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The balance between ecosystem emissions of carbon to the atmosphere and removals from the atmo-
sphere indicates whether ecosystems are exacerbating or reducing climate change. Forest ecosystems
in the State of California, USA, contain carbon that reaches the highest densities (mass per unit area)
in the world, but it has been unresolved whether California ecosystems currently comprise a net sink
or source of carbon. The California Global Warming Solutions Act of 2006 established greenhouse gas
reduction targets for fossil fuel-burning sectors and ecosystems, underscoring the importance of tracking
ecosystem carbon. Here, we conduct statewide spatial inventories of the aboveground live carbon stocks
of forests and other terrestrial ecosystems of California, excluding agricultural and urban areas. We ana-
lyzed biomass data from field measurements of the Forest Inventory and Analysis program, published
biomass information and remote sensing data on non-forest vegetation, and spatial distributions of veg-
etation types, height, and fractional cover derived by the Landfire program from Landsat remote sensing
at 30 m spatial resolution. We conducted Monte Carlo analyses of the uncertainty of carbon stock change
estimates from errors in tree biomass estimates, remote sensing, and estimates of the carbon fraction of
biomass. The carbon stock in aboveground biomass was 850 ± 230 Tg (mean ± 95% confidence interval) in
2010. We found a net aboveground live carbon stock change of �69 ± 15 Tg from 2001 to 2010, a rate of
change of �0.8 ± 0.2% y�1. Due to slow decay of some dead wood, all of the live carbon stock change does
not immediately generate emissions. Wildfires on 6% of the state analysis area produced two-thirds of the
live carbon stock loss. This suggests that increased tree densities from a century of fire suppression have
allowed the accumulation of fuel for carbon losses in recent wildfires. Remote sensing errors in veg-
etation classification accounted for most of the uncertainty in the carbon stock change estimates.
Improvements are also needed to track spatial patterns of growth and dead wood. Our results establish
the beginning of a time series for the state greenhouse gas inventory and provide information on the role
of forest conservation and management in California in mitigating global climate change.

Published by Elsevier B.V.
1. Introduction

Growing vegetation naturally removes carbon from the atmo-
sphere, reducing the magnitude of climate change. Conversely,
deforestation, wildfire, and other agents of tree mortality emit car-
bon to the atmosphere, exacerbating climate change. Determining
the balance between ecosystem carbon emissions to the atmo-
sphere and removals from the atmosphere is essential for tracking
the role of ecosystems in climate change (Ciais et al., 2013).
Analyses at coarse spatial resolutions showed net carbon
removal by ecosystems globally from 2002 to 2011 (Ciais et al.,
2013; Houghton et al., 2012). In contrast, deforestation and forest
disturbance have caused net carbon emissions in some parts of
the world. In tropical forests, deforestation caused net carbon
emissions of 1 Pg y�1 from 2000 to 2010 (Baccini et al., 2012). In
Canada, wildfire and beetle outbreaks converted forests from a
net sink to a source of carbon between 2000 and 2005 (Kurz
et al., 2008). In the United States, forests were estimated as a sink
from 1990 to 2012 (U.S. Environmental Protection Agency, 2014),
but uncertainties in the ecosystem carbon balance remain due to
incomplete accounting of non-forest ecosystems (King et al.,
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2012) and the impact of wildfire and other disturbances (Kasischke
et al., 2013).

Determining more precisely the carbon balance of California
ecosystems is essential for implementing climate change policy
because the State of California is one of the few jurisdictions in
the world to enact mandatory greenhouse gas emissions reduc-
tions. The California Global Warming Solutions Act of 2006 set a
goal of reducing state emissions to 1990 levels by 2020. The state
set a target for ecosystems (primarily forest ecosystems) of no net
loss of carbon by 2020 (ARB, 2008). To accurately measure progress
toward this goal, the state has identified minimization of uncer-
tainties in ecosystem carbon estimates as a priority for the state
greenhouse gas inventory (ARB, 2014). Spatial data on ecosystem
carbon stocks and changes at appropriate spatial and temporal res-
olutions can also provide natural resource management agencies
the data to quantify carbon implications of management activities
such as prescribed burning, reforestation, and ecosystem
restoration.

Although many studies have examined ecosystem carbon
stocks in California, inherent limitations constrain their applicabil-
ity to the state greenhouse gas inventory. Some consider only for-
ests, excluding the extensive shrublands, grasslands, and other
terrestrial ecosystems of the state (Blackard et al., 2008; Cal Fire,
2010; Fried and Zhou, 2008; Kellndorfer et al., 2012; Potter,
2010; Powell et al., 2014; Wilson et al., 2013; Zhang et al., 2014;
Zheng et al., 2011). While non-forest ecosystems might contain a
relatively small fraction of the total state ecosystem carbon stock,
only an analysis that includes all ecosystems can determine this.
One study considered forests, shrublands, and grasslands, but cov-
ered only part of the state (Brown et al., 2004). Other studies were
one-time assessments, precluding calculation of carbon stock
change (Blackard et al., 2008; Kellndorfer et al., 2012; Wilson
et al., 2013; Zhang et al., 2014). Some rely on process-based mod-
els, rather than repeat observations, to estimate trends over time
(Brown et al., 2004; Cal Fire, 2010; Potter, 2010; Zhu and Reed,
2012).

Previous efforts do not agree on whether California ecosys-
tems are a net carbon source or sink. Results may differ because
of different time periods or different methods. A plot-based
analysis of private forests estimated net sequestration from
1984 to 1994, but the authors noted the absence of large fires
in the sample area (Fried and Zhou, 2008). Another plot-based
sample of forests estimated net sequestration from 1992 to
2001 (Zheng et al., 2011). An analysis of half of the state esti-
mated net sequestration from 1994 to 2000, but most of the
sequestration derived from a first approximation of the rate of
carbon accumulation in undisturbed forests (Brown et al.,
2004). Process-based flux models simulated net sequestration
in 2004 (Potter, 2010) and 2005 (Zhu and Reed, 2012) but
results were not validated against field data.

In contrast, recent forest carbon estimates at a regional scale
have found net emissions from areas that include California.
Analyses of inventories of forest biomass, remote sensing of wild-
fire and vegetation, and aerial surveys of beetle-killed trees across
the western U.S. found substantial net carbon emissions from 1984
to 2010 in the California part of the analysis (Hicke et al., 2013). A
sample of Landsat remote sensing scenes calibrated against forest
inventory plots in California and across the western U.S. found
net carbon emissions from western U.S. forests every year from
1986 to 2004 due to timber harvest, wildfire, and trees killed by
beetle infestations (Powell et al., 2014).

The high carbon storage potential of ecosystems in California
lends importance to determination of their carbon balance. Near
Redwood National Park in northern California, coast redwood
(Sequoia sempervirens) forest reaches an aboveground carbon den-
sity of 2900 Mg ha�1, the highest in the world (Busing and
Fujimori, 2005). In Sequoia and Kings Canyon National Parks in
the Sierra Nevada range of California, giant sequoia
(Sequoiadendron giganteum) forest reaches carbon densities of up
to 2200 Mg ha�1 (Blackard et al. 2008).

Our research sought to help address the science, policy, and
resource management needs for quantification of California
ecosystem carbon through a spatial analysis based on empirical
data. Our primary research question: Has the carbon stock of the
aboveground biomass of the forests and other terrestrial ecosys-
tems of California, excluding agricultural and urban areas, recently
increased or decreased?
2. Methods

2.1. Research approach

We sought to use methods that the California Air Resources
Board, the government agency responsible for the state greenhouse
gas inventory, could repeat in future years (Battles et al. 2013).
Requirements of an operational system include: complete state-
wide coverage, repeat observations to detect change empirically
over time, public availability of data, continuity of data into the
future, moderate to fine spatial resolution, moderate to low data
processing before analysis, and computational methods feasible
for agency personnel.

After evaluating numerous remote sensing options (Battles
et al., 2013), we decided that spatial data from the Landfire pro-
gram (Ryan and Opperman, 2013) most effectively met the criteria.
Landfire derives existing vegetation characteristics from Landsat
remote sensing data calibrated against field inventories of the
Forest Service Forest Inventory and Analysis (FIA) program, the
Natural Resources Conservation Service Natural Resource
Inventory, the National Park Service fire monitoring program, the
U.S. Geological Survey Gap Analysis Program, and other programs.
To match international scientific standards, we used methods that
comply with the Intergovernmental Panel on Climate Change
(IPCC) National Greenhouse Gas Inventory Guidelines (IPCC, 2006,
2013).
2.2. Analysis area

To delineate the analysis area, we used Landfire spatial data of
vegetation types for 2001 and 2010, the oldest and newest years
available at the time of the research. Landfire classifies the existing
vegetation type of a pixel through classification tree algorithms
that relate field-observed vegetation in a network of field inven-
tory plots to reflectance from seven Landsat spectral bands, topo-
graphy, and climate variables (Zhu et al. 2006). As vegetation
changes, spectral reflectance in the Landsat images also change,
leading to reclassification of a pixel. We maintained the Albers
Conical Equal Area projection and 30 m spatial resolution of the
original data.

For each vegetation type, we determined its IPCC (2006) land
category: forest land, wetland, grassland, cropland, settlements,
or other land (Table A1). IPCC forest land is land dominated by
trees or shrubs, so it includes forests, woodlands, and shrublands.
Wetlands are seasonally inundated ecosystems. Grasslands are
ecosystems dominated by grasses and forbs. Croplands are lands
occupied by annual or perennial agriculture, including orchards.
Settlements are land occupied by buildings, paved surfaces, roads,
or other urban development. Other land is land not covered by the
other categories, including many alpine and desert ecosystem
areas.

The forest land, grasslands, wetlands, and other land, excluding
cropland and settlements, (hereafter ‘‘wildland ecosystems’’) of the



Fig. 1. Analysis area. (a) Location in North America, with map showing places mentioned in the text. (b) Land cover 2010, using Intergovernmental Panel on Climate Change
(IPCC, 2006) land categories and vegetation data from Landfire (Ryan and Opperman, 2013).
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State of California, USA, constitute the analysis area for this
research (Fig. 1). These areas comprise 83% of the 404,500 km2 land
area of the state.

2.3. Biomass densities

We determined the 1083 unique combinations (hereafter ‘‘bio-
mass classes’’) of the three principal Landfire variables – vegetation
type, height class, fractional cover class – present in California. The
vegetation type of each pixel derives mainly from Landsat remote
sensing data (Section 2.2). The Landfire program has defined
vegetation types based on the species composition of plant com-
munities that tend to co-occur in environments with similar bio-
physical characteristics (Ryan and Opperman, 2013). Vegetation
falls into increasingly broad hierarchical units of types, subclasses,
classes, and orders based on the National Vegetation Classification
System (NVCS; Jennings et al., 2009). The NVCS vegetation orders
are: tree, shrub, herb, no dominant vegetation, or non-vegetated.

Landfire classifies height and, separately, fractional cover for the
dominant herbaceous, shrub, or tree layer of a pixel. Landfire clas-
sifies the height and cover of a pixel through regression tree algo-
rithms that relate field-observed height and cover in a network of
field inventory plots to reflectance from seven Landsat spectral
bands, topography, and climate variables (Zhu et al., 2006). The
algorithms estimate height and fractional cover as continuous
variables, then group them into classes of ranges of height (herbs
0–0.5 m, 0.5–1.0 m, >1 m; shrubs 0–0.5 m, 0.5–1.0 m, 1.0–3.0 m,
>3 m; trees 0–5 m, 5–10 m, 10–25 m, 25–50 m, and >50 m) and
cover (0–10%, 10–20%, . . .90–100%). As height or cover changes
over time, spectral reflectance in the Landsat images also change,
leading to reclassification of a pixel.
For each biomass class, we calculated an average aboveground
biomass density and standard error (SE), using three separate
methods based on NVCS vegetation order (tree, shrub, other).
Our analyses focus on the aboveground biomass carbon pool. No
independent repeat measurements or remote sensing data of
belowground biomass, dead wood, litter, or soil organic carbon
are available at the temporal and spatial resolutions of the above-
ground biomass data.

For tree-dominated biomass classes, we used plot-level tree
biomass estimates from the FIA program, based on FIA field mea-
surements of tree diameter, height, and other variables, from
2001 to 2009 (FIA database version 5.1, November 23, 2011). To
maintain consistency with other state government forest carbon
estimates, we used tree biomass for the 3623 tree-dominated FIA
plots calculated with allometric equations developed for the region
(Zhou and Hemstrom, 2009).

In addition, the Forest Service provided us the Landfire veg-
etation type, height class, and fractional cover class for 2008 (the
Landfire data available at the time of the analysis) of each FIA plot
in California using the exact geographic coordinates of every plot.
This avoided inaccuracies that would result from using the publicly
available FIA plot coordinates, which are not the real coordinates of
plots since the Forest Service is required by law to maintain the
privacy of exact plot locations (McRoberts et al., 2005).

We developed regression equations of aboveground biomass
density as a function of Landfire height and fractional cover. We
evaluated six models: height or cover only with or without an
intercept term and height and cover together with or without an
intercept term. The difference between the Akaike’s Information
Criteria (AIC) value of a given model and the minimum AIC of
the six models (an indicator of the best approximating model)



P. Gonzalez et al. / Forest Ecology and Management 348 (2015) 68–77 71
indicated the strength of evidence of each model (Burnham and
Anderson, 2002) and favored an equation with height and cover
together with an intercept term. The regression equation for the
biomass classes based on the 17 major Landfire vegetation types
and 5 NVCS subclasses is:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bvegetation

q
¼ aþ b cover þ c height ð1Þ

where Bvegetation is oven-dry plot-level biomass density (Mg ha�1),
square-root transformed to correct for positive skew in biomass dis-
tribution, a is the intercept, b and c are coefficients, cover is the
upper limit of the fractional cover class (%), and height is the upper
limit of the height class (m). We estimated the statistical uncer-
tainty of each biomass density regression equation as a relative
error, Eregression, equal to the standard deviation (SD) of the regres-
sion (Yanai et al., 2010) divided by the mean of plot-level biomass
(Table A2). Some Landfire tree-dominated vegetation types are rela-
tively rare and only occur in a few FIA plots. For the five types with
less than 30 plots, we derived Eq. (1) by NVCS vegetation subclass.

We used Monte Carlo analysis to quantify the uncertainty of
aboveground biomass density estimates from three error sources:
(1) variation or error of tree diameter measurement, (2) statistical
uncertainty of tree allometric equations, and (3) statistical uncer-
tainty of biomass density regression equations. For the first two
sources, we developed an equation of standard error as a function
of biomass density, SEtree, from published research that included
formal error analysis (Battles et al., 2008; Fahey et al., 2010;
Gonzalez et al., 2010; Harmon et al., 2007) (Fig. A1). The tree mea-
surement plots (n = 302) cover the most abundant forest types in
California. We used likelihood-based methods (Buckland et al.,
1997) to evaluate 11 linear, power, and saturating models and
found that the best model was linear (DAIC = 11; R2 = 0.49). For
the third source, we used Eregression (Table A2). To estimate the
uncertainty from all three sources combined, we calculated 100
realizations of biomass density where each realization included
random draws of the distributions of SEtree and Eregression. We calcu-
lated the standard error of the 100 realizations, SEbiomass, for each
tree-dominated biomass class.

For shrubs, we estimated aboveground biomass densities
and standard errors from field plot data in the public Landfire
reference database and published sources (Table A3). We calcu-
lated biomass densities and standard errors of the mean for the
15 most abundant shrub-dominated vegetation types that account
for �90% of total shrub-dominated area. When information was
available, we stratified estimates by shrub height class. For the less
abundant shrub-dominated vegetation types, we calculated bio-
mass densities and standard errors by NVCS vegetation subclass.
For shrub-dominated biomass classes, the standard error estimates
only considered plot-level sample variation.

For non-woody vegetation types in California, mainly grassland
and arid land ecosystems, no consistent, extensive, biomass inven-
tory data exist that are comparable to the FIA data for trees or the
public Landfire reference database for shrubs. Therefore, we calcu-
lated aboveground biomass densities and standard errors for non-
tree and non-shrub vegetation orders from Moderate Resolution
Imaging Spectroradiometer (MODIS) annual net primary produc-
tivity (NPP; MOD17A3, Collection 55; Running et al., 2004) for
2000–2010 at 1 km spatial resolution, calibrated by the National
Aeronautics and Space Administration to field-measured biomass
(Turner et al., 2006) (Fig. A2). After masking pixels obscured by
clouds, we calculated, for the 10 non-tree and non-shrub biomass
classes, the 2000–2010 mean annual vegetation production
(Mg ha�1), the standard error, and the aboveground fraction, using
a root:shoot ratio of 4.224 (Mokany et al., 2006). Because most of
the standing biomass in these vegetation orders resides in grasses,
aboveground NPP provides an approximation of aboveground bio-
mass density (Singh et al., 1975; Sala and Austin, 2000).

2.4. Carbon stocks, changes, and uncertainties

From the original Landfire data, we produced spatial data files
of the biomass classes for 2001 and 2010 and calculated land areas.
Aboveground live carbon stock (cCalifornia, Mg) equals:

cyear
California ¼

Xbiomass classes

f CBclassA
year
class ð2Þ

where fC is the carbon fraction of biomass (0.47 g carbon
(g biomass)�1; McGroddy et al., 2004), Bclass is the biomass density
(Mg ha�1) of a biomass class, and Aclass is the land area (ha) of a bio-
mass class.

We used Monte Carlo analysis (Gonzalez et al., 2010, 2014) to
quantify the uncertainty of carbon stock estimates from three error
sources: (1) variation in the carbon fraction of biomass, (2) error in
the estimate of biomass by vegetation type, and (3) vegetation type
classification error. We calculated 100 realizations of aboveground
live carbon stock:

bcyear
California ¼

Xbiomass classes

f C þ Xf CSEf C
� �

Bclass þ XbiomassSEbiomassð Þ
� Ayear

class þ XareaSEarea
� �

ð3Þ

where Xvariable is a random number (different for each variable) from
a normal distribution with mean = 0 and SD = 1, and SEvariable is the
standard error of a variable. We estimated SEfC as 5% of the mean
(0.0235 g carbon (g biomass)�1; McGroddy et al., 2004). SEbiomass

came from the Monte Carlo analyses of aboveground biomass density
and NPP analyses described above. SEarea is 61% of the mean
(Landfire, 2008). The 95% confidence interval (CI) equals:

95% CIstock ¼
c97:5 � c2:5

2
ð4Þ

where c97.5 and c2.5 are the 97.5th and 2.5th percentiles, respec-
tively, of the 100 realizations of cCalifornia. The uncertainty of live car-
bon stock is the 95% CI as a fraction of the stock:

Uncertaintystock ¼
95% CIstock

cyear
California

: ð5Þ

We used a stock-change method (IPCC, 2006) to calculate car-
bon changes. The net live carbon change (Dcnet, Mg) for the state
equals:

Dcnet ¼
Xbiomass classes

f CBclass A2010
class � A2001

class

� �
: ð6Þ

To quantify uncertainty of carbon stock change, the uncertainty
guidelines for the IPCC National Greenhouse Gas Inventory
Guidelines (Frey et al., 2006) have identified two approaches: a sim-
plistic algebraic combination of the uncertainties of two quantities
and a Monte Carlo approach that derives the uncertainty from
probability density functions of all variables in the stock change
equation simultaneously. IPCC recommends the Monte Carlo
approach when sufficient data on variable errors and computing
processing capabilities are available. Algebraic combination can
overstate the uncertainty of carbon change since it gives equal
weight to all combinations of errors. In contrast, Monte Carlo
analysis uses probability density functions that can give lower
weight to less probable error combinations (e.g. all variables show-
ing maximum error at the same time). The supplemental uncer-
tainty guidelines to the IPCC National Greenhouse Gas Inventory
Guidelines (Pipatti et al., 2013) also identify a major limitation of
the algebraic approach to estimating uncertainty of carbon
changes: because the denominator of the equation is carbon
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change, as carbon change becomes smaller, the denominator
approaches zero, producing very high uncertainty values no matter
how small the uncertainties of the individual variables may be.
Consequently, the algebraic approach gives uncertainty values that
do not necessarily reflect the true uncertainty of the carbon
change. Therefore, we use the more advanced Monte Carlo
approach, as implemented in a previous ecosystem carbon analysis
(Gonzalez et al., 2014).

We calculated 100 realizations of the 2001–2010 gross live car-
bon change:

bc2001—2010
California ¼

Xbiomass classes

f C þ Xf CSEf C
� �

Bclass þ XbiomassSEbiomassð Þ

� A2010
class � A2001

class

��� ���þ XareaSEarea

� �
ð7Þ

We then calculated the 95% CI of the gross live carbon change.
Uncertainty of live carbon change is the 95% CI of the gross change
expressed as a fraction of the gross change:

Uncertaintychange ¼
95% CIgross changeP

f CBclass A2010
class � A2001

class

��� ��� ð8Þ

and the 95% CI of the 2001–2010 net live carbon change of the
research area equals:

95% CInet change ¼ UncertaintychangeDcnet: ð9Þ

Eqs. (7) and (8) use the sum of the absolute values of the changes
in land cover area by biomass class to accurately capture the mag-
nitude of change. Because some biomass classes will have a negative
change in land area and others will have a positive change as land is
converted from one class to another (e.g., as land is converted from
shrubland to grassland), the net change could approach zero. The
use of absolute values avoids this situation and protects against
inaccurately inflating uncertainty in Eq. (8) (Gonzalez et al., 2014).

We analyzed the sensitivity of uncertainty of carbon stock
change to the values of the three principal variables by repeating
the stock change calculation three times, each time setting the
error terms of all but one of the three variables (SEfC, SEbiomass,
SEarea) to zero. In a second sensitivity analysis, we repeated the
calculation three more times, each time setting the error term on
only one of the three variables to zero.

To assess the accuracy of our carbon estimates, we validated our
results against independent field-and Lidar-derived stocks in coast
redwood (Gonzalez et al., 2010) and Sierra Nevada conifer forests
(Chen et al., 2012; Gonzalez et al., 2010). We also compared our
carbon stock estimates to three other available remote sensing-
derived estimates from national analyses (Blackard et al., 2008;
Kellndorfer et al., 2012; Wilson et al., 2013). The three national
analyses also used some of the same FIA data that we used.

For analyses of carbon stock changes in burned areas, we iden-
tified the location of burned areas from 2002 to 2010 wildfire
perimeters derived by the Monitoring Trends in Burn Severity pro-
gram from Landsat remote sensing and field surveys (Eidenshink
et al., 2007). For public lands analyses, we used the California
Protected Areas Database <http://atlas.ca.gov>. Similar to a pre-
vious analysis of carbon in individual U.S. national forests (Heath
et al. 2011), we analyzed carbon stocks and changes for the 26
U.S. national parks in California as a case study of ecosystem car-
bon in protected areas.

3. Results

Average aboveground live carbon density in 2010 for California
wildland ecosystems was 26 ± 7 Mg ha�1 (mean ± 95% CI). For
tree-dominated biomass classes, it was 64 ± 15 Mg ha�1. Average
carbon densities for individual biomass classes ranged from
0.08 ± 0.02 Mg ha�1 for Sonora-Mojave creosotebush-white bur-
sage desert scrub (height > 3 m, 100% cover) to 600 ±
230 Mg ha�1 for California coast redwood forest (height > 50 m,
90–100% cover). The greatest carbon densities occurred in North
Coast and Sierra Nevada forests (Fig. 2a).

The net aboveground live carbon stock change in nine years was
�69 ± 15 Tg (mean ± 95% CI) (Table 1). Given that the entire range
of values was negative, our estimate of a net aboveground live car-
bon stock decrease was statistically significant (IPCC, 2006, 2013).

Uncertainties of aboveground live carbon for the state analysis
area were 26% for the 2001 stock, 27% for the 2010 stock, and
22% for the 2001–2010 stock change (Table 1). Uncertainties were
lowest for tree-dominated vegetation.

Aboveground live carbon decreased on 20% of the analysis area
and increased on 14% (Fig. 2b). Carbon decreases occurred due to
changes in land cover category (Table A4), changes to a lower bio-
mass vegetation type within a land cover category, and reductions
in height (14% of the analysis area) and fractional cover (18% of the
analysis area). Carbon increases occurred due to changes to higher-
biomass land cover categories and vegetation types and vegetation
growth as reflected by increases in vegetation height (15% of the
analysis area) and fractional cover (13% of the analysis area).

We found that areas burned by wildfires, though a small frac-
tion of state land area and carbon stock, accounted for a dispropor-
tionate share of the state carbon stock decrease (Fig. 3). Wildfire
and timber harvest areas show clearly in the spatial data on carbon
changes (Fig. 4). Most of the carbon stock decrease occurred in the
IPCC forest land category, with two-thirds in the NVCS tree veg-
etation order (Table 1), mainly from wildfires in Klamath
Mountains and Sierra Nevada forests (Fig. 2b), and the remaining
third from shrub-dominated classes, mainly in extensive wildfires
in central and southern California chaparral.

Wildfires and other disturbances converted 9% of the IPCC forest
land category to wetlands, grassland, and other non-agricultural
and non-urban land (Table A4), generating over half of the state
live carbon stock loss. Expansion of agricultural and urban areas
claimed �1% of state wildland area and the associated carbon loss
comprised �3% of the net state carbon loss (Table 1). Net carbon
changes within forests that remained forest caused nearly half of
state carbon loss (Table 2), with half of the carbon stock loss in
burned areas (Table A5).

Carbon stocks decreased on both public and private lands, with
carbon stock loss slightly higher on public lands relative to surface
area and carbon stock (Fig. 3). Three-quarters of carbon stock loss
on public lands came from burned areas while only one-third of
carbon stock loss on private lands came from burned areas
(Table A5). Within public lands, the 26 U.S. national parks in
California conserve 5 ± 2% of the state aboveground carbon stock
(Table A6).

Validation of our estimates against independent field- and
Lidar-derived stocks quantified in coast redwood and Sierra
Nevada mixed conifer forests showed reasonable accuracy, with
no statistically significant differences between our results and
the independent estimates (Table 3). In addition, comparison of
our statewide forest carbon stock estimates with three national
remote sensing efforts showed no statistically significant differ-
ences with the two most recently published estimates (Table 4).
Sensitivity analyses of the major sources of uncertainty showed
that vegetation classification error from remote sensing accounted
for more of the overall uncertainty than other factors (Table A7).
4. Discussion

Validation of our carbon stock estimates by independent field-
and Lidar-derived stocks at three field sites (Table 3) and matching

http://atlas.ca.gov


Fig. 2. Carbon in aboveground biomass in forests and other terrestrial ecosystems in California, USA, excluding agricultural and urban areas. (a) Carbon stock 2010. (b) Carbon
stock change, 2001–2010.

Table 1
Stocks and changes of carbon in aboveground biomass in forests and other terrestrial ecosystems in California, excluding agricultural and urban areas. Note that 3000 km2 of
forests, wetlands, grasslands, and other land changed to agricultural and urban land.

2001 2010 2001–2010

Carbon 95% CI Area Carbon 95% CI Area Carbon 95% CI Uncertainty Area
Tg Tg 103 km2 Tg Tg 103 km2 Tg Tg % 103 km2

California 920 240 337 850 230 333 �69 15 22 �3

IPCC land categories
Forest land 915 250 269 840 210 253 �71 19 26 �16
Wetland <0.5 1 2 <0.5 <0.5 <0.5 <0.5 1 530 �2
Grassland 3 7 27 5 12 41 2 6 280 13
Other land 4 13 59 4 11 59 <0.5 1 240 <0.5

NVCS vegetation orders
Trees 830 190 125 780 180 122 �48 14 28 �3
Shrubs 89 63 144 66 53 131 �23 14 61 �13
Herbs 3 7 30 5 13 41 2 4 240 11
No dominant life form <0.5 7 18 1 6 20 <0.5 1 500 2
Non-vegetated 1 7 20 1 8 20 <0.5 <0.5 1300 <0.5
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of our forest carbon stock estimates in comparisons with two
national remote sensing-derived stocks (Table 4) indicate that
our method shows skill in estimating stocks. The Forest Service
FIA-based estimate of the 2013 aboveground live carbon stock of
California forest land of 950 Tg (http://www.fia.fs.fed.us/Forest%
20Carbon/default.asp) is higher than, but within the bounds of
our estimate of the 2010 forest land stock of 840 ± 210 Tg.

Although no analysis of uncertainty comparable to ours exists
for carbon in California wildland ecosystems, our estimated uncer-
tainties have the same order of magnitude as other published
ecosystem carbon analyses. For example, the uncertainty of our
2010 aboveground live carbon stocks was 27%, compared to
uncertainties of 6–13% for 2010 aboveground live carbon stocks
in tropical forests (Baccini et al., 2012). The uncertainty of our
2001–2010 aboveground live carbon stock change in forest land
remaining forest land in California was 35%, compared to a 16%
uncertainty for the 2012 aboveground live carbon stock change
in forest land remaining forest land in the entire U.S. (U.S.
Environmental Protection Agency 2014). All of these uncertainties
are based on 95% CI.

The net aboveground live carbon stock decrease that we found
for California ecosystems is consistent with a �39 ± 14 Tg carbon
stock change in western U.S. forests from 1986 to 2004, docu-
mented in an analysis of forest inventory and Landsat remote

http://www.fia.fs.fed.us
http://www.fia.fs.fed.us


Fig. 3. Comparisons of live carbon stocks and land area (2010) and live carbon stock changes (2001–2010). (a) Wildfire and non-wildfire areas. (b) Public and private lands.
Error bars indicate 95% CI from Monte Carlo analysis.

Fig. 4. Aboveground live carbon stock changes through forest disturbance. Area of the Big Meadow fire (August–September, 2009) in Yosemite National Park (image center
latitude 37.74, longitude �119.76): (a) Landsat real-color image (August 16, 2010); (b) Carbon stock change, 2001–2010, using the same color scale as Fig. 2b. Area of timber
harvest on private land west of Yosemite National Park (image center latitude 38.40, longitude �120.27): (c) Landsat real-color image (July 22, 2009); (d) Carbon stock
change, 2001–2010, using the same color scale as Fig. 2b. Each panel is 10.6 km � 6.6 km.
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sensing data that explicitly included wildfire (Powell et al., 2014).
It is also consistent with a �9% above- and belowground tree car-
bon stock change in western U.S. forests due to wildfire from 1984
to 2010 and to tree mortality in bark beetle infestations from 1997
to 2010 (Hicke et al., 2013).

The carbon stock decrease that we found runs counter to sev-
eral previous studies that had estimated carbon sequestration in
California wildland ecosystems. Many of the previous efforts that
had estimated sequestration only examined forest areas and
excluded the shrublands on which extensive fires have burned.
Other efforts used process-based flux models rather than empiri-
cal repeat measurements or observations to estimate growth.
The combination of an underestimation of wildfire and other dis-
turbances and optimistic flux model growth estimates suggests
that sequestration was overestimated in many previous
estimates.
We recognize, however, several limitations of our methods.
Many of these originate in characteristics of the Landfire data.
Landfire vegetation classification accuracy is relatively low. In
addition, because Landfire height and cover variables are ordi-
nal, not continuous, changes within a single vegetation class
takes the form of a step function, limiting detection of changes
until the average height or cover of a pixel jumps up or down a
class.

The ordinal nature of the Landfire height and cover variables
may lead to underestimation by our methods of carbon changes
in pixels that experience no change in vegetation type. For frac-
tional cover, Landfire defines ten classes that increase in even steps
of 10%. For tree height, the Landfire classes step up more steeply as
height increases. If the average height or cover of a pixel changes,
but does not cross into the next class, our method records no
change (positive or negative) in carbon density. Because growth



Table 2
Stocks and changes of carbon in aboveground biomass in California for major transitions among IPCC land categories and NVCS vegetation orders. Forest–forest = forest land
remaining forest land. Forest–natural = net changes between forest land and wetlands, grasslands, and other land. Forest–human = gross changes from forest land to agricultural
and urban land. Other natural = wetlands, grasslands, and other land remaining the same. Natural–human = gross changes from wetlands, grasslands, and other land to
agricultural and urban land. Tree–tree = tree-dominated remaining tree-dominated. Tree–shrub = net changes between trees and shrubs. Tree–other = net changes between trees
and herbs, no dominant, and non-vegetated combined. Shrub–shrub = shrubs remaining shrubs. Shrub–other = net changes between shrubs and herbs, no dominant, and non-
vegetated combined. Other–Other = herbs, no dominant, and non-vegetated combined remaining the same. All–human = gross changes to agricultural and urban land.

2001 2010 2001–2010

Carbon 95% CI Area Carbon 95% CI Area Carbon 95% CI Uncertainty Area
Tg Tg 103 km2 Tg Tg 103 km2 Tg Tg % 103 km2

Major transitions among IPCC land categories
Forest–forest 870 220 246 840 210 246 �29 10 35 0
Forest–natural 42 13 29 4 5 29 �39 11 29 0
Forest–human 2 1 2 0 0 0 �2 1 61 �2
Other natural 4 12 59 4 11 59 <0.5 1 240 0
Natural–human <0.5 <0.5 2 0 0 0 <0.5 <0.5 190 �2

Major transitions among NVCS vegetation orders
Tree–tree 790 190 123 770 210 123 �17 5 31 0
Tree–shrub 15 9 7 6 5 7 �9 3 29 0
Tree–other 25 6 6 2 1 6 �23 6 24 0
Shrub–shrub 66 38 116 63 46 116 �3 3 84 0
Shrub–other 17 11 22 2 5 22 �15 10 63 0
Other–other 4 13 59 5 13 59 0.3 0.7 200 0
All–human 2 1 3 0 0 0 �2 1 53 �3

Table 3
Validation of carbon density of aboveground biomass from this research against field-
and Lidar-derived results from other research at field sites in California. NR = not
reported.

Forest type (site) Year Area Carbon
density

95% CI

ha Mg ha�1 Mg ha�1

Coast redwood
(Mailliard State Natural Reserve and

Garcia River private forest)
5900

Gonzalez et al. (2010) 2005 82 1
This research 2001 110 92

Sierra Nevada mixed conifer
(North Yuba area of Tahoe National

Forest)
5800

Gonzalez et al. (2010) 2005 140 1
This research 2001 120 68

Sierra Nevada true fir
(Sagehen Creek Experimental Forest of

Tahoe National Forest)
3500

Chen et al. (2012) 2005 74 NR
This research 2001 70 30

Table 4
Comparisons of estimates of carbon in aboveground biomass for California forest
ecosystems from this research and national remote sensing-based analyses. Areas
differ slightly because the comparisons only include areas analyzed by both data
sources in each pair and because analyses use data of different spatial resolutions.
NR = not reported.

Spatial
resolution

Area Carbon 95%
CI

Years m 103 km2 Tg Tg

Blackard et al.
(2008)

1990–2003 250 116 970 NR

This research 2001 30 115 730 210

Kellndorfer et al.
(2012)

1999–2002 30 119 970 NR

This research 2001 30 119 800 220

Wilson et al.
(2013)

2000–2009 250 180 870 NR

This research 2010 30 176 800 190
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can occur slowly relative to the nine-year period of our analysis,
our methods can underestimate carbon changes due to growth
within a cover or height class. Consequently, our stock-change
assessment may not completely capture growth as immediately
as land cover change.

Recently released data from FIA plots that the Forest Service has
resampled over the last decade allow us to approximate our possi-
ble underestimate of growth in tree-dominated vegetation. We cal-
culated the plot-level biomass of the 966 plots in California (all
tree-dominated) measured in 2001 and 2002 and re-measured
10 years later (FIA database version 6.0, October 2, 2014). Plot-
level aboveground biomass increased 6 ± 1% (mean ± SD) over the
decade. That first approximation, however, overestimates any
growth underestimate of our method because our results already
show growth on 14% of state wildland area. Using the first approx-
imation of growth and the worst case of growth underestimation,
estimated growth in tree-dominated vegetation types remaining
tree-dominated would be �6 ± 1% of 790 Tg (Table 2) or �47 ± 8
Tg. If this amount were added to the state carbon balance
(�69 ± 15 Tg), California wildland ecosystems would still have
experienced a net carbon loss over the decade for all but an
implausible extreme case.

Our analysis only examines the aboveground live carbon pool
because of the lack of independent repeat field measurements
and spatial data of dead wood, other carbon pools, and harvested
wood products at the temporal and spatial resolutions of the
aboveground biomass data. After a wildfire, much of the carbon
will transfer from the aboveground live pool to the dead wood
pool. Due to slow decay of some dead wood, all of our estimated
aboveground live carbon stock change does not immediately gen-
erate emissions. The stock change may indicate committed future
emissions that could occur upon complete oxidation of biomass
to carbon dioxide (CO2) or during re-burning of previously burned
areas. On the other hand, our estimate of the aboveground live car-
bon stock change does not include non-CO2 emissions that occur
during a wildfire. These are issues faced by other remote sensing
and field inventory-based estimates of aboveground live carbon
stock change (e.g. Baccini et al., 2012).

The disproportionate share of the state carbon stock decrease
from burned areas demonstrates the importance of wildfire in
the carbon balance of California ecosystems. This importance origi-
nates in the vast extent of fire-dependent forest and shrub ecosys-
tems across the state and the recent history of fire management. A
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century of government policies of complete fire suppression have
depressed fire frequencies below natural levels and caused sub-
stantial accumulations of biomass and dead matter that can serve
as fuel (Marlon et al., 2012). Increased surface and ground fuels
have become most pronounced in conifer forests of the western
U.S., where small-diameter trees have also increased considerably
(Stephens et al., 2007; Marlon et al., 2012). These increases have
contributed to the recent occurrence of uncharacteristically large
and severe wildfires (Stephens et al., 2014). Our finding of a carbon
stock decrease occurring largely in areas burned by wildfire sug-
gests that increased tree densities from a century of fire suppres-
sion have allowed the accumulation of fuel for carbon losses in
recent wildfires.

A short-term emissions increase may be difficult to avoid
because natural resource management agencies that are working
to restore ecologically appropriate fire regimes use prescribed
burning and managed wildland fire (intentionally allowing light-
ning-ignited fires to burn in targeted areas) – practices that emit
carbon in the short term. Moreover, if the world does not reduce
greenhouse gas emissions from cars, power plants, and other fossil
fuel-burning human activities, projections indicate that climate
change may increase wildfire frequencies by one-third to three-
fourths across much of California (Westerling et al., 2011). These
findings support a management strategy of reducing fuel loads to
minimize the future potential of catastrophic fires under climate
change. Although prescribed burning, managed wildland fire, and
mechanical fuel reduction treatments across public and private
lands may release greenhouse gases in the short term, these prac-
tices can augment carbon storage in the long term by shifting
growing space from many small trees to fewer large, old trees
and also enhance resilience to stress and disturbance (Hurteau
and Brooks, 2011; Collins et al., 2014; Hurteau et al., 2014) and
potential increases in wildfire frequency due to climate change
(Moritz et al., 2012).

The spatial data on carbon stocks that we have produced can
provide information to assess the ecosystem service of carbon stor-
age for mitigating climate change. As an example, our results show
that the U.S. national parks in California store 42 ± 15 Gg of carbon
in aboveground biomass (Table A6). A direct measure of the
ecosystem service that these protected areas provide is the equiva-
lent number of people whose annual greenhouse emissions this
storage represents. Based on total U.S. greenhouse gas emissions
(U.S. Environmental Protection Agency, 2014) and U.S. population
(U.S. Bureau of the Census, 2013), average carbon emissions per
capita in 2013 in the U.S. were 5.6 ± 0.3 Mg person�1 year�1.
Therefore, the U.S. national parks in California store an amount
of carbon equivalent to the annual emissions of 7.4 ± 2.6 million
people in the U.S.

Our finding of a net carbon stock decrease runs opposite to the
goal that the state programmed in its initial scoping plan for emis-
sions reductions (ARB, 2008). The state initially estimated net
sequestration of carbon in aboveground and belowground biomass
in state ecosystems and set a minimum goal of no net emissions by
2020. Our results show that aboveground live carbon losses from
ecosystems are as much as 5–7% of state carbon emissions from
all sectors. This reversal suggests a new emissions reduction chal-
lenge. A suite of forest management strategies, including con-
servation of high-biomass forests, fire management adapted to
future climate change, and reforestation of areas cut for timber,
may be necessary for meeting goals for 2020 and beyond.

Our results provide spatial estimates of aboveground live car-
bon stock changes and uncertainties for the wildland ecosystems
of California, furnishing data for the state scoping plan for emis-
sions reductions (ARB, 2014). Because the Landfire program has
begun to produce vegetation data every two years, our analysis
establishes the beginning of a time series to track aboveground live
carbon in wildland ecosystems. Our research points to three main
areas for improving future greenhouse gas inventories. First,
increased remote sensing accuracy of vegetation type identifica-
tion would reduce the uncertainty of carbon estimates. Landfire
plans to address this need through improved ground-truthing of
vegetation types for the 2014 data layer. Second, a more finely
resolved way to account for forest growth is needed. If the
Landfire program released its height and cover estimates in their
original forms as continuous variables, it would be possible to track
growth more closely. In the absence of those continuous variables,
the subset of FIA plots that are re-measured provide empirical data
to design and test potential techniques. Third, empirical spatial
estimates of dead wood and other carbon pools over time would
allow for a more comprehensive carbon inventory.

Our results provide spatial data for natural resource manage-
ment agencies to evaluate carbon consequences of fire manage-
ment and restoration activities and to assess the ecosystem
service of carbon storage. In contrast to the net removal of carbon
from the atmosphere by ecosystems at a global scale, the results
for California illustrate how carbon stock losses from wildfires
can potentially exceed carbon sequestration at a local scale.
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