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Following the work of Asaeda and Frohman, we explore a variation of Bar-

Natan skein modules which can be defined as a TQFT using Kevin Walker’s fields

and local relations. We prove analogous results to Asaeda and Frohman for this

variation, and discuss the potential to compute skein modules of manifolds by

decomposing the manifold into pieces and tensoring together the skein modules

of the pieces. We give computations toward that end, and on the way give an

application of the cyclic seiving phenomenon.
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Chapter 1

Introduction

1.1 Context

In the beginning was the Jones polynomial, and the Jones polynomial led to

Khovanov homology [Kho00], and Khovanov homology was great [BN02]. Indeed,

its discovery generated a mass of new work in low-dimensional topology, and in

wandering the wilds of knot homologies, I came across Bar-Natan skein modules.

Khovanov’s knot invariant is a (1+1)-dimensional topological quantum field

theory (TQFT), a functor sending circles to vector spaces and cobordisms between

circles to linear maps between vector spaces. I have always found the interplay of

topology and algebra in TQFT pleasing, but Bar-Natan made Khovanov homology

particularly beautiful in his remarkably lovely paper [BN05]. While Khovanov

shows invariance under Reidemeister moves on the algebraic side, after applying

the TQFT, Bar-Natan gives a simple proof of invariance before applying the TQFT,

just working topologically. The formal mechanism for this miracle is a category of

(possibly dotted) cobordisms between circles (or tangles). To make the proof go

through, he needed to impose some local relations on the surfaces (in addition to

isotopy relations).

Using these relations, Asaeda and Frohman introduced a skein theory of

surfaces in 3-manifolds, the Bar-Natan skein module. In their paper [AF07], they

calculate a few examples and prove a result for Seifert-fibred spaces. Some addi-

tional work has followed, but relatively little is understood about Bar-Natan skein

1
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modules as of yet.

Russell calculated the skein module for the solid torus with longitudinal

curves in its boundary, which she proved is isomorphic to the homology of the

(n, n)-Springer variety. Consequently, she shows the skein has a well-defined co-

multiplication, but it cannot be a Frobenius extension with this structure [Rus09].

Kaiser discusses Bar-Natan skein modules in a more general framework. Several

sets of relations have been studied in the search for Khovanov-like homology theo-

ries [BN05, BNM06], as well as extensions over unoriented surfaces [TT06], which

are interesting to the community for their connexion with virtual knots and links.

Kaiser’s work encompasses these possibilities with a general 2-dimensional Frobe-

nius algebra, giving miscellaneous results such as presentations with generators

and relations ([Kai09], cf. [Kho06]). Paul Drube and Jeffrey Boerner studied Bar-

Natan skein modules for sl(n) specifically [BD12]. Kaiser has also discussed some

aspects of TQFTs from fields (discussed below) in connection with Bar-Natan skein

modules [Kai14].

Skein modules have been considered interesting objects in their own right for

many years [Prz06, Prz], including incarnations inspired by Khovanov homology

[APS04, APS06]. Most of these are concerned with skein modules of links in

manifolds, rather than surfaces. Kaiser has worked on connecting these link skeins

with Bar-Natan skein modules [Kai13].

We are particularly interested in the Bar-Natan skein module’s role as a

TQFT and its relation to higher categories as described in [Wal06, MW11]. Ac-

cording to Walker’s formalism, a TQFT can be constructed as a system of fields

modulo local relations. A topological field is essentially a collection of functors

from i-manifolds to Set for 0≤ i≤ n, with good behavior required with respect to

boundary, gluing, etc. As a first step along these lines, higher Hochschild homol-

ogy is an interesting research topic. We can compute the Bar-Natan skein module

of the solid torus, D2×S1, as HH0 of the cylinder category associated to the disk

D2, which naturally leads us to ask what the higher Hochschild homology is (see

[Lod92, Web07]). Taking this even farther, we can ask what the blob complex of

the associated functor is for general manifolds.
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There is a correspondence between Walker-style TQFTs and higher cate-

gories. In general, a system of surface fields in a 3 manifold should correspond to

a 3-category: objects (0-morphisms) are the colours of the regions, 1-morphisms

are a colouring of surfaces, 2-morphisms a colouring of seams, and 3-morphisms a

colouring of vertices. Some of these could be trivial. In particular, a skein of ‘true

surfaces’ (i.e. not foams) should give a some kind of 3-category with trivial 2- and

3-morphisms.

It is interesting to compare and contrast this with Reshetikhin-Turaev (RT)

invariants and Turaev-Viro (TV) invariants. RT invariants corresponds to a 3-

categories with trivial 0- and 1-morphisms (or equivalently, to pivotal braided

monoidal categories), naturally dealing with knots and links. On the other hand,

TV invariants correspond to non-braided 2-categories. We expect the Bar-Natan

skein module to be more similar to TV invariants than RT. They seem more

appropriate given the connexion Bar-Natan skeins have to planar algebras, which

have no crossings. As there is a relationship between RT and TV invariants, we

might expect a relationship between the blob functor for Khovanov homology and

for Bar-Natan skeins.

We optimistically conjecture that Bar-Natan skein modules relate to Ko

Honda’s contact category in a meaningful way. In our variation (with black and

white colouring), the objects are the same in both categories. Ritz showed a

relation between the contact category and the Burau representation of the braid

group [Rit10], which also seems promising.

This thesis

In a general context, there is really an omission in Bar-Natan’s definition of

a surface category, which is how to deal with a Möbius strip. (Note that having a

Möbius strip is not a local condition.) His definition is perfectly functional for his

purposes and for Asaeda/Frohman and Russell, but it becomes a problem for our

work. There are four ‘correct’ definitions of a blob functor which give a variation

of a Bar-Natan skein module.

• unoriented: We allow nonorientable surfaces, which makes the skein more
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complex, but perhaps does not really add anything.

• oriented: Everything is completely oriented. This creates a huge number

of distinct objects with all possible orientations, which is annoying.

• Blanchet foams: Define a skein of foams as defined in [Bla10]. Given its

role ‘fixing’ Khovanov homology, this might be in some sense be the ‘most

correct’ way to orient things. This is also perhaps the most natural way to

take TV invariants up a dimension categorically.

• black/white: The complement of a surface gets a checkerboard colouring,

a simplified version of the oriented skein. This gives a 3-category with 2

objects.

We choose to study the last of the options because it seems like the simplest

variation which is not trivial, and because of its apparent connexion to subfactors

and contact geometry as mentioned above.

Organisation

We begin with some basics about Khovanov homology. While not all of

this material is directly relevant, we include it because we imagine the landscape

of Bar-Natan skein modules somewhat parallels that of Khovanov homology. It

also played an important role shaping our thinking about a ‘local model.’ By this

we mean that the skein of a larger, more complicated manifold can be computed

by tensoring skeins of smaller, simpler pieces over the appropriate algebra. A

more proximate inspiration for this approach is Walker’s formalism of TQFTs

[Wal06, MW11], which we discuss in Section 1.3, before we come to the meat of

our work.

Both the Asaeda-Frohman and Russell papers use a ‘hard-core topology’

approach—basically thinking really hard about how surfaces sit inside a 3-manifold.

We use this approach in chapter 2, where we prove results analogous to Asaeda

and Frohman’s for black-and-white skein modules. In chapter 3, our work is an

attempt to reproduce and expand known calculations of Bar-Natan skein modules
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using a local model. We give a different proof of Heather Russell’s result for the

solid torus with longitudinal boundary curves, and extend this result to the torus

with p/q curves on the boundary. Along the way, we establish the relationship

between the twisted and untwisted tori using the cyclic seiving phenomenon. In

chapter 4, we discuss further aspects of surface categories.

1.2 Khovanov homology

Khovanov homology is a ‘categorification’ of the Jones polynomial. Before

we say what that means, we recall some essential facts about the Jones polynomial.

1.2.1 The Jones polynomial

In 1984, Vaughan Jones discovered a new knot polynomial, which came to

be called the Jones polynomial. It is that holy grail of invariants, easy to compute

yet still very powerful; for example, it is strong enough to distinguish the right-

and left-handed trefoil knots.

One way to define the Jones polynomial—and the best way for the purposes

of Khovanov homology—is to use the Kauffman bracket.

The Kauffman bracket

Definition. The Kauffman bracket of an unoriented link diagram is defined by

the following three properties:

• 〈∅〉= 1. The empty diagram is allowed, and its bracket is 1.

•
〈
qD

〉
= (q+q−1) 〈D〉. An unknotted, unlinked component can be removed

from a diagram at the cost of multiplying by (q+ q−1).

•
〈 〉

=
〈 〉

− q
〈 〉

. The bracket of a crossing is a linear combination of

the 0-smoothing and the 1-smoothing. The 0-smoothing is the one you get

by walking on the ‘zero level’ and turning right on the ‘one level’
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Remark 1.2.1. As we have defined it, the Kauffman bracket is not actually in-

variant under any of the Reidemeister moves without normalising.

Definition. The Jones polynomial (defined on an oriented diagram D of a link L)

is given by

J(L) = (−1)n−qn+−2n−〈D〉.

Theorem 1.2.2. The Jones polynomial is a link invariant.

Sadly, we topologists have completely failed to standardise our notation and

normalisation for the Kauffman bracket and Jones polynomial. Thus, by tradition,

• The Kauffman bracket uses the variable A, where q = −A−2. Tradition also

defines the bracket of a crossing by
〈 〉

= A
〈 〉

+ A−1
〈 〉

. With this

relation, the Kauffman bracket is invariant under R2 and R3, but not R1.

Now the fix is obvious, since resolving R1 just multiplies by a factor of

A±3 corresponding to the writhe w(D) = n+ − n−. This makes J(A) =

A−3w(D)〈D〉. I find it easiest to see the relation between A and q by looking

at the state sum, rather than using the skein relation.

• The Jones polynomial uses the variable t = A−4, commonly written V (t) =

A−3w(D)〈D〉 |t=A−4 .

• In the original normalisation the bracket of the unknot is 1, rather than

q+ q−1.

• Sometimes q is used as I have used t, that is, with q = A−4. There is also a

variable a with a= q−1. This may or may not be exactly right.

The moral here is: if you ever have a conversation with someone else about the

Jones polynomial, make sure you’re both using the same definition.

State sum formula

A critical fact for Khovanov homology is that the Kauffman bracket (and

Jones polynomial) can be written as a sum over ‘states,’ or complete resolutions.

You can arrange them nicely in a ‘cube of resolutions,’ as in Figure 1.1.
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1

3

2
q(q+q−1)

100

q2(q+q−1)2

110

(q+q−1)2

000

q(q+q−1)

010

q2(q+q−1)2

101

q3(q+q−1)3

111

q(q+q−1)

001

q2(q+q−1)2

011

(q+ q−1)2 3q(q+ q−1) 3q2(q+ q−1)2 q3(q+ q−1)3

+ +

+ +

− + −

Figure 1.1: The cube of resolutions for the Kauffman bracket of the trefoil

(Figure 1 in [BN02], used with permission).

Let r be the number of 1-smoothings in a state s.

Let k be the number of cycles in s.

If we arrange the cube with the all-zero smoothing on the left (as in the

figure), r represents which column from the left the state s is in. To get the

Kauffman bracket, it is convenient to sum down a column, and then take the

alternating sum of the columns. Multiplying by a factor of q outside the sum gives

the Jones polynomial. Thus, the state sum formula for the Jones polynomial is

J(K) = (−1)n−qn+−2n−
∑
s

(−1)rqr(q+ q−1)k.

To see the relation between A and q, compare the formula above to∑
(−A)−3w(D)A

∑
si(−A2−A−2)k.

Here si =−1 for a 1-smoothing, +1 for a 0-smoothing. The sum si is −r+(n−r).
The last factor obviously corresponds to (q+ q−1)k.
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A−3w(D)A
∑
si = (−1)wA−3n++3n−−2r+n++n−

= (−1)wA−2n++4n−−2r

= (−A)−2(n+−2n−−r) · (−1)−2n+n−+r

= (−1)n−qn+−2n−(−q)r.

There is, in general, an annoying sign associated with the Kauffman bracket.

We can understand it from the Witten-Reshetikhin-Turaev perspective of knot

polynomials from quantum groups. Using unoriented diagrams for the Kauffman

bracket is possible because sl2 is self-dual, but it is not completely justified. The

sign is a manifestation of the sloppiness. See Tingley’s paper [Tin10], or on the

Khovanov homology side, Clark/Morrison/Walker [CMW09], Blanchet [Bla10], or

Caprau [Cap09].

1.2.2 Categorification

Consider the Euler characteristic of a space X. Here we see an integer as

the ‘shadow’ of a larger structure, the homology of X:

χ(X) =
∑
i

(−1)idim(Hi(X;Q)).

In this mindset, the paradigm of categorification, an integer is ‘really’ the alternat-

ing sum of dimensions of vector spaces, and a polynomial is the alternating sum

of dimensions of graded vector spaces.

Thus, to categorify the Jones polynomial, we want

J(K) =
∑

(−1)rqdim(Vr)

for some graded vector space Vr (up to some shift in grading). Recall qdim(W ) =

qmdim(Wm), where Wm is of homogeneous degree and W =⊕Wm.

We can accomplish this if qdim(Vr) = q+ q−1. Then a state in the cube of

resolutions is associated to qrV ⊗k. The homological grading is given by r, which

we normalise to go from −n− to n+ We also have an overall shift in q-grading by

qn+−2n− .
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Topologically, each state is related to the states following (connected by

arrows) by a pair of pants, either upside down or right-side up. These put one in

mind of multiplication and comultiplication, and, indeed, that is how we get the

boundary maps for the chain complex (on the algebra side). In other words, we

are applying a (1+1)-dimensional TQFT, and pants are sent to the multiplication

and comultiplication in a unital Frobenius algebra. Sprinkling in signs according

to a sort of exterior product rule (see [BN05]) makes d2 = 0; hence, we have a

chain complex.

Taking the (co)homology of this complex, we get

Kh(L) =
∑

trqdimHr(L),

a bigraded homology theory.

Theorem 1.2.3. Kh(L) categorifies J(L) (set t=−1), and is an invariant of L.

Moreover, Khovanov homology is strictly stronger than the Jones polyno-

mial. See [BN02].

Dror’s category enables us to prove invariance in the world of topology,

resulting in a very elegant proof [BN05]. Start with the category Cob whose

objects are smoothings and morphisms are cobordisms between them. Make it pre-

additive (linear) by taking formal linear combinations of morphisms and extending

composition bilinearly. Impose the Bar-Natan relations S, T, 4-Tu (sphere=0,

torus=2, and the 4 tubes relation—alternatively, we can use surfaces with dots and

the relations in Figure 2.1—they’re equivalent if 2 is invertible). These relations

are a little mysterious, but they are needed to make the proof of invariance under

Reidemeister moves go through. Call this Cob/l.

Then take Mat(Cob/l), whose objects are formal direct sums of smoothings

and matrices of linear combinations of cobordisms between them. Then take the

category of formal chain complexes Kom(Mat(Cob/l)), and finally, quotient to

get complexes of these up to homotopy equivalence. Call this Kob/h.

Computing complexes for the two pictures of each Reidemeister move, we

get that they are equivalent in Kob/h, thus we have invariance for tangles. (I’ve
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glossed over the details for boundaries, but in Dror’s proof, it’s not very compli-

cated - a major advantage of his method.)

1.2.3 Khovanov-like theories

Having categorified the Jones polynomial, we might ask if there was any-

thing special about the Frobenius algebra we used, or if others will work too. The

answer is yes, there is a whole family of them, but they are all isomorphic to

Khovanov homology or one of two other variations, Lee homology and Bar-Natan

homology [Kho06, BN05, Lee05].

Algebraic definitions of the maps for Khovanov homology (with V = Q[1, x],

where 1 has q-degree +1 and x has q-degree −1) are

ι(1) = 1 (unit) m(1⊗x) =m(x⊗ 1) = x

ε(1) = 0 (counit) m(1⊗ 1) = 1

ε(x) = 1 m(x⊗x) = 0

δ(1) = x⊗ 1 + 1⊗x δ(x) = x⊗x.

Modifying the multiplication m(x⊗x) and comultiplication δ(x) slightly gives Lee

homology.

The q-grading of an element v = v1 ⊗ v2 ⊗ · · · ⊗ vn of the chain complex

is given by
∑

qdeg(vi) + r+ n+ − n− (the latter part is the homological height).

Grading is preserved by the differential in the Khovanov chain complex, but not

in the Lee chain complex. However, the Lee complex can be filtered, and this

filtration can be used to define the Rasmussen invariant [Ras04].

1.2.4 Gaussian elimination

It is possible to simplify a Khovanov chain complex, using a procedure akin

to Gaussian elimination for matrices.The idea is to use isomorphisms to simplify

chain groups as in Figure 1.2, and then reduce the chain complex to a simpler,

homotopically equivalent one. In effect, this amounts to pre-and post-composing

differentials with lower triangular and upper triangular matrices (in such a way
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. . . A . . .

A′

αi

ϕ◦αi

αi+1

ϕ
αi+1◦ϕ−1

Figure 1.2: The key diagram, where ϕ is an isomorphism.

that they will cancel) to zero out the differential above and below the diagonal.

[BN07] is excellent as usual.

Example 1.2.4. Consider the tangle with (n+, n−) = (0, 2) below.

The Khovanov chain complex for this tangle is:

q−3

q−4 ⊕ q−2

q−3

−

.

The first step in simplifying the complex, and the first application of our

‘key diagram,’ is to remove cycles using the isomorphism shown in Figure 1.3.

q−1 ∅

⊕

q ∅ .

Figure 1.3: An isomorphism between a cycle and the empty picture with

grading shifts.
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In our example, only the first smoothing has a circle, so we just need to

precompose the differential from the first column to the second:


with the isomorphism: ( )
.

(If you, like me, started getting confused about the order of composition after

you started learning about category theory, recall that precomposing by a matrix

means multiplying on the right.) In general, we also need to postcompose the

previous differential with the inverse isomorphism:( )

but the differential is zero in this case. The cups and caps are understood to be

tensored with the identity cobordism as appropriate. Thus the first entry of the

composition is:

which is isotopic to the identity between two arcs. That is good, because we need

this entry to be an isomorphism for the Gaussian elimination part. We use planar

pictures to represent this surface, with dots as necessary, so the complex becomes:

0

q−3

q−5

 q−3

q−3

 [
q−2

]
0.

id
id

 (
−

)

Call the first nonzero differential A and the second B.

Now we get to the Gaussian elimination. We will multiply A on the left

by a lower triangular matrix L of morphisms that will cancel out the first column
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below the diagonal. This is postcomposition. To preserve the differential under

the isomorphism, we precompose the next map, B, with L−1. (Recall Figure 1.2.

That’s all we’re doing.)

L=

(
id 0

−id id

)
We will also precompose A with an upper triangular matrix U that cancels out the

first row above the diagonal. (As with the step of eliminating the circle, we would

normally need to postcompose the differential preceding A with U−1, but the map

is zero here.)

Doing the compositions, we get

LAU =

id
0 −

id −
0 id

=

id 0

0 −


and

BL−1 =
(

−
)(id 0

id id

)
=
(

0 −
)

so we now have the complex

0

q−3

q−5

 q−3

q−3

 [
q−2

]
0.

id 0

0 −

 (
0 −

)

We now have split off an acyclic part, so this complex is homotopic to

0
[
q−5

] [
q−3

] [
q−2

]
0.

− −

Once the complex is simplified, you can much more easily tensor it with

another chain complex to get the chain complex for a bigger tangle.

Example 1.2.5. Let’s call the complex we just computed Φ, and call Ψ the com-

plex of a single negative crossing:

0 q−2 q−1 0 .

When we tensor these, we will fit them together into the tangle:
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which gives the complex for the 1-1 tangle of the trefoil:

.

To make sure the differential squares to zero, we need some extra negative signs

when we tensor chain complexes together. We can accomplish the appropriate

changes by negating every alternating row. (Alternating columns would also work.)

This is pictured in Figure 1.4

q−5 q−3 q−2

q−2 q−7 q−5 q−4

q−1 q−6 q−4 q−3

− −

− −

−
(

−
)

−
(
−

)

Figure 1.4: Tensoring two complexes to get the complex of a bigger tangle.

Now we can ‘flatten’ the complex by taking direct sums along the diagonals,

which gives the complex in Figure 1.5. This complex can also be simplified.
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[
q−7

] q−5

q−6


q−4

q−4

 [
q−3

]


−



− 0

0

 ( )

Figure 1.5: The flattened complex.

Related theorems

This section is from Scott Morrison’s lecture at the MSRI workshop on link

homologies [Mor10].

Theorem 1.2.6. Every complex of a 1-1 tangle decomposes as a direct sum of

complexes

E = 0 0

Cn = 0 0
sheet

with n dots

with any overall qk factor and in any homological height.

Theorem 1.2.7. For a link with k components, exactly 2k−1 copies of E appear.

The s-invariant of a knot K is the q-grading of the unique E for the knot’s

1-1 tangle.

Conjecture 1.2.8. Only E, C1, and C2 appear in invariants of links.

Corollary 1.2.9. The s-invariant of a knot K is

s(K) = [Kh(K)] (q, t=−q−4)/(q+ q−1)

where [Kh(K)] (q, t) is Poincaré polynomial of the Khovanov homology.
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1.3 TQFT from fields and local relations

Topological quantum field theory, better known as TQFT, originates in

quantum mechanics, but was axiomatised mathematically by Atiyah (with inspi-

ration from Segal) in 1988. According to Kevin Walker [Wal06], he was motivated

to TQFTs using fields and local relations because he felt Atiyah’s axioms strayed

too far from the original physics formulation. His definition also fixes the ‘anomoly’

associated with Reshitikhin-Turaev invariants, thus giving a more unifield frame-

work. However, the theory is not completely local for a non-semisimple TQFT,

and the blob complex is a fix for that [MW11].

1.3.1 Fields

Let Mi be the category whose objects are compact oriented i-dimensional

manifolds, and whose morphisms are orientation-preserving homeomorphisms.

Definition. An n-dimensional system of topological fields is a collection of functors

Ai : Mi −→ Set

for 0 ≤ i ≤ n. For a particular manifold M , we refer to Ai(M) as i-fields on M ,

or simply fields on M . The functors must behave well with respect to various

properties of the category Mi, as follows:

• Boundary maps. In each dimension 1≤ i≤ n, there must be maps

∂ :Ai(M)−→Ai−1(∂M).

If ϕ ∈Hom(M,N) is a homeomorphism, then the boundary map ∂ on fields

commutes with ϕ and the boundary functors on M and N . In other words,

we must have the following commutative diagram:

Ai(M) Ai(N)

Ai−1(∂M) Ai−1(∂N)

Ai(ϕ)

∂ ∂

Ai−1(∂ϕ)
.
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For a field c ∈ Ai−1(∂M), this enables us to define fields with a boundary

condition as

Ai(M, c) = ∂−1(c).

• Orientation reversal. For each c ∈ A(∂M), there must be a bijection

A(−M, ĉ)←→A(M, c).

This also includes A(−M) when M is a closed manifold. This must commute

with homeomorphisms and the boundary maps.

• Disjoint union. Fields on a disjoint union are identified with the product

A(M qN)∼=A(M)×A(N).

This must commute with boundary maps, homeomorphisms, and orientation

reversal.

• Gluing without corners. Suppose the boundary of M decomposes as

∂M = Σq−ΣqT.

By this, we mean that there is a homeomorphism between the two Σ com-

ponents. Using the disjoint union map, fields on the boundary correspond

to a product:

A(∂M)∼=A(Σ)×A(−Σ)×A(T ).

Composing the disjoint union map with the boundary map thus gives two

maps to A(Σ), one using orientation reversal:

Ai(M) Ai−1(∂M) A(Σ)

A(−Σ)

∂ projection

projection orientation reversal
.

Let EqΣAi(M) be the equaliser of the maps, i.e. the set of fields in Ai(M) on

which the two maps agree. Note that EqΣAi(M) injects into Ai(M) because
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we do not use isotopy classes of fields here. Isotopies will be incorporated

later as local relations.

Let Mgl be the image of M with the two copies of Σ identified via the

homeomorphism. Then we require that there is an injective gluing map

EqΣAi(M) Ai(Mgl).

Like all the other maps, the gluing map must commute with boundary, etc.

We also require that the map is surjective up to extended isotopy, which

we will discuss below. The idea is that not every field can be cut along Σ

because the field may not be transverse to Σ, but every field is equivalent

to one that is. We intend to suggest the usual idea of transversality here;

formally, we define a field F on Mgl to be transverse to Σ if F is in the image

of the equaliser EqΣ(A(M)).

• Gluing with corners. Let M be a manifold with

∂M = Σ∪−Σ∪T.

The two copies of Σ must be disjoint, but share boundary with T , i.e.

∂(Σq−Σ) = Γ = ∂T.

Note that Γ has two connected components, Γ = ∂Σq−∂Σ.

We beg forgiveness for spelling the next part out in painful detail, but we

wish to escape our own confusion. Using gluing without corners, we get two

maps to A(Γ):

Ai−1(Σq−ΣqT ) Ai−2(Γq−Γ) A(Γ)

A(−Γ)

∂ projection

projection orientation reversal
.

Recall EqΓA(Σq−ΣqT ) is the set of fields that are equal under these two

maps, i.e., the set of fields that agree on Γ. Let AΓ(M) ⊂ Ai(M) be the

preimage of the equaliser EqΓA(Σq−ΣqT ) under the boundary map. We
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want the subset EqΣAΓ(M) of fields in this preimage which are also equal

under the two projection maps to A(Σ):

EqΣAΓ(M) AΓ(M) EqΓA(Σq−ΣqT ) A(Σ)

A(−Σ)

∂ proj.

proj. or. rev.
.

We can get ∂M from the disjoint union Σq−Σq T by identifying the two

copies of Γ. By our axiom for gluing without corners, this means there is an

injective gluing map

EqΓ(Ai−1(Σq−ΣqT )) Ai−1(∂M).
gl

Recall that we define Eq∂ΣA(T ) as the equaliser of the two maps:

Ai(T ) Ai−1(∂T = ∂Σq−∂Σ) A(∂Σ)

A(−∂Σ)

∂ projection

projection orientation reversal
.

The gluing map ‘gl’ enables us to write an enormous sequence of maps from

EqΣAΓ(M) to Eq∂ΣA(T ), which we have hidden away in Figure 1.6. This

long composition of maps induced by the boundary map M → ∂M is morally

just a boundary map from fields that agree on Σ to fields that agree on ∂Σ.

Call Tgl the result of applying gluing without corners to T . Let Mgl denote

the image of M with the two copies of Σ identified; then ∂(Mgl) = Tgl. We

require that there is an injective map

glue : EqΣAΓ(M)−→A(Mgl)

which makes the following square commute:

EqΣAΓ(M) Eq∂ΣA(T )

A(Mgl) A(Tgl)

Fig. 1.6

glue gl

∂

.
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EqΣAΓ(M)

AΓ(M)

A(M)

A(∂M)

gl(EqΓA(Σq−ΣqT ))

EqΓA(Σq−ΣqT )

A(Σ)×A(−Σ)×A(T )

A(T )

Eq∂ΣA(T )

∂

restriction

gl−1

projection

projection

Figure 1.6: Enormous sequence of maps, morally a boundary map.
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This map must also be compatible with boundary, etc. and must be surjective

up to extended isotopy. In the future, we will refer to gluing maps both with

and without corners as ‘gl.’

Equivalently but with less detail, let cgl be a field in Ai−1(Tgl) which is

transverse to Σ, and let c be the unglued version in Ai−1(T ). Let Ac(M) be

the preimage of c in Ai(M) under the boundary map (Figure 1.6). Using

boundary maps and projection, we get two maps from Ac(M) to A(Σ), one

using orientation reversal. Let EqcΣ(A(M)) be the set of fields which are

equal under the two maps. We require that there is an injective map

EqcΣ(A(M)) A(Mgl, cgl)

which is surjective up to extended isotopy, etc.

• Products. We require a map

Ai(M)−→Ai+1(M × I)

which sends F ∈ A(M) to F×I, and which commutes with boundary, disjoint

union, etc. If φ̄ : M →M is a homeomorphism and φ : M × I →M × I is a

fibre-preserving homeomorphism which projects to φ̄, then

φ(c× I) = φ̄(c)× I.

This enables us to define collar maps and extended isotopy.

Suppose Σ is an (n − 1)-dimensional submanifold of ∂M , where M is an

n-manifold. Let F be a field on M with ∂F transverse to ∂Σ. Define FΣ to

be the restriction of F to Σ. Glue Σ× I to M along Σ, and call the result

M ∪(Σ×I). We get a field F ∪(FΣ×I) on M∪(Σ×I) by gluing the fields F

and FΣ×I together along Σ. Let ϕ be a homeomorphism M ∪ (Σ×I)→M .

Then the map

F 7−→ ϕ(F ∪ (FΣ× I))

is called a collar map, which we illustrate in Figure 1.7.
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ϕ

Figure 1.7: A collar map.

• We may enrich fields over a symmetric monoidal category such as Vect. If

we do this, we must require that for the top dimension, An(M, c) is an object

of this category, and maps between fields in An(M, c) must be morphisms in

the category.

1.3.2 Local relations

Definition. A system of local relations is a collection of subsets of fields on balls

which satisfy the following properties. Let B be an n-manifold homeomorphic to

the standard n-ball, and let c be a field on ∂B. A collection of subsets S(B, c) ⊂
A(B, c) is a local relation if it satisfies the following:

• Functoriality. Relations are preserved under a homeomorphism ϕ : B → B′

between n-balls, i.e. ϕ(S(B, c)) = S(B′, ϕ(c)).

• Extended isotopy. An extended isotopy is an equivalence relation generated

by collar maps and homeomorphisms isotopic to the identity. If two fields

F,G ∈ A(B, c) are extended isotopic, then there is a relation between them

in S(B, c). This includes vanilla-flavoured isotopies.

• Ideal under gluing. If B splits into two sub-balls B = B′ ∪ B′′ with F ∈
S(B′, c) a local relation on B′ and F ′′ ∈ A(B′′) a field on B′′, then F ′∪F ′′ ∈
S(B).

1.3.3 Getting a TQFT

Using an n-dimensional system of fields and local relations, we can define

an (n+ ε)-dimensional TQFT. (Getting the (n+ 1)-dimensional part of a TQFT
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requires extra conditions.)

Definition. Let M be an n-manifold. Let S(M) be the subset of A(M) generated

by fields of the form F ∪G, where F ∈ S(B) is a local relation in some ball B ⊂M
and G ∈ A(M −B) is a field on the complement of the ball. Then

C(M) =A(M)/S(M)

is a TQFT.

1.3.4 Higher categories

An n-category defines an n-dimensional system of fields if we have the

following data:

• A cell decomposition of manifold M .

• Homeomorphisms around each k-cell to the standard sphere thought of as a

bihedron, dividing (k+ 1)-cells into domain and range.

• Labelling each k-cell with an (n−k)-morphism according to the homeomor-

phism above.

Thus, given an n-category, we can define a TQFT from fields and local

relations. There is also a dual construction in the reverse direction. According to

this yoga, we should get assigments

n-manifolds vector spaces

(n− 1)-manifolds categories

(n− 2)-manifolds 2-categories

0-manifolds n-categories

...

In Chapter 3, we discuss the case of (n− 1)-dimensional manifolds, which corre-

spond to 1-categories, for the particular case of Bar-Natan skein modules.



Chapter 2

Black-and-white skein modules

2.1 Notation and basic definitions

Let M be a compact n-manifold, possibly with boundary. Let

A : Mn −→ Set

be the functor which sends M to the set of oriented (n− 1)-dimensional subman-

ifolds F of M so that M −F has a black-and-white checkerboard colouring with

black on the side of the positive normal vector to F . The checkerboard colouring

will allow us to gracefully handle orientations later on. We call A(M) fields on M .

Note A(M) 6= ∅ because F may be the empty submanifold.

More generally, let c be an (n−2)-submanifold of ∂M . Let A(M, c) be the

set of oriented (n−1)-dimensional submanifolds F of M with ∂F = c, so that M−F
admits a checkerboard colouring as above. If there are no such submanifolds, we

define A(M, c) = 0.

Sometimes we will require some additional structure on our fields. We will

use Ȧ to refer to the functor which sends (M, c) to (n−1)-dimensional submanifolds

F of M as above, where additionally, each connected component of F may have

one or more dots away from ∂F . Dots are allowed to move freely on connected

components of F , but not across components. We may use the notation F • to

refer to a connected submanifold with a single dot on it.

We will use the following conventions:

24
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• C is a category and F is a functor.

• M is a 3-manifold; F,G are fields on M (2-dimensional submanifolds).

• Σ is a 2-manifold, such as ∂M ; c, a, b are fields on Σ.

• Γ is a 1-manifold; p, q are fields on Γ.

• ξ is a 0-manifold; ε is a field on ξ.

Recall the Bar-Natan relations on surfaces, illustrated in Figure 2.1.

= 0

= 0

= 1

= +

Figure 2.1: The Bar-Natan relations. In order from top to bottom, we refer to

them as the ‘two dots,’ ‘sphere,’ ‘dotted sphere,’ and ‘neck-cutting’ relations.

The sphere relations hold only when the sphere bounds a ball. Strictly

speaking, there are multiple versions of these relations, e.g. a sphere bounding a

black ball, and a sphere bounding a white ball. The colouring of the region inside

the neck must match the regions cut off by the disks in the neck-cutting relation.

Definition. Let R be a commutative, unital ring. Define RȦ(M, c) to be R-

linear combinations of elements of Ȧ(M, c). Let S(M, c;R) be the submodule of

RȦ(M, c) generated by the Bar-Natan relations and isotopy rel c.

The black-and-white skein module of M is then

B(M, c;R) =RȦ(M, c)/S(M, c;R).

By [Wal06], B is a TQFT.
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2.2 Simple examples

In the remainder of this chapter, we adapt the results in [AF07] on Bar-

Natan skein modules to black-and-white skein modules. Many of the proofs remain

largely unchanged.

Definition. A pure state is an element of the skein consisting of only one surface

(which need not be connected). The surface may have any number of dots, and

the complement may have either colouring.

Proposition 2.2.1 (AF Proposition 2.3). The skein module of a manifold is gen-

erated by pure incompressible states.

Proof. Use the appropriately coloured neck-cuttings to reduce all compressible

surfaces, then eliminate spheres bounding balls (black or white). After finitely

many steps, we get a linear combination of pure incompressible states.

Example 2.2.2. In S3, all surfaces are compressible to spheres bounding balls,

so the black-and-white skein is isomorphic to R⊕R, generated by two copies of

the empty surface, one with S3 (the complement) coloured black, and one with S3

coloured white.

Definition. We say surfaces F0 and F1 in M are parallel if there is an embedding

of F × I into M with F0 on one end and F1 on the other.

Proposition 2.2.3 (AF Proposition 2.4). Suppose a surface G has two parallel

connected surfaces F0 and F1 bounding a handlebody with only one colour. (The

colouring implies there are no other pieces of surface in between them.)

1. Let G0 be the surface where F0 has a dot and F1 does not, and let G1 be the

surface with the dots the other way. Then G0 =−G1.

2. Let H be the surface where both F0 and F1 have dots. Then H = 0 unless

G is a sphere, in which case H is equivalent to the surface with F0 and F1

removed.
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Proof. 1. F0#F1 =G0 +G1 by neck-cutting.

If you remove a disk from a surface to get F −D, then you can view the rest

of the surface as a ‘mostly flat’ disk-and-bands picture. The connect sum

bounds a solid handlebody (F −D)× I. If F is a sphere, the genus of the

handlebody is 0; otherwise, it is at least 2. In either case, by neck-cutting

and sphere relations, the connect sum is 0.

2. Similar. (F0#F1)• = H + 0. The connect sum is 0 unless F is a sphere, in

which case it is 1.

In general, moving dots around can be difficult, but filtering by the number

of connected components can help.

Definition. Let Fm be the span of surfaces in B(M ;R) with representatives with

fewer than m components.

It’s easy to get this backward, so we’ll spell out the details. We can always

arbitrarily increase the number of components, e.g. by adding dotted spheres

bounding balls. But we can only reduce the number (by ‘regenerating’ necks to

connect components) if there are appropriate dots or some components are spheres.

If you try filtering by submodules with greater than m components, the associated

graded is trivial.

Remark 2.2.4. Other filtrations might be possible. The component filtration

could be considered equivalent to filtering by Euler characteristic; we can also use

a modified version called ‘degree’ (see Remark 4.2.1). Grading by degree obviously

works, but the proof below doesn’t go through. Filtering by the number of dots

seems tempting, but it would need to be the number of dots on incompressible

surfaces somehow. If we get rid of the dotted sphere relation, then the number of

dots can only decrease, by regenerating necks.

Call the associated graded Gm = Fm/Fm−1. If R is a direct product of

simple rings, then B(M ;R) =
⊕

m Gm.
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Proposition 2.2.5 (AF Prop 2.5). 1. With G0 and G1 surfaces as above, but

not necessarily parallel, G0 =−G1 in Gm.

2. A pure state ofm components with more than one dot is zero in Gm (assuming

M is a connected manifold).

Proof. 1. F0#F1 is in Fm−1, so it is zero.

2. Use the first part to move dots around until one component has two dots.

Proposition 2.2.6 (AF Prop 2.6). IfM is a prime manifold, and {P±i } are distinct

pure incompressible states without dots and colouring on the complement indicated

by ±, then the P±i are linearly independent.

Proof. For a surface G+ consisting of P+
i union a bunch of dotted spheres bounding

balls and k blank tori compressing to spheres bounding balls, define f+
i (G+) to

be 2k, and otherwise 0. Similarly define f−i (G−). The f±i vanish on relations and

f
+/−
i (P

+/−
j ) = δji , so we get independence.

We need M to be prime because otherwise a torus can compress to two

different things, meaning the functional is not well-defined. (Imagine a torus.

Compressing it ‘the obvious way’ gives a sphere bounding a ball. But on the

outside you could have a solid torus connect sum something nontrivial. The solid

torus part means M is a lens space connect sum a nontrivial manifold.)

For the remainder of this chapter, assume 1
2
∈R.

Example 2.2.7. The skein of S1 × S2 is generated by pairs of spheres. More

specifically, let Zk be k parallel, nontrivial spheres (i.e. copies of {∗} × S2). Let

Żk be the same as Zk, but where one fixed sphere has a dot. Then

B(S1×S2;R) =R[Z2]⊕R[Ż2].

Proof. The incompressible surfaces in S1 × S2 are nontrivial spheres. Since the

spheres are parallel, we can use Proposition 2.2.3 to move dots between components

and remove consecutive dotted spheres. Thus there is at most one dot, and we
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may assume without loss of generality that the dot is on the ‘innermost’ sphere,

closest to {0}×S2. The colouring does not affect this simplification.

An element with a given colouring is isotopic to the element with the same

surface and the opposite colouring, because a sphere can be isotoped around the

back of the sphere, through {0}×S2 ∼ {1}×S2.

←− ∼= ←−

Figure 2.2: A diagrammatic view of isotopy ‘around the back.’

Now we invoke Proposition 2.2.6 to show the independence of the blank

spheres.

Remark 2.2.8. Note that while one of these surfaces is nulhomologous as a whole,

the individual components are not.

Example 2.2.9 (A Similar Example, Ltd.). The incompressible surfaces are in

T 3 = S1×S1×S1 are tori which are in one-to-one correspondence with triples of

relatively prime integers (p, q, r) that are not all zero, with (p, q, r)∼ (−p,−q,−r).
(Think of the triple as giving a normal vector.) Let F k

(p,q,r) be the surface with k

parallel blank (p, q, r) tori, and let Ḟ k
(p,q,r) be the same but with one dotted torus.

Then

B(T 3;R) =
⊕

(p,q,r)

R[F 2
(p,q,r)]⊕R[Ḟ 2

(p,q,r)].

The argument for S1×S2 can be applied here, too.

2.3 Seifert-fibred spaces

Before we discuss skeins of Seifert-fibred manifolds, first let us recall some

basic facts. A Seifert-fibred space is a 3-manifold that can be written as a disjoint

union of circles (fibres). Each fibre has a neighborhood that looks like a solid torus.
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If the fibre is in the boundary of M , it has a neighborhood that looks like half a

solid torus fibred by straight (vertical) lines. We will always assume M is compact.

Consider a solid cylinder D2 × I, where the top disk is rotated by e2πip/q,

that is, p/q of a full twist. Identify x on the bottom with the image ρ(x) on the top.

This is a ‘model Seifert fibring’ of the solid torus. Every fibre in a Seifert-fibred

manifold has a neighborhood diffeomorphic to a neighborhood of some fibre in a

model Seifert fibring via a fibre-preserving diffeomorphism.

The multiplicity of a fibre Γ is the number of times nearby fibres intersect

a small disk transverse to Γ. If the multiplicity is 1, the fibre is regular; if it is

more than 1, the fibre is singular (or exceptional or multiple). Note p/q fibering

is equivalent to p′/q′ if p/q = p′/q′ mod 1, so assume 0≤ p/q < 1.

Example 2.3.1. In a model Seifert fibering the center fibre has multiplicity q, but

any other fibre in the solid torus has multiplicity 1. (Consider a disk around it

small enough to be away from the center.)

Singular fibres lie in the interior of M and are isolated. Identifying fibres to

a single point gives a surface which is compact if M is compact, and away from the

singular fibres, the projection map is a fibre bundle. Since there are no singular

fibres in the boundary, the boundary consists of tori and Klein bottles (or just tori

if M is orientable).

You can quotient M to get a set of fibres, equivalent to a surface F with

some singular points, corresponding to the singular fibres. (This is also called an

orbifold. A Seifert-fibred space is an S1 bundle over a 2-dimensional orbifold.)

Note there are actually two ways to do the quotienting:

• Quotient D2× I → D2 by collapsing the interval, and then quotient by the

action of ρ, getting a q : 1 branched cover of the disk to itself away from the

center point, which is the branch set.

• Map D2×I →D2×I by quotienting (x, t)∼ (ρ(x), t), then collapse down to

the disk. This way is fibre-preserving.

Example 2.3.2 (A few simple examples). • S2×S1, or any surface cross S1,
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gives a trivial Seifert-fibred space, with no singular fibres. Note S1×S2 also

has nontrivial fiberings (it does not have a unique Seifert fibering).

• Lens spaces.

• The Poincaré homology sphere has base a sphere with 3 singular fibres of

multiplicity 2, 3, and 5.

This section heavily references [Bri07]. Seifert-fibred spaces are a basic topic

in 3-manifold topology, so there are many references. For background material in

this chapter, I have mostly relied on [Hat00]. I have mentioned other references in

the text, where I have used them, except the Wikipedia article [Wik15f]. Hatcher

recommends [Orl72].

2.3.1 Classification

Seifert-fibred spaces are classified by the base surface (its genus, orientabil-

ity, number of boundary components), and the surgery slopes of the singular fibres.

Mostly Seifert-fibred manifolds have a unique Seifert fibring, but there are a few

exceptions, for example Lens spaces, S3, and S1×S2. The reason is essentially the

solid torus doesn’t have a unique fibration, and gluing two solid tori together also

does not have a unique fibration. There are a few other nonorientable Seifert-fibred

spaces that also do not have unique fibrations.

If the base surface has no boundary, the sum of surgery slopes is called the

Euler number. This is an invariant of the fibering.

2.3.2 Horizontal and vertical surfaces

Definition. A surface is vertical if it is a union of regular fibres. A surface is

horizontal if it is transverse to all fibres.

Example 2.3.3. In S1 × S2, a sphere {∗} × S2 is horizontal; a tube S1 cross a

circle in S2 is a vertical torus. Note that the horizontal spheres are incompressible,

but there are no incompressible vertical surfaces in S1×S2.
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Remark 2.3.4. Since vertical surfaces are disjoint from singular fibres, they are

circle bundles, and thus must be annuli, tori, or Klein bottles. A connected vertical

surface maps to a simple closed curve under the projection map to the base.

Remark 2.3.5. If a Seifert-fibred space has a horizontal (orientable) surface F,

then the projection map is a branched cover, with multiplicity q branch points

corresponding to multiplicity q fibres. Cutting M along F (to get (M |F ) in

Hatcher’s notation) gives an I-bundle over F, which is a mapping cylinder FqF →
G for some surface G.

If (M |F ) is disconnected, then F splits M into two I-bundles, each with

only F as its boundary. An orientable I-bundle over an orientable surface has

two boundary components, so the two I-bundles must be over non-orientable

surfaces. Note M can still be orientable; e.g. the twisted I-bundle over RP 2

is orientable. (It’s analogous to the torus covering the Klein bottle.) In this

case, the map F qF →Gi, (i= 1, 2) is a nontrivial double cover. (Of course,

there are some restrictions on which double coverings can happen based on

Euler characteristic.) But this is only possible if the base is non-orientable.

A horizontal surface F must be orientable if the base is orientable, because

you can coherently orient the fibres transverse to the base; this can be pushed

along the fibres to give a coherent normal orientation along the horizontal

surface. In this case (M |F ) is connected, G = F, and the map is a trivial

double cover F qF → F. This shows M is an S1-bundle over F , and implies

M is homeomorphic to a mapping torus of some self-homeomorphism of S.

(Gluing (M |F ) back together shows this.)

See [Hat00, Zul01] for more.

2.3.3 Incompressible surfaces

Theorem 2.3.6 (Waldhausen). In a connected, compact, irreducible Seifert-fibred

space, any incompressible surface is isotopic to either a vertical surface, or a hor-

izontal surface.
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The next two results give partial converses to Waldhausen’s theorem.

Proposition 2.3.7. If M is an orientable Seifert-fibred space, and M has bound-

ary, then there are horizontal surfaces inM. IfM is orientable and has no boundary,

horizontal surfaces exist if and only if the Euler number is zero.

Proposition 2.3.8. In a compact, irreducible Seifert-fibred space, every orientable

horizontal surface is essential (incompressible and boundary-incompressible). This

is true of connected, orientable vertical surfaces too, except a torus bounding a

solid torus with a model Seifert fibering and at most one singular fibre, or an

annulus cutting of a solid torus with the product fibering.

There are many such results; these are all mentioned in [Hat00].

2.3.4 A surface that compresses to a horizontal surface and

a vertical surface

When we begin our investigation into chequered skein modules of Seifert-

fibred manifolds, we will be interested in whether it is possible to have a com-

pressible surface S with two distinct sequences of compressions, one leading to an

incompressible horizontal surface H and the other leading to an incompressible

vertical surface V. It turns out this is possible, as we’ll see below.

Suppose M is a Seifert-fibred space, orientable, with closed, connected,

orientable base Σ.

Proposition 2.3.9. If M has such a compressible surface S, then M fibres over

the circle with fibre F , where F has genus at least 1.

Proof. Recall a connected vertical surface projects to a simple closed curve on the

base. If there are 3 or fewer singular fibres, then on one side of a connected curve,

there is only one singular point. There will thus be a compressing disk in V unless

we have at least genus one base, or at least 4 singular fibres.

As discussed in Remark 2.3.5, M must fibre over the circle in order to

have an orientable horizontal surface. Also, M must be a mapping torus of some

homeomorphism h from F to itself. The homeomorphism h must be a map of
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finite order . To have a circle over a point x ∈ F , hk(x) must be equal to x for

some k (otherwise it would be a line); thus h is a map of finite order [Hem76], p.

121.

The homeomorphism type of a surface bundle over the circle depends only

on the isotopy class of the gluing homeomorphism. If h1 and h2 are isotopic

homeomorphisms, then h−1
2 composed with the isotopy gives a map between h−1

2 h1

and the identity. This induces a map on F ×I (by taking the identity on I), which

gives a well-defined map between the mapping tori Mh1 to Mh2 . (On the top, (x, 0)

maps to h−1
2 h1(x), and on the bottom, (h1(x), 1) gets mapped to (h1(x), 1). These

points are identified in Mh2 .) In fact this gives a homeomorphism.

Homotopic homeomorphisms of a surface are in fact isotopic. [Eps66]

On the sphere, homotopy classes of maps are determined by degree. Since

h is a homeomorphism, it must have either degree +1 or -1, for the identity or

the antipodal map. (Another way of saying this is the mapping class group of

the sphere is Z2.) Since we want an orientable manifold, we must have degree +1.

These maps can have 2 fixed points (like a rotation), but since the maps are in

the same isotopy class as the identity, the resulting spaces are all different Seifert

fibrations of S1 × S2. (Note lens spaces and S3 also have fibrations with base S2

and two singular points. These spaces - S1×S2, S3, and lens spaces - do not have

unique Seifert fibrations. In any case, these are not what we are looking for.) Thus

if F has genus 0, then Σ has genus 0, but not enough singular points for M to

have a vertical surface.

So let us consider maps of finite order on the torus. These relate to wallpa-

per groups, of which there are 17. Only 7 have a unique action (the other 10 are

combinations of the 7, so they give different orbifolds, but no new maps). Two of

the 7 have reflections and thus give nonorientable orbifolds.

The other maps, along with their orders and the orbifolds they produce,

are given in Table 2.1.

Since they only have 3 singular points, the Seifert-fibred spaces correspond-

ing to the last 3 maps in the table do not have vertical surfaces. The identity gives

the Seifert-fibred space S1×S1×S1, which we have already considered. That leaves
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Table 2.1: Maps of finite order on the torus which give orientable orbifolds.

map order orbifold notation orbifold description(
1 0

0 1

)
1 o torus

(
1 0

0 −1

)
2 2222 ‘closed pillowcase’ (sphere with 4 sin-

gular points of order 2)(
0 1

−1 −1

)
3 442 ‘samosa’ (sphere with 3 singular

points of the given orders)(
0 −1

1 0

)
4 333 samosa

(
0 1

−1 1

)
6 632 samosa

the map of order 2 (the hyperelliptic involution) as the only possible example of a

surface that can be compressed to both a horizontal incompressible surface and a

vertical incompressible surface.

Much of this discussion is in [Hem76], p. 121-122; Wikipedia helped fill

some gaps [Wik15d, Wik15g].

Example 2.3.10 (A specific example). Thanks to Charlie Frohman for this exam-

ple. Consider T 2× I glued by the hyperelliptic involution. The base space is the

sphere with 4 singular points. The vertical surfaces are tori separating 2 singular

points. The horizontal surface is a torus. Projecting to the base is a branched

cover with 4 branch points.

Take 2 horizontal tori, oriented oppositely, connected by 2 tubes. (The

tubes are vertical, but not special otherwise, i.e. not around singular points or

anything. This is a surface of genus 3. It is possible to compress it twice to get

either 2 parallel horizontal tori, or 2 parallel vertical tori.
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2.3.5 Black-and-white skeins of Seifert-fibred spaces

Let M be a compact, orientable Seifert-fibred manifold with orientable orb-

ifold Σ and projection map ψ : M → Σ. In addition, assume Σ is closed and

connected; hence M is closed and connected.

Theorem 2.3.11. The skein of M splits as a direct sum

B(M ;R) = BV (M ;R)⊕BH(M ;R),

where BV/H is generated by checkerboard-coloured vertical/horizontal surfaces which

may have dots.

Proof. Waldhausen’s theorem implies that the right-hand side spans B(M ;R).

However, it is possible to have a compressible surface S with two distinct se-

quences of compressions, one leading to an incompressible horizontal surface H

and the other leading to an incompressible vertical surface V.

We saw in Proposition 2.3.9 that if M has such a compressible surface S,

then M fibres over the circle with fibre F , where F has genus at least 1.

Lemma 2.3.12. If M has a surface S as above, then both H and V are zero in

the skein.

Proof. We can get S from H by attaching some ‘mostly vertical’ tubes to H.

If H has one component, M −H cannot be checkerboard-coloured since

M ∼= H × S1. So H must have an even number of components with opposite

orientations, and in particular, H has at least 2 components. These components

must be parallel copies of the fibre F .

The surface S can’t have more than n tubes connecting n components of H

or else H is zero by the two dots relation. Further, because the components of H

are parallel, with genus at least 1, S can’t have any tubes, by Proposition 2.2.3.

But since S must have at least one tube to be compressible to the two components,

H is always zero. (In fact, S must have at least 2 tubes to be able to get a vertical

surface by compressing.)

By Lemma 2.3.9, the components of H have at least genus 1, meaning S has

at least genus 3 and χ(S) ≤ −4. Since we are only considering closed, orientable
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surfaces, any vertical surfaces are composed of tori [Hat00]. So we must perform

at least two compressions; thus, there are at least two dots on each pure surface

in V. This is zero, as discussed below.

Thus there are no relations between horizontal and vertical surfaces in M .

BV

Recall vertical surfaces are in one-to-one correspondence with elements of

A(Σ), that is, 1-dimensional chequered submanifolds on the base Σ, and any con-

nected vertical surface must be a torus. A vertical surface is separating if and

only if the corresponding curve on Σ is separating. A connected sum of curves

corresponds to ‘annular sum’ of tori along longitudes. (This can be extended to

surfaces with boundary, but for the moment we restrict our attention to closed

surfaces.)

Definition (Annular sum). Let S1 and S2 be connected components of a 2-

dimensional submanifold of a 3-manifold M. We allow S1 and S2 to be on the

same component. Let A be an annulus properly embedded in M with each of its

boundary components ci properly embedded in Si. The colouring on M −S1 ∪S2

must be such that it would be possible to connect sum S1 and S2 so the tube would

coincide with A. Let Ni be a neighborhood of ci with ∂Ni = c′i∪ c′′i and let A′ and

A′′ be annuli parallel to A with ∂A′ = c′1 ∪ c′2 and ∂A′′ = c′′1 ∪ c′′2.

Define annular sum #A by

S1#AS2 = (S1−N1)∪ (S2−N2)∪A′ ∪A′′.

This depends on the choice of A.

Proposition 2.3.13 (AF Prop 5.2). Let S ′1 and S ′2 be the components of S1#AS2.

(Either S1 is the same component as S2, or S ′1 and S ′2 are on the same component.)

Then

Ṡ1 ∪S2 +S1 ∪ Ṡ2 = Ṡ ′1 ∪S ′2 +S ′1 ∪ Ṡ ′2.
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Proof. Annular sum is attaching a 1-handle (connect sum) followed by attaching

a 2-handle (a neck-cutting, where the neck is like a taco shell on the connect sum

neck). Thus either side is equal to S1#S2 by neck-cutting or reversing a neck-

cutting.

Since vertical surfaces correspond to curves, we make the following defini-

tion.

Definition. For an orbifold Σ, define af(Σ) as the submodule of RȦ(Σ) generated

by isotopy and the relations in Figure 2.3, which we call the Asaeda-Frohman rela-

tions. As with the Bar-Natan relations, each relation has two variations depending

on the colourings. Define B(Σ;R) =RȦ(Σ)/af(Σ).

= 0

= 0

= 2

+ = +

Figure 2.3: The Asaeda-Frohman relations on arcs: ‘two dots,’ ‘dotted circle,’

‘circle’ and ‘arc-sum’ or ‘neck-cutting.’ The circles must bound a disk, possibly

with one singular point (meaning they correspond to compressible tori).

Proposition 2.3.14 (AF Prop 5.5). Twice a dotted separating curve is zero.

Sketch of proof. Using annular sum and Proposition 2.3.13, we can pull curves past

genus. A curve that bounds singular points is zero by using the relations to isolate

a singular point inside a curve, and then remove it.

Perhaps this corollary deserves emphasis:

Corollary 2.3.15 (AF Lemma 5.9). If two circles cobound a surface F ⊆ Σ, a dot

can be moved across F from one circle to the other with a negative sign.
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Proof. The arc-sum relation implies the sum of the two pictures equals twice a

dotted separating curve (since the two circles cobound a surface), which is zero by

Proposition 2.3.14.

Lemma 2.3.16 (AF Lemma 5.10). A pure state with more than one dot is zero.

Proof. Let c and c′ be the dotted circles, with adjacent circles ci, i = 1, 2 . . . n in

between. WLOG, the in-between circles are blank, and all the circles are distinct.

The proof is by induction on n. We have ċ∪c1∪ ċ′ =−c∪ ċ1∪ ċ′+2 ˙(c#c1)∪ ċ′, etc.

We only know the connect sum is zero if it’s separating, so we must keep doing this

until we get two dots on c′ in every term. Thus we get zero. For the induction step,

moving the dot from c to c1 reduces the number of in-between circles to n−1.

Definition (Diagram, stack, weight, band). Note that, even aside from checker-

board colouring, these definitions are slightly different from those in [AF07]. For

a pure state α in B(Σ), we get the unreduced diagram Γ̂(α) by removing a small

neighborhood of each curve. Each connected component of the resulting surface

gives a vertex of Γ̂. Each circle gives an edge connecting vertices.

Two circles are in the same stack if they are connected by a bivalent vertex.

If a circle is not connected to any bivalent vertices, it is in a stack by itself. Define

the weight of a stack to be the number of circles in the stack. Checkerboard

colouring eliminates some configurations, which we discuss further below.

Define the diagram Γ(α) by removing bivalent vertices and increasing the

weight accordingly.

Γ(0) corresponds to the reduced set of connected components.

Γ(1) corresponds to the reduced set of edges e, i.e. to the stacks, along with

each stack’s weight and the Z2 homology class each circle in e determines.

We use e to refer to the stack, the edge, and the homology class simultaneously.

Note that each circle in a stack has the same homology class, but different stacks

may represent the same homology class.

For a stack e, define a band N(e) as follows. If the weight ≥ 1, order the

circles in the stack so that ci and ci+1 are adjacent circles, and take N(e) to be
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a connected surface in Σ containing the circles, with boundary c1q cn. The band

may depend on the particular ordering. If the stack has weight 1, set N(e) to be a

regular neighborhood of the circle, disjoint from other bands. Then all bands are

disjoint.

Note that dots can be moved through a stack easily (with a sign) by Corol-

lary 2.3.15.

Lemma 2.3.17 (AF Lemma 5.12). A dotted state α is zero if there is a connected

component F in the complement of the bands Σ−∪eN(e)◦ with more than two

distinct circles in α among its boundary components.

Proof. Let ci, i = 1, 2, 3 be distinct circles in α among the boundary circles of F,

and set αi to be the state with the same circles as α but a dot on ci. We can use

Corollary 2.3.15 to move the dot across a surface with three boundary components,

so we get α1 =−α2 = α3 =−α1, so α = 0.

Call a graph that corresponds to a pure state admissible.

Lemma 2.3.18 (AF Lemma 5.15). A graph is admissible if and only if for each

v ∈ Γ(0),

∑
e3v

e not a loop

e= 0.

Proof. In a graph corresponding to a pure state, a vertex v ∈ Γ(0) corresponds

to a surface with boundary corresponding to the edges connecting to v, thus the

sum of the edges is zero in homology. (If an edge is not a loop, it is separating,

hence zero in homology.) In the other direction, given a graph and data about the

surface, the admissibility condition means the edges in the graph correspond to

circles bounding a surface in Σ. Circles can be randomly assigned as necessary to

get the weight of an edge.

Lemma 2.3.19 (AF Lemmas 5.16-17). By Lemma 2.3.17, any dotted state with

a vertex with three or more distinct edges is zero. Recall that bivalent vertices

can be reduced by adding the weights (admissibility requires that the two edges
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have the same homology class). An edge abutting a single vertex corresponds to a

separating curve; we are assuming 1
2
∈ R, so by Proposition 2.3.14 these are zero.

Thus a reduced admissible graph corresponding to a dotted state consists of one

of:

1. a single loop at a single vertex

2. two loops at a single vertex.

3. an edge between two vertices with a loop at each vertex.

(We assume the homology classes associated to the two loops in 2 and 3 are dis-

tinct.)

To simplify the description of B(Σ), recall the filtration introduced earlier,

assuming R is a direct product of simple rings. Restrict it to BV and project it

to B(Σ), noting the number of components of a state in BV is the same as for the

corresponding state in B(Σ). Let Si be the span of states with ≤ i components and

with a dot on some component. Then S0 ⊆ S1 ⊆ S2 ⊆ . . . and the limit of the

Si’s, together with the undotted states, is B(Σ;R). Let G •i = Si/Si−1. Certainly

in G •i a state with more than one dot is zero.

If a loop has odd weight, the state does not admit a checkerboard colouring

and thus is zero. For graphs of form 2 or 3, the state is also zero if a loop has even

weight, by Lemma 2.3.17.

Proposition 2.3.20 (AF Prop 5.18). A reduced admissible graph representing a

state in G •i is zero except when i is even; in that case G •n is spanned by a single

loop with weight 2 and some homology class in H1(Σ;Z2) on the loop.

Theorem 2.3.21 (AF Theorem 5.19, structure of B(Σ).). Let H =H1(Σ;Z2) and

let A be the set of all reduced admissible graphs with no loops of odd weight.

Then

B(Σ)∼=
⊕
b/w

RA⊕⊕n≥2 evenRH.

Proposition 2.3.22 (Prop 5.2). BV (M)∼= B(Σ).
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Proof. The Bar-Natan surface relations may not correspond to arc relations (be-

cause they are not necessarily vertical). However, the arc relations do all have

obvious surface counterparts, so we get a well-defined map B(Σ)→ BV by taking

the preimage of a curve under the projection. This map is clearly surjective. Next,

we show B(Σ) injects into BV to get equality.

We already know undotted incompressible surfaces are linearly independent,

so we restrict our attention to dotted surfaces. Let Ḟ ′
n be the set of surfaces in

BV with representatives with n components or fewer and with a dot. We want to

show the preimage of a basis αi ∈ G •n is linearly independent in Ġ ′n = Ḟ ′
n/

˙F ′
n−1. By

previous results, we know anything with more than one dot is zero. Assume the

dot on each αi is chosen arbitrarily and fixed on some component. Let Ai be the

preimage ψ−1(αi), homeomorphic to αi×S1. We will define a linear functional to

show these are linearly independent. Let ϕi(B) = (−1)l2k if B is a disjoint union

of Ai with singly dotted spheres bounding balls and k blank tori compressible to

spheres bounding balls. The dot may live on a different component, where l is the

number of shifts to move the dot to the preferred component (this is all in terms

of αi, not Ai). We know l is well-defined mod 2 because αi is not zero. Otherwise,

set ϕi(B) = 0. We need to check that the ϕi’s behave well on relations.

This is clear except for neck-cutting. Let A∞ be the surface with the neck,

A+ the cut neck with the dot on the top disk, and A− the cut neck with the dot

on the bottom disk. The surface is the same outside of a ball containing these. We

want to check ϕi(A∞) = ϕi(A+)+ϕi(A−). We can assume A± do not have spheres

bounding balls or tori bounding solid tori.

Since A∞ has n− 1 components, it is zero in Ġ ′n.

If the surface underlying A± is incompressible but not isotopic to Ai, both

sides of the equality are zero. This is also true if the surface is compressible, because

it must again be not isotopic to Ai, which is incompressible with n components.

Thus both sides of the equality are zero, and we have linear independence.
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BH

As previously discussed, if M has a connected, orientable horizontal surface

G, then M is homeomorphic to a mapping torus of a homeomorphism h from G

to itself, and h is a map of finite order, obtained by following the (oriented) fibres

in the positive direction.

We can decompose H1(M) using Mayer-Vietoris (with two cylinders G×I).

This shows H1(M) = Z⊕H1(G)/(h∗− 1). The homeomorphism h gives a special

class generating Z, giving the circle part of M, and the rest of H1(M) is the

invariant part of H1(G), which we denote H1(G)h.

Orient G,Σ, and M. If G′ is a different (connected, oriented) horizontal

surface, we get an ordered pair (z(G′), d(G′)) in H1(G)h⊕Z, where d is the degree

of ψ|G′ . We get z by making G and G′ transverse and taking the class of their

oriented intersection in H1(G)h.

The image of this map is all indivisible elements. Two surfaces are isotopic

if and only if they have the same image. Let P (G) be indivisible elements with

d(G′)> 0. These are in one-to-one correspondence with isotopy classes of horizontal

surfaces in M. Let F k be k parallel copies of F ∈ P (G), and let Ḟ k be k parallel

copies of F where one fixed copy has a dot.

Theorem 2.3.23 (AF 5.21).

BH ∼=
⊕

F∈P (G)

{F 2k}k⊕{Ḟ 2k}k.

Two non-parallel horizontal surfaces cannot be disjoint. So an embedded

surface only has parallel surfaces, and nonisotopic surfaces are necessarily not

parallel (because the cylinder in between them would give an isotopy). From

there, the proof is like S1×S2.

Putting it all together,

Theorem 2.3.24. For M a Seifert-fibred space (orientable with orientable, closed,

connected base), R a direct product of simple rings with 1
2
,

B(M ;R)∼=
⊕
b/w

RA⊕⊕F{F 2k}k⊕{Ḟ 2k}k⊕⊕n≥2,evenRH.
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Contrast this with Asaeda and Frohman’s result for uncoloured Bar-Natan

skein modules.

Theorem 2.3.25 (AF Theorem 5.22). Let ∆ = {(a, a)} ∈ H ×H. Let A′ be the

set of all reduced, admissible graphs (including those with loops of odd weights).

Let F • be a single copy of F with a dot.

BN(M ;R)∼= RA′⊕⊕F ({F k}k⊕F •)⊕RH ⊕⊕n≥2,even⊕⊕n>1,oddR(H ×H)/∆).



Chapter 3

Computations for a local model

It is pleasant to avoid thinking about manifolds with boundary, but we must

face them if we want to compute B(M) by gluing together pieces of a manifold.

Tori are fundamental building blocks for 3-manifolds (via link surgery, JSJ decom-

positions, Heegaard splittings) so this chapter is dedicated to computing the skein

of the solid torus with some boundary curves of rational slope. In the process, we

reprove some results of [Rus09].

Our first step is to compute the skein of the solid cylinder D2× I. Under-

standing the category of a disk is a good starting point, since we can use it to

understand other surface categories (see 4). We can think this as an algebra, but

it is usually more convenient to think of it as a category.

3.1 Algebraic objects as categories

If G is a group, we can think of G as a category G with one object. All the

elements of the group we view as homs from the object (which also gets called G)

to itself. Composition is given by the group’s multiplication.

If R is a ring, we need a preadditive category (also called a linear category),

meaning the hom sets are abelian groups and composition is bilinear. So if F,G ∈
Hom(x, y), then F +G makes sense, and

E · (F +G) = E ·F +E ·G,

45
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etc., so all the ring structure makes sense, too.

Remark 3.1.1. Since a category has a unit for each object by definition, this is a

unital ring.

Definition. A functor M between pre-additive categories is additive if for all

objects x and y, the map Hom(x, y)→ Hom(M(x),M(y)) given by F 7→M(F )

is a group homomorphism.

If R and S are rings thought of as categories, an additive functor between

‘ring categories’ is a ring homomorphism.

For the sake of comparison, let’s recall some basic definitions.

Definition. A right-module A over a ring R is an abelian group (A,+), with an

operation (scalar multiplication) A×R→ A such that for all r, s ∈R and a, b ∈ A,

1. (a+ b)r = ar+ br

2. a(r+R s) = ar+ as

3. a(rs) = (ar)s

4. 1Ra= a if R has identity

A left-module is similar, but the action is on the left.

We can also think of a right R-module as a (covariant) additive functor

M : R→Ab. It sends the object R to a particular abelian group A. The literature

often uses the convention that left modules are covariant and right modules are

contravariant, but we use the opposite convention because it seems much more

reasonable for composing morphisms and gluing cylinders together. Thus when we

say module, we mean a right-module by default.

Let’s check the properties:

1. (a + b)r = ar + br. This is true because r, a morphism in Hom(R,R),

gets sent to a morphism in Hom(A,A) in the category Ab, namely a group

homomorphism from A to itself.
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2. a(r+R s) = ar+A as. This holds because M is an additive functor, so the

map Hom(R,R)→Hom(A,A) is a group homomorphism.

3. a(rs) = (ar)s

4. 1Ra = a if R has identity. The last two are true by functoriality, which says

M(f ◦ g) =M(f) ◦M(g) and M(idR) = idA.

The moral is that the action of the category R on A behaves correctly as

scalar multiplication in a module.

Example 3.1.2. For a preadditive category C, the map HomC(A,−) is a covariant

functor to Ab, giving a right-module.

A left R-module is a contravariant additive functor. Everything behaves

the same way, except 〈rs, a〉, the action of rs on a, is the homomorphism s ◦ r
evaluated on a instead of r ◦ s(a).

Example 3.1.3. For a preadditive category C, the map HomC(−, B) is a con-

travariant functor to Ab, giving a left-module.

Over a commutative ring R, a right-module A can be given a left-module

structure by defining ra = ar, [Hun74] p. 169. This is generally assumed to be

true, so that A is a bimodule over R.

Definition. An R–R bimodule A (also called an R-bimodule) is both a left and

right module over R.

Before we consider a categorical version of a bimodule, we will consider

modules over an algebra.

Definition. An algebra A over a commutative ring R is an R-module A with

multiplication [ · , · ], satisfying bilinearity:

• [ar+ bs, c] = [a, c]r+ [b, c]s

• [c, ar+ bs] = [c, a]r+ [c, b]s.

An associative algebra has associativity and identity.
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To have a category with the structure of an R-algebra, the category must

be an R-linear category (with one object).

Definition. A category is called R-linear if the Hom sets Hom(x, y) have an R-

module structure (for all objects x and y), and composition is R-bilinear.

This is an algebra since Hom(A,A) is an R-module, and composition being

R-bilinear gives the R-bilinear multiplication we need for an algebra. Again, A

has a unit, and composition is associative by definition of a category, so this is an

associative algebra. (We assume that Hom(A,A) in fact has the structure of an

R-bimodule.)

Remark 3.1.4. Additivity is also sometimes included in the definition of an R-

linear category, but all we need for an algebra is the definition above.

Definition. A right-module M over an algebra A (over a commutative ring R) is

a unitary (meaning 1R acts as the identity on M) right R-module such that M is

also a right-module over the ring A, and

(ma)r =m(ar) = (mr)a

for all r ∈R, a ∈ A,m ∈M .

A homomorphism of algebra modules is both an R-module and A-module

homomorphism.

In terms of categories, a module over an algebra is an additive functor

from an R-linear category A (with one object) to Ab. Since A must have a unit

(since it is a category), the R-module structure of M takes care of itself. The

property (ma)r = m(ar) is true by functoriality, and (mr)a = m(ar) since we

assume ra= ar.

Homomorphisms are natural transformations.

Now we return to the idea of an A–A bimodule M . It’s not clear what

it means to have a functor that is both covariant and contravariant (although it

does still make sense to have both a left and right action on something), so we’ll
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rephrase a bit. Let Aop be the opposite algebra of A, meaning it has the same

elements as A, but multiplication acts on the left:

a · b= ba.

Now we can think of an A–A bimodule as a right module over the enveloping

algebra of A, defined as Ae = Aop⊗A. The action of Ae on M is

m(a⊗ b) = amb.

Composition is

m(a⊗ b)(c⊗ d) = cambd.

This generalises nicely to categories, since we can think of the bimodule as

a covariant functor Aop ⊗A → Ab. Note that a covariant functor on Aop is the

same as a contravariant functor on A, so in some sense this is a functor which is

both co- and contravariant.

Example 3.1.5. For a preadditive category C, the map HomC(−,−) is a covariant

functor Ce→Ab, giving a bimodule.

Proposition 3.1.6. Suppose categories C, D, and E are such that each object

c ∈ C gives a functor Lc :D→ E and each object d ∈ D gives a functor Rd : C → E
so that the two functors agree, i.e. Lc(d) =Rd(c).

We can combine the two functors into a bifunctor C ×D → E which sends

a pair of objects (c, d) to Lc(d) = Rd(c) if and only if for every pair of morphisms

F : c→ c′ and G : d→ d′, the following square commutes:

Lc(d) =Rd(c) Rd(c
′) = Lc′(d)

Lc(d
′) =Rd′(c) Rd′(c

′) = Lc′(d
′)

Rd(F )

Lc(G) Lc′ (G)

Rd′ (F )

.

It is easy to see this holds for HomC(A,−), HomC(−, B), and HomC(−,−).

For more on bifunctors and product categories, see [ML78] pages 36-38.
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Remark 3.1.7. A natural generalisation of modules over rings/algebras is just

to allow any preadditive (linear) or R-linear category (so more than one object is

possible).

The real advantage of using a category to describe the skein of the solid

cylinder is being able to use different objects, so this is what we do below.

Other references for this section are [Hun74, Wik15c, Wik15e, Wik15a].

3.2 Surface categories

Now we begin our study of ‘local’ computations of chequered skein modules

from Walker’s formalism of TQFTs [Wal06, MW11].

Given an n-dimensional TQFT from fields and local relations, we can pro-

duce an k-category associated to an n−k-manifold. In the case of black-and-white

skein modules, we can define a ‘cylinder category’ C(Σ) for a closed surface Σ

using the skein B(Σ× I). The objects are fields a, b ∈ A(Σ), and

Hom(a, b)∼= B(Σ× I, (a, b̂)).

The composition FG of F ∈ Hom(a, b) and G ∈ Hom(b, d) is the image under

gluing in B(Σ×I, (a, d̂)). Gluing is well-defined by a theorem of Walker, which we

state below for black-and-white skeins.

We can generalise all of the above to get a category for a surface with

boundary as well. Let Σ be a surface with Γ = ∂Σ, and let p, q be fields on Γ. Fix

c] ∈ A(Γ×I, (p, q̂)). The objects of the category are curve systems a ∈ A(Σ, p), b ∈
A(Σ, q), and B(Σ×I, (a, b̂, c)) is an algebra (or category) under gluing. In the case

when p= q and c] = {p}× I, we will call this C(Σ, p).

Remark 3.2.1. Objects like and , though isomorphic, are included as distinct

objects. For convenience, we may refer to the equivalent category with only one

object from each isomorphism class. This is a Morita equivalence; note in particular

that Hochschild homology is preserved.



51

3.2.1 A Tale of Two Gluing Theorems

Gluing without corners

Let M be a 3-manifold with whose boundary has several components, two

of which are homeomorphic. Thus we can write ∂M = Σ q −Σ q T. Let a be

a field on Σ. We further require that the homeomorphism on Σ respects the

checkerboard colouring on Σ− a. Define Mgl to be M with Σ and −Σ identified

via the homeomorphism. Fields on ∂M are isomorphic to the product of fields on

the connected components, i.e.

A(∂M)∼=A(Σ)×A(−Σ)×A(T ).

Thus, if c is a field on T , then (a, â, c) ∈ A(∂M).

The gluing M →Mgl gives a map

Ȧ(M, (a, â, c))−→ Ȧ(Mgl, c).

Dots are assumed to be away from the boundary of surfaces in A(M, (a, â, c), so

they present no complications. This map induces a map

RȦ(M, (a, â, c))−→RȦ(Mgl, c).

This in turn induces a map

B(M, (a, â, c))−→B(Mgl, c),

since local relations in M still hold in Mgl.

Theorem 3.2.2. Let L be the submodule of
⊕

a B(M, (a, â, c)) generated by ele-

ments of the form FG−GF, where F ∈ Ȧ(Σ× I, (a, b̂)) and G ∈ Ȧ(Σ× I, (b, â)).

Then

B(Mgl)∼=
⊕
a

B(M, (a, â, c))/L.

We could equally well view C(Σ) as an algebra with elements F ∈Hom(a, b)

and G ∈ Hom(c, d), and multiplication given by gluing. This is also a Morita
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equivalence, preserving Hochschild homology. We can then rephrase Theorem 3.2.2

as

B(M ∪ΣN)∼= B(M)⊗C(Σ) B(N)

although Theorem 3.2.2 is slightly stronger in that it allows gluing a manifold to

itself. See also [Kai09] for a special case.

Gluing with corners

Let M be a 3-manifold with ∂M = Σ∪(−Σ)∪T , and ∂Σ = Γ, ∂T =−ΓqΓ.

As before, define Mgl to be M with Σ and −Σ identified, and define Tgl to be T

with Γ and −Γ identified so that ∂Mgl = Tgl.

Let p ∈ A(Γ) and let c ∈ A(Tgl) be such that c is the image under gluing of

c] ∈ A(T, (p, p̂)). The gluing theorem with corners is:

Theorem 3.2.3. Let L be the submodule of
⊕

a∈A(Σ,p) B(M, (a, â, c])) generated by

elements of the form FG−GF . Then

B(Mgl, c)∼=
⊕

a∈A(Σ,p)

B(M, (a, â, c]))/L.

3.3 The solid cylinder

Now we consider the particular case of the category of the disk. Let p be a

collection of 2m distinct points in ∂D2.

The category C(D2, p)

For convenience, we will call this C2m. The objects are checkerboard-

coloured Temperley-Lieb pictures in D2 with boundary p. The morphisms are

surfaces in the ‘can’ between two such pictures with matching checkerboard colour-

ing around the boundary of the disk.

An object a could include a closed component d (a disjoint circle away from

the boundary of the disk). However, d is boring addition, because any surface in

Hom(a,−) must have a compressing disk just inside the manifold from d. Cut-

ting this neck gives a disjoint disk D or Ḋ bounding d. As observed in [Kai09],
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algebraically, d’s presence just means tensoring on two copies of the ground ring

to the skein module, i.e.

B(D2× I, aq d)∼= B(D2× I, a)⊗R[D]⊕R[Ḋ].

When it comes to calculating the skein of the solid torus, a d is even less interesting,

because the circle itself gives a compressing disk—it doesn’t even create a boring

generator. Thus we will neglect such possibilities. Note, however, a curve which

cuts off a disk intersecting the boundary is still interesting.

Once we have chosen a pair of Temperley-Lieb pictures a and b in the disk,

we know precisely what morphisms go between them.

Lemma 3.3.1. Up to local relations and isotopy, Hom(a, b) has only one unmarked

element F . If a = b, F consists of a bunch of ‘curtains,’ a × I. If a 6= b, F

is a composition of elementary saddles. The other morphisms in Hom(a, b) are

dotted versions of F , i.e. the underlying surface is the same, but each connected

component may or may not have a dot.

Proof. Given a fixed set of boundary conditions a and b, Hom(a, b) is the skein of

the solid cylinder, B(D2 × I, (a, b̂, p× I)). This cylinder is homeomorphic to the

ball B3 with some number of boundary circles, hence the incompressible surfaces

are bunches of disks. Since the surface a× I is incompressible and there is only

one such surface up to isotopy, we have the result for a= b.

If a 6= b, morsify the surface and consider the ‘movie’ from slicing the

cobordism and progressing along the interval, perpendicular to the slices. Since we

are assuming we have removed all closed components, any circle that appears must

merge with an arc attaching to the boundary. Thus any minimum (or maximum

by symmetry) must have a cancelling saddle, and the morsified surface is isotopic

to one that only consists of saddles and curtains.

For the remainder of this discussion, we continue to consider morsified sur-

faces with a fixed ordering of saddles. Note that there might be different orderings

of saddles that give the same surface—there is only one surface up to isotopy.

Clearly, Hom(b, a) is generated by the same marked surfaces as Hom(a, b)

in reverse. We denote the reverse surface of F by F ∗.
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Example 3.3.2 (The 12-morphism category C4). The primordial example is the

category of a disk with four points. There are two objects in the category, a ‘0-

smoothing’ and ‘1-smoothing.’ There are twelve morphisms: identities from each

object to itself (arcs cross I, blank curtains), and 3 more curtain morphisms for

each object, one for each configuration of dots. The other morphisms are saddles,

with and without a dot, and the same surfaces in reverse.

3.4 Hochschild Homology

To get the solid torus from the solid cylinder D2× I, we glue together the

ends os the interval to make a circle. The algebraic glue we need is Hochschild

homology. See [MW11] for an explicit description of Hochschild homology’s rela-

tionship to the circle.

The usual definition of Hochschild homology is for a bimodule M over

an algebra A (over a commutative ring R). Tensor products are over R unless

otherwise noted.

Definition. The nth chain group of the Hochschild chain complex of M is Cn =

M⊗A⊗n. From Cn to Cn−1 we get a collection of maps di by multiplying successive

pairs of elements, i.e.

di(m⊗ a1⊗ · · ·⊗ an) =


ma1⊗ · · ·⊗ an i= 0

m⊗ a1⊗ · · ·⊗ aiai+1⊗ · · ·⊗ an 0< i < n

anm⊗ a1⊗ · · ·⊗ an−1 i= n

.

The differential d : Cn→ Cn−1 is given by the alternating sum d=
n∑
i=0

(−1)idi. The

homology of this chain complex is the Hochschild homology HH∗(A,M) of M . We

write HH∗(A) if M = A.

Example 3.4.1. If M = A=R, the complex is

. . .
0−→R

1−→R
0−→R−→ 0.

So HH0(R) =R and HH≥1 = 0.
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Example 3.4.2.

HH0(A) =
A

ab− ba
= A/ [A,A] .

An algebra and a module walk into a bar complex.

Definition. The bar complex of an algebra A is the complex

. . .−→ A⊗n+1 d′−→ A⊗n −→ · · · −→ A⊗2 −→ 0

with d′ =
n−1∑
i=0

(−1)idi, where di are as in the definition for the Hochschild complex.

Recall the enveloping algebra Ae = Aop ⊗ A allows us to define an A-

bimodule as a right module over Ae by the action m(a⊗ b) = amb.

Proposition 3.4.3. The bar complex is a resolution of A as an Ae-module. (See

[Lod92], 1.1.12.)

Proposition 3.4.4. If A is a projective module over R, then there is an isomor-

phism HH∗(A,M)∼= TorA
e

n (A,M), so the bar complex gives a prescriptive method

for computing Tor, and thus for computing Hochschild homology.

Categories

The Hochschild complex of an R-linear category C is

Cn =
⊕

ai∈Obj(C)

Hom(a1, a2)⊗ · · ·⊗Hom(an+1, a1),

with the obvious boundary map taking an alternate sum and composing pairs of

morphisms.

For a bimodule over the category C (by which we mean a functor M :

Cop×C→Ab), the Hochschild chain groups are

Cn =
⊕

M(b1, b2)⊗Hom(b2, b3) · · · ⊗Hom(bn, bn+1).

If we have a functor R : C → C we can also define twisted Hochschild

homology with di = m⊗ f1 ⊗ . . . fifi+1 . . . fn for 1 < i < n as before, but with

d1 = mR(f1)⊗ f2⊗ · · · ⊗ fn and dn = fnm⊗ f1⊗ · · · ⊗ fn−1. See [Sit05] pages 2-3
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for the algebra version (referred to as ‘natural twisted Hochschild homology’) and

variations. We use this with a literal twist in Section 3.6.

Other references used for Sections 3.4.1 and 3.4 are [Wei94] chapter 9,

[Lod92] chapter 1, and [Wik15b].

3.4.1 Morita Equivalence

Definition. Two rings R and S are Morita equivalent if there is an R–S bimodule

P and an S–R bimodule Q such that RPS ⊗S QR
∼= R as an R–R bimodule and

SQR⊗R PS ∼= S as an S–S bimodule.

Example 3.4.5 (The Standard Example). R is Morita equivalent to Mn(R). P

is the set of n-dimensional row vectors, and Q is the set of n-dimensional column

vectors.

We can think of Morita equivalence as saying two rings are equivalent if

they have the same modules. This is natural from the perspective of ring theory,

because modules over a ring can be thought of as representations of the ring, and

many properties of rings are characterised by their modules.

Lemma 3.4.6. In fact, R and S are Morita equivalent if and only if the categories

of bimodules R–mod–R and S–mod–S are equivalent as categories.

In particular, this implies that thinking of a ring as a category is a Morita

equivalence.

3.5 Hochschild homology of the disk category

When we glue the two ends of the cylinder together, we get a solid torus

with boundary curves c = p× S1. Applying Theorem 3.2.1 to the skein modules,

we have

B(D2×S1, c)∼=
⊕

a∈A(D2,p)

B(D2× I, (a, â, p× I))/ 〈FG−GF 〉 .
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Rephasing this in terms of the category C2m, this says the skein

B(D2×S1, c)∼=
⊕

a,b∈Obj(C2m)

Hom(a, b)⊗Hom(b, a)/ 〈FG−GF 〉 ,

which is precisely HH0(C2m). Intuitively, we are saying the skein of the solid torus

is the same as the skein of the solid cylinder, with additional relations that come

from choosing where to cut the torus.

Let F,G ∈Hom(a, b), where F is the unmarked surface. By Lemma 3.3.1,

every relation is of the form FG∗ = G∗F . There is actually a simple presentation

for the skein module of the solid torus with 2m longitudinal curves, namely, it

suffices to consider F to be a single saddle along with m− 2 curtains (as opposed

to a composition of many saddles) [Rus09]. We will reprove Russell’s result here

in somewhat different language, more suited to our local framework, though it is

very similar in spirit. (Also, see 2.3.)

Let HR2m be the module spanned by Ȧ(D2, p)/af , where af is the sub-

module generated by the Asaeda-Frohman relations (Definition 2.3.5).

Theorem 3.5.1. B(D2×S1, c)∼= HH0(C2m)∼= HR2m.

Proof. The incompressible surfaces in D2×S1 are annuli, so the generating mor-

phisms in C2m are curtains, which obviously correspond to the generators of HR2m.

So to prove the theorem, we need to show that the relations from taking Hochschild

homology are the same as the relations in HR2m.

Like Russell, we induct, but we instead induct on the number of saddles in

F . By Lemma 3.3.1, this is equivalent to inducting on the number of compressing

disks in FG∗. The base case, k = 1, gives the most fundamental relation, which

Russell calls a Type I relation. Her ‘Type II’ relation is in some sense less basic,

because it can be obtained by sticking a dotted curtain onto the Type I surfaces.

Remark 3.5.2. A key observation for the proof is that dots can slide through

saddles, Id•aF = FId•b . Thus adding dots to an old relation gives us another

relation.

Assume that if if F ∈ Hom(a, b) has k saddles or fewer, then a relation

FG = GF can be obtained by a linear combination of Type I and II relations.
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=

Figure 3.1: Moving a dot through a saddle

We want to show sFF ∗s∗ = F ∗s∗sF is also a linear combination of Type I and II

relations, where s is an elementary saddle with curtains. (Note there can be no

more than m saddles, by the two-dots relation.)

Consider sFF ∗s∗. We can think of the FF ∗ as giving a bunch of dots on a

single saddle with curtains (s or s∗), and use square brackets to indicate that we are

thinking of FF ∗ as the surface with all of its necks cut - a defeated hydra. We have

s([FF ∗]s∗) = ([FF ∗]s∗)s, because a relation with a single saddle is obtainable with

Type I and II relations. Now reverse the neck cutting - bringing the FF ∗ hydra

back to life - and think of this surface instead as F (F ∗[s∗s]), which is (F ∗[s∗s])F ,

using the induction hypothesis.

3.6 Now with a twist

Now we will rework the first part of the chapter for boundary curves that

twist around the torus. As before, we start by understanding the cylinder.

3.6.1 A twisted cylinder

Consider the homeomorphism τ j of the cylinder which acts by fixing one

end of the cylinder and rotating the other end by jπ/m counter-clockwise. For

convenience in our definitions, we also refer to the functor Rj : C2m→C2m which

simply rotates all objects and morphisms by jπ/m.

Define T j to be the bifunctor T j : Cop
2m⊗C2m→Ab which sends a pair of

objects (a, b) to the skein module

T j(a, b) = B(τ j(D2× I, (a, b, p× I))).
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On a pair of morphisms F : a→ a′ and G : b→ b′, we define

T j(F,G) = F ∗ ∪(D2,a) T j(a, b)∪(D2,R(b))Rj(G).

There is also an inverse functor T −j corresponding to rotating the end clockwise.

We abuse the notation and also refer to T jC2m =
⊕

a,b∈Obj(C2m) B(τ j(D2×
I, (a, b, p×I))). We can view T jC2m as a bimodule over the surface algebra of the

disk instead of thinking of the bifunctor T j.

Figure 3.2: An element of T −2C4.

Clearly, T j induces an isomorphism of R-modules

T jC2m
∼= C2m,

although they are not isomorphic as bimodules. Lemma 3.3.1 thus implies that

for a given a, b ∈Obj(C2m), there is still a unique blank morphism between them,

either ‘twisted curtains’ or a collection of saddles with twisting boundary.

3.6.2 Come on torus, let’s do the twist

Now let us consider the effect of gluing together the ends of T jC2m, giving

a ‘twisted torus.’ As before, we accomplish this algebraically using Hochschild

homology. We will not allow j to be odd as this would force black regions to be

glued to white regions. If k = j mod 2m, then τ k gives a Dehn twist on the solid

torus, and an isomorphism of skein modules:

HH0(T k,C2m)∼= HH0(T j,C2m).

Proposition 3.6.1. In fact, we will show that the skein only depends on the order

of the rotation.
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Blank generators

The incompressible surfaces in the twisted torus are still annuli, by the

same standard facts as before. Each generator of T 2kC2m has (m, k) = gcd(m, k)

annuli. This is a result of elementary facts about cyclic groups, namely, the order

of k in Zm is m/(m, k). See [Hun74], section 1.3.

Using the uniqueness of surfaces up to isotopy, we can use a ∈ Obj(C2m)

to represent the blank surface in T j(a, a)⊗HomC2m(R(a), a). Thus we can hope

to reduce the skein of the twisted torus to a 2-dimensional presentation, as we did

with HH0(C2m). There is some ambiguity about the placement of dots, which we

will address later.

If a picture is not symmetric, it is not a generator because it will need

at least one saddle to get back to the starting picture (so that it can be closed

up). The glued-up surface then has genus, i.e. a compressing disk. (We can see

this using Euler characteristic. Assume that the twisted part has no saddles. If

a 6= R2ka, then it takes at least one saddle to be able to close up the torus. But

then we have 1 saddle and m− 2 bands, i.e. m− 1 disks. Gluing these along m

arcs, we get χ=−1, i.e. not annuli because χ 6= 0. Actually, we can’t have an odd

number of saddles because compression increases χ by 2 (removing a circle and

adding two disks) so starting from an odd χ would never give zero. But increasing

the number of saddles just decreases the starting Euler characteristic.)

Example 3.6.2 (T 2C4). The curves connect in such a way that there are only two

circles on the boundary, hence one annulus in the torus. However, there are in fact

two non-boundary isotopic annuli bounding these curves. (The one that connects

the 1st boundary point to the 2nd and the one that connects the 1st boundary

point to the 4th, corresponding to the ‘0-smoothing’ and ‘1-smoothing’ objects.)

Cyclic sieving phenomenon

Since we can represent both the skein of the torus with product boundary

p× I and the skein of the torus with twisted boundary curves with elements of

Ȧ(D2, p), we might ask what the relationship is between the two sets of generators.
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For simplicity, let us restrict our attention to blank generators for the moment.

For the product boundary case, we know there are Cm blank generators, where

Cm =
1

2

(
2m

m

)

is the mth Catalan number.

When we apply a twist, we need to ask: how many fields in the disk are

symmetric with respect to rotation by 2kπ/m? We can answer using known results

about the cyclic sieving phenomenon.

Definition. Given a set X, an action of C = 〈g〉 of order N, and a polynomial

f(q), the triple (X,C, f(q)) is said to exhibit the cyclic sieving phenomenon if the

number of elements fixed by gd equals the evaluation f(e2dπi/N) for all d.

In [RSW04] section 7, Reiner, Stanton, and White proved that the cyclic

sieving phenomenon holds when X is the set of crossingless matchings on 2m

points, g is rotation by π/m (order 2m), and

f(q) =
[2m]!

[m+ 1]![m]!
,

where

[n]! = [n][n− 1] . . . [2][1]

and

[n] =
qn− 1

q− 1
= 1 + q+ q2 + · · ·+ qn−1.

Also see the survey by Sagan [Sag10] for a general introduction, and section 10 in

particular.

In fact, Reiner, Stanton, and White proved something stronger, using non-

crossing partitions. Consider m vertices of a convex m-gon ordered circularly

1, 2, . . . ,m. A partition is noncrossing if the blocks of the partition correspond

to subsets of the vertices whose convex hulls are pairwise disjoint. Noncrossing

partitions are in one-to-one correspondence with Temperley-Lieb pictures on 2m

points. We illustrate an example of the correspondence with m= 4 in Figures 3.3

and 3.4.
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Figure 3.3: ‘Set partitions 4; Hasse; circles’ by Watchduck (a.k.a. Tilman

Piesk). Licensed under CC BY 3.0 via Wikimedia Commons [Pie]. Points in a

coloured region are in the same partition. The different colours indicate the rank

of the partition.

Figure 3.4: The corresponding Temperley-Lieb diagrams. Note the ‘crossing

partition’ has no equivalent.
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Theorem 3.6.3 (RSW). The number of pictures invariant under a rotation of

order d≥ 2 is

j=m−1∑
j=0



m− j
m

(
m
d

j
d

)2

if d | j

j+ 1

m

(
m
d

j+1
d

)2

if d | (j+ 1)

0 otherwise.

The sum is over the rank of the partition j =m− b, where b is the number

of blocks in the partition.

As a corollary, this gives the number of blank generators of T 2kC2m. Note

that for m≥ 1, this number only depends on (m, k), the number of annuli that each

generator has. We can invoke Proposition 2.2.6 to show the linear independence

of the blank incompressible surfaces.

Example 3.6.4 (k = 1). Taking k = 1 corresponds to rotation by 2π
m

, which has

order d=m, meaning d only divides 0 and (m− 1) + 1 =m. The sum is then

1

(
1

0

)2

+ 1

(
1

1

)2

= 2.

Example 3.6.5 (m= 8, k = 2). The rotation here is by π, order 2. The sum is

1 +
1

4

(
4

1

)2

+
3

4

(
4

1

)2

+ 2
1

2

(
4

2

)2

+
3

4

(
4

3

)2

+
1

4

(
4

3

)2

+ 1 = 70.

We give more examples in Table 3.1.

Dots and relations

We know one presentation for HH0(T 2k,C2m) is⊕
a∈Obj(C2m) T 2k(a, a)

FT = TR2k(F )
,

where F ∈HomC2m(a, b) and T ∈ T 2k(b, a). However, if R2ka 6= a then

Fm=mR2k(F )
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Table 3.1: Counts of blank generators of T 2kC2m. This does not include dotted

versions of generators or account for relations. Cm refers to the mth Catalan

number and qCm to the mth quantum Catalan number.

m Cm k (m, k) order generators qCm

1 1 1 1 1 1 1

2 2 1 1 2 2 1 + q

3 5 1, 2 1 3 2 1 + q2 + q3 + q4 + q6

4 14 1, 3 1 4 2 (1 + q4)(q2− q+ 1)(1 + q+

· · ·+ q6)

4 2 2 2 6

5 42 1, 2, 3, 4 1 5 2 (1 + q4)(q2− q+ 1)(q6 + q3 +

1)(q4− q3 + q2− q+ 1)(1 + q+

· · ·+ q6)

6 132 1, 5 1 6 2

6 2, 4 2 3 6 (1 + q4)(q2− q+ 1)(q6 + q3 +

1)(q4− q3 + q2− q+ 1)(q4−
q2 + 1)(1 + q+ · · ·+ q10)

6 3 3 2 20

8 1430 4 4 2 70 −
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only describes an unsymmetric element in terms of the symmetric generators. So

the relation tells us no more than what we found in Section 3.6.2, namely, there

is a smaller number of blank generators. We want to describe the skein in terms

of this reduced set of generators, ideally using only planar pictures. Taking all

possible configurations of dots gives us a spanning set of generators.

Thinking geometrically about the relation, it tells us that the surface does

not have any necks in the cylinder composed in one order but it does have a neck in

the other order. In other words, the relation merely says that this surface, which

is incompressible in the cylinder, gives a compressible surface in the torus. As

for the torus with product boundary curves, interesting new relations come from

composing saddles in different orders because they give distinct necks in both

orders of composition. (Cutting the necks in the two compositions amounts to

compressing a surface in different ways in the torus.)

Note that the number of connected components limits the number of necks

we need consider. For instance, if (m, k) = 1, there can be at most one neck

(two saddles) or the element is zero in the skein. The tricky bit is that there is a

lot of isotopy to go around; (s1s2)T = TR2k(s1s2) is not an interesting relation,

but T (s1s2) is isotopic rel boundary to (Ts1)s2 = s2(Ts1), which might be an

interesting relation. Relations in HR2m between two symmetric pictures will still

be relations in T HR2m, but are there any other relations?

Example 3.6.6 (m = 6, k = 1). From Example 3.6.4, we know that there are

two blank incompressible surfaces. Each is an annulus. The blank generators are

linearly independent, but there may be a relation between the dotted versions.

Using a (somewhat cumbersome) procedure of iterating Hochschild relations and

isotopies rel boundary, we can in fact produce a relation. We start with a composi-

tion of saddles in Hom(a, a) which is equivalent to a dotted annulus. We represent

this with a row of pictures

a→ b→R2k(a) = a.

Then we apply a Hochschild homology relation to show the above surface is equiv-
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alent to the surface represented by

b→R2k(a)→R2k(b).

The isotopy changes the order of the two saddles, so we get

b→ d→R2k(b).

Then we repeat until we get to a row with symmetric pictures on the end again.

We give two versions of this calculation. In Figure 3.5, we represent the

cylinder with the objects on the ends drawn as disks, and in Figure 3.6 we use

a bijection with Temperley-Lieb pictures on a line. The second version is less

topologically accurate, but it is perhaps easier to see patterns.

This computation gives us the relation:

2 = 2

where the dotted lines indicate a ‘quantum dot’ that exists equally much on each

arc.

In fact, not only are all the generators symmetric under the rotation, we

can get all relations using only those which are symmetric under the rotation.

Theorem 3.6.7. Let V = A(D2, 2m). Let W be the subspace generated by type I

and II relations, so HR2m = V/W. Let G= Zk and let V G be the invariant part of

V (the symmetric pictures under R2k). Then the kernel of the map (V G ↪→ V →
V/W ) gives the relations between symmetric pictures.

Proof. Suppose x, y ∈ V G with x − y = w ∈ W. Let φ be the symmetriser

1
k

∑k
0 φ

i(x). We have

φ(x)−φ(y) = φ(w) = x− y.

So the kernel is φ(W ), the symmetric relations.

We can thus represent the skein with pictures in a ‘cone’ (a fraction of a

disk) with fractional dots. (Perhaps, for the sake of the dots, it would be better
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Hochschild relation

s1 T 2s∗1

isotopy

T 2s∗1 R2s1

T 2s2 R2s3

Hochschild relation

s3 T 2s2

isotopy

Hochschild relation

s4 T 2s5

etc.

Figure 3.5: Disk form of calculation for Example 3.6.6.
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Hochschild relation

s1 T 2s∗1

isotopy

T 2s∗1 R2s1

T 2s2 R2s3

Hochschild relation

s3 T 2s2

isotopy

Hochschild relation

s4 T 2s5

etc.

Figure 3.6: Flat version of Example 3.6.6.
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Figure 3.7: Blank cone pictures for m= 4 and k = 2.

to use a round version, but we have chosen the form given to distinguish it from

the untwisted torus.) Then the Type I and II relations in the cone give all the

relations.

Corollary 3.6.8. The skein depends only on the order of the rotation. In particu-

lar, any skein where m and k are relatively prime consists of the two non-boundary

isotopic single annuli, with a relation saying the dotted versions of these annuli are

equal.

3.7 A graphical calculus for relations

This is kind of fun.

Short form

The procedure in Example 3.6.6 is pretty repetitive; each isotopy has the

same end pictures and Hochschild homology moves two pictures in the previous row

to the next row. Eliminating these pictures and arranging each line in an L-shape

with 4-periodicity, we get a condensed form which makes for faster calculations.

We can do the same thing with partitions of the vertices of a hexagon,

pictured in Figure 3.9.

Best of all, we can do this with elements of Z6 corresponding to the vertices.

Proof of Corollary 3.6.8

Suppose (m, k) = 1. Then HH0(T 2kC2m) has three generators.
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Proof. Our task is simply to prove there is a relation between the two dotted

generators. We procede as for Example 3.6.6.

( )

(mk 2k) (k 2k) ( )

(mk 2k 3k) (k 2k 3k) (2k 3k)

. .
.

(mk 2k . . . (m− 1)k) (k 2k . . . (m− 1)k)

(mk . . . (m− 1)k)

This must happen because k has order m in Zm
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start (line 0)

is. (4) Hoch. (3) is. (2) Hoch. (1)

is. (8) Hoch. (7) is. (6) Hoch. (5)

Hoch. (9)

Figure 3.8: Short form of Example 3.6.6.

start (line 0)

is. (4)

Hoch. (3)

is. (2)

Hoch. (1)

is. (8)

Hoch. (7)

is. (6)

Hoch. (5)

Hoch. (9)

Figure 3.9: Lattice form of Figure 3.8.
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( )

(123) (23) ( )

(61234) (1234) (234) (34)

(612345) (12345) (2345)

(124356)

Figure 3.10: Tabular form of 3.8.



Chapter 4

More surface categories

Previously, we discussed the Bar-Natan category of a disk. In this chapter,

we give other computations and observations about surface categories. We rely on

work from Chapter 3, since disks can be glued to themselves to make annuli and

other planar surfaces. First we briefly describe planar algebras, which can be used

to describe a 2-categorical structure of planar surface categories.

4.1 Planar algebras

Say you have disk with some marked points on its boundary, and perhaps

missing some disks which also have points on their boundaries. A planar algebra

describes the operad structure of putting such things inside other such things.

A little more carefully, say k is a natural number. A planar algebra P

associates k to a vector space Pk which we think of as a disk with k boundary

points. A planar tangle with some disks missing (in the words of [MPS10], a

‘spaghetti and meatballs’ diagram) is associated to a linear map from the tensor

product ⊗iPki of the inner disk vector spaces to the outer circle vector space Pk0 .

(By a planar tangle, we mean a tangle embedded in the plane; in particular, there

are no crossings.)

An annulus Pk to Pk with radial lines gives the identity. The composition

must also satisfy relations so that putting things inside of other things in different

orders gives a well-defined result.

73



74

Planar tangle pictures are not considered to be invariant under rotations,

thus each boundary circle is marked with a dot so that rotated pictures can be

distinguished. If there are no inner disks missing, the picture may be depicted as

a rectangle, with the dot presumed to be on the left (this is the Temperley-Lieb

algebra).

Further, for a standard subfactor planar algebra, the planar regions are

given a checkerboard colouring. (This is a way of representing tensor products

of R–S and S–R bimodules.) Obviously, this means that only even numbers of

boundary points are allowed.

These planar pictures are objects of black-and-white cylinder categories;

in this sense, the black-and-white skein module is a categorification of a planar

algebra.

For a much better discussion of planar algebras than mine, see [MPS10].

For annular planar algebras in particular, see [Jon01].

4.2 A canopolis

In fact, planar surface categories form a canopolis, as defined in [BN05]. A

canopolis is a collection of categories that behave like a ‘city of cans,’ which can

be built up vertically or out horizontally.

Definition. Let P be a planar algebra which associates the vector space Pk to

a natural number k. A canopolis over P is a collection of categories Ck with

Obj(Ck) = Pk. In other words, the objects of categories in the canopolis are

the planar algebra P. The morphims between all objects also must form a planar

algebra, and the two directions of composition must commute (vertical composition

in a category Ck and horizontal composition in the morphism planar algebra).

Remark 4.2.1. The canopolis of planar surface categories is graded by ‘degree,’

a modified form of Euler characteristic, which counts a dot for −2 and a boundary

component on the side of a can for −1/2.

The objects of the canopolis are generated generated by the two single arc

objects in C2. The morphisms are generated by:
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• the identities on the arcs

• a single dotted sheet D with D2 = 0

• the saddles in C4

• cups and caps in C0.

This is obviously true from standard facts of Morse theory; we have also discussed

it in great detail for C2m. If A is an annulus, we know A× I is homeomorphic to

D2×S1. Thus we know the morphisms are dictated by the boundary curves and

are either disks (in the form of curtains or saddles) or annuli (possibly with dots)

with Type I and II relations. Any other planar surface category can be obtained

by tensoring annuli categories together over disk categories.

The Hochschild homology of the canopolis is also an algebra over the pla-

nar algebra operad. This means we can use the results of Chapter 3 to describe

HH0(C(Σ, p)), since the relations occur in solid tori, between saddles composed in

different orders. In particular, we can use arcs to describe the skein. (The proof

of Proposition 2.3.5 actually works for surfaces with boundary as well, so we could

use that argument if we preferred.) We are looking at the S1-invariant part of the

skein module here, which is not the same as B(Σ×S1, c) in general.

4.3 The annulus category

The objects of the annulus category are elements of annuluar planar alge-

bras which (in the notation of [Jon01]) are generated by εi, εi, Fi, σ, and ρ, pictured

in Figure 4.1. We refer to the category of the annulus with 2m points on the inner

circle and 2n points on the outer circle as C(2m,2n). Jones uses ± rather than 0 to

specify the colouring, but since we are working with a category and not an algebra,

we are less concerned with the difference. We assume that colourings agree when

we write an element as a product of generators.

Note that in the category, there is more than one unmarked incompressible

surface in Hom(a, b) for a given pair of objects a and b in A(A, (2m, 2n)). However,

if neither a nor b has a copy of σ, then there is a unique blank incompressible
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ε1∈Obj(C(4,2)) ε1∈Obj(C(2,4)) F1∈Obj(C(4,4)) ρ∈Obj(C(2,2)) σ∈Obj(C(0,0))

Figure 4.1: Examples of classes of generators of an annular planar algebra.

surface in Hom(a, b). One way to see this is using 2-categorical structure; we

can view the annulus as HH0 of the skein associated to I3. There is also a 3-

categorical structure. (This requires embedding the cubes in R3.) This is perhaps

worth considering further for the sake of higher categories, but its application in

understanding annular planar algebras seems limited - using a canopolis seems to

be a more useful way of thinking about 2-category structure.

Remark 4.3.1. The category C(2m,2n) is a C(2m,2m) −C(2n,2n) bimodule. More

generally, C(Σ, 2m) is a module over C(2m,2m) for any surface Σ with 2m marked

points in a boundary circle. In particular, C(2m,0) is a module over C(0,0).

Example 4.3.2 (C(0,0)). The objects are generated by σ. Since A× I is home-

omorphic to D2 × S1, the morphisms are annuli with all combinations of dots,

modulo Type I and II relations, as discussed in Chapter 3.

Remark 4.3.3. The morphism P below is an idempotent.

P =
1

2

Composing P with itself gives

P 2 =
1

4
= P.
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Taking Hochschild homology, we get that a morphism a composition of

trenches (like P ) in Hom(σ2, σ2) is equivalent to a compressible torus in Hom(∅, ∅).
Let σ̄ = (σ×S1), and let τ̄ = σ̄•. Using Type I and II relations in A× I, we then

get that a surface with two parallel copies of τ is zero in B(A×S1). Similarly, we

can move dots between copies of τ̄ and σ̄ with a negative sign.

Remark 4.3.4. Using the horizontal composition of the canopolis, we get that

HH0(C(0,0)) is a superalgebra.

Definition. Let R be a commutative ring. A superalgebra is an R-module with a

direct sum decomposition

A= A0⊕A1

and a bilinear multiplication so that the image of Ai×Aj is a subset of Ai+j, where

i+ j is interpreted mod 2.

The odd part of HH0(C(0,0)) is:

A1 =⊕kR
〈
σ̄2k+1τ̄

〉
⊕⊕kR

〈
σ̄2k+1

〉
and the even part is:

A0 =⊕kR
〈
σ̄2kτ̄

〉
.

Example 4.3.5 (C(2,0)). The objects are ε1 and ε2 (in Figure 4.2) with some

number of copies of σ.

ε1 ε2

Figure 4.2: Objects ε1 and ε2 of C(2,0)

The morphisms are curtains in Hom(εi, εi), saddles in Hom(εi, εjσ), and

annuli for the copies of σ.

For HH0, we still have the dot migration and consecutive dot relations

from C(0,0), so there is at most one τ̄ , which we can assume is the innermost torus.
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There is a saddle relation between ε̄•i τ̄ and ε̄••j , so there can be only one dot total

on a generator. If we like, we can use the undotted saddle relation to move dots

off tori, so we are left with the blank surfaces ε̄i σ̄
k, and the dotted surfaces are

ε̄•i σ̄
k as generators.

Example 4.3.6 (C(4,0)). The objects are products of the generators in Figure 4.1.

Since it’s easy to rotate pictures on a computer, we’ve put them all in Figure 4.3.

Of course, we also ought to include σk.

Figure 4.3: Objects of C(4,0)

The morphisms are the usual mix of curtains, saddles, and annuli.

We again inherit relations for HH0, so there can be at most one copy of τ̄ .

Furthermore, if an element includes τ̄ and has any other dotted surface, it is zero.

However, surfaces with two dots (on different components) are not necessarily zero.

One equivalence class of surfaces with two dots corresponds to the following

arc pictures:

∼ ∼ .

Another corresponds to:

∼ ∼ .

These are in fact the only two, as copies of sigma can be removed when

there are two dots, as in the following example:

∼ 2 − = 2 .
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This procedure works inductively.

There are similar Type I relations, but the trick of removing circles only

works with two dots. We can however move dots off of circles in that case.

For C(2,2), we see ρ make an appearance. The two classes of surfaces with

two dots are (including higher powers of ρ± not pictured):

∼ ∼ ∼ ∼

and

∼ ∼ ∼ .

We can use the circle-removing trick to say:

∼ 2 .

It seems probable that other annulus and planar surface categories follow

basically this pattern: dots can be moved around on tori; if a surface has two dots,

one of which is one a torus, the surface is zero; when two dots are present, circles

can be removed. There is potentially a better way to enumerate the generators of

these skeins; perhaps it is worth noting that counting curves on surfaces has been

surprisingly little studied [DKM15].
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