics of SIF and GPP and highlight

why SIF is an effective proxy for GPP despite their non-linear relationship. Figure 5.6

summarizes the monthly physical (f esc) and ecophysiological (LUEF, LUEP, GPPmax, c)

parameters that determine the relationship between SIF and GPP as fitted in Figure 5.5 or

averaged monthly. Fitted equations and parameters are summarized in Table A.3.

Figure 5.5 a shows the impact of APAR on f esc while Figure 5.6 a summarizes the monthly
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Figure 5.5: Half-hourly data with fitted curves. Column a) f esc calculated from Equation

5.4 plotted against APAR b) light response curves of SIF with a linear fit, c) light response

curves of SIFtotal calculated from Equation 5.3 with a linear fit, d) light response curves of

GPP fitted with GPP = GPPmax×APAR
c+APAR

(derived from Equations 5.5 & 5.6). Fitted equations

and parameters are summarized in Figure 5.6 and Table A.2.
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Figure 5.6: Values determined from Figures 5.5 and A.3. Numerical values for b), d), and

e) are reported in Table A.2. a) f esc values are monthly averaged f esc as determined with

Equation 5.4, b) LUEF
[Wm-2sr-1µm-1]

[µmolm-2s-1]
values are determined from the SIFtotal light response

curves in Figure 5.5c, c) LUEP [unitless] values are monthly averaged LUEP (Figure A.3)

calculated following Equation 5.5 as LUEP = GPP
APAR

. d) GPPmax [µmol m-2s-1] and e) c

[µmol m-2s-1] are determined from the GPP light response curves in Figure 5.5 d (GPP =
GPPmax×APAR

c+APAR
, derived from Equations 5.5&5.6). Error bars in a) and c) are the standard

deviations of f esc and LUEP within each month and in b), d), and e) they are the 95%

confidence intervals of fitted values. Anomalous values with high fit errors go outside the

bounds of the plot but exact values can be found in Table A.2.
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average f esc values. Winter f esc values are heavily influenced by the snow response of NIRv

(Figure 5.2 d) and therefore make the data more difficult to interpret. When we ignore f esc

during snow covered months, the seasonal change in f esc is approximately 20% (Figure 5.6

a). f esc shows a slight decrease at high APAR values over the summer months, which is most

pronounced in June and July (Figure 5.5a). The sensitivity of f esc to high APAR values

thus impacts the light response of SIF shown in Figure 5.5 b.

Monthly light response curves of SIF in Figure 5.5 b were determined with a linear

fit based on Equation 5.1 (SIF = a × APAR). Thus, the fit factor a represents average

LUEF × fesc for each month. Within each month the light response of SIF shows a slight

curvature at high APAR values. This leveling off is most noticeable in April, June, and

August. We attribute the curvature in the SIF light response curve to variations in f esc at

a high temporal resolution under high light conditions, as shown in Figure 5.5a. When we

correct for the effects of f esc by calculating SIFtotal, the leveling off of SIF at high light is

no longer observed (Figure 5.5 c). Light responses of half-hourly LUEF values calculated

following Equation 5.1 (LUEF = SIF
fesc∗APAR

) show a subtle decline at high APAR values

(Figure A.3 b), however, it is significantly smaller than the decline in LUEP (Figure A.3 c)

and the light saturation observed with GPP (Figure 5.5 d).

Light response curves of SIFtotal in Figure 5.5 c were calculated using a linear fit after

correcting SIF for variations in f esc (SIFtotal =
SIF
fesc

= a × APAR). Thus, the fit parameter

a represents the monthly average LUEF. Fitted values for LUEF from Figure 5.5c are sum-

marized in Figure 5.6b. Over the course of the year, correcting for f esc does not change the

fact that both SIF and SIFtotal exhibit seasonally variable light response curves and thus,

structural and illumination effects cannot fully explain the increase in summer SIF. Seasonal

variability in LUEF (as calculated from the fitted curves in Figure 5.5c) shows a strong down-

regulation, but non-zero values, over winter and a gradual increase towards spring (Figures

5.5 b-c & 5.6 b). This winter light response explains the early spring increase in SIF prior

to changes in GPP observed in Figure 5.2 a. This is further explored in Section 5.4.2. In
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summary, the influence of f esc is important for SIF at a high temporal resolution when high

APAR values create more variable radiative conditions, while the influence of LUEF is more

dominant over the seasonal cycle.

Figures 5.5 d and A.3 c highlight both the light saturation of GPP during the growing

season as well as its seasonal up and downregulation. Light response curves of GPP in Figure

5.5 d are a non-linear least squares fit following Equations 5.5 and 5.6 (GPP = GPPmax×APAR
c+APAR

)

and LUEP in Figure A.3 c is calculated following Equation 5.5 (LUEP = GPP
APAR

). LUEP is

variable over shorter timescales due to changes in APAR Equations 5.5,5.6, Figure A.3 c and

seasonally variable due to the seasonal changes in photosynthetic capacity. The response of

LUEP to APAR is shown in Figure 5.5 d as the curvature of each GPP light response curve

within a particular month at high APAR values and in Figure A.3c as the curvature in the

light response of LUEP. The seasonal light response of GPP shows maximum saturation

values (GPPmax) over summer and minimum values over winter (Figures 5.5 d & 5.6 c, d),

with the exception of April where rapid changes during the spring transition led to poor

fit statistics. This is in good agreement with the seasonal cycle of monthly averaged LUEP

(Figure 5.6 c). Seasonal changes in GPPmax and LUEP, which reflect the seasonal cycle of

GPP, are driven by the seasonal up and downregulation of photosynthesis and sustained

photoprotection over winter. The light response curves of GPP and LUEP show the highest

degree of non-linearity over summer, while in winter, spring, and fall, linear fits performed

nearly as well as the fitted equation. This is also reflected in the fit parameter c (Figure

5.6 e) which shows a small seasonal cycle with minimum values over summer (excluding

winter when GPP is essentially 0 and there is insufficient light for saturation). Lower c

values represent a more pronounced curvature in the light response of GPP over summer.

This may reflect the fact that non-summer fits involve a smaller range of APAR values and

thus do not receive sufficient light to saturate photosynthesis. We attribute the seasonal

variation in c as likely due to temperature dependencies. In addition, water limitations

or other environmental stresses may impact c over shorter temporal resolutions. Seasonal
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asymmetry in c may be caused by differences in temperature and water availability between

the start and end of the growing season.

Seasonal variations in GPPmax and monthly average LUEP largely agree with the seasonal

variations in LUEF, however, they exhibit some important differences (Figure 5.6 b, c, d). In

particular, LUEF slightly increases in spring prior to significant changes in LUEP or GPPmax.

LUEF reaches a summer maximum around July and remains elevated at a near constant value

from June through September. On the other hand, GPPmax continues to increase over the

summer, peaking in September before decreasing for winter. These subtle changes in shape

lead to a seasonally variable relationship between SIF and GPP.

Figure 5.7 a & b shows the relationships between SIF-GPP and SIFtotal-GPP fitted

monthly to half-hourly data. Fitted equations and parameters are summarized in Table

A.3. Over the winter months, the relationships between SIF or SIFtotal and GPP appear

more linear, despite being fit with the non-linear Equation 5.8. Over summer, the non-linear

relationship between SIF or SIFtotal and GPP becomes more pronounced. This can be at-

tributed to the fact that curvature in the light response curve of GPP is most pronounced

over summer (Figure 5.5 d), and thus shows up more prominently in the SIF-GPP relation-

ship. We observe a higher degree of non-linearity in the SIFtotal-GPP relationship (Figure

5.7 b) than the SIF-GPP relationship (Figure 5.7 a), with the exception of July which can

be attributed to a poor overall fit (Figure 5.7 b, Table A.3). The curvature of the SIF light

response due to changes in f esc works to linearize the SIF-GPP relationship compared to

that of SIFtotal-GPP. Finally, both SIF and SIFtotal show a seasonally variable relationship

with GPP. We attribute this seasonal variation to the small light response of SIF over winter

and slight differences in the seasonal changes in LUEF and GPPmax (Figure 5.6).
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a) b)

Figure 5.7: Monthly fitted curves to half-hourly data based on Equation 5.8 for a) SIF-GPP

and b) SIFtotal-GPP highlighting the seasonally dynamic SIF-GPP relationship. Curves are

only plotted within the data range for that month. Scatter points are half-hourly values.

5.4 Discussion

5.4.1 SIF as a proxy for GPP, and relation to other VIs

Our results highlight SIF as a more effective and comprehensive proxy for GPP than existing

vegetation indices from half-hourly to monthly temporal scales in a boreal ecosystem. This

can be attributed to the close link between SIF and electron transport rate (ETR, the

product of efficiency of photochemistry and absorbed light by chlorophyll), the first step

in photosynthetic carbon assimilation (Gu et al., 2019). Our results show the correlation

between SIF and GPP strengthens with longer temporal averaging windows (Figure 5.3).

Additionally, if one considers the inherent non-linearity in the SIF-GPP relationship (Section

5.4.2), SIF significantly outperforms other remotely sensed metrics as a proxy for GPP.
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Finally, SIF shows no strong responses to snow cover - an important consideration for boreal

ecosystems (Figures 5.2 & 5.3).

Vegetation indices show substantially decreased effectiveness over shorter temporal scales

(daily, half-hourly) compared with SIF (Figures 5.2 & 5.3). The second most effective proxy

for GPP (after SIF) was CCI. CCI reflects the ratio of chlorophyll:carotenoids, which change

seasonally to support sustained NPQ and the regulation of photosynthesis (Gamon et al.,

2016). These bulk pigment ratios are not expected to change at a daily time resolution

(Gamon et al., 2016) and are therefore unable to capture the dynamic nature of GPP at

sub-seasonal temporal resolutions. CCI is thus a useful metric for satellite observations with

only one sample per day for tracking the seasonality of GPP and sustained NPQ, with a

few caveats. Our observations show that CCI reaches a maximum over summer, prior to

maximum GPP (Figure 5.2 b). The fall increase in carotenoid pigments to support sustained

photoprotection over winter may occur prior to fall cessation of GPP due to the inter-

conversion between xanthophyll pigments. Furthermore, we observe only small variations in

CCI during the spring transition which suggests a potential reactivation of photosynthesis,

prior to the spring decrease in carotenoid pigments (Pierrat et al., 2021a). Therefore, CCI is a

good metric for tracking general seasonality in evergreen systems and can provide important

insights into plant’s LUEP. However, it has limited accuracy for determining spring onset

and fall cessation dates and for tracking GPP at finer (daily/half-hourly) resolutions. These

subtle differences may indicate a mismatch between the timing of optimal photosynthetic

capacity (peak CCI) and optimal environmental, structural, and physiological conditions

(peak GPP).

Our results imply that SIF is not solely proportional to the light absorbed by chlorophyll

but is also responding dynamically to seasonal variation in NPQ through changes in LUEF.

The yield of fluorescence and the yield of photochemistry are both impacted by PQ and NPQ

(Porcar-Castell et al., 2014). Prior work at the leaf level has shown that under high light

levels, when there is significant induction of NPQ, the yield of fluorescence and the yield
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of photochemistry are proportional (Porcar-Castell et al., 2014; Van Der Tol et al., 2014).

Our results show that at the canopy scale, seasonal changes in LUEF do indeed co-vary

with seasonal changes in LUEP (Figures 5.5, 5.6, & A.3). The performance of the HH-SIF

random forest model decreased considerably when only PAR was included (Figure 5.4) and

the Daily-SIF random forest model showed air temperature as the strongest predictor. This

confirms the fact that PAR alone is insufficient for explaining the observed variation in SIF,

even at a half-hourly resolution.

Air temperature is a useful predictor of sustained NPQ in temperate evergreen ecosystems

and sustained NPQ is responsible for shaping the seasonal patterns of SIF (Raczka et al.,

2019). Our results provide empirical evidence to support this explanation because both daily

average SIF and GPP were best predicted by air temperature (Figure 5.4). We found that

accounting for changes in f esc over the course of the season was also insufficient for explaining

the seasonal up and downregulation of fluorescence (Figure 5.5). We found that f esc only

varied ∼20% over the course of the season, whereas changes in LUEF were significantly

greater (350% increase over summer) (Figure 5.6). This is particularly important in evergreen

needle leaf systems but may not be true for cropping or deciduous systems with high variance

in canopy structure (and thus f esc). The observed seasonal pattern in LUEF largely co-varied

with the seasonal patterns of LUEP and GPPmax making SIF an effective proxy for GPP

(Figures 5.5 & 5.6).

We view the response of SIF to variations in light absorbed by chlorophyll not as a

limitation of SIF as a proxy for GPP, but rather, a strength. SIF has a more dynamic light

response than other remotely sensed products (CCI, NDVI, NIRv) and can therefore more

effectively capture variations in GPP due to both common physical drivers (light absorbed

by chlorophyll) and the ecophysiological connections between LUEF and LUEP based on the

light reactions of photosynthesis.
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5.4.2 Dynamics between LUEF, LUEP, and fesc, and the convergence and di-

vergence between SIF and GPP

Over half-hourly temporal scales, when SIF and GPP are predominantly influenced by vari-

ations in PAR (Figure 5.4), the relationship between SIF and GPP will become non-linear

because LUEF is largely invariant with APAR compared with LUEP which exhibits strong

saturation at high APAR values Figures 5.5 & A.3). Within each month, LUEF can show

a subtle decline with increasing APAR (Figure A.3b) which partially, but incompletely, lin-

earizes the SIF-GPP relationship. This decline in LUEF may reflect short-term regulation of

the photosynthetic system by rapidly reversible NPQ, although further work should investi-

gate this in more detail. The decrease in f esc at high APAR values also partially linearizes

the relationship between SIF and GPP. Although the cause for the decrease in f esc at high

APAR is unknown, we hypothesize that complex shading and illumination effects due to

different sun geometries throughout the year may explain this decrease. Therefore, future

work in this ecosystem and other evergreen needleaf ecosystems should therefore focus on

further constraining the effects of f esc under a variety of viewing directions and illumination

conditions.

Over longer temporal scales (seasonally), LUEP is predominantly driven by changes in

GPPmax. When temporally averaging, the extreme PAR values that create the curvature in

the light response of GPP become less important. Thus, due to the seasonal co-variation

between GPPmax and LUEF (Figure 5.6), the SIF-GPP relationship converges onto a linear

relationship.

Although the light saturation of GPP is the primary driver of divergence in the SIF-GPP

relationship, there are other stressors that vary seasonally and impact LUEP and LUEF,

consequently impacting the relationship between SIF and GPP. Air and soil temperature,

soil water content, and relative humidity were all important drivers of SIF and GPP identified

in the random forest model optimization (Figure 5.4) and therefore may be driving divergence
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between LUEF and LUEP (and subsequently SIF and GPP). Furthermore, prior work has

identified air temperature as an additional potential cause for non-linearity between SIF and

GPP over the fall transition (Kim et al., 2021). This is not observed in our fall transition

data. However, we observe some non-linearity between SIF and GPP at a daily resolution

over summer (Figure 5.3). We attribute this non-linearity to the strong light saturation

of GPP over summer and the dependence of LUEP on APAR. This means that APAR is

the predominant driver for non-linearity, although future work in this area is necessary to

explore potential secondary sources of non-linearity.

Our results show a small light response of SIF during winter that has the potential to

overestimate GPP in winter and early spring (Figures 5.5 & 5.6). The wintertime light re-

sponse of SIF may suggest low rates of wintertime photosynthesis that are not captured by

flux tower measurements due to low signal-to-noise ratios. This may be possible if tempera-

ture is warm enough to thaw boles and allow trees to access small amounts of water stored in

the stems (Ensminger et al., 2004; Bowling et al., 2018; Pierrat et al., 2021a). However, we

suggest that the observed early spring and winter light response of SIF may be attributed to

photosystem I remaining active over winter while photosystem II shuts down more strongly

(but not completely) with seasonal downregulation of photosynthesis (Öquist and Huner,

2003; Bag et al., 2020; Porcar-Castell et al., 2008; Porcar-Castell, 2011). This small amount

of photosystem activity thus leads to a winter light response that does not reflect carbon

assimilation. More work in this area is necessary to explore the nuances of wintertime SIF.

During the spring transition photosynthetic reactivation happens rapidly, in phases, and

sometimes reversibly (Pierrat et al., 2021a). Therefore, monthly or monthly averaged SIF

and GPP data (Figures 5.5 & 5.6) are inadequate for accurately determining spring transition

dates and higher temporal resolution data is necessary. A wintertime light response of SIF

adds additional complexity to the use of SIF to determine start of season dates. For a more

detailed look at the spring transition and how to effectively use SIF to evaluate the onset of

photosynthesis in spring we refer readers to Pierrat et al. (2021a).
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In order to account for additional potential non-linearities in the SIF-GPP relationship

and adjust for the wintertime SIF light response, users of SIF should treat the SIF-GPP

relationship as a seasonally dynamic variable as illustrated in Figure 5.7. This will help

account for seasonally variable structural effects, as highlighted by Kim et al. (2021), as well

as the seasonal differences between LUEP and LUEF and the wintertime SIF light response. A

seasonally variant SIF-GPP relationship may also help account for additional non-linearities

between SIF and GPP that are not due to the light saturation of GPP, including drought

or temperature stress.

5.4.3 Implications for Satellite Observations

Spaceborne observations of SIF typically occur around midday and suffer from higher uncer-

tainty under cloudy sky conditions (although this bias is less than typical vegetation indices)

(Frankenberg et al., 2011; Parazoo et al., 2019; Köhler et al., 2018). Therefore, they are typ-

ically biased towards sunny sky and high light conditions. This bias may lead satellite based

retrievals of SIF in boreal ecosystems to exhibit a stronger SIF-GPP non-linearity. This will

be exacerbated over summer when midday PAR often falls into the range where GPP is

saturated and SIF continues to increase (Figures A.1, A.2, & 5.5). Future work in this area

may help us determine the impact of high light, sunny sky bias on satellite-derived SIF-GPP

relationships. By introducing the non-linear function (Equation 5.8) for the relationship

between SIF and GPP, users of satellite SIF data will more accurately describe the light

saturation of GPP. Additionally, a seasonally dynamic SIF-GPP relationship allows users of

SIF to better account for seasonal differences in LUEF and LUEP.

5.5 Conclusions

This work provides a direct comparison between SIF and several other remote sensing metrics

as proxies for GPP in the boreal forest and explains how the relationship between SIF and
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GPP becomes increasingly linear from half-hourly to monthly time scales.

We find that at daily to monthly resolutions, SIF shows a linear relationship with GPP

and outperforms other commonly used vegetation indices (NDVI, NIRv, PRI, CCI) as a

proxy for GPP. At a half-hourly resolution, the relationship between SIF and GPP becomes

non-linear, as we would expect based on theory and the leaf level response of SIF and GPP

to APAR. Nevertheless, SIF still provides a more effective proxy for GPP than other remote

sensing metrics.

We use an entirely data-driven approach for separating out structural and physiological

effects on SIF and GPP and the relationship between the two. The dynamics between

LUEP, LUEF, and f esc dictate the nature of the relationship between SIF and GPP at

varying temporal scales. At a half-hourly resolution, APAR is the primary driver of both

SIF and GPP. Therefore, non-linearity between SIF and GPP at a half-hourly resolution

is primarily driven by the light saturation of GPP. Temporal averaging reduces this non-

linearity by reducing the impact of light saturated GPP at high PAR. Variations in f esc

become more important to SIF at a half-hourly resolution and lead to a slight reduction

in SIF at high light levels. Seasonally, SIF and GPP both vary with temperature and the

light use efficiencies of fluorescence and photosynthesis (LUEF, GPPmax) generally co-vary

across the seasonal cycle with sustained non-photochemical quenching. f esc does not play

a significant role in the seasonal relationship between SIF and GPP. A small light response

of SIF in winter, as well as small differences in the seasonal cycles of LUEF and GPPmax

lead to a seasonally variable SIF-GPP relationship. Accounting for this seasonally variable

relationship will help improve the accuracy for SIF as a proxy for GPP.

Our results strongly support the value of SIF as a proxy for GPP in boreal forests, and

emphasize the need for future research to further constrain the relationship under varying

illumination and environmental conditions.
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CHAPTER 6

Forests for forests: combining vegetation indices with

solar-induced chlorophyll fluorescence in random forest

models improves gross primary productivity prediction

in the boreal forest

6.1 Introduction

Uncertainty in future climate projections is largely driven by terrestrial ecosystem feedbacks

on the carbon cycle (Friedlingstein et al., 2014). A major contributor to terrestrial ecosystem

feedbacks is plant carbon uptake via photosynthesis. Plant carbon uptake can be estimated

locally at the tower/site level, as gross primary productivity (GPP), but remote sensing

is necessary to scale and understand carbon exchange across space and time (Anav et al.,

2015). This is especially relevant in arctic-boreal ecosystems which play a major, but highly

uncertain, role in the global carbon cycle (Bonan, 2008; Thurner et al., 2014). Arctic-boreal

carbon cycle uncertainty can be attributed to unevenly distributed field observations and

challenges in using remote sensing (e.g. high sun angles, snow cover, short growing seasons,

persistent greenness) (Nelson et al., 2022). Therefore, improvements must be made in how

we connect remotely sensed measurements to GPP in arctic-boreal ecosystems.

GPP can be described using the light-use-efficiency model (Monteith, 1972):

GPP = PAR× fPAR× LUEP (6.1)
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where PAR is the photosynthetically active radiation, fPAR is the fraction of photosyntheti-

cally active radiation absorbed by chlorophyll, and LUEP is the light-use-efficiency of photo-

synthesis. Proposed remote sensing metrics for approximating GPP typically track either the

physical (fPAR) or the physiological (LUEP) components of this equation. Solar-induced

chlorophyll fluorescence is an especially powerful remote sensing metric for understanding

GPP over a variety of ecosystems (Sun et al., 2017, 2018) and across a variety of scales

(Magney et al., 2020; Mohammed et al., 2019; Pierrat et al., 2022a; Porcar-Castell et al.,

2021; Yang et al., 2017) due to its connection to both the physical (PAR×fPAR) and the

physiological (LUEP) components of GPP. SIF can be described using the light-use-efficiency

model:

SIF = PAR× fPAR× LUEF × fesc (6.2)

where LUEF is the light-use-efficiency of fluorescence, and f esc is the fraction of emitted SIF

photons which escape the canopy. SIF and GPP share the physical drivers PAR×fPAR,

which largely explains the relationship between SIF and GPP in cropping systems (Dechant

et al., 2020). Equations 1 and 2 can be combined to eliminate the absorbed photosyntheti-

cally active radiation (APAR = PAR×fPAR):

GPP = SIF× LUEP

LUEF × fesc
(6.3)

The physiological component of SIF, LUEF co-varies with LUEP under moderate light

conditions (Porcar-Castell et al., 2014; Van Der Tol et al., 2014) and averaged over broad

spatio-temporal scales (Magney et al., 2020; Pierrat et al., 2022a). This is the basis for SIF as

a proxy for GPP when measured from space across a broad range of ecosystems (Sun et al.,

2017, 2018). However, these conditions are not necessarily always met (Marrs et al., 2020),

especially in the boreal forest where complex canopy structure and divergence between the

light and carbon fixation reactions of photosynthesis can complicate these signals (Maguire

et al., 2020; Pierrat et al., 2022a). Therefore, a more nuanced relationship between SIF
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and GPP that takes into consideration divergence between variations in LUEF, LUEP, and

f esc will further improve the utility of SIF as a proxy for GPP. Additional reflectance-based

remotely sensed metrics, i.e. vegetation indices (VIs), can provide more information on both

the structural and physiological processes impacting GPP and can therefore improve our

ability to track and understand GPP with remote sensing.

Physically, SIF and GPP are impacted by illumination conditions and canopy structure

(i.e. the combined effects of leaf-area index (LAI), vertical distribution of LAI, leaf orienta-

tion, clumping, etc.) which mediate both fPAR and f esc. At a constant PAR and LUEP,

GPP amplifies under cloudy sky conditions because a higher diffuse fraction allows light

to penetrate deeper into the canopy, thus increasing fPAR (Alton et al., 2007; Gu et al.,

2002; Durand et al., 2021). Although the amplification of GPP under diffuse skies has been

well documented, it is often not considered when approximating GPP with remote sensing

proxies.

Canopy structure is often approximated using greenness based VIs which are sensitive

to chlorophyll content in an instrument field of view. Thus, they are generally a good

approximation for fPAR. The Normalized Difference Vegetation Index (NDVI) effectively

tracks vegetation productivity in ecosystems where chlorophyll content and carbon uptake

are closely correlated (i.e. larger variations in fPAR than LUEP) (Tucker, 1979; Wang et al.,

2019; Yang et al., 2017). This is not the case in the boreal forest where changes in carbon

uptake do not correlate with changes in chlorophyll content (Gamon et al., 2013; Garbulsky

et al., 2010; Sims et al., 2006b). Additionally, NDVI is extremely sensitive to the presence

of snow cover (Pierrat et al., 2021a, 2022a). The near-infrared reflectance from vegetation

(NIRv) expands on NDVI by multiplying NDVI by the total scene NIR reflectance, thereby

amplifying the vegetated signal. NIRv has shown stronger correlations with fPAR and GPP

than NDVI alone (Badgley et al., 2019, 2017). NIRv can also be used as a proxy for f esc (Zeng

et al., 2019). Both NDVI and NIRv provide useful information on the physical/structural

influences on SIF and GPP, however, it is unclear how sensitive these indices are to changes
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in fPAR and f esc and if there exists a universal relationship across ecosystems.

Physiologically, the light-use-efficiencies of both fluorescence and photosynthesis are me-

diated by non-photochemical quenching - a heat dissipation mechanism that plants utilize to

avoid damage from excess sunlight (Raczka et al., 2019; Walter-McNeill et al., 2021). The ex-

tent to which non-photochemical quenching is necessary to protect plant tissue depends on a

host of environmental controls that determine a plant’s ability to photosynthesize (Demmig-

Adams and Adams, 2006). Of particular relevance in this respect is plant’s sensitivity to

temperature. Freezing over winter or heat waves over summer create stress conditions which

subsequently impact LUEP. Monitoring the extent of non-photochemical quenching thus

provides insight into LUEP (Adams et al., 2004), and likely LUEF, although those depen-

dencies are not yet well quantified.

Non-photochemical quenching manifests in two forms of photoprotection in boreal ecosys-

tems, both of which can be detected with remote sensing measures (Demmig-Adams et al.,

2006; Gamon et al., 1997, 2016). The first is rapidly reversible and therefore important

under short-term high light stress. It can be detected using the Photochemical Reflectance

Index (PRI). Therefore, PRI tracks changes in LUEP over the diurnal cycle (Gamon et al.,

1997; Wong and Gamon, 2015a,b). The second form is sustained and thus important over

longer time periods such as winter in regions where freezing temperatures limit the ability

for plants to (Verhoeven, 2014). This form can be tracked using the Chlorophyll-Carotenoid

Index (CCI) (Gamon et al., 2016). CCI has successfully tracked variations in GPP over the

seasonal cycle because it is sensitive to long-term changes in LUEP.

Including information on heat dissipation dynamics through remotely sensed products

(PRI and CCI) improves modelling of photosynthetic phenology (Wong et al., 2022), es-

pecially when used in conjunction with SIF (Hikosaka and Tsujimoto, 2021; Wang et al.,

2020). In addition, correcting the SIF signal for canopy and structural effects using struc-

turally sensitive metrics also improves its relationship with GPP (Liu et al., 2020b; Lu et al.,

2020). It has been well documented and mechanistically explained why vegetation indices
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are sensitive to changes in non-photochemical quenching or canopy structure but there are

no universal quantitative relationships among them. To develop such a relationship, the

impacts from canopy structure, view/sun angle effects, snow cover, and potential differences

in instrumentation (field of view, instrument sensitivity) must all be accounted for. Until

mechanistic models are able to effectively account for all the aforementioned effects, the

capacity for these indices to inform SIF and GPP is limited to qualitative or site-specific

empirical relationships. In order to make more effective use of remote sensing as a proxy for

GPP, it is necessary to have a quantitative framework that can relate SIF, VIs, and GPP.

Advances in machine learning have provided exciting opportunities for data analysis

and predictive modeling. In particular, random forest models are non-parametric in nature

and are therefore well suited for approximating non-linear, multi-parameter relationships in

complex systems (Breiman, 2001). Because random forest models do not assume functional

dependencies between input variables and predicted output and rather ’learn’ relationships

based on input data, they are particularly useful for systems where statistical parameterized

models either do not exist or are not well constrained. Random forest models are also highly

interpretable compared with other machine learning techniques due to predictor importance

estimates, which make them more useful for explaining and understanding observed relation-

ships. Finally, random forest models have already been used to understand nuance in the

SIF-GPP relationship (Bai et al., 2022; Jiao et al., 2019; Pierrat et al., 2022a). We propose

that using random forest models as a tool to understand and predict GPP based on a com-

bination of remote sensing metrics will present a significant improvement over traditional

parameterized models (Dechant et al., 2020; Monteith, 1972; Van Der Tol et al., 2014) or

other machine learning approaches.

The central question of this study is therefore: Can we improve our ability to predict

GPP from SIF by using random forest models as a quantitative framework that can incor-

porate additional physical and physiological information provided by VIs? To answer this

question, we present 2.5 years of tower-based remote sensing data across two boreal forest
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locations, qualitatively evaluate the seasonal and diurnal trends among them, and present

an interpretation on the physical and physiological information contained in them (Section

6.3.1). We justify the use of random forest models as a tool for understanding SIF, VI, and

GPP dynamics by showing that they can accurately reproduce SIF-GPP-PAR relationships

(Section 6.3.2). Finally, we explore the utility of random forest models and remotely sensed

products for improving GPP estimation by showing how random forest models driven by SIF,

VIs, and temperature improve the prediction of GPP and shed light on important physical

and physiological processes (Sections 6.3.3 & 6.3.4).

6.2 Materials and Methods

6.2.1 Site Description: Southern Old Black Spruce and NEON Delta Junction

We collected data at the Southern Old Black Spruce site (SOBS, FLUXNET site code CA-

Obs) and the National Ecological Observatory Network (NEON), Delta Junction (DEJU)

which represent the northern and southern limits of the North American boreal forest and

associated environmental conditions (Figure 6.1, Table 6.1). SOBS is located near the south-

ern limit of the boreal forest in Saskatchewan, Canada (53.98°N, 105.12°W) (Jarvis et al.,

1997). It is a mixed forest stand with stem density predominantly (90%) black spruce (Picea

mariana), and scattered (10%) larch (Larix laricina). DEJU is located towards the north-

ern end of the boreal forest outside Delta Junction, Alaska (63.88°N, 145.75°W). It is an

evergreen forest dominated by black and white spruce (Picea mariana & Picea glauca).

6.2.2 Data Collection: Tower-based Remote Sensing, GPP, and Environmental

Variables

We collected tower-based remotely sensed measurements (far-red SIF, NDVI, NIRv, CCI,

PRI) using PhotoSpec (see Grossmann et al. (2018) for detailed instrument description) at
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Figure 6.1: Experimental setup at the two boreal forest field locations. Site information for

SOBS from (Pappas et al., 2020a; Chen et al., 2006). Site information for DEJU from the

National Ecological Observation Network (NEON). Figure created with BioRender.com.
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both the SOBS and DEJU field sites. Measurements ran from August 2019 - December

2021 at both field locations (Figures 6.2 & 6.3). At both sites, Photospec was installed atop

the scaffolding tower facing due north. It has a narrow field of view (0.7°), 2-D scanning

capabilities, and simultaneously measures SIF and VIs at the same point in the canopy

(Grossmann et al., 2018). Individual measurements take approximately 20 seconds. We took

canopy representative scans at both field locations within a 30-minute window and averaged

measurements together to compare with the temporal resolution of GPP and environmental

variables. SIF was retrieved in the far-red (745-758 nm) wavelength range using a Fraunhofer-

line based fitting algorithm (Grossmann et al., 2018). The Fraunhofer-line based approach

makes SIF retrievals insensitive to atmospheric scattering and therefore robust even under

cloudy sky conditions (Chang et al., 2020; Frankenberg et al., 2011; Mohammed et al., 2019).

We filtered data for low quality retrievals and retrievals with unstable sky conditions (Pierrat

et al., 2022a, 2021a) for both sites. The VIs were calculated as follows, with ρnm:nm = the

average reflectance across a wavelength range in nm:

NDVI = (ρ830:860 − ρ620:670)/(ρ830:860 + ρ620:670) (6.4)

NIRv = (ρ830:860 − ρ620:670)/(ρ830:860 + ρ620:670)× ρ830:860 (6.5)

PRI = (ρ569:571 − ρ520:532)/(ρ569:571 + ρ520:532) (6.6)

CCI = (ρ520:532 − ρ620:670)/(ρ520:532 + ρ620:670) (6.7)

In boreal ecosystems, the onset of photosynthesis often occurs prior to complete snow

melt (Parazoo et al., 2018; Starr and Oberbauer, 2003). Therefore, any proposed approach

for predicting GPP based on remote metrics must be effective even in the presence of snow.

Because of this, we did not filter for snow but visually identified snow dates using phenocam

imagery (Richardson et al., 2018). Filtering for snow using an NDVI threshold > 0.5 (Cheng

et al., 2020; Magney et al., 2019a) did not change the results of this study (Figures B.1-B.4).
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To include impacts of illumination conditions on our analysis, we determined a measure of

direct vs. diffuse radiation (Df). Df reflects the deviation of PAR at a given solar zenith angle

from the expected PAR during a clear sky reference day so that Df=1 is clear sky conditions

(Pierrat et al., 2021b). Df values were calculated for every PhotoSpec measurement (≈20

second resolution) and averaged together in 30-minute windows to compare with GPP and

environmental measurements (Table 6.1). Values where Df > 0.8 are considered clear sky

conditions.

Data collection and processing for eddy covariance and meteorological data for both

SOBS and DEJU are summarized in Table 6.1.

Table 6.1: Summary of methods for measurement and data processing at the two field loca-

tions.

Measurement SOBS DEJU

SIF, VIs,

PAR, & Df

PhotoSpec mounted atop the

tower and processed following

Grossmann et al. (2018); Pierrat

et al. (2022a)

PhotoSpec mounted atop the

tower and processed following

Grossmann et al. (2018); Pierrat

et al. (2022a)

GPP

Eddy-

covariance

Taken using a 3-D sonic

anemometer (CSAT3, Campbell

Scientific, Logan, UT) in

combination with a closed-path

infrared gas (CO2/H2O) analyzer

(LI-7200 analyzer, Li-Cor,

Lincoln, NE) operated in absolute

mode.

Obtained from National

Ecological Observatory Network

(NEON) (2022a) using a

Campbell Scientific CSAT-3 3-D

Sonic Anemometer and LI-COR -

LI7200 gas analyzer.

Continued on next page
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Table 6.1: Summary of methods for measurement and data processing at the two field loca-

tions. (Continued)

Measurement SOBS DEJU

We performed quality assurance

on the data using the standard

Fluxnet-Canada method following

Barr et al. (2004, 2006).

We performed quality assurance

on carbon fluxes based on

turbulent and storage fluxes

separately, using a bivariate

statistical procedure for each, to

overcome quality flag restrictions

in the ”expanded” NEON

eddy-covariance bundle.

3% outliers (3% of rarest events

from the tails of each distribution)

were excluded from joint

probability distributions for all

available data for 1) turbulent flux

and PPFD, and separately for 2)

storage flux and time of day. NEE

data were considered valid if both

the turbulent and storage fluxes

passed this quality control step

(and NEE is equal to their sum).

Continued on next page

118



Table 6.1: Summary of methods for measurement and data processing at the two field loca-

tions. (Continued)

Measurement SOBS DEJU

Partitioning Data for NEE and meteorological

variables were filtered to remove

low turbulence (low friction

velocity) periods and then

gap-filled via the R package

REddyProc (Wutzler et al., 2018).

REddyProc was used to partition

NEE into GPP and Reco using

the method of Lasslop et al.

(2010), with air temperature used

as the driving temperature for

Reco.

Data for NEE and meteorological

variables were filtered to remove

low turbulence (low friction

velocity) periods and then

gap-filled via the R package

REddyProc (Wutzler et al., 2018).

REddyProc was used to partition

NEE into GPP and Reco using

the method of (Lasslop et al.,

2010), with air temperature used

as the driving temperature for

Reco.

Air

Temperature

(Tair) &

Relative

Humidity

(RH)

Vaisala HMP45C probe at 6 m Vaisala HUMICAP Humidity and

Temperature Probe - HMP 155 at

22 m (National Ecological

Observatory Network (NEON),

2022b)

Soil

Temperature

(Tsoil)

Type-T (copper-constan)

thermocouples at a 10 cm depth

Thermometrics - Climate RTD

100-ohm Probe at 6 cm depth

(National Ecological Observatory

Network (NEON), 2022c)

Soil

Volumetric

Water

Content

(SWC)

Cambell Scientific CS615 Water

Content Reflectometers at a 7.5

cm depth

Sentek - EnviroSCAN TriSCAN

at 6 cm depth (National

Ecological Observatory Network

(NEON), 2022d)
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6.2.3 Data Analysis: Random Forest and Parameterized Models

We trained and tested a variety of random forest models (Table 6.2). All random forest

models were produced using Matlab’s TreeBagger function (MATLAB, 2019) which is based

on the random forest algorithm from Breiman (2001). We used the full data collection

window (Aug 2019-Dec 2021, Figure 6.2) to train all models. All models were created using

100 regression trees and sampled with replacement on an in bag fraction of 0.7 (i.e. 70% of

the data were randomly chosen to train the models saving 30% to test the models). Out-of-

bag (OOB) predictor importance estimates were determined using the permuted predictor

delta error following the standard CART algorithm (Breiman, 2001) using the remaining

30% of data. Model performance was evaluated by calculating the Pearson’s correlation

coefficient (Gibbons et al., 2003) between measurements and predictions on the full dataset

(R2) and the reserved test dataset (OOB R2 score). Specific models are identified in Section

3 with the naming conventions in Table 6.2.

We compared random forest models with common parameterized light-use-efficiency mod-

els for the relationships among SIF, GPP, and PAR (Equations 6.1, 6.2, and 6.3). All curve

fitting and goodness of fit statistics (R2 values) were done using Matlab’s fit function (MAT-

LAB, 2019). Specifics of fitted equations are provided in Section 6.3.3 and figure captions

where relevant.
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Table 6.2: Naming conventions and descriptions of the random forest models used in this

study. ENV describes models driven with environmental inputs. RS describes

models driven with remote sensing and meteorological inputs. Parentheses indi-

cate the same model setup tested with a different variable or location.

Model

Name

Number

of Data

Points

Temporal

Resolution

Site Inputs Output Purpose

ENV-

SIF

12,482

(3,969)

Half-hourly SOBS

(DEJU)

PAR,

Tair,

Tsoil,

SWC,

RH, Df

SIF To test the

ability of random

forest models to

reproduce

quantitative

SIF-GPP

dynamics

(Section 6.3.2)

ENV-

GPP

12,482

(3,969)

Half-hourly SOBS

(DEJU)

PAR,

Tair,

Tsoil,

SWC,

RH, Df

GPP To test the

ability of random

forest models to

reproduce

quantitative

SIF-GPP

dynamics

(Section 6.3.2)

RS-

SOBS

12,482 Half-hourly SOBS SIF,

CCI,

PRI,

NDVI,

NIRv,

Tair,

Df

GPP To test our

ability to

improve GPP

prediction from

SIF by including

additional remote

sensing metrics

(Section 6.3.3)

Continued on next page
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Table 6.2: Naming conventions and descriptions of the random forest models used in this

study. ENV describes models driven with environmental inputs. RS describes

models driven with remote sensing and meteorological inputs. Parentheses indi-

cate the same model setup tested with a different variable or location. (Continued)

Model

Name

Number

of Data

Points

Temporal

Resolution

Site Inputs Output Purpose

RS-

DEJU

10,433 Half-hourly DEJU SIF,

CCI,

PRI,

NDVI,

NIRv,

Tair,

Df

GPP To test our

ability to

improve GPP

prediction from

SIF by including

additional remote

sensing metrics

(Section 6.3.3)

RS-

Total

1,157

(833 clear

sky)

Daily

midday

(10:00-14:00)

average

SOBS

&

DEJU

SIF,

CCI,

NDVI,

NIRv,

Tair,

(site)

GPP To test the

applicability of

our random

forest approach

across multiple

sites (Section

6.3.4)

RS-

DSOBS

622 Daily

midday

(10:00-14:00)

average

SOBS SIF,

CCI,

NDVI,

NIRv,

Tair

GPP To compare our

random forest

approach with

existing models

for GPP based

on SIF (Section

6.3.4)

Continued on next page
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Table 6.2: Naming conventions and descriptions of the random forest models used in this

study. ENV describes models driven with environmental inputs. RS describes

models driven with remote sensing and meteorological inputs. Parentheses indi-

cate the same model setup tested with a different variable or location. (Continued)

Model

Name

Number

of Data

Points

Temporal

Resolution

Site Inputs Output Purpose

RS-

DDEJU

535 Daily

midday

(10:00-14:00)

average

DEJU SIF,

CCI,

NDVI,

NIRv,

Tair

GPP To compare our

random forest

approach with

existing models

for GPP based

on SIF (Section

6.3.4)

6.3 Results and Discussion

6.3.1 Trends among SIF, VIs, and GPP

We present the relationships and trends among SIF, VIs, and environmental parameters

across seasonal and diurnal scales for both field locations in Figures 6.2 and 6.3. Compared

with SOBS, DEJU generally exhibits a shorter growing season, a smaller summer maximum

GPP, and lower values for all remotely sensed metrics (Figures 6.2 & 6.3).

SIF tracks the seasonal cycle and daily-weekly variability in GPP (Figure 6.2 row a).

Monthly diurnal profiles of SIF show good agreement with monthly diurnal profiles of GPP

across both sites (Figure 6.3 row a). SIF increases in spring prior to changes in GPP (Figure

6.2 row a) and shows a small diurnal profile over winter at both sites, while GPP does not

(Figure 6.3 row a). This early spring increase has been reported in other evergreen locations
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Figure 6.2: 5-day moving mean of daily average GPP compared with a) SIF, b) NDVI, c)

NIRv, d) PRI, e) CCI, f) PAR, g) Df and h) Air Temperature over the entire data collection

period for both the SOBS and DEJU sites. Shaded regions are the 5-day moving mean of

the standard deviation of diurnal variability. Blue shaded regions are periods of snow cover

as visually identified using phenocam imagery.
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(Magney et al., 2019a; Pierrat et al., 2022a; Yang et al., 2022) and is attributed to persistent

photosystem II activity (Bowling et al., 2018; Porcar-Castell, 2011). This leads to a winter

light response of SIF which means SIF increases coincident with PAR in winter/early spring

in a way that does not reflect changes in GPP. This does not preclude the use of SIF as a

proxy for GPP, but it must be accounted for to prevent overestimation of GPP in winter

(Pierrat et al., 2021a, 2022a).

Structurally sensitive indices (NDVI and NIRv) show little variability over summer and

are sensitive to snow in winter across both sites (Figure 6.2 rows b & c). Over summer

at SOBS, NDVI and NIRv show greater changes than at DEJU, which reflects the fact

that SOBS is a mixed-species forest with scattered deciduous larch trees. SOBS therefore

experiences greater changes in canopy structure over the seasonal cycle than evergreen DEJU.

NDVI peaks in mid-morning and mid-afternoon over the summer months at SOBS and has

no clear pattern at DEJU (Figure 6.3 row b). NIRv is slightly higher in the morning at

DEJU and has no clear pattern at SOBS (Figure 6.3 row c). These patterns suggest that

NDVI and NIRv are useful for accounting for shifts in viewing geometry and illumination

effects across the diurnal cycle.

Physiologically sensitive indices (CCI and PRI) generally track the seasonal cycle of GPP

but show sensitivity to snow cover in winter. CCI is more sensitive to snow at DEJU due to a

higher fraction of snow cover on the canopy. Both CCI and PRI increase in spring following

GPP at both sites (Figure 6.2 rows d & e). This is consistent with a two-phased spring

transition beginning with the onset of photosynthesis, followed by a reduction in sustained

photoprotection (Pierrat et al., 2021a). CCI at DEJU is lower than at SOBS which may

indicate differences in chlorophyll:carotenoid ratios between the sites. Diurnally, PRI shows

a small decrease around midday during summer months at both sites (Figure 6.3 row d).

This highlights the sensitivity of PRI to rapidly reversible photoprotection which will occur

under high-light, high-stress conditions. CCI shows a slight diurnal pattern at SOBS and

does not show a consistent diurnal pattern at DEJU. The lack of a diurnal pattern at DEJU
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supports the idea that CCI is sensitive to sustained cold-season photoprotection which will

not change over the course of the diurnal cycle. PRI and CCI thus provide information on

plant heat dissipation processes at both seasonal and diurnal timescales.

Environmental conditions at the two sites (PAR, Df, and Tair) are consistent with ex-

pected environmental patterns (Figures 6.2 & 6.3 rows f-h). PAR increases prior to an

increase in GPP and begins to decrease in fall prior to a decline in GPP at both sites. Df

does not show a defined seasonal cycle, nor does it show a prominent diurnal pattern at

either site. Thus, diffuse sky conditions are largely independent of season or time of day. Air

temperature tracks the seasonal cycle of GPP, and air temperatures above 0°C are a good

indicator of growing season length (Parazoo et al., 2018; Pierrat et al., 2021a; Stettz et al.,

2022). Air temperature peaks in the afternoon following the peak in SIF and GPP.

6.3.2 SIF and GPP light response curves: light-use-efficiency and random forest

models

We tested the ability of random forest models to reproduce quantitative SIF-GPP dynamics

by comparing light response curves following the parameterized light-use-efficiency model

(Figure 6.4 row a) with light response curves produced by environmentally driven random

forest models (Table 6.2, ENV-SIF & ENV-GPP, Figure 6.4 row b), at a half-hourly resolu-

tion at the SOBS site. The same analysis tested at the DEJU site shows consistent results

(Figures B.5 & B.6).

The half-hourly data and parameterized light-use-efficiency model (GPP = GPPmax×PAR
c×PAR

,

Michaelis and Menten, 1913; Monteith, 1972) and (SIF = c × PAR, Equation 6.2) show a

curved light response for GPP, consistent with the light saturation of GPP, and a near linear

light response for SIF (Figure 6.4 row a). Both GPP and SIF show a seasonally dynamic

light response with minima over winter and maxima over summer. The light response of

SIF approaches but does not go to zero over the winter months due to persistent winter

photosystem II activity (Bowling et al., 2018; Porcar-Castell, 2011; Yang et al., 2022).
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Figure 6.3: Average monthly diurnal patterns of GPP compared with a) SIF, b) NDVI, c)

NIRv, d) PRI, e) CCI, f) PAR, g) Df and h) Air Temperature over the entire data collection

period for both the SOBS and DEJU sites. Shaded regions are the standard deviation for

each hourly average within the month. Blue shaded regions represent months with snow

cover as visually identified using phenocam imagery.
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Both ENV-SIF and ENV-GPP models had strong performance with high R2 (R2 = 0.93

and 0.94 respectively) and OOB R2 scores (OOB R2 = 0.86 and 0.89 respectively) (Figure

B.7). This highlights the ability of random forest models to capture the environmental de-

pendencies of both SIF and GPP. The two trained models were run for each month using the

range of PAR values for that month and the monthly average for the rest of the environmen-

tal predictor variables to reproduce the light response curves of SIF and GPP (Figure 6.4

row b). The monthly light response curves produced by the random forest models have the

same patterns as both the data and the parameterized light-use-efficiency models. The light

response of GPP is curved and the light response of SIF is largely linear. SIF shows a slight

curvature at high PAR values which we attribute to changes in f esc at high PAR (Pierrat

et al., 2022a). Both GPP and SIF exhibit a monthly variable light response and the light

response of SIF does not drop to zero over winter, consistent with the light-use-efficiency

model.

These results highlight the efficacy of random forest models for reproducing quantitative

relationships and environmental dependencies for GPP and SIF without prescribing a pa-

rameterized model onto the data (Chen et al., 2021). Because of this, and the additional

information that can be provided by additional remote sensing metrics (Section 6.3.1), we

justify the use of random forest models for GPP prediction.

6.3.3 Random forest models compared with parameterized models for predict-

ing GPP

We tested the ability of random forest models to improve GPP prediction by testing tradi-

tional parameterized models (a linear SIF-GPP relationship, a non-linear SIF-GPP relation-

ship that takes into account the light saturation of GPP (Monteith, 1972) and a monthly

variable non-linear SIF-GPP relationship (Damm et al., 2015; Pierrat et al., 2022a) against

our new random forest approach combining multiple remote sensing indices for predicting

GPP (Figures 5 & 6). The two random forest models used to test this (Table 6.2, RS-
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Figure 6.4: Row a) shows half-hourly SIF and GPP data against PAR fitted with the pa-

rameterized light-use-efficiency models: (GPP = GPPmax×PAR
c×PAR

, Michaelis and Menten, 1913;

Monteith, 1972) and (SIF = c×PAR, Equation 6.2). Row b) shows light response curves of

half-hourly GPP and SIF produced from two random forest models (ENV-GPP and ENV-

SIF).

SOBS & RS-DEJU) were driven by remote sensing and meteorological variables that reflect

the physical and physiological controls on photosynthesis relevant at a half-hourly temporal

resolution.

The linear fit between SIF and GPP (Figure 6.5 row a) performs moderately-poorly with

an R2 = 0.58 at SOBS and R2 = 0.43 at DEJU (Figure 6.6 row a). The non-linear fit

based on (Damm et al., 2015) shows little to no improvement from the linear fit with R2

= 0.60 at SOBS and R2 = 0.43 at DEJU (Figure 6.6 row b). Both models with a fixed

SIF-GPP relationship overestimate GPP in winter due to a persistent winter light response

of SIF. The monthly variable non-linear SIF-GPP relationship (Figure 6.5 row c) shows a

marked improvement in the predictability of GPP at both the SOBS and DEJU sites with

R2 = 0.76 and R2 = 0.66 respectively (Figure 6.6 row c). In addition to improved R2 values,

the monthly variable non-linear SIF-GPP relationship helps account for the persistent winter

light response and the winter overestimation of GPP is no longer observed. The random forest

models driven by remotely sensed products (Figure 6.5 row d) improved the predictability of

GPP compared to all parameterized models at both sites with R2 = 0.90 and 0.86 and OOB
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R2 = 0.81 and 0.73 at SOBS and DEJU respectively (Figure 6.6 row d). The overestimation

of GPP in winter is not observed using the random forest approach and residuals between

predicted and measured GPP are more homoscedastic across seasons.

The predictive power of input variables is evaluated with the predictor importance esti-

mates (Figure 6.5 row d). SIF was the most important predictor at SOBS and second most

important predictor at DEJU, highlighting the power of SIF for GPP prediction. DEJU

showed a higher dependence on air temperature than SOBS which could point to stronger

temperature limitations at this site. Df was an important predictor across both sites which

highlights the dependence of GPP on diffuse vs. direct radiative conditions (Durand et al.,

2021; Pierrat et al., 2021b). NIRv was the third most important predictor at SOBS which

could reflect the fact that SOBS is a mixed-species forest interspersed with deciduous trees

and will thus have more dramatic changes in canopy structure over the course of the season

than DEJU. CCI was moderately important at both SOBS and DEJU which highlights the

relevance of CCI for capturing changes in sustained photoprotection over winter. NDVI was

not a particularly important predictor for either SOBS or DEJU which could reflect the

fact that NIRv is more effective at capturing changes in canopy structure (Badgley et al.,

2017, 2019) than NDVI. PRI was also not particularly important for either SOBS or DEJU

which suggests that rapidly reversible non-photochemical quenching dynamics may be more

effectively captured in the SIF signal when a prescribed relationship between SIF and GPP

is not used. Including PAR as an input variable does not improve model results but does

decrease the predictor importance of SIF (Figures B.8 & B.9). Substituting PAR for SIF as

a predictor variable also does not change model performance (Figures B.10 & B.11). This

suggests that vegetation indices effectively capture the structural (fPAR) and physiological

(LUEP) factors relevant for predicting GPP.
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Figure 6.5: Setup of traditional parameterized models for SIF as a proxy for GPP with our

proposed random forest modelling approach for both SOBS and DEJU. Row a) shows a linear

fit between SIF and GPP. Row b) shows a non-linear fit based on the light use efficiency

model (GPP = SIF×GPPmax
a+SIF

, Damm et al., 2015). Row c) shows the same non-linear fit but

fitted monthly to create a monthly variable SIF-GPP relationship (Pierrat et al., 2022a).

Row d) shows the input variables predictor importance estimates for random forest models

RS-SOBS and RS-DEJU.
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Figure 6.6: Evaluation of model performance for traditional parameterized models compared

with our proposed random forest modelling approach for both SOBS and DEJU. Rows a),

b), c), and d) show the correlation between measured GPP and predicted GPP based on

the models presented in Figure 6.5 as row a) a linear fit between SIF and GPP, row b) a

non-linear fit based on the light use efficiency model, row c) a monthly variable non-linear

fit, row d) random forest models RS-SOBS and RS-DEJU (Table 6.2).
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6.3.4 Random forest models for predicting GPP across boreal forest sites

Satellite remote sensing enables the approximation of GPP over a broader spatial range than

tower-based measurements, making it essential for understanding regional GPP dynamics.

However, relationships between remotely sensed products and GPP are often site specific

and thus require a new model or set of parameters for each ecosystem or plant functional

type. We tested the potential of our random forest modeling approach across sites for a

”universal” model for GPP based on remotely sensed products. We trained a model (RS-

Total) to predict GPP from data that are readily accessible or can be inferred from satellite

measurements (Table 6.2, RS-Total). We used data at a daily resolution averaged between

10:00-14:00 under all (Figure 6.7) and only sunny (Figure B.12) sky conditions to replicate

satellite observations across both the SOBS and DEJU sites together. SOBS and DEJU are at

the latitudinal extremes of the boreal ecosystem, thus, testing the feasibility of interpolation

across the boreal region.

Our results show excellent performance on the predictability of GPP based on remotely

sensed metrics (R2 = 0.94 and OOB R2 = 0.89) (Figure 6.7). Residuals between predicted

and measured GPP are highly homoscedastic and GPP is not overestimated in winter. Pre-

dictor importance estimates show that SIF is the most valuable predictor for GPP, but air

temperature, NDVI, CCI, and NIRv are all relevant predictors. To test the universality

of this approach, we tested the same model but included a site flag as a predictor (either

SOBS or DEJU) (Figure B.13). This model showed no improvement in performance (R2 =

0.94 and OOB R2 = 0.89) and had site flag as the least relevant predictor. This may be

because importance estimates are biased towards predictors with many classes or different

values (Loh and Shih, 1997) and we only had two flags for the two sites. Alternatively,

this, as well as the success of the model without the site flag, points to our random forest

modeling approach being independent of site, and therefore potentially generalizable across

the boreal biome at the satellite level (Li et al., 2018; Sun et al., 2017). This approach

also works whether or not the data have been filtered for snow contamination (Figure B.4)
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Figure 6.7: Random forest model trained with daily midday average data across both sites

(RS-Total) with a) predictor importance estimates and b) model performance on out-of-bag

data with predicted and measured GPP.

and shows near identical results when only clear sky days are used (Figure B.12) which

are both advantageous in the boreal. The combined random forest modeling approach also

outperformed all other parameterized models at a daily midday resolution for the two sites

separately (Figures B.14 & B.15) and worked well for the combined sites at a half-hourly

resolution (Figure B.16). Substituting PAR for SIF also showed good model performance

and similar predictor importance estimates (Figure B.17). This suggests that vegetation

indices are effective at capturing the physical and physiological effects relevant for predict-

ing GPP. Our results support the use of this approach for improving the predictability of

GPP from remote sensing observations because it can account for physical and physiological

mechanisms impacting remotely sensed signals.
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6.4 Conclusions

In this paper, we present a quantitative framework for predicting GPP using random forest

models driven by a set of remotely sensed products and air temperature. Multiple years of

tower-based remote sensing and GPP data across two field locations at the northern and

southern ends of the North American boreal forest show that VIs and SIF contain valuable

information on the physical and physiological drivers of GPP. Additionally, random forest

models driven by environmental variables are able to reproduce light response curves of SIF

and GPP and are thus able to capture quantitative relationships of plant physiology. These

results justify the use of random forest models to predict GPP based on a set of random for-

est parameters. Random forest models outperform traditional parameterized models based

on SIF alone for predicting GPP because they are able to incorporate physical and phys-

iological information provided by additional remote sensing metrics without prescribing a

parameterized model. This approach is not site specific and therefore has the potential to

be scaled across the boreal domain using satellite measurements. Finally, this approach has

potential for use in other ecosystems where remote sensing data is available. Random forest

models improve the utility of SIF and vegetation index data for scaling and understanding

GPP across space and time and thus present an exciting opportunity to better understand

vegetation’s role in the global carbon cycle.
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CHAPTER 7

Conclusions

In this chapter, I conclude by revisiting the overarching science questions presented in Chap-

ter 1 and connecting them with the results in Chapters 2-6. I then provide a brief synopsis

of recent and ongoing work that targets unanswered aspects of these science questions as

well as new ones that have emerged. Finally, I close with long-term aspirations inspired by

this thesis work.

7.1 Summary

The overarching aim of this work is to disentangle the physical and biological drivers of

optical signals in evergreen needleleaf forests with tower-based spectrometer systems, to

build a framework for understanding and monitoring evergreen needleleaf photosynthesis in

a changing climate. We have done this by answering the following scientific questions:

1. What environmental conditions drive changes in photochemical and biochemical regu-

lation of photosynthesis in ENFs?

In Chapter 2 we provided a broad overview of the environmental drivers of photochemical

and biochemical regulation of photosynthesis in ENFs. We highlight how light is the primary

energetic driver of photosynthesis. Then, depending on temperature and water availability,

the plant will partition the absorbed light energy to 1) drive photosynthesis, 2) damage the

plant tissue, 3) thermal energy dissipation, or 4) re-emit as fluorescence. Over the diurnal

cycle, plants use a form of rapidly reversible thermal energy dissipation to avoid damage and
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conserve water resources during periods of high-light and high-temperature (i.e., midday).

Over the seasonal cycle, ENF in regions which experience sub-zero temperatures in winter

(e.g., Alaska, Canada, Colorado) will employ a form of sustained thermal energy dissipation.

This allows them to protect against damage over the entire winter season when they are

absorbing appreciable amounts of light but unable to perform photosynthesis due to tem-

perature and water limitations. We also show that this sustained thermal energy dissipation

does not occur in ENF which show environmental conditions favorable for photosynthesis

year round (e.g., Florida). During the spring transition, evergreen and deciduous needleleaf

species have different environmental controls on the onset of photosynthesis (Chapter 4).

Because evergreen species already have needles, they are able to begin photosynthesis earlier

in the spring when the tree trunks have thawed and while soils are still frozen/thawing.

Deciduous species on the other hand must wait until soils have thawed to access greater

water resources and begin the leaf-out process. We show that seasonally air temperature is

the main driver of ENF photosynthesis, while diurnally light is the primary driver (Chapter

5).

2. What are the fundamental biological and physical processes influencing observed opti-

cal metrics?

Photosynthesis is dependent on both the amount of absorbed light and the energy par-

titioning among the four different pathways. Therefore, we can use optical metrics sensitive

to both the absorbed light and energy partitioning to probe photosynthesis (Chapter 2).

Metrics sensitive to canopy greenness (NDVI and NIRv) are an effective probe of chlorophyll

content and thus the fraction of available light absorbed by chlorophyll. This renders them

an effective probe of photosynthetic activity for deciduous species (Chapter 4) but not for

evergreens (Chapters 5 & 6). Metrics sensitive to xanthophyll pigments which are responsi-

ble for both rapidly reversible and sustained thermal energy dissipation (PRI and CCI) are a

good probe of photosynthetic activity in ENF but generally sensitive to the presence of snow
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(Chapters 4, 5, & 6). Finally, SIF is sensitive to both absorbed light and the yield of fluo-

rescence which tends to co-vary with the yield of photosynthesis over broad spatio-temporal

scales (Chapters 4, 5 & 6).

3. How do the relationships among different optical metrics and underlying biologic pro-

cesses change across varying temporal scales?

The two main temporal scales investigated in this dissertation are diurnal and seasonal.

Across both diurnal and seasonal scales, greenness based metrics (NDVI and NIRv) remain

approximately constant (with the exception of sensitivity to snow) because there are no

significant changes in canopy structure and chlorophyll content (Chapter 5). Over the course

of a season, PRI and CCI (sensitive to xanthophyll pigments and thermal energy dissipation)

and SIF all do a good job at tracking GPP. At finer temporal resolutions (daily-half-hourly)

SIF outperforms other metrics for tracking GPP because it is more sensitive to the more

rapid changes in light. However, the relationship between SIF and GPP is nuanced due to the

light responses of SIF and GPP. The light response of both SIF and GPP changes seasonally

as thermal energy dissipation induces a shutdown of photosynthesis. Over winter, the light

response of SIF does not drop to zero while the light response of GPP does. This leads to an

early increase in SIF prior to changes in GPP in spring. This early increase can be accounted

for by using SIFrelative which is a proxy for the light-use-efficiency of fluorescence and co-

varies seasonally with the light-use-efficiency of photosynthesis (Chapters 4 & 5). Across the

diurnal cycle, at high light intensities, the light response of GPP saturates while SIF does

not (Chapter 5). The combination of these processes leads to a seasonally-dependent and

curved relationship between SIF and GPP.

4. How can we improve our ability to track ENF photosynthesis by combining optical

metrics?

Optical metrics can provide information on both the structure and function of plants
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(Chapter 2). While SIF contains information on both the absorbed light and energy parti-

tioning of that light, the exact relationship between SIF and GPP is nuanced and depends on

the temporal resolution as well as the environmental controls on photosynthesis. Therefore,

we can improve our ability to predict GPP from SIF by incorporating additional information

on canopy structure and thermal energy dissipation provided by reflectance based vegetation

indices (Chapter 6). In this dissertation, we do this by using random forest models which are

non-parametric in nature and more interpretable than other machine learning approaches.

Using random forest models to predict GPP from optical metrics (SIF and vegetation in-

dices) shows both an improvement over traditional parameterizations and is not site-specific

making it potentially applicable across ENF more broadly.

7.2 Looking Ahead

The work presented in this dissertation presents a framework for understanding ENF pho-

tosynthesis using optical metrics. The majority of this research has therefore gone into

understanding the empirical trends and drivers of collected data across ENF locations along

with qualitative descriptions of their mechanistic drivers. To do this, the research has re-

mained data driven in nature and limited in its spatial scale (site-level observations). Future

research can therefore expand on the understandings gleaned in this dissertation, and using

the data collected during this research, in two main ways. First, by fusing data and modeling

frameworks we can improve our mechanistic understanding of biologic responses to environ-

mental drivers and ability to predict forest carbon uptake in a changing climate. Second, by

expanding the spatial range of observations and linking satellite and tower-based data, we

can do a better job at monitoring and understanding ENF carbon dynamics more broadly.
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7.2.1 Fusing data and modeling frameworks

When embarking on this dissertation research, our funded proposals included incorporating

modeling frameworks to understand mechanistic drivers of observed signals. This included

the Soil-Canopy-Observation of Photosynthesis and Energy Fluxes (SCOPE) model (van der

Tol et al., 2009; Van Der Tol et al., 2014; van der Tol et al., 2016) and the Discrete Anisotropic

Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 2017; Liu et al., 2019b). What

we quickly learned by using the SCOPE model at the Southern Old Black Spruce site (Pierrat

et al., 2021b) was that SCOPE was unable to capture the seasonal cycle in SIF and unable

to capture the magnitude of the SIF signal. We tuned the model to the site using data from

Chen et al. (2006) and ran sensitivity tests based on realistic input parameters. Nowhere in

these tests were we able to get the magnitude or the seasonal cycle to match the model with

observations. The issues we encountered at our study site are also not unique. Prior work has

shown wide discrepancies in the magnitude and direction of modeled SIF in response to light

conditions (Parazoo et al., 2020). In order to effectively use models to understand biologic

processes we cannot observe and to use them to predict what will happen to ecosystems in

the future, we must reconcile these differences.

We believe the two main issues with existing models be attributed to issues in the ra-

diative transfer scheme as well as issues with the photosynthesis model used. With respect

to radiative transfer, ENF are known for canopy clumping. Therefore introducing a canopy

clumping scheme (Braghiere et al., 2019) should theoretically improve radiative transfer in

the model (Wang and Frankenberg, 2022). With respect to photosynthesis, we believe that

the misrepresentation of the seasonal cycle of SIF can be attributed to an insufficient rep-

resentation of non-photochemical quenching dynamics (Raczka et al., 2019). Additionally,

recently developed photosynthesis models (Johnson et al., 2021; Johnson and Berry, 2021)

should be able to better capture the relationships among photosynthesis, fluorescence, and

thermal energy dissipation.
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Through close collaboration between modelers and observationalists, we can hopefully

reconcile these issues. Projects such as the SIF Model Inter-comparison Project (a followup

on Parazoo et al., 2020) are helping to identify discrepancies between existing models and

measurements. This will help us understand how and why different models are arriving

at different results for the SIF signal and what we need to to do improve such models.

Additional projects such as the Climate Modeling Alliance are also working to implement

the aforementioned changes into models (Wang et al., 2023). Ultimately, these efforts will

result in an improved ability to model and predict the fate of the terrestrial biosphere.

7.2.2 Linking tower and satellite observations

Satellite remote sensing is an essential tool for understanding and monitoring ecosystems

and their responses to environmental change. Upcoming satellite missions aim to advance

spaceborne remote sensing capabilities by expanding the spectral range and resolution of

existing missions. Specifically, the Surface Biology and Geology (SBG) component of the

National Aeronautics and Space Administration’s (NASA) new Earth System Observatory

will include an imaging spectrometer in the solar-reflected range (400-2,500 nm) with cov-

erage at biweekly intervals and pixel size as fine as 30 m (Cawse-Nicholson et al., 2021,

2023). The reflectance data collected as part of this mission will be a huge advancement in

comprehensive spectral monitoring of the earth system (Schneider et al., 2019). However,

due to the inherent nature of spaceborne missions, it is still limited in its spatiotemporal res-

olution compared with tower-based spectral measurements. Therefore, tower-based spectral

measurements will be an essential tool in the validation, interpretation, and spatiotemporal

downscaling of spaceborne measurements (Parazoo et al., 2019) and comparison with model

outputs (Poulter et al., 2023). In addition, tower-based optical measurements alone can

provide an enhanced mechanistic understanding of ecosystem processes and are useful tool

for assessing ecosystem health and productivity at the site level (Nelson et al., 2022; Gamon,

2015).
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To fully realize the promise of spaceborne measurements, careful integration with tower-

based data is essential. This can be accomplished by expanding the number of sites equipped

with spectral data and developing standards to make tower-based remote sensing comparable

across sites. The self-described “coalition of the willing”, FLUXNET, has been able to stan-

dardize and make accessible hundreds of sites of eddy-covariance derived flux data. This has

enabled a dirth of new science and intersite comparisons. With the dramatic growth in spec-

tral imaging in earth science and global ecology communities, now is the time for increased

coordination and collaboration between remote sensing scientists. Using the FLUXNET

model hopefully remote sensing scientists can begin to standardize remotely sensed products

and make datasets more accessible and usable. Efforts such as the Ameriflux Year of Remote

Sensing and the upcoming affiliated workshop “Linking Optical and Energy Fluxes” (https:

//fluxnet.org/community/linking-optical-and-energy-fluxes-workshop/) will be key

steppingstones in this process.

7.3 Final Remarks

The emission of carbon dioxide by humans has irreversibly changed our climate and climate

system (Solomon et al., 2009). Being able to prepare and protect against the inevitable

changes to our planet is essential for the future survival humankind. My biggest hope for

the work presented in this dissertation is that it may play a small part in protecting our

planet’s ecosystems in a rapidly changing climate.
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APPENDIX A

Supplementary Materials for Chapter 5

Table A.1: Summary of fitted equations and fit parameters for Figure 5.3 (with 95% confi-

dence intervals)

Figure 5.3 fit

parameters (with

95% confidence)

Monthly

y=a×x+b

Daily

1) y=a1×x+b1

2) y=a2×x/(b2+x)

Half-Hourly

1) y=a1×x+b1

2) y=a2×x/(b2+x)

SIF-GPP a = 40.26 (35.23,

45.3)

b = -1.918 (-2.764,

-1.071)

a1 = 33.29 (31.57,

35.02)

b1 = -0.7411 (-1.073,

-0.4089)

a2 = 701.9 (-6162,

7566)

b2 = 23.08 (-205.2,

251.4)

a1 = 30.13 (29.6,

30.66)

b1 = 0.8396 (0.7132,

0.9661)

a2 = 40.6 (37.11,

44.09)

b2 = 0.8817 (0.7789,

0.9845)

CCI-GPP a = 61.76 (54.86,

68.67)

b = -0.6264 (-1.269,

0.01627)

a1 = 53 (49.96,

56.03)

b1 = 0.2168

(-0.1029, 0.5365)

a1 = 2.174 (1.79,

2.559)

b1 = 6.384 (6.257,

6.511)

NDVI-GPP a = 25.47 (19.27,

31.66)

b = -10.93 (-14.59,

-7.259)

a1 = 21.47 (19.58,

23.37)

b1 = -8.596 (-9.792,

-7.4)

a1 = 25.39 (24.52,

26.27)

b1 = -10.01 (-10.59,

-9.424)
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Table A.2: Summary of fitted equations and fit parameters for Figure 5.5 (with 95% confi-

dence intervals)

Figure 5.5 fit

parameters (with

95% confidence)

SIF-APAR

y=a×x

SIFtotal-APAR

y=a×x

GPP-APAR

y=a×x/(b+x)

Jan a = 0.000159

(0.0001348,

0.0001832)

a = 0.002713

(0.001212, 0.004213)

a = 0.09222 (0.0235,

0.1609)

b = 1.612e-08 (-96.7,

96.7)

Feb a = 0.0001609

(0.000152,

0.0001697)

a = 0.001441

(0.001331, 0.001551)

a1 = 2.174 (1.79,

2.559)

b1 = 6.384 (6.257,

6.511)

Mar a = 0.0001598

(0.0001547,

0.0001649)

a = 0.001621

(0.001477, 0.001765)

a = 0 (fixed at

bound)

b = 500 (-Inf, Inf)

Apr a = 0.0001844

(0.0001795,

0.0001893)

a = 0.001942

(0.00186, 0.002024)

a = 15.11 (-50.43,

80.65)

b = 6214

(-2.444e+04,

3.686e+04)

May a = 0.0003348

(0.0003288,

0.0003408)

a = 0.00308

(0.003014, 0.003145)

a = 10.59 (9.594,

11.59)

b = 370.1 (277.4,

462.7)

Jun a = 0.0004163

(0.0004094,

0.0004232)

a = 0.003513

(0.00346, 0.003567)

a = 14.54 (13.67,

15.42)

b = 339.9 (288.2,

391.5)

Continued on next page
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Table A.2: Summary of fitted equations and fit parameters for Figure 5.5 (with 95% confi-

dence intervals) (Continued)

Figure 5.5 fit

parameters (with

95% confidence)

SIF-APAR

y=a×x

SIFtotal-APAR

y=a×x

GPP-APAR

y=a×x/(b+x)

Jul a = 0.0004353

(0.0004291,

0.0004416)

a = 0.003618

(0.003551, 0.003685)

a = 17.63 (16.63,

18.64)

b = 311.7 (258.8,

364.7)

Aug a = 0.0004457

(0.0004409,

0.0004504)

a = 0.003506

(0.00346, 0.003552)

a = 19.78 (18.86,

20.69)

b = 387.3 (341.2,

433.4)

Sep a = 0.0004536

(0.0004477,

0.0004595)

a = 0.00357

(0.003508, 0.003632)

a = 20.24 (18.63,

21.86)

b = 489.7 (410,

569.3)

Oct a = 0.0002864

(0.0002788,

0.000294)

a = 0.002666

(0.00257, 0.002763)

a = 11.7 (7.45,

15.96)

b = 823.1 (367.5,

1279)

Nov a = 0.0001792

(0.0001689,

0.0001895)

a = 0.001535

(0.001301, 0.001769)

a = 0.3199 (0.2411,

0.3987)

b =16.37 (-4.927,

37.66)

Dec a = 0.0001617

(0.0001479,

0.0001755)

a =

0.001242(0.001082,

0.001402)

a = 0.5382 (-5.745,

6.821)

b = 1023

(-1.388e+04,

1.593e+04)
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Table A.3: Summary of fitted equations and fit parameters for Figure 5.7 (with 95% confi-

dence intervals)

Figure 5.7 fit

parameters (with

95% confidence)

SIF-GPP

y=a×x/(b+x)

SIFtotal-GPP

y=a×x/(b+x)

Jan a = 0.07597 (-4.812e+05,

4.812e+05)

b = 49.72 (-3.149e+08,

3.149e+08)

a = 0.00533 (-4.847e+05,

4.847e+05)

b = 111.2 (-1.011e+10,

1.011e+10)

Feb a = 0.4593 (-2, 2.918)

b = 0.2986 (-1.753, 2.35)

a = 0.2125 (-0.2523, 0.6773)

b = 0.9927 (-3.112, 5.098)

Mar a = 6.732e-06 (-305.5, 305.5)

b = 59.7 (-2.723e+09,

2.723e+09)

a = 6.765e-09 (fixed at bound)

b = 3.775 (-1.632e+08,

1.632e+08)

Apr a = 2.184e+05 (-6.091e+09,

6.091e+09)

b = 1.76e+04 (-4.908e+08,

4.908e+08)

a = 8.634 (0.7435, 16.52)

b = 6.632 (-1.338, 14.6)

May a = 19.23 (15.16, 23.3)

b = 0.4489 (0.2978, 0.6)

a = 43.62 (25.29, 61.95)

b = 13.28 (6.614, 19.96)

Jun a = 19.07 (17.09, 21.05)

b = 0.3016 (0.2421, 0.3611)

a = 23.39 (20.94, 25.83)

b = 3.73 (3.106, 4.354)

Jul a = 21.68 (19.78, 23.58)

b = 0.2616 (0.2107, 0.3125)

a = 108.8 (65.41, 152.2)

b = 25.38 (13.99, 36.76)

Aug a = 22.6 (21.16, 24.03)

b = 0.2583 (0.2227, 0.294)

a = 20.46 (19.29, 21.62)

b = 1.622 (1.4, 1.843)

Sep a = 26.61 (23.55, 29.66)

b = 0.3886 (0.3141, 0.4632)

a = 19.06 (18.1, 20.02)

b = 1.706 (1.538, 1.874)

Continued on next page
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Table A.3: Summary of fitted equations and fit parameters for Figure 5.7 (with 95% confi-

dence intervals) (Continued)

Figure 5.7 fit

parameters (with

95% confidence)

SIF-GPP

y=a×x/(b+x)

SIFtotal-GPP

y=a×x/(b+x)

Oct a = 9.558e+04 (-1.628e+08,

1.63e+08)

b = 2978 (-5.073e+06,

5.079e+06)

a = 19.73 (11.12, 28.34)

b = 5.048 (2.227, 7.869)

Nov a = 0.8852 (0.1863, 1.584)

b = 0.1096 (-0.01847, 0.2377)

a = 1.09 (0.6217, 1.559)

b = 2.277 (1.298, 3.256)

Dec a = 0.2482 (0.03798, 0.4585)

b = 0.04845 (0.009215, 0.08768)

a = 0.3963 (-0.5688, 1.362)

b = 1.612 (-2.386, 5.61)
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Figure A.1: The relationships between SIF, CCI, or NDVI, and GPP at monthly, daily,

and half-hourly resolutions colored by PAR in [µmolm-2s-1]. Solid black lines are linear fits

and dashed lines in b) and c) are based off Equation 5.8. Shaded gray regions are the

95% non-simultaneous functional prediction bounds for the fit. R2 values are the degree-of-

freedom adjusted coefficient of determination of the fit. Fitted parameters and equations are

summarized in Table A.1.
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Figure A.2: a) The relationship between SIF and GPP at a half-hourly resolution colored

by PAR in [µmolm-2s-1] for summertime data (between May 26 and September 16). The

solid black line is a linear fit and the dashed line in is based off Equation 5.8. Shaded gray

regions are the 95% non-simultaneous functional prediction bounds for the fit. R2 values are

the degree-of-freedom adjusted coefficient of determination of the fit. b) and c) show the

residuals for both the linear and non-linear fits.
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Figure A.3: Half-hourly data light response curves broken up monthly. Col-

umn a) f esc calculated from Equation 4 plotted against APAR. Column b)

LUEF in [Wm-2sr-1µm-1]/[µmolm-2s-1] values determined from Equation 5.1 (LUEF =

SIF/[APAR*fesc]). Column c) LUEP [unitless] calculated from Equation 6.1 (LUEP =

GPP/APAR). 150
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Figure B.1: The same as main text Figure 6.2 but showing data filtered to remove snow cover

impacts. 5-day moving mean of daily average GPP compared with a) SIF, b) NDVI, c) NIRv,

d) PRI, e) CCI, f) PAR, g) Df and h) Air Temperature over the entire data collection period

for both the SOBS and DEJU sites. Shaded regions are the 5-day moving mean of the

standard deviation of diurnal variability.
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Figure B.2: The same as main text Figure 6.5 but using data filtered to remove snow impacts.

Setup of traditional parameterized models for SIF as a proxy for GPP with our proposed

random forest modelling approach for both SOBS and DEJU. Row a) shows a linear fit

between SIF and GPP. Row b) shows a non-linear fit based on the light use efficiency model

as (GPP = SIF×GPPmax
a+SIF

, Damm et al., 2015). Row c) shows the same non-linear fit but fitted

monthly to create a monthly variable SIF-GPP relationship (Pierrat et al., 2022a). Row d)

shows the input variables predictor importance estimates for random forest models RS-SOBS

and RS-DEJU.
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Figure B.3: The same as main text Figure 6.6 but using data filtered to remove snow cover

impacts. Evaluation of model performance for traditional parameterized models compared

with our proposed random forest modelling approach for both SOBS and DEJU. Rows a),

b), c), and d) show the correlation between measured GPP and predicted GPP based on

the models presented in Figure B.2 as row a) a linear fit between SIF and GPP, row b) a

non-linear fit based on the light use efficiency model, row c) a monthly variable non-linear

fit, row d) random forest models RS-SOBS and RS-DEJU (Table 6.2).
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Figure B.4: The same as main text Figure 6.7 but using data filtered to remove snow cover

impacts. Random forest model trained with daily midday average data across both sites

(RS-Total) with a) predictor importance estimates and b) model performance on out-of-bag

data with predicted and measured GPP.
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Figure B.5: Predictor importance estimates and model performance evaluation for two ran-

dom forest models (ENV-GPP and ENV-SIF, Table 6.2) at the Delta Junction site (DEJU).
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Figure B.6: Row a) shows half-hourly SIF and GPP data against PAR fitted with the pa-

rameterized light-use-efficiency models: (GPP = GPPmax×PAR
c×PAR

, Michaelis and Menten, 1913;

Monteith, 1972) and (SIF = c×PAR, Equation 6.2). Row b) shows light response curves of

half-hourly GPP and SIF produced from two random forest models (ENV-GPP and ENV-

SIF) at the Delta Junction site (DEJU).
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Figure B.7: Predictor importance estimates and model performance evaluation for two ran-

dom forest models (ENV-GPP and ENV-SIF, Table 6.2) at the Southern Old Black Spruce

site (SOBS).
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Figure B.8: The same as main text Figure 6.5 but including PAR as a predictor variable.

Setup of traditional parameterized models for SIF as a proxy for GPP with our proposed

random forest modelling approach for both SOBS and DEJU. Row a) shows a linear fit

between SIF and GPP. Row b) shows a non-linear fit based on the light use efficiency model

as (GPP = SIF×GPPmax
a+SIF

, Damm et al., 2015). Row c) shows the same non-linear fit but fitted

monthly to create a monthly variable SIF-GPP relationship (Pierrat et al., 2022a). Row d)

shows the input variables predictor importance estimates for random forest models RS-SOBS

and RS-DEJU with the addition of PAR as a predictor variable.
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Figure B.9: The same as main text Figure 6.6 but including PAR as a predictor variable.

Evaluation of model performance for traditional parameterized models compared with our

proposed random forest modelling approach for both SOBS and DEJU. Rows a), b), c), and

d) show the correlation between measured GPP and predicted GPP based on the models

presented in Figure B.8 as row a) a linear fit between SIF and GPP, row b) a non-linear

fit based on the light use efficiency model, row c) a monthly variable non-linear fit, row d)

random forest models RS-SOBS and RS-DEJU (Table 2) but with the addition of PAR as a

predictor variable.
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Figure B.10: The same as main text Figure 6.5 but including PAR as a predictor variable

instead of SIF. Setup of traditional parameterized models for SIF as a proxy for GPP with

our proposed random forest modelling approach for both SOBS and DEJU. Row a) shows a

linear fit between SIF and GPP. Row b) shows a non-linear fit based on the light use efficiency

model as (GPP = SIF×GPPmax
a+SIF

, Damm et al., 2015). Row c) shows the same non-linear fit

but fitted monthly to create a monthly variable SIF-GPP relationship (Pierrat et al., 2022a).

Row d) shows the input variables predictor importance estimates for random forest models

RS-SOBS and RS-DEJU with the addition of PAR as a predictor variable.
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Figure B.11: The same as main text Figure 6.6 but including PAR as a predictor variable

instead of SIF. Evaluation of model performance for traditional parameterized models com-

pared with our proposed random forest modelling approach for both SOBS and DEJU. Rows

a), b), c), and d) show the correlation between measured GPP and predicted GPP based on

the models presented in Figure B.10 as row a) a linear fit between SIF and GPP, row b) a

non-linear fit based on the light use efficiency model, row c) a monthly variable non-linear

fit, row d) random forest models RS-SOBS and RS-DEJU (Table 6.2) but with the addition

of PAR as a predictor variable.
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Figure B.12: The same as main text Figure 6.7 but only including clear sky days. Random

forest model trained with daily midday average data across both sites (RS-Total) with a)

predictor importance estimates and b) model performance on out-of-bag data with predicted

and measured GPP.

Figure B.13: The same as main text Figure 6.7 but including a site flag. Random forest

model trained with daily midday average data across both sites (RS-Total) with a) predictor

importance estimates and b) model performance on out-of-bag data with predicted and

measured GPP.
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Figure B.14: Setup of traditional parameterized models for SIF as a proxy for GPP with our

proposed random forest modelling approach for both SOBS and DEJU at a daily resolution.

Row a) shows a linear fit between SIF and GPP. Row b) shows a non-linear fit based on the

light use efficiency model as (GPP = SIF×GPPmax
a+SIF

, Damm et al., 2015). Row c) shows the

same non-linear fit but fitted monthly to create a monthly variable SIF-GPP relationship

(Pierrat et al., 2022a). Row d) shows the input variables predictor importance estimates

for random forest models RS-SOBS and RS-DEJU with the addition of PAR as a predictor

variable.
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Figure B.15: Evaluation of model performance for traditional parameterized models com-

pared with our proposed random forest modelling approach for both SOBS and DEJU at

a daily resolution. Rows a), b), c), and d) show the correlation between measured GPP

and predicted GPP based on the models presented in Figure B.14 as row a) a linear fit

between SIF and GPP, row b) a non-linear fit based on the light use efficiency model, row

c) a monthly variable non-linear fit, row d) random forest models RS-SOBS and RS-DEJU

(Table 6.2) but with the addition of PAR as a predictor variable.
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Figure B.16: The same as main text Figure 6.7 but trained with half-hourly data across

both sites (RS-Total) with a) predictor importance estimates and b) model performance on

out-of-bag data with predicted and measured GPP.

Figure B.17: The same as main text Figure 6.7 but using PAR instead of SIF. Random

forest model trained with daily midday average data across both sites (RS-Total) with a)

predictor importance estimates and b) model performance on out-of-bag data with predicted

and measured GPP.
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mann, B. A. Logan, J. Stutz, P. D. Blanken, S. P. Burns, H. Duarte, X. Yang, J. C.

Lin, and D. R. Bowling. Sustained Nonphotochemical Quenching Shapes the Seasonal

Pattern of Solar-Induced Fluorescence at a High-Elevation Evergreen Forest. Journal

of Geophysical Research: Biogeosciences, 124(7):2005–2020, 2019. ISSN 21698961. doi:

10.1029/2018JG004883.

P. B. Reich. The world-wide ’fast-slow’ plant economics spectrum: A traits manifesto.

Journal of Ecology, 102(2):275–301, 2014. ISSN 00220477. doi: 10.1111/1365-2745.12211.

M. Reichstein, E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer,

N. Buchmann, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, H. Ilvesniemi,
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