
Lawrence Berkeley National Laboratory
LBL Publications

Title
Prototyping The BOPTEST Framework For Simulation-Based Testing Of Advanced
Control Strategies In Buildings

Permalink
https://escholarship.org/uc/item/7wb0f3g9

Authors
Blum, David
Jorissen, Filip
Huang, Sen
et al.

Publication Date
2020

DOI
10.26868/25222708.2019.211276

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7wb0f3g9
https://escholarship.org/uc/item/7wb0f3g9#author
https://escholarship.org
http://www.cdlib.org/

Prototyping the BOPTEST Framework for Simulation-Based Testing
of Advanced Control Strategies in Buildings

David Blum1, Filip Jorissen2, Sen Huang3, Yan Chen3, Javier Arroyo2, Kyle Benne4, Yanfei Li4,

Valentin Gavan5, Lisa Rivalin1, Lieve Helsen2, Draguna Vrabie3, Michael Wetter1, Marina Sofos6
1Lawrence Berkeley National Laboratory, Berkeley, USA

2KU Leuven, Leuven, Belgium
3Pacific Northwest National Laboratory, Richland, USA
4National Renewable Energy Laboratory, Golden, USA

5Engie Lab, Pierrefitte-sur-Seine, France
6Department of Energy, Washington D.C., USA

Abstract
Advanced control strategies are becoming increasingly
necessary in buildings in order to meet and balance
requirements for energy efficiency, demand flexibility,
and occupant comfort. Additional development and
widespread adoption of emerging control strategies,
however, ultimately require low implementation costs to
reduce payback period and verified performance to gain
control vendor, building owner, and operator trust. This
is difficult in an already first-cost driven and risk-averse
industry. Recent innovations in building simulation can
significantly aid in meeting these requirements and
spurring innovation at early stages of development by
evaluating performance, comparing state-of-the-art to
new strategies, providing installation experience, and
testing controller implementations. This paper presents
the development of a simulation framework consisting of
test cases and software platform for the testing of
advanced control strategies (BOPTEST - Building
Optimization Performance Test). The objectives and
requirements of the framework, components of a test case,
and proposed software platform architecture are
described, and the framework is demonstrated with a
prototype implementation and example test case.
Introduction
Background
Advanced control strategies (ACS) for building HVAC
systems, such as model predictive control (MPC), have
the potential to provide significant energy savings for
reducing operational costs, greater demand flexibility for
providing grid services, and improved occupant comfort
(Afram and Janabi-Sharifi 2014). While such ACS have
demonstrated their potential in research and field tests,
their adoption at scale in industry is still limited. The
primary barriers to adoption for any new building
technology include: installation costs, performance risks
and uncertainties, and lack of understanding and
quantification of benefits (Chan et al., 2017). Particularly
for MPC, implementation costs (Rockett and Hathway
2016) and lack of approach comparisons (Afram and
Janabi-Sharifi 2014) are problems. Simulation-based
testing of ACS can help solve these challenges by
reducing risks associated with malfunction, reducing
costs for equipment and installation, reducing real

implementation costs by testing software and deployment
processes in advance, and controlling the testing
environment for comparison of strategies and evaluation
over varying conditions. Despite these benefits, modeling
limitations within simulation programs, research-grade
co-simulation environments, and lack of publicly
available benchmark cases have prevented simulation-
based testing from reaching its potential for scaling ACS.
Therefore, this paper introduces the development of a
framework for simulation-based testing and comparison
of building ACS, called BOPTEST - Building
Optimization Performance Test, depicted in Figure 1.
Key elements of the framework includes use of the
Functional Mockup Interface (Blochwitz et al. 2012)
standard and Modelica (Mattsson and Elmqvist 1997) to
simulate dynamic building response, implementation in a
software architecture for scalable deployment and use,
and provides a platform for making benchmark test cases
publicly available. The current focus of the framework is
the testing and objective comparison of ACS algorithm
performance and does not cover issues such as network
cyber security, communication protocols, and bandwidth.

Figure 1. Framework concept.

Related Previous Work
The concept of using simulation of HVAC systems for
controls testing has been explored previously by the
participants of the IEA-ECBCS Annex 17 (IEA 1997).
Six participants built building emulators using TRNSYS
(Klein et al. 2017) and HVACSIM+ (Park et al. 1985) as
simulation programs. Notably, after testing four

emulators of the same building with the same BEMS,
differences in calculated energy use between any one of
the emulators and the average of all emulators was as high
as 6%. Further development introduced new dynamic
component model libraries and emulators.
The first was SIMBAD (SIMulator of Building and
Devices), developed by France’s Centre Scientifique et
Technique du Bâtiment in the early 90’s (Husaunndee et
al. 1997), for the MATLAB/Simulink (Mathworks, 2000)
environment. SIMBAD was then used to build Simbad
GTB and SIMTEST (Lahrech et al. 2002) for testing
complete building management systems and certification
of control products according to EN 15500 as well as
Simtrain (Soethout, 1998) and Qualisim (Riederer et al.
2001) for training and innovative development purposes.
A second component library was for the HVACSIM+ and
TRNSYS environments (Haves and Norford 1997) used
as the simulation basis for the Virtual Cybernetic Building
Testbed (VCBT) (Bushby et al. 2010). The development
of EnergyPlus (Crawley et al. 2001) and Modelica
Buildings Library (Wetter et al. 2015) led to emulators
using the Building Controls Virtual Testbed (Wetter
2011) and the VOLTRON platform (Huang et al. 2018).
To train the skills of operators, the development of an
emulator with a BACnet interface will hold the 1st World
Championship in Cybernetic Building Optimization
(SHASEJ, 2019). Finally, NREL has recently developed
Alfalfastack (https://github.com/NREL/alfalfa), a web-
hosted emulator using EnergyPlus as simulation engine.
While these emulators and tools facilitate development of
ACS, they do not meet all of the requirements outlined
below for ACS comparison and benchmarking.
Requirements
The requirements have seven aspects worth considering:
1) Reference emulation models must simulate the physics,
dynamics, and time-resolution necessary for controls
design and assessment at the supervisory and local-loop
levels. This requires modeling of not only envelope heat
transfer and airflow networks, but also dynamic actuators
like valves and dampers.
2) The simulation environment must be standardized so
that results for benchmarking are consistent. This
includes the solver and tolerance, computing
environment, and implementation tools.
3) Data exchange between a test controller and the
emulator should be facilitated by an interface that is
independent of the modeling and controller programming
languages, preventing limits on the implementations of
controllers and interfaces to the framework.
4) All exogenous data that defines a test case should be
provided by the framework, such as weather, occupancy
schedules, and energy prices. In cases of MPC testing, it
needs to be made available as forecasts. Providing
deterministic forecasts is the priority. Stochastic forecasts
will be considered as a future extension.
5) A standard set of key performance indicators (KPI)
should be specified to facilitate benchmarking and
comparison of controllers. The specification needs to

include equations or guidelines to unambiguously
quantify the KPIs, enabling a fair and clear comparison
between controllers.
6) Flexibility in synchronizing simulation and controller
times to meet different application requirements. In
Option 1, the simulation is advanced to the next time step
according to real time, representing a realistic building-
controller interaction. In Option 2, the simulation is
advanced to the next time step when the controller returns
with an updated control action, which is easier for
controller development and allows for reproducible tests.
7) All software is open source and documented to allow
for inspection of the models, their underlying assumptions
and the computing platform.
Value to Stakeholders
The requirements of the BOPTEST framework translate
into features designed to facilitate the needs and
objectives of stakeholders interested in either investing in
or developing ACS from the design through
implementation stages (i.e., algorithm researchers and
industry developers, building owners and facility
managers, and administrators of research and
development (R&D) programs). First, the menu of KPIs
and test cases, along with the flexibility in synchronizing
simulation and controller times, offers the ability to cater
performance evaluation metrics based on the parameters
and conditions that a particular stakeholder is optimizing
for using an ACS along with the building type or
configuration targeted. The KPIs, along with the
emulation environment, also provide a standardized
comparison for consistency in making fair comparison
between algorithms. Finally, the open-source emulation
environment and documentation are useful tools for
transparent testing when expertise or resources (e.g.,
detailed model, simulation environment) are not readily
available. It provides a critical first step in evaluating an
ACS before moving to physical test beds and real,
operational buildings. These features can accelerate the
technology development process.
For researchers and developers, a fair comparison of
different ACS is currently hampered by the use of
different boundary conditions and variety of assessment
indicators. A common framework, consisting of test
cases, KPIs, and a deployment platform for the testing of
ACS, allows this fair comparison of ACS developed by
researchers world-wide. This approach generates insights
into which ACS performs best in which building type and
associated boundary conditions according to a specific
KPI, facilitating further developments in ACS.
For building owners and facility managers, a big
challenge is maintaining low operating costs. Advanced
sensing and metering technologies, data collection and
analytics, and energy modeling combined with ACS offer
the ability to monitor and optimize in near-real-time. The
framework offers a platform to de-risk ACS by
demonstrating performance and affordability with
supporting test data.
Finally, for decision-makers investing in a portfolio of
R&D strategies, the framework provides a useful

methodology with which to assess the level of maturity,
how ACS approaches will complement each other,
contribute to achieving overarching sectoral goals with
respect to reducing energy consumption and cost, and
eliminate any portfolio gaps.
Objective
The goal of the BOPTEST framework is to enable
simulation-based testing and benchmarking of advanced
control strategies in buildings for researchers and industry
that satisfy the specified requirements. This will occur
through the development of the following components,
each described in subsequent sections:
● Reference building emulation test cases that are

available to all users (Section: Test Cases).
● Key performance indicators (KPIs) that quantify and

assess the performance of a control strategy (Section:
Key Performance Indicators).

● Software platform to select and manage test cases,
exchange control and measurement data between the
user’s control software and the building emulation,
calculate KPIs, and generate reports (Section:
Software Platform).

A final section of the paper presents a prototype example
of the framework (Section: Prototype Example).
Test Cases
Test cases contain the building model, boundary
conditions, documentation, and other content related to
the framework application programming interface (API)
to run the emulation. Reference cases will be provided,
satisfying the fourth requirement of the framework, while
user-specified cases will also be functional if they abide
by established development guidelines.
Building Energy Models
The framework uses FMI v2.0 for simulating Functional
Mockup Units (FMU). It supports model-exchange and
co-simulation FMUs using pyFMI as part of the
JModelica.org distribution (Modelon 2017). For

reference cases, the models will be written in Modelica
and compiled into FMUs. Using Modelica addresses the
first and seventh requirement of the framework as an
open-source, equation-based, object-oriented language
developed to model hybrid physical systems. It offers the
ability to utilize shareable component libraries and
variable time-step solvers for systems of nonlinear
differential-algebraic systems of equations (DAE). The
models will be developed using Modelica libraries
extending the IBPSA Modelica Library, formerly called
Modelica Annex 60 Library (Wetter et al., 2015).
Ten building models have been identified as references,
presented and described in Table 1. The models range in
building type, size, and HVAC system to test controllers
over a wide range of operating cases.
Boundary Conditions
Boundary conditions of a test case define the exogenous
operating conditions, including weather, internal load and
occupancy schedules, energy prices, and carbon emission
factors, and will be provided specifically to each reference
case. However, variations may test different scenarios.
An example is providing three energy pricing schemes,
constant, moderately dynamic, and highly dynamic to
evaluate a controller’s ability to shift load.
Documentation
Documentation for the reference cases will be provided to
inform users of building design and use, HVAC system,
other systems, such as lighting, shading, or renewable
generation, model implementation details, such as
infiltration or media, and sensor and control signals.
Framework API Interaction
One important interaction is the exchange of input and
output data between the test controller and emulation
model at each simulation step. Other interactions include
the starting, stopping, and resetting of simulations, setting
of options, and choosing between test case scenarios.
More detail is provided in the section Prototype Software.

Table 1 Overview of selected reference models

Type Size Water-Based Air-Based

Residential Single Zone BESTEST (ANSI/ASHRAE 2007) Case 900 construction
with hot water radiator.

BESTEST (ANSI/ASHRAE 2007) Case 900
construction with forced air heating and cooling.

Multi Zone 8-zone detached residential building with hot water radiator
heating and central boiler with controller. The cooling is
provided by room split systems controlled simultaneously
by a central controller.

Detached House Central Air (Basis of Design TBD)

Commercial Single Zone Single zone of teaching/office building with hot water
radiator heating. CO2-controlled VAV ventilation from
AHU with heat recovery wheel and heating coil.

Single-zone building with RTU containing direct
expansion (DX) cooling coil and gas-fired heating.

Multi Zone 28-zone office with concrete core activation (4 sections, 1
circuit), 2 geothermal heat pumps and geothermal passive
cooling, 1 cooling coil, 1 thermal wheel, 22 heating coils
for 1 AHU, 15 VAVs and 11 CAVs.

5-zone office floor with ASHRAE 90.1 construction.
VAV hot water reheat for each zone and 1 AHU
containing economizer, chilled-water cooling coil, and
hot water heating coil. Air system only.

Complex
Multi Zone

32-zone office using concrete core activation (24 sections,
two circuits), 4 geothermal heat pumps and geothermal
passive cooling, 1 pellet furnace, solar collectors and 2
indirect evaporative heat exchangers, 26 heating coils for 2
AHUs, 24 VAVs and CAVs.

15-zone office with VAV hot water reheat. Three
AHUs with five terminal boxes each, economizer,
chilled water cooling coil, and hot water heating coil.
Central plant includes chiller and boiler.

Key Performance Indicators
Key performance indicators (KPI) constitute the basis on
which ACS performance is evaluated. While many
possible KPIs exist, a core set has been chosen to serve as
standard KPIs to be evaluated by default for every test
using the BOPTEST framework. These are described
below, presented mathematically in Table 2, and satisfy
the fifth requirement of the framework.
Thermal discomfort
This KPI is calculated as the integral of the deviation of
the temperature with respect to a predefined comfort
range during a given time period, expressed in Kh.
Total building energy use
This KPI represents the total building energy use in kWh
when accounting for all energy end uses over a given time
period. The scenarios defined in each test case determine
which components are included.
Total building CO2 emissions
This KPI quantifies the total amount of CO2 emissions in
kg over a given time period using a fixed emission factor
profile for each emulator. This emission factor is chosen
based on source-to-site energy profiles for energy use
types at the testing location.
Total operational cost
This KPI quantifies the total operational cost over a given
time period using a price profile for each energy end-use.
Profiles are fixed for each emulator and three specific
archetypes of profiles are defined: constant, moderately
dynamic, and highly dynamic.
Capability of the controller to steer flexibility
A controller capable of estimating and steering energy
demand flexibility presents added value to the grid. This
KPI considers how well a controller follows an artificial

external signal within a predefined scenario where
boundary conditions are given. Then, characteristics such
as those defined by Junker et al. (2018) and considered in
Annex 67 (Pernetti et al., 2017) are calculated.
Installation metrics
The installation metrics refer to the effort and cost
required to implement in real life. Many aspects play a
role and are intrinsically subjective. Therefore, a set of
qualitative metrics and associated descriptions are
developed and the user who is testing a controller shall
assign a description to each installation metric.
Maximum allowed capital cost
The maximum allowed capital cost is the installation cost
that would lead to a maximum payback period of five
years. The reason for calculating the maximum allowed
capital cost instead of payback period directly is the
qualitative nature of installation metrics which could
hamper the quantification of payback period. On the
contrary, the maximum allowed capital cost to obtain a
fixed payback period of five years can be objectively
quantified with a reference baseline controller.
Computational time ratio
This KPI is defined as the average ratio of computation to
sampling times. The computation time is the time
required by the controller to compute control outputs
during one iteration. The sampling time is the real time
lapse between two instants where the control outputs are
computed and applied in the building. This KPI quantifies
the computational effort required by ACS.

Table 2 List of core KPI definition/calculation

Key Performance Indicators Calculation formula / Definition Nomenclature

Thermal discomfort

 𝜖 - total amount of CO2 emissions
𝜉- the set of equipment in the system with
an associated energy use of any type
𝑒$- the emission factor of equipment𝑖
𝑛- the number of iterations that take place
between 𝑡(and 𝑡)
𝑝+- the price profile of equipment 𝑖 with a
tariff τ
𝑠-(𝑡)- the deviation (slack) from the lower
and upper set point temperatures
established in zone 𝑧
𝑡(- initial time
𝑡)- final time
𝑡1(𝑘)-the computational time at iteration k
𝑇4(𝑘)-the sampling time at iteration k
𝑧 - the zone index for the set of zones in the
building ℤ
𝐶+- the total cost with a tariff τ
𝐷- total discomfort time
𝐸- total amount of energy use
𝑃$- instantaneous power use of equipment 𝑖

Total building energy use

Total building CO2 emissions

Total operational cost

Capability of the controller to
steer flexibility

To be defined as capability of a controller to follow an artificial
external signal within a predefined boundary conditions.

Installation metrics To be defined as a set of metrics to evaluate the effort and cost
required to get the controller implemented and running.

Maximum allowed capital cost

Computational time ratio

Software Platform
Architecture
The software platform architecture is proposed in Figure
2 and is based on the previously mentioned Alfalfastack
project to promote useability and scalability. This
architecture consists of four major components:
Emulator pool - Contains source files of the test cases and
temporary files generated during the simulation.
Database - Contains updated values and metadata of all
input/output points. Allows data exchange between
emulator and external controller to be synchronous or
asynchronous, satisfying the sixth requirement.
Simulation Manager - Provides the environment to run the
simulation, parses the source files of the emulators to
obtain the simulation information, configures/conducts
simulations, exports metadata to the database, and
exchanges data between the database and simulation.
HTTP Rest API - HTTP Rest API is the main point of
interaction with the BOPTEST platform and satisfies the
third requirement. Via the HTTP Rest API, the external
controller as a client can submit requests for actions such
as adding or selecting an emulator to test, extracting
information about the emulator, setting simulation
settings, starting a simulation, and reading/writing control
signal and measurement data.
Docker (https://www.docker.com/) containers are used to
implement the proposed architecture. They allow for
standardized, rapid, and scalable deployment of the
platform on a range of local and cloud-based computing
resources using Linux, Windows, and macOS. Also,
specifically for the Simulation Manager, Docker
addresses the second requirement of the framework. The
FMU simulator, solver, and dependencies can be exactly
specified within the Docker container.
Modelica Blocks for Signal Exchange
Two Modelica blocks for handling input and output signal
exchange have been developed for the IBPSA Modelica
Library (development at

https://github.com/ibpsa/modelica-ibpsa commit
e51759a) to:
● Facilitate the propagation of many input/output

signals in large Modelica models.
● Allow such models to contain local-loop controllers

where either the setpoint or actuation signal can be
written by the test controller, enabling testing of
supervisory or local loop controllers.

● Facilitate tagging of signals for KPI calculations.
The overall concept is presented in Figure 3. The first
signal exchange block is
IBPSA.Utilities.IO.SignalExchange.Overwrite,
which can switch the output of the block between input
and external signals. The second signal exchange block
is IBPSA.Utilities.IO.SignalExchange.Read, which
passes an input signal through to an output. Each of the
two blocks contains a protected parameter (hidden from
user adjustment), boptestOverwrite=true and
boptestRead=true as appropriate, used by a Python
parser to identify block locations throughout the model.
The read block contains an additional parameter KPIs,
with which the user can associate KPIs with the signal.
A Python parsing script writes a new top-level Modelica
model in which the original model is instantiated, unique
activation and signal inputs are added and connected to
corresponding Overwrite blocks, and unique outputs are
added and connected to corresponding Read blocks. The
new top-level Modelica model is exported as an FMU. In
addition, a json file is exported containing a list of FMU
outputs that are needed to calculate each KPI.
Prototype Example
An implementation of the framework is being developed
at https://github.com/ibpsa/project1-boptest to prototype
the key components. Open development satisfies the
seventh requirement of the framework. The development
site can be referred to for more detail about use and API
than presented in this paper.
Test Case
The example test case illustrates the capabilities of the
framework and is presented in Figure 3. The emulation

Figure 2. Proposed software platform architecture.

model is a single thermal zone with heater, represented by
an RC network and direct heat input to the heat capacitor.
The outside air temperature is represented by a sinusoidal
signal with offset 20 °C, amplitude 10 °C, and period of
24 hours. A proportional feedback controller is included
in the model that tracks a zone temperature setpoint by
adjusting the heater output.
An Overwrite block is added between the output of the
proportional controller and input of the heater in order for
an external controller to control heater actuation. If
external actuation is not activated, the actuation
determined by the modeled feedback controller would be
used. Read blocks are added to the zone temperature
measurement, power measurement, and energy
measurement. The zone temperature Read block is
parameterized with KPI “comfort” and the energy read
block with KPI “energy.” The Python parser is invoked
to export Wrapper.mo, Wrapper.fmu, and kpis.json,
which are the final emulation model components.
Software
The deployment solution implemented for this prototype
test case demonstrates core components of the proposed
architecture in Figure 2, namely the Simulation Manager
and HTTP Rest API. As presented in Figure 4, the
solution utilizes Docker to package the test case
emulation model components outlined in the previous
section into a container with Ubuntu 16.04, Python 2.7,
JModelica and pyFMI (Modelon 2017), required Python
packages, and two core Python scripts. The first of these
scripts testcase.py acts as the simulation manager by
instantiating the model FMU (Wrapper.fmu), defining
structures for data trending, containing functions for
getting/setting. communication step, having a function for
stepping the simulation forward, and implementing
modules for calculating KPIs as directed by the
kpis.json. The second script restapi.py implements
the HTTP Rest API, mapping web requests to
functionality provided by testcase.py.
A makefile builds the Docker container image and
deploys the test case container. From the user’s point of

view, the deployment of the test case requires only
Docker software and interaction requires only HTTP
requests.

Figure 4. Prototype of BOPTEST software platform.

Controller Testing
Interaction with a deployed test case is demonstrated with
a simple test proportional controller to actuate the heater
in response to zone temperature measurements and a
setpoint of 20 °C. To demonstrate the combined
flexibility and consistency of the software platform, the
controller is written in two languages and tested on two
computers. A Python controller test took place on an
Ubuntu 16.04 virtual machine with Intel Core i7
processor where the controller was hosted on the virtual
machine. A Julia controller test took place on an Ubuntu

oveSet_u

oveSet_activate

Wrapper Model
TRooAir_y

PHea_y

ETotHea_y

Original Model

Figure 3. Signal exchange blocks (tan) and Python parser facilitate use of a Modelica model within the framework.

16.04 virtual machine with Intel Xeon processor where
the controller was hosted in a separate Docker container.
For each controller, two scripts have been written, one to
implement the controller, and a second to implement a
testing interface. The interface has four main steps:
1. Get test information - Uses the /name, /inputs,

/measurements, /step GET requests to retrieve the
test case name, available control inputs, available
measurements, and current communication step.

2. Run test - Uses the /advance POST request with
control signal data in the form of
{“oveAct_u”:<value>,“oveAct_activate”:1} in a
loop for the length of the test to advance the simulation
forward one communication step, receive
measurement data after the step is completed, and
compute a control signal for the next step.

3. View results - Uses the /kpi GET request to retrieve
the calculated KPIs. They are heater energy [kWh] and
thermal comfort violation [Kh].

4. Post-process additional data - Uses the /results GET
request to retrieve data trends and make plots.

After deploying the test case as described in the previous
section (commit f500b0b), running the two controller
tests for two days of simulation and a communication step
of 300 seconds produces identical results, as presented in
Figure 5.

Figure 5. Results of running example controller test

interface in Python (top) and Julia (bottom).

Conclusion
This paper presents the development of a framework and
software platform for simulation-based testing of ACS in
buildings, called BOPTEST. We first outlined the
requirements of the framework. Then, we presented the
core components, including test cases, KPI specifications,
and a software platform for deployment and interaction
with controllers. Finally, we demonstrated prototypes of
core pieces of the proposed architecture and an example
test case.

Continued work includes development of a forecast
module to retrieve boundary condition forecasts from the
emulator for MPC testing, completed reference test case
development, full implementation of KPI calculation and
reporting, and full architecture implementation. Future
considerations include the addition of stochastic occupant
behavior and uncertainty in the forecasts of boundary
conditions as well as use of the framework for testing
automated fault detection and diagnosis and operator
dashboard design and training.
Acknowledgement
This research was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office of
Building Technologies of the U.S. Department of Energy,
under Contract No. DE-AC02-05CH11231.
The views expressed in the article do not necessarily
represent the views of the U.S. Department of Energy or
the United States Government.
The financial support of the European Union’s Horizon
2020 research and innovation programme under grant
agreements No 723649 (MPC-;GT), No 731231 (FHP)
and No 656889 (GEOTeCH), and the support of the
Flemish Institute for Technological Research (VITO)
through PhD Fellowship 1714 are acknowledged.
This work emerged from the IBPSA Project 1, an
international project conducted under the umbrella of the
International Building Performance Simulation
Association (IBPSA). Project 1 will develop and
demonstrate a BIM/GIS and Modelica Framework for
building and community energy system design and
operation.
References
Afram, A. and Janabi-Sharifi, F. (2014). Theory and

applications of HVAC control systems: a review of
model predictive control (MPC). Building and
Environment 72, 343-355.

ANSI/ASHRAE (2007). Standard Method of Test for the
Evaluation of Building Energy Analysis Computer
Programs, Standard 140-2007, The American Society
of Heating, Refrigerating and Air-Conditioning
Engineers. 2007.

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clau,
C., Elmqvist, H., et al (2012). Functional mockup
interface 2.0: the standard for tool independent
exchange of simulation models. Proceedings from 9th
International Modelica Conference. Munich
(Germany), 3-5 September 2012.

Bushby, S.T., Galler, M.A., Ferretti, N.M., and Park, C.
(2010). The virtual cybernetic building testbed - A
building emulator. ASHRAE Transactions 116(1), 37-
44.

Chan, A., Darko, A., Ameyaw, E., and Owusu-Manu, D.
(2017). Barriers affecting the adoption of green
building technologies. Journal of Management in
Engineering 33(3).
https://doi.org/10.1061/(ASCE)ME.1943-
5479.0000507.

Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl,
W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K.,
Liesen, R.J., Fisher, D.E., Witte M.J., and Glazer, J.
(2001). EnergyPlus: creating a new-generation
building energy simulation program. Energy and
Buildings 33(4), 319-331.

Haves, P. and L.K. Norford. 1997. A standard simulation
testbed for the evaluation of control algorithms and
strategies. ASHRAE 825-RP Final Report.

Huang, S., Wang, W., Brambley, M.R., Goyal, S., and
Zuo, W. (2018). An agent-based hardware-in-the-loop
simulation framework for building controls. Energy
and Buildings 181, 26-37.

Husaunndee, A., Lahrech, R., Vaezi-Nejad, H., and
Visier, J. C. (1997). SIMBAD: A simulation toolbox
for the design and test of HVAC control systems.
Proceedings from 5th International IBPSA
Conference. Prague (Czech Republic), 8-10
September 1997.

International Energy Agency (IEA) (1997). Technical
Synthesis Report: A summary of IEA Annexes 16 and
17 Building Energy Management Systems. Available
online at http://www.iea-
ebc.org/Data/publications/EBC_Annex_16-
17_tsr.pdf. Last accessed Jan. 28, 2019.

Junker, G. R., Ghasem Azar, A., Amaral Lopes, R.,
Byskov Lindberg, K., Reynders, G., Relan R.,
Madsen, H. (2018). Characterizing the energy
flexibility of buildings and districts. Applied Energy
225, 175-182.

Klein, S. A. et al, 2017, TRNSYS 18: A Transient System
Simulation Program, Solar Energy Laboratory,
University of Wisconsin, Madison, USA. Available
online at http://sel.me.wisc.edu/trnsys. Last accessed
Jan. 28, 2019.

Lahrech, R., Gruber, P., Riederer, P., Tessier, P., Visier,
J.C. (2002). Development of a testing method for
control HVAC systems by emulation. Energy and
Building 34(9), 909-916.

Mattsson, S.E., and Elmqvist, H. (1997). Modelica – an
international effort to design the next generation
modeling language. Proceedings from 7th IFAC
Symposium on Computer Aided Control Systems
Design. Gent (Belgium), 28-30 April 1997.

Modelon AB (2017). JModelica.org User Guide: Version
2.4. Available online at
https://jmodelica.org/downloads/UsersGuide-2.4.pdf.

Park, C., Clark, D.R., and Kelly, G.E. (1985). An
overview of HVACSIM+: A dynamic

building/HVAC/Control simulation program.
Proceedings from 1st Annual Building Energy
Simulation Conference. Seattle (USA), 21-22 August
1985.

Pernetti, R., Reynders, G., Knotzer, A., Østergaard
Jensen, S., Madsen, H., Amaral Lopes, R., Junker, R.,
Aelenei, D., Li, R., Metzger, S., Lindberg, K.,
Marszal, A., Kummert, M., Bayles, B., Mlecnik, E.
Lollini, R., Pasut, W. (2017). Annex 67: Energy
Flexible Buildings Energy Flexibility as a key asset in
a smart building future. Available online at
http://annex67.org/media/1470/position-paper-
energy-flexibility-as-a-key-asset-i-a-smart-building-
future.pdf.

Riederer, P., Vaezi-Nejad, H., Husaunndee A., Bruyat, F.
(2001). Development and quality improvement of
HVAC control systems in virtual laboratories.
Proceedings from 7th International IBPSA
Conference. Rio de Janeiro (Brazil), 13-15 August
2001.

Rockett, P., and Hathway, E.A. (2017). Model-predictive
control for non-domestic buildings: a critical review
and prospects. Building Research and Information
45(5), 556-571.

Soethout, L., Arditi, I., Husaunndee, A., Macé, E.,
Marchio, D, et al., (1998). SIMTRAIN, A simulation
package for BEMS education. Proceedings from
System Simulation in Buildings. Liege (Belgium).

The MathWorks, Inc. (2000), MATLAB 6.0. Natick,
Massachusetts, United States.

The Society of Heating, Air-Conditioning, and Sanitary
Engineers of Japan (2019). World Championship in
Cybernetic Building Optimization. Available online
at http://www.wccbo.org/index_en.php. Last accessed
Jan. 28, 2019.

Wetter, M. (2011). Co-simulation of building energy and
control systems with the Building Controls Virtual
Test Bed. Journal of Building Performance
Simulation 4(3), 185-203.

Wetter M., Fuchs M., Grozman P., Helsen L., Jorissen F.,
Lauster M., Müller D., Nytsch-Geusen C., Picard D.,
Sahlin P. and Thorade M. (2015). IEA EBC Annex 60
Modelica Library - An international collaboration to
develop a free open-source model library for buildings
and community energy systems. Proceedings from
14th IBPSA Conference. Hyderabad (India), 7-9
December 2015.

