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Abstract 
Advanced control strategies are becoming increasingly 
necessary in buildings in order to meet and balance 
requirements for energy efficiency, demand flexibility, 
and occupant comfort.  Additional development and 
widespread adoption of emerging control strategies, 
however, ultimately require low implementation costs to 
reduce payback period and verified performance to gain 
control vendor, building owner, and operator trust.  This 
is difficult in an already first-cost driven and risk-averse 
industry.  Recent innovations in building simulation can 
significantly aid in meeting these requirements and 
spurring innovation at early stages of development by 
evaluating performance, comparing state-of-the-art to 
new strategies, providing installation experience, and 
testing controller implementations.  This paper presents 
the development of a simulation framework consisting of 
test cases and software platform for the testing of 
advanced control strategies (BOPTEST - Building 
Optimization Performance Test).  The objectives and 
requirements of the framework, components of a test case, 
and proposed software platform architecture are 
described, and the framework is demonstrated with a 
prototype implementation and example test case. 
Introduction 
Background 
Advanced control strategies (ACS) for building HVAC 
systems, such as model predictive control (MPC), have 
the potential to provide significant energy savings for 
reducing operational costs, greater demand flexibility for 
providing grid services, and improved occupant comfort 
(Afram and Janabi-Sharifi 2014).  While such ACS have 
demonstrated their potential in research and field tests, 
their adoption at scale in industry is still limited.  The 
primary barriers to adoption for any new building 
technology include: installation costs, performance risks 
and uncertainties, and lack of understanding and 
quantification of benefits (Chan et al., 2017).  Particularly 
for MPC, implementation costs (Rockett and Hathway 
2016) and lack of approach comparisons (Afram and 
Janabi-Sharifi 2014) are problems.  Simulation-based 
testing of ACS can help solve these challenges by 
reducing risks associated with malfunction, reducing 
costs for equipment and installation, reducing real 

implementation costs by testing software and deployment 
processes in advance, and controlling the testing 
environment for comparison of strategies and evaluation 
over varying conditions. Despite these benefits, modeling 
limitations within simulation programs, research-grade 
co-simulation environments, and lack of publicly 
available benchmark cases have prevented simulation-
based testing from reaching its potential for scaling ACS. 
Therefore, this paper introduces the development of a 
framework for simulation-based testing and comparison 
of building ACS, called BOPTEST - Building 
Optimization Performance Test, depicted in Figure 1.  
Key elements of the framework includes use of the 
Functional Mockup Interface (Blochwitz et al. 2012) 
standard and Modelica (Mattsson and Elmqvist 1997) to 
simulate dynamic building response, implementation in a 
software architecture for scalable deployment and use, 
and provides a platform for making benchmark test cases 
publicly available.  The current focus of the framework is 
the testing and objective comparison of ACS algorithm 
performance and does not cover issues such as network 
cyber security, communication protocols, and bandwidth. 
 

 
Figure 1. Framework concept. 

 
Related Previous Work 
The concept of using simulation of HVAC systems for 
controls testing has been explored previously by the 
participants of the IEA-ECBCS Annex 17 (IEA 1997).  
Six participants built building emulators using TRNSYS 
(Klein et al. 2017) and HVACSIM+ (Park et al. 1985) as 
simulation programs.  Notably, after testing four 



 

 

emulators of the same building with the same BEMS, 
differences in calculated energy use between any one of 
the emulators and the average of all emulators was as high 
as 6%.  Further development introduced new dynamic 
component model libraries and emulators.   
The first was SIMBAD (SIMulator of Building and 
Devices), developed by France’s Centre Scientifique et 
Technique du Bâtiment in the early 90’s (Husaunndee et 
al. 1997), for the MATLAB/Simulink (Mathworks, 2000) 
environment.  SIMBAD was then used to build Simbad 
GTB and SIMTEST (Lahrech et al. 2002) for testing 
complete building management systems and certification 
of control products according to EN 15500 as well as 
Simtrain (Soethout, 1998) and Qualisim (Riederer et al. 
2001) for training and innovative development purposes.  
A second component library was for the HVACSIM+ and 
TRNSYS environments (Haves and Norford 1997) used 
as the simulation basis for the Virtual Cybernetic Building 
Testbed (VCBT) (Bushby et al. 2010).  The development 
of EnergyPlus (Crawley et al. 2001) and Modelica 
Buildings Library (Wetter et al. 2015) led to emulators 
using the Building Controls Virtual Testbed (Wetter 
2011) and the VOLTRON platform (Huang et al. 2018).  
To train the skills of operators, the development of an 
emulator with a BACnet interface will hold the 1st World 
Championship in Cybernetic Building Optimization 
(SHASEJ, 2019).  Finally, NREL has recently developed 
Alfalfastack (https://github.com/NREL/alfalfa), a web-
hosted emulator using EnergyPlus as simulation engine. 
While these emulators and tools facilitate development of 
ACS, they do not meet all of the requirements outlined 
below for ACS comparison and benchmarking. 
Requirements 
The requirements have seven aspects worth considering: 
1) Reference emulation models must simulate the physics, 
dynamics, and time-resolution necessary for controls 
design and assessment at the supervisory and local-loop 
levels.  This requires modeling of not only envelope heat 
transfer and airflow networks, but also dynamic actuators 
like valves and dampers. 
2) The simulation environment must be standardized so 
that results for benchmarking are consistent.  This 
includes the solver and tolerance, computing 
environment, and implementation tools.   
3) Data exchange between a test controller and the 
emulator should be facilitated by an interface that is 
independent of the modeling and controller programming 
languages, preventing limits on the implementations of 
controllers and interfaces to the framework.   
4) All exogenous data that defines a test case should be 
provided by the framework, such as weather, occupancy 
schedules, and energy prices.  In cases of MPC testing, it 
needs to be made available as forecasts.  Providing 
deterministic forecasts is the priority.  Stochastic forecasts 
will be considered as a future extension. 
5) A standard set of key performance indicators (KPI) 
should be specified to facilitate benchmarking and 
comparison of controllers.  The specification needs to 

include equations or guidelines to unambiguously 
quantify the KPIs, enabling a fair and clear comparison 
between controllers. 
6) Flexibility in synchronizing simulation and controller 
times to meet different application requirements. In 
Option 1, the simulation is advanced to the next time step 
according to real time, representing a realistic building-
controller interaction.  In Option 2, the simulation is 
advanced to the next time step when the controller returns 
with an updated control action, which is easier for 
controller development and allows for reproducible tests. 
7) All software is open source and documented to allow 
for inspection of the models, their underlying assumptions 
and the computing platform. 
Value to Stakeholders 
The requirements of the BOPTEST framework translate 
into features designed to facilitate the needs and 
objectives of stakeholders interested in either investing in 
or developing ACS from the design through 
implementation stages (i.e., algorithm researchers and 
industry developers, building owners and facility 
managers, and administrators of research and 
development (R&D) programs).  First, the menu of KPIs 
and test cases, along with the flexibility in synchronizing 
simulation and controller times, offers the ability to cater 
performance evaluation metrics based on the parameters 
and conditions that a particular stakeholder is optimizing 
for using an ACS along with the building type or 
configuration targeted.  The KPIs, along with the 
emulation environment, also provide a standardized 
comparison for consistency in making fair comparison 
between algorithms. Finally, the open-source emulation 
environment and documentation are useful tools for 
transparent testing when expertise or resources (e.g., 
detailed model, simulation environment) are not readily 
available.  It provides a critical first step in evaluating an 
ACS before moving to physical test beds and real, 
operational buildings.  These features can accelerate the 
technology development process.       
For researchers and developers, a fair comparison of 
different ACS is currently hampered by the use of 
different boundary conditions and variety of assessment 
indicators. A common framework, consisting of test 
cases, KPIs, and a deployment platform for the testing of 
ACS, allows this fair comparison of ACS developed by 
researchers world-wide. This approach generates insights 
into which ACS performs best in which building type and 
associated boundary conditions according to a specific 
KPI, facilitating further developments in ACS.  
For building owners and facility managers, a big 
challenge is maintaining low operating costs. Advanced 
sensing and metering technologies, data collection and 
analytics, and energy modeling combined with ACS offer 
the ability to monitor and optimize in near-real-time.  The 
framework offers a platform to de-risk ACS by 
demonstrating performance and affordability with 
supporting test data.  
Finally, for decision-makers investing in a portfolio of 
R&D strategies, the framework provides a useful 



 

 

methodology with which to assess the level of maturity, 
how ACS approaches will complement each other, 
contribute to achieving overarching sectoral goals with 
respect to reducing energy consumption and cost, and 
eliminate any portfolio gaps. 
Objective 
The goal of the BOPTEST framework is to enable 
simulation-based testing and benchmarking of advanced 
control strategies in buildings for researchers and industry 
that satisfy the specified requirements.  This will occur 
through the development of the following components, 
each described in subsequent sections: 
● Reference building emulation test cases that are 

available to all users (Section: Test Cases). 
● Key performance indicators (KPIs) that quantify and 

assess the performance of a control strategy (Section: 
Key Performance Indicators). 

● Software platform to select and manage test cases, 
exchange control and measurement data between the 
user’s control software and the building emulation, 
calculate KPIs, and generate reports (Section: 
Software Platform). 

A final section of the paper presents a prototype example 
of the framework (Section: Prototype Example). 
Test Cases 
Test cases contain the building model, boundary 
conditions, documentation, and other content related to 
the framework application programming interface (API) 
to run the emulation.  Reference cases will be provided, 
satisfying the fourth requirement of the framework, while 
user-specified cases will also be functional if they abide 
by established development guidelines. 
Building Energy Models 
The framework uses FMI v2.0 for simulating Functional 
Mockup Units (FMU).  It supports model-exchange and 
co-simulation FMUs using pyFMI as part of the 
JModelica.org distribution (Modelon 2017).  For 

reference cases, the models will be written in Modelica 
and compiled into FMUs.  Using Modelica addresses the 
first and seventh requirement of the framework as an 
open-source, equation-based, object-oriented language 
developed to model hybrid physical systems.  It offers the 
ability to utilize shareable component libraries and 
variable time-step solvers for systems of nonlinear 
differential-algebraic systems of equations (DAE).  The 
models will be developed using Modelica libraries 
extending the IBPSA Modelica Library, formerly called 
Modelica Annex 60 Library (Wetter et al., 2015). 
Ten building models have been identified as references, 
presented and described in Table 1.  The models range in 
building type, size, and HVAC system to test controllers 
over a wide range of operating cases. 
Boundary Conditions 
Boundary conditions of a test case define the exogenous 
operating conditions, including weather, internal load and 
occupancy schedules, energy prices, and carbon emission 
factors, and will be provided specifically to each reference 
case.  However, variations may test different scenarios.  
An example is providing three energy pricing schemes, 
constant, moderately dynamic, and highly dynamic to 
evaluate a controller’s ability to shift load. 
Documentation 
Documentation for the reference cases will be provided to 
inform users of building design and use, HVAC system, 
other systems, such as lighting, shading, or renewable 
generation, model implementation details, such as 
infiltration or media, and sensor and control signals. 
Framework API Interaction 
One important interaction is the exchange of input and 
output data between the test controller and emulation 
model at each simulation step.  Other interactions include 
the starting, stopping, and resetting of simulations, setting 
of options, and choosing between test case scenarios.  
More detail is provided in the section Prototype Software.

 
Table 1 Overview of selected reference models 

Type Size Water-Based Air-Based 

Residential Single Zone BESTEST (ANSI/ASHRAE 2007) Case 900 construction 
with hot water radiator. 

BESTEST (ANSI/ASHRAE 2007) Case 900 
construction with forced air heating and cooling. 

Multi Zone 8-zone detached residential building with hot water radiator 
heating and central boiler with controller. The cooling is 
provided by room split systems controlled simultaneously 
by a central controller. 

Detached House Central Air (Basis of Design TBD) 

Commercial Single Zone Single zone of teaching/office building with hot water 
radiator heating.  CO2-controlled VAV ventilation from 
AHU with heat recovery wheel and heating coil. 

Single-zone building with RTU containing direct 
expansion (DX) cooling coil and gas-fired heating. 

Multi Zone 28-zone office with concrete core activation (4 sections, 1 
circuit), 2 geothermal heat pumps and geothermal passive 
cooling, 1 cooling coil, 1 thermal wheel, 22 heating coils 
for 1 AHU, 15 VAVs and 11 CAVs. 

5-zone office floor with ASHRAE 90.1 construction.  
VAV hot water reheat for each zone and 1 AHU 
containing economizer, chilled-water cooling coil, and 
hot water heating coil.  Air system only. 

Complex 
Multi Zone 

32-zone office using concrete core activation (24 sections, 
two circuits), 4 geothermal heat pumps and geothermal 
passive cooling, 1 pellet furnace, solar collectors and 2 
indirect evaporative heat exchangers, 26 heating coils for 2 
AHUs, 24 VAVs and CAVs. 

15-zone office with VAV hot water reheat.  Three 
AHUs with five terminal boxes each, economizer, 
chilled water cooling coil, and hot water heating coil.  
Central plant includes chiller and boiler. 



 

 

Key Performance Indicators 
Key performance indicators (KPI) constitute the basis on 
which ACS performance is evaluated.  While many 
possible KPIs exist, a core set has been chosen to serve as 
standard KPIs to be evaluated by default for every test 
using the BOPTEST framework.  These are described 
below, presented mathematically in Table 2, and satisfy 
the fifth requirement of the framework. 
Thermal discomfort 
This KPI is calculated as the integral of the deviation of 
the temperature with respect to a predefined comfort 
range during a given time period, expressed in Kh.  
Total building energy use 
This KPI represents the total building energy use in kWh 
when accounting for all energy end uses over a given time 
period. The scenarios defined in each test case determine 
which components are included. 
Total building CO2  emissions  
This KPI quantifies the total amount of CO2 emissions in 
kg over a given time period using a fixed emission factor 
profile for each emulator. This emission factor is chosen 
based on source-to-site energy profiles for energy use 
types at the testing location.  
Total operational cost 
This KPI quantifies the total operational cost over a given 
time period using a price profile for each energy end-use.  
Profiles are fixed for each emulator and three specific 
archetypes of profiles are defined: constant, moderately 
dynamic, and highly dynamic. 
Capability of the controller to steer flexibility 
A controller capable of estimating and steering energy 
demand flexibility presents added value to the grid. This 
KPI considers how well a controller follows an artificial 

external signal within a predefined scenario where 
boundary conditions are given. Then, characteristics such 
as those defined by Junker et al. (2018) and considered in 
Annex 67 (Pernetti et al., 2017) are calculated.  
Installation metrics 
The installation metrics refer to the effort and cost 
required to implement in real life. Many aspects play a 
role and are intrinsically subjective. Therefore, a set of 
qualitative metrics and associated descriptions are 
developed and the user who is testing a controller shall 
assign a description to each installation metric.    
Maximum allowed capital cost 
The maximum allowed capital cost is the installation cost 
that would lead to a maximum payback period of five 
years. The reason for calculating the maximum allowed 
capital cost instead of payback period directly is the 
qualitative nature of installation metrics which could 
hamper the quantification of payback period. On the 
contrary, the maximum allowed capital cost to obtain a 
fixed payback period of five years can be objectively 
quantified with a reference baseline controller. 
Computational time ratio 
This KPI is defined as the average ratio of computation to   
sampling times.  The computation time is the time 
required by the controller to compute control outputs 
during one iteration. The sampling time is the real time 
lapse between two instants where the control outputs are 
computed and applied in the building. This KPI quantifies 
the computational effort required by ACS. 
 

 
Table 2 List of core KPI definition/calculation 

Key Performance Indicators  Calculation formula / Definition  Nomenclature 

Thermal discomfort 

 

 𝜖 - total amount of CO2 emissions  
𝜉- the set of equipment in the system with 
an associated energy use of any type 
𝑒$- the emission factor of equipment𝑖 
𝑛- the number of iterations that take place 
between 𝑡( and 𝑡) 
𝑝+- the price profile of equipment 𝑖 with a 
tariff τ 
𝑠-(𝑡)- the deviation (slack) from the lower 
and upper set point temperatures 
established in zone 𝑧 
𝑡(- initial time 
𝑡)- final time 
𝑡1(𝑘)-the computational time at iteration k 
𝑇4(𝑘)-the sampling time at iteration k 
𝑧 - the zone index for the set of zones in the 
building ℤ  
𝐶+- the total cost with a tariff τ   
𝐷- total discomfort time 
𝐸- total amount of energy use 
𝑃$- instantaneous power use of equipment 𝑖 

Total building energy use 

 

Total building CO2 emissions 

 

Total operational cost 

 

Capability of the controller to 
steer flexibility 

To be defined as capability of a controller to follow an artificial 
external signal within a predefined boundary conditions.  

Installation metrics To be defined as a set of metrics to evaluate the effort and cost 
required to get the controller implemented and running.  

Maximum allowed capital cost  

Computational time ratio 

 



 

 

Software Platform 
Architecture 
The software platform architecture is proposed in Figure 
2 and is based on the previously mentioned Alfalfastack 
project to promote useability and scalability.  This 
architecture consists of four major components:  
Emulator pool - Contains source files of the test cases and 
temporary files generated during the simulation.  
Database - Contains updated values and metadata of all 
input/output points.  Allows data exchange between 
emulator and external controller to be synchronous or 
asynchronous, satisfying the sixth requirement. 
Simulation Manager - Provides the environment to run the 
simulation, parses the source files of the emulators to 
obtain the simulation information, configures/conducts 
simulations, exports metadata to the database, and 
exchanges data between the database and simulation. 
HTTP Rest API - HTTP Rest API is the main point of 
interaction with the BOPTEST platform and satisfies the 
third requirement. Via the HTTP Rest API, the external 
controller as a client can submit requests for actions such 
as adding or selecting an emulator to test, extracting 
information about the emulator, setting simulation 
settings, starting a simulation, and reading/writing control 
signal and measurement data. 
Docker (https://www.docker.com/) containers are used to 
implement the proposed architecture.  They allow for 
standardized, rapid, and scalable deployment of the 
platform on a range of local and cloud-based computing 
resources using Linux, Windows, and macOS.  Also, 
specifically for the Simulation Manager, Docker 
addresses the second requirement of the framework.  The 
FMU simulator, solver, and dependencies can be exactly 
specified within the Docker container. 
Modelica Blocks for Signal Exchange 
Two Modelica blocks for handling input and output signal 
exchange have been developed for the IBPSA Modelica 
Library (development at 

https://github.com/ibpsa/modelica-ibpsa commit 
e51759a) to: 
● Facilitate the propagation of many input/output 

signals in large Modelica models.  
● Allow such models to contain local-loop controllers 

where either the setpoint or actuation signal can be 
written by the test controller, enabling testing of 
supervisory or local loop controllers. 

● Facilitate tagging of signals for KPI calculations. 
The overall concept is presented in Figure 3.  The first 
signal exchange block is 
IBPSA.Utilities.IO.SignalExchange.Overwrite, 
which can switch the output of the block between input 
and external signals.  The second signal exchange block 
is IBPSA.Utilities.IO.SignalExchange.Read, which 
passes an input signal through to an output.  Each of the 
two blocks contains a protected parameter (hidden from 
user adjustment), boptestOverwrite=true and 
boptestRead=true as appropriate, used by a Python 
parser to identify block locations throughout the model.  
The read block contains an additional parameter KPIs, 
with which the user can associate KPIs with the signal. 
A Python parsing script writes a new top-level Modelica 
model in which the original model is instantiated, unique 
activation and signal inputs are added and connected to 
corresponding Overwrite blocks, and unique outputs are 
added and connected to corresponding Read blocks.  The 
new top-level Modelica model is exported as an FMU.  In 
addition, a json file is exported containing a list of FMU 
outputs that are needed to calculate each KPI. 
Prototype Example 
An implementation of the framework is being developed 
at https://github.com/ibpsa/project1-boptest to prototype 
the key components.  Open development satisfies the 
seventh requirement of the framework.  The development 
site can be referred to for more detail about use and API 
than presented in this paper. 
Test Case 
The example test case illustrates the capabilities of the 
framework and is presented in Figure 3.  The emulation 

Figure 2. Proposed software platform architecture. 



 

 

model is a single thermal zone with heater, represented by 
an RC network and direct heat input to the heat capacitor.  
The outside air temperature is represented by a sinusoidal 
signal with offset 20 °C, amplitude 10 °C, and period of 
24 hours.  A proportional feedback controller is included 
in the model that tracks a zone temperature setpoint by 
adjusting the heater output.  
An Overwrite block is added between the output of the 
proportional controller and input of the heater in order for 
an external controller to control heater actuation.  If 
external actuation is not activated, the actuation 
determined by the modeled feedback controller would be 
used.  Read blocks are added to the zone temperature 
measurement, power measurement, and energy 
measurement.  The zone temperature Read block is 
parameterized with KPI “comfort” and the energy read 
block with KPI “energy.”  The Python parser is invoked 
to export Wrapper.mo, Wrapper.fmu, and kpis.json, 
which are the final emulation model components. 
Software 
The deployment solution implemented for this prototype 
test case demonstrates core components of the proposed 
architecture in Figure 2, namely the Simulation Manager 
and HTTP Rest API.  As presented in Figure 4, the 
solution utilizes Docker to package the test case 
emulation model components outlined in the previous 
section into a container with Ubuntu 16.04, Python 2.7, 
JModelica and pyFMI (Modelon 2017), required Python 
packages, and two core Python scripts.  The first of these 
scripts testcase.py acts as the simulation manager by 
instantiating the model FMU (Wrapper.fmu), defining 
structures for data trending, containing functions for 
getting/setting. communication step, having a function for 
stepping the simulation forward, and implementing 
modules for calculating KPIs as directed by the 
kpis.json.  The second script restapi.py implements 
the HTTP Rest API, mapping web requests to 
functionality provided by testcase.py. 
A makefile builds the Docker container image and 
deploys the test case container.  From the user’s point of 

view, the deployment of the test case requires only 
Docker software and interaction requires only HTTP 
requests.  
 

 
Figure 4. Prototype of BOPTEST software platform. 

 
Controller Testing 
Interaction with a deployed test case is demonstrated with 
a simple test proportional controller to actuate the heater 
in response to zone temperature measurements and a 
setpoint of 20 °C.  To demonstrate the combined 
flexibility and consistency of the software platform, the 
controller is written in two languages and tested on two 
computers.  A Python controller test took place on an 
Ubuntu 16.04 virtual machine with Intel Core i7 
processor where the controller was hosted on the virtual 
machine.  A Julia controller test took place on an Ubuntu 

oveSet_u

oveSet_activate

Wrapper Model
TRooAir_y

PHea_y

ETotHea_y

Original Model

Figure 3. Signal exchange blocks (tan) and Python parser facilitate use of a Modelica model within the framework. 



 

 

16.04 virtual machine with Intel Xeon processor where 
the controller was hosted in a separate Docker container. 
For each controller, two scripts have been written, one to 
implement the controller, and a second to implement a 
testing interface.  The interface has four main steps:  
1. Get test information - Uses the /name, /inputs, 

/measurements, /step GET requests to retrieve the 
test case name, available control inputs, available 
measurements, and current communication step.   

2. Run test - Uses the /advance POST request with 
control signal data in the form of 
{“oveAct_u”:<value>,“oveAct_activate”:1} in a 
loop for the length of the test to advance the simulation 
forward one communication step, receive 
measurement data after the step is completed, and 
compute a control signal for the next step. 

3. View results - Uses the /kpi GET request to retrieve 
the calculated KPIs.  They are heater energy [kWh] and 
thermal comfort violation [Kh]. 

4. Post-process additional data - Uses the /results GET 
request to retrieve data trends and make plots. 

After deploying the test case as described in the previous 
section (commit f500b0b), running the two controller 
tests for two days of simulation and a communication step 
of 300 seconds produces identical results, as presented in 
Figure 5. 
 

 

 
Figure 5. Results of running example controller test 

interface in Python (top) and Julia (bottom). 
 

Conclusion 
This paper presents the development of a framework and 
software platform for simulation-based testing of ACS in 
buildings, called BOPTEST.  We first outlined the 
requirements of the framework.  Then, we presented the 
core components, including test cases, KPI specifications, 
and a software platform for deployment and interaction 
with controllers.  Finally, we demonstrated prototypes of 
core pieces of the proposed architecture and an example 
test case.   

Continued work includes development of a forecast 
module to retrieve boundary condition forecasts from the 
emulator for MPC testing, completed reference test case 
development, full implementation of KPI calculation and 
reporting, and full architecture implementation.  Future 
considerations include the addition of stochastic occupant 
behavior and uncertainty in the forecasts of boundary 
conditions as well as use of the framework for testing 
automated fault detection and diagnosis and operator 
dashboard design and training. 
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