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Abstract

Statistical inference in predictive regressions depends critically on the stochastic properties
of the posited explanatory variable, in particular, its order of integration. However, confi-
dence intervals for the largest autoregressive root of explanatory variables commonly used in
predictive regressions, including the dividend yield, the book-to-market ratio, and the term
and default spreads, confirm uncertainty surrounding these variables’ order of integration.
Using a local to unity framework we investigate the effects of uncertainty in an explanatory
variable’s order of integration on inferences drawn in predictive regressions. We find no
evidence that dividend yields or book-to-market ratios can predict one period ahead stock
returns. In the case of predictive regressions using long horizon returns, statistical inference
depends not only on the explanatory variable’s order of integration but also on the length
of the horizon itself.



1 Introduction

In a predictive regression rates of return are regressed against the lagged values of a stochastic
explanatory variable. Examples include, among others, regressing common stock returns
against the dividend yield (Fama and French (1988)), regressing bond returns against the
spread between long term and short term yields on bonds (Keim and Stambaugh (1986)),
and regressing changes in spot exchange rates against the spread between forward and spot
exchange rates (Fama (1984)). The predictability of these rates of return using lagged
stochastic explanatory variables has been interpreted as evidence of market inefficiency or,
alternatively, as evidence of time varying expected returns in financial markets (see Fama
(1991) for a review).

Inference in predictive regressions, however, depends critically on the stochastic properties of
the posited explanatory variables. While extant research has assumed that the explanatory
variables are stationary, dramatically different null distributions of test statistics result when
regressors are integrated or, in other words, when regressors follow a random walk (Phillips
(1987b)). Unfortunately, in practice it is rarely known whether a particular time series
actually has a unit root. By way of example, scaled stock prices, that is, stock prices
normalized by dividends or earnings, are often used to predict future stock returns (Lamont
(1998)). Yet the debate as to whether stock prices follow a random walk or not dates back to
at least Kendall (1953) and continues to this very day. Given this uncertainty surrounding
the order of integration of stock prices themselves, it is not surprising that the order of
integration of stock prices divided by a smooth accounting variable is also uncertain. Ignoring
this uncertainty results in tests of predictive regressions having asymptotic sizes that can far
exceed their nominal levels. The prevailing evidence of predictability then reflects the fact
that conventional tests simply reject too often.

We couch our statistical analysis of predictive regressions in a local-to-unity framework (for
example, Phillips (1987a)). That is, the predictive regression’s explanatory variable is as-
sumed to follow an autoregression with a root near to unity in the sense that for a given
sample size, however arbitrarily large, we are unable to distinguish the assumed station-
ary specification from the unit root alternative. It is this inability to differentiate between
stationary and nonstationary dynamics which captures the uncertainty surrounding an ex-
planatory variable’s order of integration. Deviations from the unit root theory are measured
by a noncentrality parameter which when its value is equal to zero gives a time series with
a unit root, but when the parameter’s value is close to zero gives a nearly integrated time
series. The main effect of this specification is to induce noncentrality in the limiting dis-
tribution theory. Using this asymptotic theory, Elliott and Stock (1994) and Cavanagh,
Elliott and Stock (1995) demonstrate, at least theoretically, that incorrect inference can
result when conventional tests are applied to one period ahead predictive regressions with
nearly integrated regressors.



In this paper we explicitly incorporate the stochastic properties of the posited explanatory
variable in the estimation of predictive regressions. The explanatory variables that we con-
sider - the dividend yield, the book-to-market ratio, the default spread, and the term spread -
have been previously used in predictive regressions to forecast stock returns. While there are
asymptotic gains to be had by incorporating this additional information, to the extent that
there is uncertainty about a particular explanatory variable’s order of integration, it becomes
important to recognize this uncertainty in the estimation. Using the local-to-unity frame-
work, we find that only the term spread reliably forecasts one period ahead stock returns
and then only in the post-1952 sample period. There is no evidence that dividend yields or
book-to-market ratios can forecast. We also extend these results to the arguably more im-
portant case of predictive regressions using long horizon returns. We follow Richardson and
Stock (1989) and use an alternative asymptotic distribution theory for long horizon statistics
which recognizes that even though the sample size is large, the number of nonoverlapping
observations may in fact be small resulting in conventional large sample approximations
performing poorly in practice.

The plan of this paper is as follows. In Section 2 we construct confidence intervals for the
largest autoregressive root of each of the sampled explanatory variables and so quantify the
uncertainty surrounding their order of integration. In almost every case the results are con-
sistent with this root being very near to unity if not equal to unity. It is important therefore
to explore statistical inference in predictive regressions when the stochastic explanatory vari-
able is non-stationary as well as stationary. We do so in Section 3 where we show that if we
know an explanatory variable’s autoregressive root, regardless if it is unity or not, asymptotic
statistical gains are to be had if this information is incorporated in the predictive regression’s
estimation. Of course, it is never known with certainty that an explanatory variable has a
unit root or for that matter is stationary. Section 4 then uses the local-to-unity framework
to explicitly recognize the effects of this uncertainty on inferences drawn in predictive re-
gressions. We consider both the case of predicting one period ahead returns as well as long
horizon returns. Section 5 concludes the paper.

2 Unit Roots in Explanatory Variables

Consider a stochastic explanatory variable z;, for example, the log dividend yield, which
obeys

Ty = PTi- + M, b(L)T]t = €, t= ]., e ,T, (1)

where b(L) = E?:o b;L7, by = 1, L is the lag operator and ¢; is a martingale difference
sequence. Here we distinguish between z,’s largest autoregressive root, p, and the assumed
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fixed stable roots of b(L) describing x;’s short-run dynamics. This specification of 7; allows
for the possibility of serial correlation or heteroskedasticity in the disturbances. We wish to
test for a unit root in z;, Hy: p = 1.

To do so, define v; = (1 — pL)~!n; and rewrite (1) as
xy =, o(L)y, =¢€, where a(L)=0b(L)(1— pL)

which can be rearranged to give

k
o= o1)Teo1 + Y o Az + € (2)
=

where a(L) = L™ (1—a(L)) so 1) = 1-b(1)(1—p) and of = = X%, ., ;. The augmented
Dickey-Fuller (ADF') statistic is the ¢-statistic testing (1) = 1 in (2), or equivalently, testing
p= 1.1 .

As emphasized by Stock (1991), simply giving point estimates of p or reporting the results
of unit root tests does not convey the uncertainty surrounding p. Confidence intervals for
p provide a more useful summary measure of a stochastic explanatory variable’s persistence
by indicating the range of p values that are consistent with the observed data. However, the
usual approach of constructing asymptotic confidence intervals as the point estimate + 2
standard errors is not appropriate in this case because the distribution of the ADF' statistic
is nonnormal. Additionally, traditional first-order asymptotic theory does not provide a
suitable framework for the construction of these confidence intervals because this theory is
discontinuous at p = 1.

Instead, Stock tabulates confidence intervals for p constructed using local-to-unity asymp-
totic theory where the true value of p is modeled as being in a decreasing neighborhood of
one. Specifically p = 1+ ¢/T where c is a fixed constant and 7T is the sample size.? Under
this specification, the asymptotic distribution of the ADF statistic depends only on ¢ and
is continuous in ¢. A confidence interval for ¢, and so for p given T, can then be constructed
by inverting the appropriate acceptance region of the ADF statistic. For further details see
Stock (1991).

! Alternatively, Phillips and Perron (1988) estimate (1) and adjust the test statistic to take account of
serial correlation and potential heteroskedasticity in the disturbances 7.

2As noted by Stock, nesting p as a function of the sample size is analogous to the usual approach used
to study the asymptotic power of statistical tests against local alternatives except that the alternative is in
a 1/T neighborhood of the null value of unity.



2.1 Data

A variety of stochastic explanatory variables have previously been used in predictive regres-
sions to forecast stock returns. We construct confidence intervals for the largest autoregres-
sive root of a number of these time series variables.

Dividend Yield

Real dividend yields are constructed from monthly returns, with (r) and without (rg) divi-
dends, of the Center for Research in Security Prices (CRSP) value-weighted (VW) market
portfolio. Assuming a one dollar investment in the VW portfolio at the end of December
1925, P(0) = 1, the value of the portfolio at the end of month ¢, P(t), is constructed accord-
ing to P(t) = (1 + ro(t))P(t — 1). Deflating P(t) by the prevailing Consumer Price Index
(CPI) gives the real value of the VW portfolio at the end of month ¢. Dividends on the
portfolio in month ¢ are given by (r(t) — ro(t))P(t — 1) and by deflating these dividends by
the CPI we obtain corresponding monthly real dividend payments. The real dividend yield
in month ¢ is computed by summing the real monthly dividends for the year preceding month
t and dividing by the real value of the VW portfolio at t.> We investigate the stochastic
properties of the logarithm of this real dividend yield series.

DJIA Book-to-Market Ratio

We follow Pontiff and Schall (1998) and use an aggregate book-to-market ratio based on
the Dow Jones Industrial Average (DJIA).* The DJIA is an index of the stock prices of
thirty large U.S. corporations selected to represent a cross section of U.S. industry. The
December year-end book value of the DJIA is available from 1920 to 1993. A monthly book-
to-market ratio is constructed by dividing the most recent year’s book value by the prevailing
level of the DJIA. However, to ensure the use of information that was available to market
participants, Pontiff and Schall do not incorporate the previous year’s book value in their
calculations until March of the subsequent year. We investigate the stochastic properties of
the logarithm of Pontiff and Schall’s DJIA book-to-market ratio.

Default Spread

The default spread is computed monthly and is measured by the logarithm of the difference
between the average annualized yield of bonds rated Baa by Moody’s and the average an-
nualized yield of bonds rated Aaa by Moody’s. These monthly yields are averages of daily
data within the month and are obtained from the Federal Reserve’s H.15 statistical release.

3We follow Fama and French (1988) and do not reinvest monthly dividends. Alternatively, annual divi-
dends can be constructed by assuming monthly dividends are reinvested at prevailing monthly Treasury bill
rates (Hodrick (1992)) or reinvested in the VW portfolio itself (Cochrane (1991)). Our conclusions are not
affected by these alternative definitions.

4We thank Jeff Pontiff for providing us their book-to-market series.
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Term Spread

The term spread is measured by the difference between long term and short term yields on
Treasury securities.® Specifically, the long term yield is taken to be the annualized yield on
a Treasury bond with maturity closest to ten years measured at month end and is obtained
from the CRSP bond file.® The short term yield is given by the annualized three month
Treasury bill yield obtained from C'RSP’s Fama-Bliss file.

2.2 Results

For each of our sampled stochastic explanatory variables Table I presents 95% confidence
intervals for p.” We provide results using the entire time series of data and, to investigate
the robustness of our conclusions, using the pre-1952 and post-1952 subsamples. In almost
every case these 95% confidence intervals include the unit root p = 1. The exceptions include
the log dividend yield series over the 1926:12 to 1994:12 sample period whose upper limit of
0.996 is nearly indistinguishable from one. While the 95% confidence interval for the term
spread series based on the entire sample period does not contain one, the interval based on
the pre-1952 subsample does. OLS estimates of p based on an AR(1) autoregression, g, are
also tabulated in Table I and in almost every case are seen to lie within the corresponding
95% confidence interval.®

Confidence intervals for p based on the entire time series of observations tend to be narrower
than those based on the subsamples with their fewer number of observations. However,
the fact remains that even confidence intervals based on the pre-1952 sample period, which
contain the fewest number of observations, are still relatively narrow about unity. For ex-
ample, the 95% confidence interval for p using the log default spread series over the 1926:12
to 1951:12 sample period is (0.984,1.015). The results of Table I are consistent with the
measure of persistence p for stochastic explanatory variables typically used in predictive
regressions being very near to unity if not actually equal to unity.

5Unlike the default spread, the term spread can be negative and so we do not use a logarithmic transform
of this series.

6We thank Bruno Gerard for making this data available to us.

"We follow Nelson and Plosser (1982) to determine the maximum lag length k.

8Recall that the AR(1) autoregression omits higher order autoregressive terms while the confidence in-
tervals are based on ADF statistics which include these higher order terms. As a result, the reported p need
not lie in p’s 95% confidence interval. By way of example, if the autoregression using the term spread series
over the entire sample period is augmented with k& = 6 higher order autoregressive terms, the resultant OLS
p estimate of 0.956 is seen to lie in the corresponding 95% confidence interval.



3 Predictive Regressions

Confidence intervals for p based on data for a number of stochastic explanatory variables
previously used in predictive regressions typically contain the unit root. However, these
intervals also include values of p different from one and which have substantially different
implications for the stochastic behavior of the explanatory variables. It is important, there-
fore, to explore statistical inference in predictive regressions when the stochastic explanatory
variable is non-stationary as well as stationary.

3.1 Small Sample Bias in Predictive Regressions with a Stationary
Explanatory Variable

Consider the following predicti;/é regression in which a variable, y;, is regressed against the
lagged value of a stochastic explanatory variable, z;_;:

ytia+/3$t—1+ut7t:17"'7T' (3)

In this section we assume that the explanatory variable is known to be stationary but per-
sistent:

Ty =p+pri1+uv, t=1,...,T. (4)

Stationarity requires that p < 1 and persistence follows if p =~ 1.

To complete this regression framework we assume that the disturbance terms u; and v; are
each independently and identically normally distributed. However, cov(u;,v;) = 0y, need
not equal zero; for example, innovations in stock returns can be expected to be negatively
correlated with innovations in the log dividend yield since the stock price enters into each of
these variables.

As shown by Stambaugh (1986), under these assumptions the slope of the predictive re-
gression (1), B, will be estimated with bias in small samples. This bias is approximated by
E‘{B — B} & —(0w/c2)T~1(1 + 3p). While the bias depends on the assumed known value
of p (as well as oy, and 02), in practice p is not known. As a result, the bias adjustment is
typically implemented using the estimate of p obtained by separately applying OLS to the
autoregression (4).

To understand the nature of this bias in B, it is instructive to first consider the estimation
of the autoregression (4). In fact, §’s bias stems from the fact that the slope of the au-

toregression, p, is estimated with bias in small samples. In particular, the OLS estimator

6



satisfies

Yoy (Te—1 — T_1))(ve — D)
Vet (T — E(-1))?

p=p+
where (1) =T' YL 7,1 and o = T~' ¥, v,. Now the expectation of the numerator

EZ(xt 1= Ty (v —0) = ZE’UQ?t 1

is clearly nonzero since ¥ contains terms which are correlated with each z;_1, i.e., vy, ..., Vs1.
Although the expectation of a ratio is not the ratio of the expectations of the numerator and
denominator, this at least suggests the reasons for this bias. The bias approximated from
a first order Taylor series ® is E{p — p} =~ —T~}(1 + 3p); see Mariott and Pope (1954) and
Kendall (1954).1° The OLS estimator p, however, retains desirable asymptotic properties
being consistent and hence asymptotically unbiased.

The small sample bias of the OLS estimator /3’ now follows. To the extent that the dis-
turbances u; and v; are correlated, if z;_; is correlated vyith v1,...,Us_1 then z;_; will be
correlated with u;,...,u;_;. This small sample bias in 3 clearly depends on the assumed
known value of p: if p = 0 so that z; is i.i.d. then z;_; will not be correlated with past v;s
meaning that even if o, # 0 it will be the case that z;_; will not be correlated with past
u:S. The bias also depends on ¢y,: if 0,, = 0 then even if x; is persistent so that z;_; is
correlated with past v;s it follows that 2;_; will not be correlated with past ws.

Notice that to this point the time series properties of x; are only used insofar as under the
assumption of stationarity the resultant bias of p imparts bias to the predictive regression’s
estimated slope coeflicient ,3 Apart from approximating the bias adjustment in B , knowledge
of x;’s stochastic properties is not used in estimating the predictive regression.

However, as noted by Nelson and Kim (1993) and others, B’s bias per se can affect the
inference drawn in predictive regressions. Their intuition is that as § directly enters the
corresponding t-statistic’s numerator, a biased value of 3 will give an erroneous t-statistic.
To correct this, the t-statistic in predictive regressions must be recalculated taking into
account the correlation prevailing between the disturbances which gives rise to the bias in
ﬁ Nelson and Kim’s randomization procedure explicitly takes this correlation into account
and so allows bias-corrected inference of predictive regressions.

To investigate the nature of this bias-corrected inference, we conduct the following Monte
Carlo study of Nelson and Kim’s randomization procedure. To begin with, for each of

9As noted by Kendall this approximation is of “doubtful validity for p near unity” (page 404) as the
required Taylor series expansion may not converge sufficiently quickly.
0Table I also presents bias-adjusted estimates of p given by paqj = ZT’%
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p = {0.90,0.95,0.99}, py, = 2= = ¢ = {-0.5,-0.9}, o, = {0.1,1.0}, and o, = 1.0, we
generate, under Hy : 8 = 0, time series of length T' = 100 of z; and y;!! according to
expressions (3) and (4), respectively. We then calculate B as well as p. We repeat this
experiment 5000 times for each combination of assumed p, 6, o, and o, values. For these
parameter combinations we also retain the resultant residuals {@;}:% and {0,}1% for each

of the 5000 replications.

Inference in the absence of the bias correction is based on the sampling distribution of B as
we do not explicitly take into account the correlation between residuals in the calculation
of B In Table II for each combination of assumed p, ¢, 0,, and o, values the sampling
distribution of 3 is summarized by its median, as well as its corresponding 10?*, and 90
percentiles.

The median value of ,@ corresponds well to (.4 the bias-adjusted value of § also tabulated in
Table II which can be calculated directly from Stambaugh’s approximation for 3 = 0 given
the assumed values of p, 4, 0y, 0, and T.'? As expected, for fixed T' the small sample bias in
0 tends to increase as p increases, as the absolute value of ¢ increases, and as o, decreases.

Following Nelson and Kim, the effect of the small sample bias in B on inference can be ac-
counted for by explicitly incorporating the correlation prevailing between the disturbances
when calculating the significance of the predictive regression’s slope coefficient, now denoted
by 4. To do so, for a given combination of p, 8, 0, and o, values, we take the residuals
{0119 and {0;}}% associated with each of the 10** 50" and 90" percentiles of the cor-
responding 3 sampling distribution and randomize each grouping of these residuals. Given
these randomized residuals we can once again generate, under Hy : 8 = 0, time series of
length T = 100 of z, and y; according to expressions (3) and (4), respectively, and then
- calculate . This randomization is repeated 500 times to obtain B’s sampling distribution
whose 10", 50", and 90 percentiles are also tabulated in Table II. This sampling distribu-
tion can be compared to the sampling distribution of ﬁ to assess the impact of bias-corrected
inference.

The sampling distribution of B at the median value of 3 (ﬁg,o%) differs slightly from the
sampling distribution of ﬁ across all of the assumed parameter values. However, #’s sampling
distribution assuming 3 values at their 10t (610%) and 90*" (ﬂgo%) percentiles depends on
the parameter values assumed, especially the assumed value of p. For p = 0.90, the sampling
distribution of 3 at Bioy is shifted left relative to Bs sampling distribution by approximately
the magnitude of the bias in estimating ,3 while the sampling distribution of 3 at ,Bgo% is
shifted right by this amount. By contrast, for p = 0.99 the sampling distribution of 3

T ike Nelson and Kim, we draw zy from a normal distribution with mean and variance implied by the
corresponding AR(1) representation.

12These should not match each other exactly as the sampling distribution of 3 is skewed to the right and
as a result mean values will exceed median values.



appears to widen as we increase the assumed value of ﬂ from 510% to ,890% However, even
at Boos, the rightmost tail of 8’s sampling distribution is shifted right by approximately the
magnitude of the bias in estimating B.

We conclude from the results of Table II that once the small sample bias in estimating £ is
accounted for, slightly more extreme empirical cutoff values are needed to reject Hy : 8 = 0.
However, the impact on these cutoff values is at most the magnitude of the bias itself. As
the sample size T increases, this bias diminishes as will its effect on inference in predictive
regressions.

While the small sample bias in estimating the predictive regression’s slope coeflicient appears
to have but a minimal effect on inference in sample sizes typically encountered in practice,
it should be emphasized that this analysis assumes that p is fixed at less than one. There is
no uncertainty about p nor do we recognize the possibility of a unit root in the dynamics of
the stochastic explanatory variable. We relax this latter constraint in the next section.

3.2 Predictive Regressioﬁs with a Non-Stationary Explanatory
Variable

The preceding analysis assumes that the explanatory variable x; in a predictive regression is
stationary. Assume now that it is known that the explanatory variable, z;, has a unit root,
p =1, and so consider the following:

Y = a+ﬁxt—-1+uta t:177T (5)
A.’L’t = ,LL—‘—'Ut, tzl,,T (6)

Notice that we have explicitly imposed the condition that p = 1. If (u;,v:) ~ éd BVN(0, X),
or equivalently, (y; —a—Bx;_1, Az —p) ~ iid BVN(0, ¥), then noting that a joint probability
density function can be expressed as a product of conditional and marginal probability
density functions we can write the corresponding log-likelihood function as

InL(a, By 1, L) =
—(T/2)In(o% — a2, /0%) — (1/2) le(yt — o= Bri-1 — (0w/03)(Azy — 1)*) /(0% — 02, /07)

T
~(T/2)in(oy) - (1/2) ;(Axt — /oy

By inspection, the maximum likelihood estimate of 3 is equivalent to the OLS estimate of
0 obtained from the linear model

Yo = a + Bri_y + YAz + wy (7)
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where w; = u; — (04, /02)v;. For further details see Phillips (1991).

Phillips’s result demonstrates that if a unit root is known to be present then this information
should be directly incorporated into the predictive regression’s empirical specification. To
simply regress y; on x;_; and not impose the condition that the explanatory variable has
a unit root will result in incorrect statistical inference. This follows from the fact that if
an explanatory variable is an autoregressive process, the distribution of the corresponding
t-statistic depends on the roots of the process and on the correlation properties of the error
processes. In our case, if the autoregressive process defining the explanatory variable has
a unit root and if the error in the autoregressive process is correlated with the regression
error, then the usual ¢-statistic on 8 has a nonstandard limiting distribution.!® Directly
imposing the condition that the explanatory variable has a unit root, as in expression (7),
produces an efficient estimate of 3 and the corresponding ¢-statistic converges asymptotically
in distribution to a N(0,1) random variable.

3.3 Predictive Regressions with a Stationary Explanatory Vari-
able

To clarify and further these estimation results, it can be recognized that the predictive regres-
sion, expression (5), and the autoregression, expression (6), comprise a seemingly unrelated
regression (SUR). That is, the equations are related through their respective disturbances.
Of course, if the disturbances are uncorrelated it is optimal to apply OLS equation by equa-
tion. Otherwise, it is optimal to estimate the system as a whole. Phillips result demonstrates
that if the explanatory variable is known to have a unit root then in this case estimating the
system as a whole by SUR reduces to running the multiple regression given by expression

(7).

In fact, as the following Lemma demonstrates, these conclusions continue to hold regardless
of whether the explanatory variable has a unit root (p = 1), as assumed by Phillips, or is
stationary (p = pp < 1) so long as the parameters of the autoregression are assumed to be
known.

To see this consider the following SUR model

!

Yy = T01+ €
'

Yor = Toufo+ €

13n particular, from Fuller’s (1996) Theorem 10.3.2 the ¢-statistic on 3 converges asymptotically in distri-
bution to 67 + (1 — 62)% Z where 6 denotes the correlation between u; and vy, Z is a N(0, 1) random variable
and # = [s72 Y, a2 (] (p— 1) for 82 = (T —2)7 Ty 5 (e — pi1)?.

10



'
Ynt — xnt/@k'*'ent

where we assume the residuals ¢, = (€14 --€) ~ 1id N(0,Q). Here x4, 1 < i < n, is
a (k; x 1) vector of explanatory variables for the ith-equation, and f; is a (k; x 1) vector
of coeflicients. Suppose the variables y;, 1 < ¢ < n, are categorized into two groups as
represented by the vectors Y3, = (y1¢ - yme)’ and Yar = (Y(m1)t - - - Yne)’ With corresponding
coefficient vectors: By = (8} --0,,) and By = (8,,1 - B,). Then this system of equations
can be written in a compact form as:

Yi: = X.,Bi+eu
Yoo = X3Bo+ e, (8)

where X{, and X3, are the following matrices:

z, 0 -+ 0 :E'(m+1)t 0 .o 0

0 =5, --- O 0 x 0

X1 = : 2 t AP X = : (m:+2)t :
0 0 - 0 0 S Ty

Lemma 1 Consider the SUR model (8). Suppose that the coefficient vector B; is known
and only B; is to be estimated. Then the maximum likelihood estimate of B; is given by
the OLS estimate of the coefficient of X7, in the following multiple regression:

Ylt = X{tBl + C(}/gt - Xéth) + €1.2¢,

where C = 91292_21 and €19t = €1t — 91292_216215.

Proof: See the Appendix.

If the stochastic explanatory variable z; is known to have a unit root, p = 1, then y; should be
regressed against z;_; and the first-difference of z;, Ax; = x; — x;_1 to ensure that the usual
regression t-statistic correctly assesses the significance of the lagged explanatory variable.
Alternatively, if x; is known to be stationary and p = py < 1, the Lemma gives that y;
should be regressed against z;_; and the quasi-difference of x;, x; — poxi_1:

Ye = o+ Brey + ¥(Tt — poTi-1) + Wy 9)

to ensure that the usual regression t-statistic correctly assesses the significance of the lagged
explanatory variable.
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If researchers are prepared to treat the autoregression’s slope coefficient p as known, then
optimal statistical inference in a predictive regression requires that this knowledge of p be
explicitly incorporated in the estimation. The correlation of the disturbances not only implies
that the predictive regression’s slope parameter will be estimated with bias in small samples
but, more importantly, also implies that asymptotic statistical gains are to be had if the
system as a whole is estimated, or by the Lemma, equivalently, if this knowledge of p is
explicitly incorporated in the predictive regression equation.

3.4 Results

To illustrate these effects on inference in predictive regressions, Table III provides the results
of estimating predictive regressions for each of our sampled series but where we vary the
information incorporated about the posited explanatory variable’s autoregressive process.

For comparison purposes, we first present the resultant #statistics when log one month real
returns to the VW portfolio are regressed against lagged values of the explanatory variables
without incorporating any information about the explanatory variable’s autoregressive pro-
cess. This corresponds to the standard implementation of a predictive regression. We also
tabulate the estimated correlation coefficient 6 between the estimated disturbances of the
predictive regression, #;, and the autoregression, 9;. The next two columns give these estima-
tion results after incorporating the assumption that the explanatory variable’s autoregressive
process is stationary and characterized by its historical estimate, g, and its bias-adjusted his-
torical estimate, pqq;, respectively. The final column assumes that the explanatory variable
has a unit root, p = 1. To ensure comparability across these cases, t-statistics based on
Newey-West standard errors corrected for heteroskedasticity and serial correlation are pre-
sented throughout.

Consistent with the results of Campbell, Lo, and MacKinlay (1997), the standard predic-
tive regression of log real returns against lagged log real dividend yields shows a significant
predictive relation over the post-1952 sample period (¢ = 2.99). However if we impose the
condition that log real dividend yields follow a random walk, p = 1 then the significance
of this post-1952 evidence dramatically decreases (¢ = 1.87). On the other hand, if it is
assumed that log real dividend yields are stationary and p = p, the post-1952 evidence be-
comes extremely significant (¢ = 11.75), so much so that under this assumption a significant
predictive relation prevails over the entire sample period as well (¢ = 2.69).

The standard predictive regression using the lagged log default spread provides no reliable
evidence of being able to forecast one month ahead log real returns over either the entire
sample or the subsamples. This conclusion continues to hold regardless of whether we impose
the condition that the log default spread is stationary or not.
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Using the lagged log book-to-market ratio as an explanatory variable, the standard predictive
regression shows some mild evidence (¢ = 1.65) of predictability over the entire sample period
but consistent with the results of Pontiff and Schall (1998), the evidence is weakest in the
latter subsample period (¢ = 0.90). However, if we impose the condition that the log book-to-
market ratio is stationary then this evidence over the entire sample period is enhanced (for
example, ¢ = 3.62 for p = p), while if we assume that p = 1 this evidence of predictability
vanishes (¢t = 0.34).

In contrast, the lagged term spread reliably forecasts one month ahead log real returns in
the post-1952 sample period across all the regression specifications. However, there is no
evidence of predictability in the pre-1952 sample period as well as the entire sample period,
and once again these conclusions hold across all the regression specifications.

The clear message of Table III is that incorporating information about the explanatory vari-
able’s autoregressive process can have a potentially significant effect on inferences drawn in
predictive regressions, especially when the disturbance terms to the predictive regression and
the autoregressive process are highly correlated. Furthermore, the particular specification of
the autoregressive process assumed, for example, the explanatory variable being stationary
versus having a unit root, may also have significant implications.

Of course, it is never known with certainty that an explanatory variable has a unit root, or for
that matter, is stationary. It is important then that we recognize the effects of uncertainty
in p on inferences drawn in predictive regressions.

4 Predictive Regressions when the Explanatory Vari-
able’s Order of Integration is Unknown

As evidenced by the results of Table I, very often we are uncertain as to whether a stochastic
explanatory variable, x;, is stationary, p < 1, or is non-stationary, p = 1. To capture
this uncertainty in p, we nest p in a 1/7 neighborhood of one, p = 1 + ¢/T where ¢ is a
fixed constant and T is the sample size. Nesting p in a 1/T" neighborhood of one captures
uncertainty in p in the sense that for a given sample size we are unable to distinguish this
stationary specification from the unit root alternative, p = 1.

In this section we explore statistical inference in predictive regressions within this local to
unity framework. We first investigate the consequences of using near integrated regressors to
predict, as assumed up to now, one period ahead returns and then to predict longer horizon
returns.
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4.1 One Period Returns

Elliott and Stock (1994) and Cavanagh, Elliott and Stock (1995) demonstrate that the use of
near integrated regressors introduces potentially substantial size distortions in conventional
tests of time series regressions, both in small samples and asymptotically.!* This suggests,
at least theoretically, that the extant evidence of predictability may simply reflect the fact
that these conventional statistics reject too often.

Suppose that one period log real returns, y;, are regressed against lagged values of a stochastic
explanatory variable, z;_;:

yt:a+ﬂ$t—l+ut)t:15"'aT (10)

and the dynamics of z; are described by

k
CCt:H+P$t—1+Z<z’A$t—i+Vt, t=1,...,T (11)

i=1

where ¢, = (u;,1;) is a martingale difference sequence, E(e€; | €-1,€-2,...) = X with
typical element o,,. As before, let § denote the correlation between the disturbance terms
and now nest p in a 1/7" neighborhood of one, p = 1 + ¢/T where c is a constant.

Letting ts denote the t-statistic testing 3 = 0 in (10) and t, denote the ADF statistic testing
p =1 in (11) then, under the local to unity specification, tg and t, have the following joint
limiting distribution under the null hypothesis that # =0 and p = 1:

(ts,t,) = (61 + (1 — %)%z, 7. + cf,) (12)

where 7, = (f J¥?)~V/2 [ JHdB, 0, = (f J¥*)'/2, B is a Brownian motion, J*(s) = J.(s) —
3 J.(w)dw where the diffusion process J, is defined by dJ, = cJ.(s)ds + dB(s), J.(0) = 0,
and z is a standard normal random variable distributed independently of (B, J.). (See,
for example, Stock (1991), especially Appendix A.) Notice that unlike the unit root case,
which is nested in (12) for ¢ = 0, the limiting distribution now depends on functionals of an
Ornstein-Uhlenbeck process governed by c¢ rather than functionals of Brownian motion as in
the unit root case.

Asymptotically, only when § = 0 is 3 normally distributed independently of ¢,. For nonzero
8, t3 has a nonstandard distribution which depends on both ¢ and 6. However, while ¢
can be consistently estimated by the sample correlation between 4; and 7, unfortunately, c
cannot be. This follows from the fact that although p can be consistently estimated, that is,

14T,0cal to unity asymptotic distributions provide good approximations to finite sample distributions when
the root is close to one. See Chan (1988).
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(p—p)=0,(1/T),if p=1+4¢/T then é — ¢ = O,(1). As a result, an estimator ¢ cannot be
simply substituted for ¢ when selecting critical values for tests of §.1°

If we simply ignore the possibility of a unit root in the stochastic explanatory variable
when § # 0 then the normal distribution provides a poor approximation to the appropri-
ate nonstandard distribution and will result in substantial size distortions of the predictive
regression.’® Furthermore, a two-step procedure in which we first pretest for a unit root in
(11) and then use standard or nonstandard critical values for inference in (10) depending on
whether a unit root is rejected or not, respectively, will also produce large size distortions
because of its dependence on the parameter ¢ which cannot be estimated consistently.!” In-
tuitively, under the local to unity model the first step test will be unable reject the null
hypothesis of a unit root, ¢ = 0, with probability one asymptotically even though p may in
fact be large but less than one, ¢ < 0. To the extent that in the first step the stochastic
explanatory variable cannot asymptotically be classified correctly, the resultant poor critical
values will result in incorrect inference regarding 3 in the second step.

4.1.1 Bonferroni Intervals_

We can, however, construct asymptotically valid tests of § = 0 in (10) which do not depend
on ¢ by constructing Bonferroni intervals for 5. These are confidence intervals for 8 in which
the dependence on c is eliminated by invoking the Bonferroni inequality. While Bonferroni
intervals are conservative, they can be subsequently adjusted so that their nominal size equals
a desired level asymptotically.

Let C,(c) = (cl,, %) denote the 100(1 — 5;)% confidence interval for ¢ that we have previ-
ously calculated for a number of stochastic explanatory variables in Table I. A 100(1 — ¢2)%
confidence interval for # which depends on ¢ can then be calculated by inverting the corre-
sponding tg distribution, C,(8 | ¢) = (dis,c/2) dts,c,1-cz/2)- Then a Bonferroni confidence
interval for 8 which does not depend on ¢ can be constructed as

Cf(ﬂ)= U C<26|C

c€Cs; (€)

By the Bonferroni inequality, the interval C5(8) = (ming<ec s ds g1cx52/2> MAX el <ocon Aig o 1—c/2)
has a confidence level of at least 100(1 — ¢)% where ¢ = ¢; + .

15T owever, see Valkanov (1998) where a consistent estimator of ¢ is derived in the context of testing the
rational expectations hypothesis of the term structure.

1For example, Elliot and Stock report Monte Carlo evidence that for p = 0.975, § = —0.9, and T = 100,
a one-sided Z-test with nominal level of 5% actually has a rejection rate of 23%.

17For example, Cavanagh, Elliott and Stock provide Monte Carlo evidence that for ¢ = —20, § = —0.9,
and T = 500, the corresponding second step test with nominal level of 5% actually has a rejection rate of
37%.
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Table IV tabulates Bonferroni confidence intervals of the slope coefficients obtained by re-
gressing one period log real returns of the VW index against lagged values of the posited
stochastic explanatory variables. The confidence intervals are calculated as

B —d%(s1,52) x SE(B) < B < B —d'(s1,5) x SE(B) (13)

where we define d'(;, ;) = mingcoceu digccn/25 d*(61,$2) = MaXicocou digecl-c/2 a0d SE (B) =
{6,,/(EL, 22 |)}2. We follow Cavanagh, Stock and Elliot and choose ¢; and ¢, to adjust
the asymptotic size of this Bonferroni test to equal 10%.'®

The evidence that log real dividend yields predict returns in the post-1952 sample period
is now seen to be marginal at best. In other words, once we explicitly acknowledge the
uncertainty in p, there is no reliable evidence that log real dividend yields can predict one-
period ahead returns.'® This conclusion is consistent with the results of Table III where we
see that the significance of the predictive regression’s slope coefficient when using log real
dividend yields varies with the assumed value of p. In this case the cost of not knowing p,
or equivalently not knowing ¢, is high because the disturbances to the predictive regression
and the autoregression are very correlated, for example, 6 = —0.96 in the post-1952 sample
period.

Similarly, there is no reliable evidence that the log book-to-market ratio can forecast one-
period ahead returns. All 90% Bonferroni confidence intervals of the slope coefficient ob-
tained by regressing one period log real returns of the VI¥ index against lagged values of the
log book-to-market ratio include 8 = 0. Again this conclusion is not surprising in light of the
results of Table III where the significance of the predictive regression’s slope coefficient when
using log book-to-market ratios varies with the assumed value of p, this sensitivity stemming
from the fact that the disturbances to the predictive regression and the autoregression are
very correlated in this case as well, for example, § = —0.81 for the whole sample period.

In contrast, the term spread is seen to reliably forecast one-period ahead returns in the
post-1952 sample period even after explicitly acknowledging the uncertainty in p. The fact
that when we use the term spread the disturbances to the predictive regression and the
autoregression are uncorrelated, 6 = —0.02 for the post-1952 sample, implies that in this
case the cost of not knowing p is not high and our inference on 5 will be robust. This can be

18Without this subsequent adjustment, the asymptotic size of the Bonferroni test, Sg(c,¢1,52), is conser-
vative, Sg(c,<1,62) < §1 + <2. We construct asymptotically valid confidence intervals having a size of 10%
by setting ¢3 = 10% and numerically determining that value of ¢; which solves sup, Sg(c,1,10%) = 10%.
This numerical computation is lengthy because we need to compute first stage confidence intervals for each
realization of a Bonferroni test statistic. We thank Jim Stock for making his computer procedures for cal-
culating these intervals available to us. Our computations are based on Monte Carlo simulations assuming
time series of length 7" = 500 and 20,000 replications over an equally spaced grid of ¢, —35 < ¢ < 5.

19T fact, in unreported calculations we find that the corresponding 95% Bonferroni confidence interval
does include 8 = 0.
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confirmed in Table III where we see that the significance of the predictive regression’s slope
coefficient when using the term spread does not vary with the assumed value of p.

The results of Table IV confirm that the use of near integrated regressors to predict one
period ahead returns may have a potentially significant effect on the inferences drawn in
these predictive regressions. Qur conclusions, however, are particular to the case of one
period ahead returns. Recently there has been much more interest in regressions of longer
horizon returns onto stochastic explanatory variables. Examples include Fama and French
(1988,1989), Keim and Stambaugh (1986) and Hodrick (1992). We now use this local to
unity framework to investigate statistical inference when predicting long horizon returns.

4.2 Long Horizon Returns

It is common in predictive regressions to use K (K > 1) period returns
K
yt(K) = Zytﬂ-_l, t= 1,...,T—K+1
$=1

rather than one period returns to increase statistical power and improve statistical efficiency.
We now assume that this long horizon return, y,(K), is regressed against the lagged value
of the stochastic explanatory variable x;_y:

y(K) = a(K) + B(K)zey + w(K), t=1,...,T—K+1. (14)

In this section, we investigate within the local-to-unity framework the asymptotic distribu-
tion of statistics based on long horizon returns. Like Richardson and Stock (1989) we also
use an alternative asymptotic distribution theory for these statistics which recognizes that
even though the sample size T is large, the number of nonoverlapping observations may in
fact be small resulting in conventional large sample approximations performing poorly in
practice. Unlike Richardson and Stock, however, we do not consider the case where long
horizon returns are regressed against past returns but rather are regressed against the lagged
values of a stochastic explanatory variable whose order of integration, furthermore, is un-
known. We follow Phillips (1987a) to derive our asymptotic results and consider a time series
x; generated by the autoregression x; = p + px;_; + v; with p nested in a 1/T neighborhood
of one, p = exp(c/T) where c is a constant.?

The maintained null hypothesis is that x;_; cannot be used to predict not only next pe-
riod’s return y; but also any subsequent one period return ¥, ..., ysx-1. As a consequence,

208ince exp(c/T) = 1+¢/T +O(T~?) our asymptotic results are the same as if we assumed the alternative
nesting p = 1+ ¢/T.
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the resultant K period return y;(K) will not be predictable using z;_;. Under this null
hypothesis u;(K) = u; + U1 + ... + urx—1 because subsequent one period returns are
unpredictable using z;_; implying that, apart from a constant, w1 = Y4+i—1. We com-
plete our specification by assuming that ¢, = (u;,v;)’ is a martingale difference sequence,
E(e€; | €4-1,€t—2,...) = X with typical element o, and that u; and v, are only correlated
contemporaneously with § = corr(u, vy).

We investigate the asymptotic distributions of the least squares estimator?® obtained when
the long horizon return y;(K) is regressed against the lagged value of the stochastic explana-
tory variable z;_1:

() = (}K:) (% o)

and its corresponding ¢-statistic. Notice, however, that the residuals u,(K) of (14) are serially
correlated (up to lag K — 1) under the null hypothesis owing to the overlapping nature of
the long horizon returns data. Let #;(K) be the fitted residuals of (14). Then the Newey-
West (1987) heteroskedasticity- and autocorrelation-consistent standard error up to lag K —1
for B(K) is:

T—K+1 -2/ k-1 T—K+41
o= ( 3 o) (X -l atmat_m<K>mt_1xt_1_,z-,)
t=1

i=—K+1 t=fil+1

The t-statistic of 3(K) using the Newey-West standard error is then defined by

) K-1 T-K+1 -3 T—-K+1
tﬁ(K) = ( Z (1 — |’L,/K) Z ﬂt(K)’at—li[(K)xt—lmt—l—{'il < Z yt(K)wt—l) .
t=1

i=—K+1 t=li|+1

We investigate the behavior of B(K ) and f[;( K under two limiting specifications. The first
is the standard large sample approximation where 7' — oo for K fixed so that K/T — 0.
The implication of this specification is that as the sample size T increases the amount of
independent information also increases. However, to capture the intuition that there is a
limit to the amount of independent information in a lengthy time series of overlapping long
horizon returns, we also follow Richardson and Stock and let K grow proportionally with
T as T — oo so that K/T — 6, or equivalently K = [T6] with [e] denoting the greatest
lesser integer function, where 6 is a fixed constant with 0 < # < 1. Richardson and Stock
find that this latter limiting specification provides a better approximation to corresponding
finite sample distributions in the case of using long horizon returns to test mean reversion
in stock prices.

21For expositional purposes we assume, without loss of generality, that a(K) = 0 and y = 0.
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The following Lemma provides the results needed to prove our distributional results. In what
follows “—” and “=” denote convergence in probability and convergence in distribution,
respectively.

Lemma 2

Let Wy and W5 be two standard Brownian motions with initial conditions W;(0) = W2(0) =
and correlation corr(dWy,dWs) = §. Define an Ornstein-Uhlenbeck process J, by dJ, ( )
cJe(r)dr + dWy(r), where J,(0) = 0. W(r) can be rewritten as Wa(r) = §Wy + (1 — 6 )2 W,
where W, is a standard Brownian motion distributed independently of Wj.

0

As T — o0,

(a) T~ 20, = 0uJo(T).

If K is fixed, then

(b) T2 ST 0y = 0% [ J(r)Pdrs

() T ST yu( K)oy = Kouoy |6 fg Jo(r)dWa(r) + (1 — 62)% fy Jo(r)dWa(r)].
If K =[T0], where 0 < 6 < 1 is a constant, then

(d) T2 S ™ il = o) Jo ™" Je(r)?dr;

(e) T=2yyrn) (K) = Uu{Wa(r +0) = Wa(r));

(F) T2 S5 4u(K) 21 = 040y fol—e[Wz("" +0) — Wa(r)]Je(r)dr

Proof: See the Appendix.

Theorem

If K is fixed, then as T' — o0,
(a) B(K) — 0; and

_1
(b) fﬁ(K) =6 [fol Jc(r)zdfr] 2 (LI (r)dWy(r) + (1 — 62)2z, where z is a standard normal
random variable distributed independently of (W7, J;).
If K =[T6], where 0 < 6 < 1 is a constant, then as T' — o0,

(c) B(K) = (0u/0v) [ 01_9 Jc(r)zdr}_l 01'9 [Wa(r + 0) — Wa(r)] J.(r)dr = F;; and

() Eauey = [J20 L2701 = 1s1/0)T (MU (r = |s])Je(r) Je(r — |s)drds] %fol“e[Wz(r+9)~W2(T)]Jc(r)dr
where U(r) = Wa(r + 8) — Wa(r) — (00/0)B5J(r).

Proof: See the Appendix.
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Under the fixed K limit we see that the ordinary least squares slope estimator ,3(K ) is
consistent while ¢4, has a non-standard distribution depending on é as well as c¢. Under

the K/T — 6 limit, however, (K) is no longer consistent. This is to be expected since we
have only 1/6 independent observations in the limit and (K )’s limiting distribution depends
on # as a result. Similarly, fﬁ( K) has a non-standard distribution which now depends on 6.

To further investigate these distributional results, we conduct the following Monte Carlo
experiment. For each of ¢ = —100, —50, —10, —5, and 0, and for ¢, = 0.1, 0, = 0.1, and
6§ = —0.9, we generate, under Hy : B = 0, time series of length 7' = 720 (as in Richardson
and Stock (1989)) of z; and y;. We then form K period returns for K = 1, 12, 36, 60,
and 120, corresponding to # = 1/720, 1/60, 1/20, 1/12, and 1/6, respectively, and calculate
B(K ) as well as the corresponding Newey-West corrected t-statistic, fﬁ—( K)* We repeat this

experiment 10,000 times and tabulate the resultant sampling distributions of B (K) and # 4()
in Tables V and VI, respectively.

From Table V we confirm Nelson and Kim’s conjecture that the bias in the slope estimator is
consistent with Stambaugh’s approximation at all horizons if one takes the relevant number
of observations to be the number of possible nonoverlapping observations rather than the
number of actual overlapping observations used in the regression. For example, for ¢ = —10
or, equivalently, p = 0.9862 given T = 720, Stambaugh’s approximation for § = 1/720 is
0.0050 while the corresponding median value of G(K) is 0.0047. For longer horizons we have
0.0596 vs 0.0562 (¢ = 1/60), 0.167 vs 0.179 (§ = 1/20), 0.298 vs 0.276 (§ = 1/12), and
finally for § = 1/6 the approximation becomes 0.596 as compared to B(K )’s corresponding
median value of 0.528. While Stambaugh’s approximation corrects the center of 3’s sampling
distribution, it does not correctly adjust the tails of the distribution which, of course, is the
relevant adjustment for purposes of statistical inference. As suggested by the K/T — 6 limit
theory, B(K )’s sampling distribution depends on . In particular, for a given c as 6 increases
and so the amount of independent information diminishes, the sampling distribution of 5(K)
becomes much wider and more skewed right.

These results suggest that it is incorrect to assess the degree of statistical significance in long
horizon regressions using conventional asymptotic theory, for example, by checking whether
B(K) lies within 1.645 standard errors of zero (assuming a 10% significance level). This is
confirmed in Table VI where we tabulate £ 45y S sampling distribution as a function of both ¢
and 6. Clearly as 6 increases for a given c value, more extreme t-statistic values are needed to
reject the null hypothesis of no predictability. By way of example, once again for ¢ = —10 or,
equivalently, p = 0.9862 given T = 720, the 95 percentile of fﬁ( K)’s sampling distribution
is 2.92 for § = 1/60 but is 3.56 for § = 1/20. Consistent with the K/T — 6 limit theory, it
is also incorrect to take into account the overlapping nature of the long horizon returns data
by calculating Newey-West corrected #-statistics and then, to acknowledge uncertainty in p,
simply use f[, xS non-standard sampling distribution assuming the data is non-overlapping.
From Table VI we see that for each of the assumed ¢ values the sampling distribution of
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£ j(x) @ssuming non-overlapping returns data (f = 1/720) is quite distinct from its sampling
distribution for other 8 values.

5 Conclusions

This paper has explored statistical inference in predictive regressions. We pay particular
attention to the stochastic properties of the posited explanatory variables and demonstrate
that the inferences drawn in these regressions can be sensitive to the assumed properties
of the explanatory variables, especially their degree of integration. Confidence intervals for
the largest autoregressive roots of time series of commonly used explanatory variables are
consistent with these roots being very near to unity if not equal to unity. Once we incorporate
this uncertainty in the estimation there is little evidence of predictability.

Given how sensitive the inferences drawn in predictive regressions are to the assumed prop-
erties of the explanatory variables and the fact that in practice these properties will never be
known with certainty underscores the fact that we should be extremely careful in interpret-
ing the results of these predictive regressions. This is especially true in the case of predictive
regressions using long-horizon returns where statistical inference depends not only on the
explanatory variable’s order of integration but also on the length of the horizon itself.
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Appendix

/
Proof of Lemma 1: Write Y; = < )}j; ), X, = ( )f)” )?ét >, and B = ( g; ) Then the
system (8) can be written in a more compact form:
Y't = XtIB -+ €.

The log likelihood function of this system is
T
£(B,9) = (T/2)log |7 — (1/2) (Y, — XiBYQ™\(Y, - X,B).
t=1

Q11 Q12

Partition Q conformably with Y as () = (
Qo Qoo

)and define 911.2 = Qll - 9129521921.
It is straightforward to verify that

Q-1 — I o\[Qi O I —Qp0%,
T\ —0u I 0 93 )\0 I '

Then log || = log |Q1is| + log |25 |. The term inside the summation of £(B,) can be
written as:

Yy — X3,B1 \ I o\ / Q, © I Q% \ [ Yu—X,B
Ya, — X1, Ba 5 I 0 9 /\o I Ya: — X}, Bo

= (Yie = X5, B1 — Q12Q55 (Yar — X3, Ba)) Qe (Yie — X1,B1 — Q120 (Yar — X3, B2))
+(Yor — XétB2)IQ§21(}/2t — X3, Bs).

Then L£(B, ) can be written as the sum of the conditional log likelihood
T
(T/2)1og |Qial = (1/2) D_(Yie — X1, B1 — 1o (Yar — X5, B5))’
t=1
Dita(Yie — X1eB1 — Q2 (Yo — X3 B2))
and the marginal log likelihood
T
(T/2)log |02 — (1/2) Y _(Yar — X3, B2) ) Qa2 (Yo — X5, B2).
t=1

The marginal log likelihood function only depends on By and €23 which are assumed known.
Hence maximizing £(B, Q) is equivalent to maximizing the conditional log likelihood func-
tion. It follows that the maximum likelihood estimate of B; is equivalent to the corresponding
OLS estimate obtained from the posited multiple regression. O
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Proof of Lemma 2: (a), (b) are standard and can be found, for example, in Phillips (1987a).

(c) is proved by generalizing the method of Phillips (1987a) and using the decomposition
ue = 6(ou/op)vr + (1 = 62)%%% where %; is a standard normal variable independent of v;
(see Cavanagh, Elliott, and Stock (1995)).

The proof of (d) is almost the same as that of (b) except that the upper limit of the integral
1 — @ reflects the relation K = [T4).

(e) is proved by noticing

L L [Trl+K . [Tr]—-1 , [Tr]+[T6] ) [Tr]-1
T_fy[Tr](K) =772 Z U — T 2 Z Ut = T2 Z U — T 2 z Ut,
t=1 t t=1 t=1

=1

and using the fact that 7—% Y\07 u, = Wa(r) (see Richardson and Stock (1989)).
(f) is proved easily by applying (a), (e), and the continuous mapping theorem. O

Proof of the Theorem: To prove (a), multiply the numerator and denominator of 3(K) by
T-2 and apply (b) and (c) of Lemma 2.

To prove (b), multiply the numerator and denominator of o) bY T~ and generalize the
method of Stock (1991).22 Since the Newey-West (1987) procedure requires the number of
lags included to correct for autocorrelation and heteroskedasticity increases with the sample
size, we construct ¢z x by including at least max (K -1, T%> lags, which equals Ts as T is
sufficiently large.

To prove (c), multiply the numerators and denominators of 3(K) by T2 and apply (e) and
(f) of Lemma 2.

To prove (d), multiply the numerators and denominators of tacrey PY T2 and use the defini-
tion of U(r) and the continuous mapping theorem. O

22The details are complicated and are not presented for expositional purposes.
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Table 1

95% Confidence Intervals for the Largest Autoregressive Root of the Stochastic
Explanatory Variables

This Table provides 95% confidence intervals for the largest autoregressive root p of stochastic explanatory
variables typically used in predictive regressions. Dividend Yield is the log real dividend yield and is con-
structed as in Fama and French (1988). Default Spread is the log of the difference between monthly averaged
annualized yields of bonds rated Baa and Aaa by Moody’s. Book to Market is the log of Pontiff and Schall’s
(1998) Dow Jones Industrial Average (DJIA) book-to-market ratio. Term Spread is the difference between
annualized yields of Treasury bonds with maturity closest to ten years at month end and three month Trea-
sury bills. The augmented Dickey-Fuller statistic is denoted by ADF and we follow Nelson and Plosser
(1982) in determining the maximum lag length k. OLS estimates of p based on an AR(1) autoregression, p,
are also tabulated as well as the corresponding small sample bias-adjusted estimates, pqq;.

| Series | Sample Period |
Dividend Yield | 1926:12 - 1994:12
1926:12 - 1951:12
1952:12 - 1994:12

k ADF 95% interval | 5 fug |
5 -3.30 (0.960,0.996) | 0.981 0.986
1 -2.84 (0.915,1.004) | 0.961 0.974
1 -265 (0.956,1.004) | 0.978 0.986
Default Spread | 1026:12 - 1994:12 | 2 -2.49 (0.976,1.003) | 0.089 0.994
1926:12 - 1951:12 | 3 -0.90 (0.984,1.015) | 0.994 1.008
1952:12 - 1994:12 | 2 -2.50  (0.963,1.004) | 0.982 0.989

6

6

6

6

6

2

Book to Market | 1926:12 - 1094:08 -2.35 (0.977,1.003) | 0.989 0.994
1926:12 - 1951:12 -1.60  (0.967,1.013) | 0.977 0.991
1952:12 - 1994:08 124 (0.986,1.008) | 0.987 0.994
Term Spread | 1926:12 - 1994:12 357 (0.955,0.992) | 0.946 0.950
1926:12 - 1951:12 311 (0.943,0.999) | 0.935 0.943
1952:12 - 1994:12 -1.83  (0.957,1.012) | 0.971 0.984
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Table II

A Monte Carlo Investigation of Nelson and Kim’s Randomization Procedure

For each of p = {0.90,0.95,0.99}, § = {-0.5,—-0.9}, 0, = {0.1,1.0} and o, = 1.0 we generate under
Hy : 8 =0 time series of length T' = 100 of z; and y; according to

Yy = a+frig+ug
Ty = ptpTi-y U

We calculate B and p by separately applying OLS to each of these equations and retain the resultant residuals
{9:31% and {9, }}%. We repeat this experiment 5000 times for each parameter combination and summarize
B’s sampling distribution by its 10t*, 50, and 90" percentiles. The small sample bias adjusted value (3,4
obtained from Stambaugh’s approximation assuming 8 = 0 is also presented for comparison purposes. For
each parameter combination we then take the residuals {%;}% and {9;};%} associated with each of the
10th, 50t", and 90" percentiles of the corresponding 8 sampling distribution and randomize each grouping
of these residuals. Using these randomized residuals we once again generate under Hy : 8 = 0 time series of
length T' = 100 of z; and y; and calculate the bias corrected estimate B. We repeat this randomization 500
times and summarize 3’s sampling distribution by its 10", 50", and 90" percentiles.

p 8 oy | Badgj B 10th  50th 9otk B 10th 50tk goth
percentiles: percentiles

090 -0.90 1.0 [ 0.033 -0.027 0.028 0.110 | By : -0.053 0.021 0.103

Bsoss : -0.035 0.027 0.114

Boow, -0.021 0.032 0.128

090 0.1 | 0.333 -0.271 0.275 1.102 Bro% -0.529 0.215 1.027

Bsow -0.349 0.267 1.143

Boos, : -0.211 0.316 1.281

-0.50 1.0 | 0.019 -0.043 0.015 0.088 | fFioo : -0.069 0.009 0.079

Bsow, : -0.050 0.015 0.095

Boos : -0.035 0.020 0.113

-0.50 0.1 | 0.185 -0.425 0.153 0.894 | Piox -0.691 0.094 0.788

Bsow : -0.498  0.147 0.940

Booss -0.354 0.200 1.126

095 -0.90 1.0 | 0.035 -0.013 0.032 0103 | Bigs: -0.013  0.023 0.097

Bso% : -0.024 0.028 0.108

Boow, -0.042  0.034 0.122

-0.90 0.1 | 0.347 -0.130 0312 1002 | Biog : -0.104 0.230 0.970

Bso% : -0.237 0.283  1.081

Boo : -0.419 0.337 1216

-0.50 1.0 | 0.019 -0.030 0.016 0.078 | Bion: -0.025 0.010 0.072

Bsow : -0.039 0.016 0.087

Boow : -0.057 0.021 0.104

050 0.1 | 0.193 20.294 0.163 0.813 Bro% : -0.248 0.102 0.717

Bsow, : -0.389 0.155 0.866

Boow, : -0.581 0.210 1.040
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Table IT (continued)

) 5 ov | Bagi ] 10th 50tk goth 8 10th 50t goth
percentiles: percentiles

0.99 -0.90 1.0 | 0.036 0.000 0.036 0.100 Brows © -0.004 0.015 0.064

Bsoo : -0.015 0.026 0.096

Booo : -0.032 0.035 0.113

-0.90 0.1 | 0.357 0.006 0.367 1.021 Bio% : -0.004 0.146 0.642

Bsoo : -0.151  0.262 0.965

Boow, -0.330 0.353 1.132

-0.50 1.0 | 0.020 -0.016 0.019 0.072 Bro% : -0.016  0.007 0.049

Bsow : -0.028 0.014 0.074

Boos -0.046 0.021 0.093

-0.50 0.1 | 0.199 -0.165 0.191 0.708 B1o% -0.158 0.072 0.500

Bsow : -0.280 0.141 0.734

Boow, : -0.453  0.207 0.922
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Table III

Predictive Regression Results if there is No Uncertainty About the Stochastic
Explanatory Variable’s Largest Autoregressive Root

This Table provides t-statistics to assess the statistical significance of the slope coefficient in regressing one-
month ahead log real returns of the CRSP VW index against a stochastic explanatory variable assuming the
explanatory variable’s largest autoregressive root p is known with certainty. The explanatory variables used
are Dividend Yield, Default Spread, Book to Market, and Term Spread and are described in Table I. The
columns labeled p and puq; give these estimation results assuming that the explanatory variable’s largest
autoregressive root is given by its historical estimate and its bias-adjusted historical estimate, respectively.
The column labeled p = 1 assumes that the explanatory variable has a unit root. For comparison purposes,
the column labeled Predictive Regression presents the t-statistic from a regression against a stochastic ex-
planatory variable without incorporating information about the explanatory variable’s stochastic properties
and corresponds to the standard implementation of a predictive regression. The sample correlation coefli-
cient between this latter regression’s estimated disturbances and the estimated disturbances of an AR(1)
autoregression in the explanatory variables is denoted by 6. Throughout #statistics are based on Newey-West
standard errors.

Explanatory Variable | Sample Period | Predictive Regression ) p=p P = Padj p=

Dividend Yield 1926:12 - 1994:12 t=1.338 -0.955 | t=2.691 t=1.701 {=-1.053
1926:12 - 1951:12 t=0.751 -0.952 | t=1.773 {=0.254 t=-2.607

1952:12 - 1994:12 t= 2.993 -0.962 | t=11.752 {=8.251 t=1.871

Default Spread 1926:12 - 1994:12 t= 0.337 -0.266 | t==0.372 {=0.271 t=0.131
1926:12 - 1951:12 t= 0.044 -0.391 | t=0.059 ¢=-0.602 ¢=-0.229

1952:12 - 1994:12 t=1.247 0.027 | t=1.234 {=1.257 ¢=1.288

Book to Market 1926:12 - 1994:08 t= 1.645 -0.811 | t=3.615 ¢=2.838 t=0.344
1926:12 - 1951:12 t= 1.386 -0.888 | t=5.297 t=2.463 t= 0.693

1952:12 - 1994:08 t= 0.902 -0.699 | = 1.138 = 0.252 ¢=-0.487

Term Spread 1926:12 - 1994:12 = 1.317 -0.052 | t=1.350 t=1.324 {=1.032
1926:12 - 1951:12 t=-0.422 -0.125 | t=-0.449 =-0.567 1=-0.698

1952:12 - 1994:12 t= 2.399 -0.020 | ¢t=2.420 t= 2407 t=2.242
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Table IV

90% Bonferroni Confidence Intervals

This Table provides 90% Bonferroni confidence intervals to assess the statistical significance of the slope
coefficient in regressing one-month ahead log real returns of the CRSP VW index against a stochastic
explanatory variable assuming the explanatory variable’s largest autoregressive root p is characterized by a
local-to-unity specification p = 1+ ¢/T where ¢ is a nuisance parameter and T denotes the sample size. The
explanatory variables used are Dividend Yield, Default Spread, Book to Market, and Term Spread and are
described in Table I. The intervals dependence on c is eliminated by invoking the Bonferroni inequality and

are subsequently adjusted so that their nominal size equals 90% asymptotically.

Explanatory Variable

Sample Period

90% Confidence Interval for 8

Dividend Yield

1926:12 - 1994:12
1926:12 - 1951:12
1952:12 - 1994:12

(-0.002,0.021)
(-0.023,0.033)
( 0.002,0.035)

Default Spread

1926:12 - 1994:12
1926:12 - 1951:12
1952:12 - 1994:12

(-0.005,0.009)
(-0.015,0.009)
( 0.000,0.015)

Book to Market

1926:12 - 1994:08
1926:12 - 1951:12
1952:12 - 1994:08

(-0.005,0.009)
(-0.010,0.031)
(-0.009,0.012)

Term Spread

1926:12 - 1994:12
1926:12 - 1951:12
1952:12 - 1994:12

(-0.001,0.005)
(-0.010,0.005)
( 0.001,0.006)
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Table V

Sampling Properties of the Estimated Long Horizon Slope Coefficient 3(K)
under the Local-to-Unity Specification

For 0, = 0.1, 0, = 0.1 and § = —0.9 we generate under Hyp : # = 0 time series of length T = 720 of z; and
y; according to

Y = a+Pri—1+us

Ty = P+ pTio1+ v

assuming that the explanatory variable’s largest autoregressive root p is characterized by a local-to-unity
specification p = 1+ ¢/T for ¢ = {-100,-50,—10,—5,0}. We then form K period returns, 4:(K), K =
1,12, 36, 60, and 120, corresponding to § = K/T = 1/720,1/60,1/20,1/12, and 1/6, respectively, and the long
horizon regression coefficient B(K ) is obtained by regressing y:(K) against x;_1. We repeat this experiment
10,000 times and summarize B(K)’s sampling distribution by its 2.5%, 5%, 10%, 50%, 90%, 95%, and 97.5%
percentiles.

| | 25% 5% _ 10% _ 50% _ 90% _ 95% 97.5%
—-100 | §=1/720 | -0.0312 -0.0262 -0.0198 0.0034 0.0298 0.0379 0.0454
6=1/60 |-0.2958 -0.2449 -0.1823 0.0385 0.2650 0.3272 0.3784
6=1/20 |-0.6426 -0.5253 -0.3623 0.1227 0.5477 0.6523 0.7440
6=1/12 |-0.8573 -0.6703 -0.4504 0.2072 0.7172 0.8456 0.9632
6=1/6 |-1.2001 -0.8947 -0.5374 0.3987 1.0344 12118 1.3503

c=-50 | =1/720 | -0.0204 -0.0169 -0.0129 0.0036 0.0239 0.0304 0.0367
6=1/60 |-0.2146 -0.1811 -0.1337 0.0395 0.2352 0.2949 0.3451
6=1/20 |-0.5362 -0.4342 -0.3155 0.1294 0.5449 0.6469 0.7452
6=1/12 |-0.7732 -0.6049 -0.4229 0.2210 0.7348 0.8740 0.9868
6=1/6 -1.1230 -0.8356 -0.5172 0.4217 1.0824 1.2507 1.3911

c¢=-10 | 6=1/720 [ -0.0067 -0.0054 -0.0038 0.0043 0.0166 0.0211 0.0247
6=1/60 | -0.0790 -0.0636 -0.0426 0.0506 0.1868 0.2334 0.2762
6=1/20 |-0.2308 -0.1802 -0.1169 0.1537 0.4887 0.5963 0.6849
6=1/12 | -0.3710 -0.2789 -0.1737 0.2526 0.7213 0.8490 0.9574
6=1/6 -0.6196 -0.4406 -0.2273 0.4847 1.1085 1.2739 1.4023

c=-5 |6=1/720 | -0.0041 -0.0031 -0.0018 0.0047 0.0155 0.0196 0.0235
6=1/60 |-0.0476 -0.0365 -0.0204 0.0562 0.1775 0.2219 0.2607
6=1/20 |-0.1439 -0.1026 -0.0529 0.1673 0.4827 0.5814 0.6593
6=1/12 |-0.2331 -0.1668 -0.0791 0.2764 0.7148 0.8396 0.9481
0=1/6 -0.4100 -0.2568 -0.0854 0.5282 1.1248 1.2816 1.4113

c¢=0 | 6=1/720 | -0.0011 -0.0002 0.0007 0.0053 0.0143 0.0180 0.0216
6=1/60 |-0.0129 -0.0029 0.0086 0.0633 0.1656 0.2086 0.2422
6=1/20 |-0.0413 -0.0109 0.0244 0.1869 0.4549 0.5537 0.6357
0=1/12 | -0.0748 -0.0193 0.0398 0.3069 0.6974 0.8163 0.9243
0=1/6 -0.1750 -0.0557 0.0671 0.5736 1.1215 1.27567 1.4014
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Table VI

Sampling Properties of the Newey-West Corrected #-statistic of the Estimated
Long Horizon Slope Coefficient S(K) under the Local-to-Unity Specification

For o, = 0.1, 0, = 0.1 and § = —0.9 we generate under Hy : § = 0 time series of length T' = 720 of z; and
y¢ according to

Yy = a+Bri1+u

Tt = p+prio1+vs

assuming that the explanatory variable’s largest autoregressive root p is characterized by a local-to-unity
specification p = 1 + ¢/T for ¢ = {-100,-50, —10,—5,0}. We then form K period returns, y;(K), K =
1,12,36,60, and 120, corresponding to § = K/T = 1/720,1/60,1/20,1/12, and 1/6, respectively, and the
long horizon regression coefficient B(K ) is obtained by regressing y:(K) against z;_; and calculating the
Newey-West corrected t-statistic, EB( K)* We repeat this experiment 10,000 times and summarize s sampling
distribution by its 2.5%, 5%, 10%, 50%, 90%, 95%, and 97.5% percentiles.

2.5% 5% 10% 50% 90% 95%  97.5%

¢=-100 | =1/720 | -1.8115 -1.5058 -1.1102 0.1732 1.4542 1.8137 2.1454
0=1/60 |-1.9999 -1.6342 -1.2269 0.2581 1.8955 2.4329 2.8796
6=1/20 |-1.7942 -1.4429 -1.0272 0.4069 2.2674 2.8753 3.4421
6=1/12 |-1.7028 -1.3396 -0.9696 0.5585 2.5219 3.2792 3.8805
6=1/6 -1.6513 -1.3094 -0.8538 0.9172 3.1851 3.9514 4.6897
c=-50 | 6=1/720 | -1.7152 -1.3674 -1.0187 0.2579 1.5233 1.8966 2.2069
0=1/60 |-2.0229 -1.6370 -1.2045 0.3303 2.0072 2.5409 2.9931
6=1/20 |-1.9012 -1.5302 -1.0775 0.4899 2.3766 3.0047 3.6479
0=1/12 |-1.8606 -1.4511 -1.0216 0.6328 2.7104 3.4898 4.2188
6=1/6 -1.8022 -1.3739 -0.9046 1.0017 3.4462 4.3084 5.1599

c=-10 | #=1/720 | -1.2835 -0.9847 -0.6475 0.5833 1.8281 2.1627 2.4399
60=1/60 |-1.6158 -1.2438 -0.7907 0.7680 2.4037 2.9174 3.3551
#=1/20 |-1.7034¢ -1.2934 -0.7844 0.9049 2.8513 3.5568 4.2339
0=1/12 |-1.7803 -1.2774 -0.7609 1.0491 3.3645 4.2269 5.1197
6=1/6 -1.8843 -1.2723 -0.6501 1.4971 4.6431 5.7978 7.1590
c=- 6=1/720 | -1.0217 -0.7435 -0.4095 0.7966 1.9843 2.3297 2.6042
0=1/60 |-1.2919 -0.8970 -0.4978 1.0415 2.6480 3.1251 3.5450
0=1/20 |-1.3414 -0.9324 -0.4488 1.1976 3.1681 3.8801 4.5358
0=1/12 |-1.4004 -0.9631 -0.4271 1.3553 3.7527 4.7059 5.4760
0=1/6 -1.5687 -0.9316 -0.2801 1.8928 5.25622 6.5734 7.9746
c= 0=1/720 | -0.4224 -0.0804 0.2599 1.3946 2.4837 2.7902 3.0609
6=1/60 |-0.5011 -0.1142 0.3151 1.7845 3.3132 3.7864 4.2491
0=1/20 |-0.5656 -0.1517 0.3229 2.0008 3.9933 4.6933 5.3488
0=1/12 | -0.6938 -0.1852 0.3446 2.2230 4.7266 5.7568 6.7456
0=1/6 -0.9931 -0.3247 0.3475 2.8997 6.8444 8.5979 10.7191
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