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This data article is related to the research article, “M.J. Mc- 

Nulty, K. Kelada, D. Paul, S. Nandi, and K.A. McDonald, Intro- 

ducing uncertainty quantification to techno-economic mod- 

els of manufacturing field-grown plant-made products, Food 

Bioprod. Process. 128 (2021) 153–165.” The raw and an- 

alyzed data presented are related to generation, analysis, 

and optimization of ultra-large-scale field-grown plant-based 

manufacturing of high-value recombinant protein under un- 

certainty. The data have been acquired using deterministic 

techno-economic process model simulation in SuperPro De- 

signer integrated with stochastic Monte Carlo-based simu- 

lation in Microsoft Excel using the Crystal Ball plug-in. The 

purpose of the article is to make techno-economic and asso- 

ciated uncertainty data available to be leveraged and adapted 

for other research purposes. 
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pecifications Table 

Subject Chemical Engineering: Process Chemistry and Technology 

Specific subject area Process Engineering 

Type of data Table 

Chart 

Graph 

How data were acquired Process simulation tool SuperPro Designer® version 10 build 7 and Microsoft 

Excel with the Oracle® Crystall Ball plugin. 

Data format Raw and analyzed model simulation output data. 

Parameters for data collection Data are values collected from process simulation input parameter and forecast 

variables selected based on working process knowledge. 

• Input parameters: field growth yield, field growth time, expression level, 

harvesting time, plate & frame filtration recovery and flux, tangential flow 

filtration recovery and flux, chromatography recovery. 

• Forecast variables: internal rate of return (after tax), cost of goods sold, 

annual throughput, product purity 

Description of data collection Data are collected directly from software tools. 

Data source location N/A 

Data accessibility Repository name: Mendeley Data 

Data identification number: 10.17632/h5s7rz29vg.1 

Direct URL to data: http://dx.doi.org/10.17632/h5s7rz29vg.1 

Related research article M.J. McNulty, K. Kelada, D. Paul, S. Nandi, and K.A. McDonald, Introducing 

uncertainty quantification to techno-economic models of manufacturing 

field-grown plant-made products, Food Bioprod. Process. 128 (2021) 153–165. [1] 

alue of the Data 

• The first reported data of uncertainty quantification in techno-economic models of plant-

based bioproducts manufacturing. 

• The generated data is produced for a generic bioproduct and can be used by parties in de-

velopment of their specific bioproduct manufacturing strategies. 

• It provides valuable insights into approaching uncertainty in ultra-large-scale field-grown

plant-based manufacturing and serves as a guideline for future approaches. 

. Data Description 

The data are from techno-economic uncertainty quantification of field-grown plant-based

anufacturing of a generic food-grade bioproduct [1] . The data can be grouped as follows: 

.1. Generation of techno-economic data under uncertainty 

The input parameter assumption distributions and associated Monte Carlo sampling-based

rial data for the base case techno-economic process model are described in the data file, 0.1 As-

umption distribution & trial data (base case) . These assumptions distribution trial data feed into

he techno-economic process model (publicly available at http://mcdonald-nandi.ech.ucdavis.

du/tools/techno-economics/ ) to generate the forecast variable output data in the base case sce-

ario and facility oversizing scenarios (in which the equipment of the facility is sized larger to

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.17632/h5s7rz29vg.1
http://mcdonald-nandi.ech.ucdavis.edu/tools/techno-economics/
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accommodate the uncertainty of production). This is described in data file, 02. Simulation trial

data (base case + facility oversizing). The details of the equipment oversizing scenarios of the

techno-economic process model to accommodate the uncertainty of production are described in

the data file, 03. Equipment oversizing specification (base case + facility oversizing) . 

1.2. Analysis of techno-economic forecast variable outputs 

The forecast variable output data are compared between the base case and facility oversizing

scenarios using two-sample t-tests for evaluation of the means and Kolmogorv-Smirnov tests

for evaluation of the distributions, which is summarized in the data file, 04. Statistical test re-

sults (base case + facility oversizing) . Box plots and quantile-quantile plots are shown in the data

file, 05. Forecast variable normality (base case + facility oversizing) , as assessments of normality.

Univariate sensitivity of the forecast variables to the input parameters is investigated using tor-

nado plots and spider charts in the data files, 06. Forecast univariate sensitivity data (base case)

and 07. Forecast univariate sensitivity charts (base case) . The contribution to variance of each in-

put parameter to each forecast variable is calculated by rank correlation coefficient using Monte

Carlo-based techno-economic simulation run data for the base case in which Pearson correlation

coefficients are not included, the results of which are described in the data file, 08. Contribution

to variance (base case) . Techno-economic output metrics (e.g., cost breakdown by section and

cost item, total capital expenditures, number of batches per year) are generated in the techno-

economic modelling software using input parameter values associated with Monte Carlo-based

techno-economic simulation trials that yielded the minimum, mean, and maximum values of

internal rate of return after tax for the base case and facility oversizing scenarios, as described

in the data file, 09. Cost breakdowns (base case + facility oversizing) . 

1.3. Techno-economic optimization under uncertainty 

A facility retrofitting case which presumes that the cation exchange chromatography is a new

addition to an existing facility is approached with the base case facility sizing assumed to be

fixed and the cation exchange chromatography column diameter is set as a decision variable to

minimize internal rate of return after tax, as described in the data file, 10. Simulation results

summary (CEX size optimization) . 

2. Experimental Design, Materials and Methods 

The method used to generate the foundational data presented in this article is an integration

of a deterministic techno-economic process model simulation in SuperPro Designer with Monte

Carlo-based stochastic simulation of input parameter uncertainty using assumption distributions

and Pearson correlation coefficients supported by literature and working process knowledge in

Microsoft Excel using the Crystal Ball plug-in. 

2.1. Assessment of assumption distributions 

Assumption distributions were primarily determined by working process knowledge sup-

ported by reports in literature. We used our working process knowledge to select probability

distributions reflective of plant-made pharmaceutical production that one might observe at lab-

and/or pilot-scale production. The probability distributions are not based on any existing com-

mercial facility capability. 
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Fig. 1. Regression plot of model vs. experimental data points, showing calculated R 2 value. 
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Expression level variations were performed by changing the mass coefficients of “Product”

nd “Biomass week 6” in P-18’s RXNSEP-1, while keeping their sum constant. The probability

istribution profile was obtained from Werner et al. [2] . The data were normalized so that the

ean is 1.50 g/kg (base case expression level) and was best fit by a logistic distribution. A tri-

ngular distribution was used to represent the uncertainty with field growth time before induc-

ion in P-16. Mechanical harvesting (P-21/GBX-104) time variability was represented by a beta

istribution with minimum and maximum values based off an assumed 1–10 km/h harvester

peed. UF/DF filtrate flux was assumed to vary by ±25% from the base case value according

o a triangular distribution [3] . Cation exchange chromatography (CEX) losses were assumed to

ary according to a uniform distribution with minimum and maximum values ±10% their mean

base case) [4] . Harvesting time, plate & flame removal, and field growth time distributions were

ased on assumptions determined using working process knowledge not directly supported by

eported values in public literature. 

The field growth yield probability distribution was derived from an analysis of previously

ublished literature. The following Sections 2.1.1 –2.1.2 detail the development of the field growth

ield assumption distribution. 

.1.1. Model for tobacco dry weight estimation as a function of temperature 

Experimental data of tobacco dry weight were extracted from Fig. 1 (A–E) in [5] using an

pen source software DataTheif (B. Tummers, DataThief III. 2006 https://datathief.org/ ). The data

as collected by measuring the dry weight of plants at different intervals during their growth;

he high and low temperatures were kept constant for 9 and 15 h, respectively. A weighted

verage of these temperatures was used in the model calculations (i.e., 9/24 ∗high + 15/24 ∗low).

lants were rotated between different growth chambers where high and temperatures were kept

onstant, however, different in each chamber, resulting in 10 different sets of experimental data.

o construct the model, all 10 sets of data were fit to Eqs. (2 ) and (3) by using an initial guess for

he equation parameters (A,k,S,H) from Wann et al. [6] and calculating the root mean squared

rror (RMSE) - ( Eq. (3 )). A built-in Microsoft-Excel solver was then used to find the model pa-

ameters that would minimize the RMSE between model predictions and experimental data. 

W i = W 0 + ( W 0 · r ( T ) · �t ) (1)

https://datathief.org/
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Table 1 

Model parameters obtained by minimizing the root mean squared error (RMSE). 

A (day −1 K −1 ) S k (K) H (K) 

924.6 75.43 4199 22,780 

Fig. 2. Model validation results using data in Fig. 2 in Wann and Raper [5] . 

 

 

 

 

 

 

 

 

 

 

 

Where W i – tobacco dry weight at day “i ” post-transplant (g/plant), W 0 – initial dry weight

at day “i - �t”(g/plant), r( T ) temperature- dependent growth rate in g/(plant day), �t – time be-

tween W 0 and W i in days. 

r ( T ) = 

A T exp 

(−k 
T 

)
1 + exp 

(
S − H 

T 

) (2) 

A,k,S,H – model parameters, T – temperature (K). 

There is an optimum temperature for tobacco growth below which the growth rate follows

the Arrhenius law. Above this optimum temperature, the rate declines due to the inactivation of

enzymes and the denaturation of plant proteins. Therefore, the complex function ( Eq. (2 )) was

chosen to model the growth rate response to temperature [6] . 

RMSE = 

√ 

1 

N 

∑ 

( y i − o i ) 
2 (3) 

Where y i is model prediction, o i is experimental data, and N is the total number of predic-

tions/observations. 

All data points – experimental on x-axis and model predictions on y-axis– were plotted on

the same graph ( Fig. 1 ), in addition to a 1:1 line to show model deviation from experimental

data. The R 2 value was calculated using Eq. (4 ) 

R 2 = 1 −
∑ 

( y i − o i ) 
2 

∑ 

(
o i − o a v g 

)2 
(4) 

Where y i – model prediction, o i – observation, and o avg – average of all observations. 

Model parameters that result in a minimized RMSE value of 9.839 are shown in Table 1 . The

model was validated using a different set of experimental data (obtained from Fig. 2 in [5] . The

two sets of data were plotted on the same graph ( Fig. 2 ) with the calculated R 

2 value. Fig. 3
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Fig. 3. Growth rate as a function of temperature based on fitted model parameters. 

Fig. 4. Tobacco dry weight prediction based on historical Homestead, FL weather data from three consecutive years. (For 

interpretation of the references to color in this figure, the reader is referred to the web version of this article). 
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hows the growth rate “r ( T )” values for a range of temperature. It confirms previously reported

ptimal growth range (18.5–28.5 °C) [7] which corresponds to 291.5–301.5 K. 

.1.2. Tobacco yield estimation and monthly variations 

The previous model was used to predict tobacco dry weight per plant as a function of

emperature. Hourly temperature (60 cm above ground level) data in Homestead, Florida was

btained from the Florida automated weather network (FAWN) database for three consecu-

ive years (2017–2019). The model predicts tobacco dry weight at day 27 after emergence of

eedlings (assuming a constant initial dry weight of 0.5 g/plant seedling), starting at the first

our of the first day of every month and ending on the 23rd hour of the 27th day of the same

onth. Assuming that germination occurs over the course of 15 days, the model predicts the

ry weight yield at day 42 post seeding. 

Fig. 4 shows the model results for each year at the end of 27th day of each month. The aver-

ge of the monthly yield over 3 years is also displayed as a solid green line, indicating a slight

rop in yield during the month of July, most likely due to the consistently elevated tempera-

ure. The average dry weight yield was 21.28 ± 2.37 g/plant. This 11% standard deviation from
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the mean reflect a low variation in temperature ranges due to seasonal changes in Homestead,

Florida. However, this model can be further improved by incorporating other weather factors

such as photon flux, ambient CO 2 concentration, plant nutrients availability, wind, and humid-

ity. Germination efficiency as a function of these variables should also be considered to produce

a more robust model. 

2.1.3. Probability distribution justification 

The data generated from the dry weight yield prediction model ( n = 36) was used to obtain

biomass conversion distribution, assuming a linear relationship between fresh weight and dry

weight. The yield prediction model results were normalized by its maximum value and were

best fit by a beta probability distribution (alpha = 2.57, beta = 4.80, minimum = 0.63, maxi-

mum = 1). The mean of this distribution was calculated to be 0.76 (base case). 

2.2. Techno-economic process model simulation 

The data described here and in the associated research article builds on the techno-economic

design bases and assumptions previously established in Kelada et al. [8] . The SuperPro Designer

model used in this methodology has been modified to produce a generic high-value recombinant

protein and for compatibility with uncertainty quantification. Namely, there are two significant

changes for compatibility with uncertainty quantification: (1) upstream and downstream pro-

cessing models have been merged so that input parameter variations simply propagate through-

out the entirety of the facility simulation, and (2) equipment size has been fixed according to

the static base case values such that uncertainty is largely absorbed by the rated throughput of

the equipment. Uncertainty in stream volume and product mass per batch cannot be entirely

absorbed by the facility model and so simple algorithmic fixes were implemented for the field

growth (P-2) and cation exchange (P-20) procedures such that yield and recovery, respectively,

as reduced to “effective” values corresponding to maximal stream volume and product mass per

batch, respectively, in the cases when excess stream volume or product mass per batch arise

stochastically from the input parameter uncertainty values. 

2.3. Monte Carlo simulation 

Monte Carlo simulation used to generate the data described here is performed using Mi-

crosoft Excel with the Crystal Ball plug-in, which allows the user to simply define probabil-

ity distribution assumptions, correlations between assumptions, forecast variables, and decision

variables to any number of spreadsheet cells as well as to run Monte Carlo simulation in Excel

using those definitions. Additionally, Crystal Ball’s built-in OptQuest is used to generate the data

for the optimization scenario. Simulations are executed using 20,0 0 0 trials for each of the three

selling prices analyzed, meaning that profitability-related forecast variables are analyzed using

data from 20,0 0 0 trials while process-related forecast variables are analyzed using data from

60,0 0 0 trials (combined data from each of the selling prices). 

2.4. Simulation integration 

The techno-economic process model simulation and the Monte Carlo simulation are inte-

grated in a master-slave relationship using custom Visual Basic for Application scripts in Mi-

crosoft Excel to interact with SuperPro Designer via the built-in Component Object Module li-

brary to set the techno-economic process model with stochastically-generated input parameter

values from Monte Carlo simulation, execute mass and energy balances and economic calcu-

lations in the techno-economic process model simulation, and to record the updated forecast
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