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Abstract

Accurate forecasts could enable more informed public health decisions. Since 2013, CDC has 

worked with external researchers to improve influenza forecasts by coordinating seasonal 

challenges for the United States and the 10 Health and Human Service Regions. Forecasted targets 

for the 2014–15 challenge were the onset week, peak week, and peak intensity of the season and 

the weekly percent of outpatient visits due to influenza-like illness (ILI) 1–4 weeks in advance. We 
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used a logarithmic scoring rule to score the weekly forecasts, averaged the scores over an 

evaluation period, and then exponentiated the resulting logarithmic score. Poor forecasts had a 

score near 0, and perfect forecasts a score of 1.

Five teams submitted forecasts from seven different models. At the national level, the team scores 

for onset week ranged from <0.01 to 0.41, peak week ranged from 0.08 to 0.49, and peak intensity 

ranged from <0.01 to 0.17. The scores for predictions of ILI 1–4 weeks in advance ranged from 

0.02–0.38 and was highest 1 week ahead. Forecast skill varied by HHS region.

Forecasts can predict epidemic characteristics that inform public health actions. CDC, state and 

local health officials, and researchers are working together to improve forecasts.
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INTRODUCTION

Preparing for and responding to influenza epidemics and pandemics are critical functions of 

public health agencies. The Centers for Disease Control and Prevention (CDC) currently 

tracks influenza activity through a nationwide influenza surveillance system [1]. Together 

with information on historic experiences, these data are used for situational awareness and 

assessing needs for the near future. However, these data lag behind real-time flu activity and 

give no direct insight on what might happen next. Accurate, timely, and reliable influenza 

forecasts could enable more informed public health and emergency response decisions 

during both influenza seasons and pandemics, including the development and use of 

pharmaceutical (e.g., vaccine and influenza antivirals) and non-pharmaceutical (e.g., school 

closures and social distancing, travel restrictions) countermeasures, communication, 

deployment of Strategic National Stockpile assets (e.g., ventilators), and hospital resource 

management (e.g., inventory and staff management) [2].

CDC’s Influenza Division began working in 2013 to advance influenza forecasting efforts 

by engaging with members of the scientific community who were developing innovative 

methods to predict influenza activity [3–9]. This effort launched with the “Predict the 

Influenza Season Challenge,” a contest which encouraged participants to predict the timing, 

peak, and intensity of the 2013–14 influenza season using social media data (e.g., Twitter, 

internet search data, web surveys, etc.) along with data from CDC’s routine flu surveillance 

systems [10]. Eleven teams participated in the original CDC competition, and team members 

developed their own models to predict flu activity based on a variety of data sources [11]. 

This challenge identified a number of research gaps limiting forecasting model development, 

evaluation, and adoption by decision-makers, including the need to develop standardized 

metrics to assess forecast accuracy and standardized ways to communicate forecasts and 

their uncertainty.

To address these gaps, CDC and original challenge participants worked together through a 

collaborative challenge to forecast the 2014–15 influenza season. The objectives of this 

challenge were to continue to improve the accuracy of influenza forecasts, develop 
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standardized metrics to assess and communicate forecast accuracy and uncertainty, and to 

identify the types of decisions best aided by forecasts. Challenge participants were asked to 

forecast seasonal milestones (the onset, peak, and intensity) and short-term activity during 

the 2014–15 influenza season for the United States as a country and for each of the 10 

Health and Human Services (HHS) regions. In this report, we present the results and lessons 

learned from the challenge.

METHODS

Teams that participated in CDC’s 2013–14 Predict the Influenza Season Challenge were 

invited to continue to work with CDC to provide forecasts for the 2014–15 influenza season 

in the United States. This group of teams and CDC collaboratively defined a set of forecast 

targets and established evaluation metrics to assess accuracy prior to the challenge. 

Participating groups then submitted weekly forecasts for the 2014–2015 influenza season 

beginning October 20, 2014, and ending May 25, 2015. Forecasting targets were selected to 

ensure they were feasible for forecasting models and provided information for public health 

decision making.

All forecasting targets were based on data from the U.S. Outpatient Influenza-like Illness 

(ILI) Surveillance Network (ILINet). ILINet provides accurate information on the timing 

and impact of influenza activity each season and consists of more than 2,000 outpatient 

healthcare providers around the country who report data to CDC weekly on the number of 

patients with ILI and the total number of patients seen in their practices [1, 12]. ILINet data 

are based on a Morbidity and Mortality Weekly Report (MMWR) surveillance week that 

starts on Sunday and ends on Saturday; data are reported online through CDC’s FluView 

surveillance report the following Friday (or Monday if federal holidays delay publication) 

[13]. Further information on ILINet is available elsewhere [1, 12]. Teams could use any 

other data sources available to them, including digital (e.g., Twitter data, mining internet 

search term data, Internet-based surveys), meteorological, and traditional surveillance.

The minimum set of forecasts required of all participants were national-level forecasts of the 

onset week, peak week, and peak intensity of the influenza season (collectively referred to in 

the paper as seasonal targets), and short-term forecasts of the weekly percentage of 

outpatient ILINet visits due to ILI one, two, three, and four weeks after the week most 

recently reported by ILINet in FluView (collectively referred to in the paper as short-term 

targets). Participants also had the option of submitting forecasts of the same targets for each 

of the 10 HHS regions. We defined the onset of the season as the first surveillance week in 

ILINet where the ILINet percentage was at or above the baseline value (which is developed 

by calculating the mean percentage of patient visits for ILI during non-influenza weeks for 

the previous three seasons and adding two standard deviations [1]) and remained there for at 

least two additional weeks. We defined the peak week of the season as the surveillance week 

that the ILINet percentage was the highest; if more than one week achieved the highest 

value, all such weeks were considered peak weeks. We defined the peak value as the highest 

numeric value that the ILINet percentage reached [13].
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Each forecast included a point estimate and a probability distribution within pre-defined bins 

for each target. For onset and peak weeks, each bin represented a single week (e.g., week 1, 

week 2). For start week, an additional bin was used for the probability that the onset week 

definition would not be met during the influenza season. For the peak percentage of 

outpatient visits due to ILI and the weekly percentage of ILI one to four weeks in advance, 

11 bins were used; 10 bins represented semi-open 1% intervals (e.g., 3%<= ILI peak value 

<4.0%) from 0% to 10% while the final bin represented all values greater than or equal to 

10%. Teams were also required to submit a narrative describing the methodology of the 

forecasting model. The forecasting methodology could be changed during the course of the 

season if an updated narrative describing the changes was provided; no team indicated that 

they changed their methodology during the 2014–15 season.

We used the logarithmic scoring rule to measure the accuracy of the probability distribution 

of a forecast [14, 15]. If p is the set of probabilities across all bins for a given forecast, and 

pi is the probability assigned to the observed outcome, i, the logarithmic score is 

S(p,i)=ln(pi). For example, a forecast that assigned a probability of 0.6 to the correct 

influenza season onset week would receive a score of ln(0.6) = −0.51. Undefined natural 

logs (which occur when the probability assigned to the observed outcomes was 0), missing 

forecasts, and forecasts that summed to probabilities less than 0.9 or greater than 1.1 were 

assigned a value of −10. Logarithmic scores were averaged across different combinations of 

seasonal and short-term targets, geographic locations, and time periods. For the seasonal 

targets, the evaluation period was chosen post hoc to represent periods when the forecasts 

would be most useful and began with the first forecast submission on October 20, 2014, 

while the end of the evaluation period varied by seasonal target. The evaluation period end 

for the onset target was the forecast received after the week in which peak occurred in the 

final ILINet data, and the evaluation period end for the peak week and peak percent targets 

was the forecast received after the final week ILINet was above baseline (Table 1 and 

Supplemental Tables 1–10). For the short-term forecasts, time periods were chosen to 

represent forecasts that were received during the weeks that ILINet was above baseline 

(Table 1 and Supplemental Tables 1–10). Evaluation results for national- and regional-level 

targets using forecasts from the entire forecast period (October 20, 2014 to May 25, 2015) 

are found in Supplemental Table 11. Because ILINet data for past weeks may change as 

more reports are received, we used the ILINet data weighted on the basis of state population 

reported on week 34 of 2015 (the week ending August 29) for forecast evaluation.

To aid in interpretation, we exponentiated the mean log score to indicate forecast skill on a 0 

to 1 scale. Perfect forecasts (i.e. forecasted probability of 1.0 for the observed outcome 

across all forecasts) have a log score of 0 and a forecast skill of 1. For forecasts with low 

probabilities for the observed outcome, the log score is a low negative number and forecast 

skill is approximately 0. For example, an average log score of −10 gives a skill of 

approximately 0.00005.

For comparison purposes, we created a historical average forecast. For peak week, the peak 

percentage, and the short-term targets, we used ILINet data from the 1997–98 influenza 

season through the 2013–14 influenza season (excluding the 2009 pandemic) while for the 

onset week target, we used ILINet data from the 2007–08 influenza season through the 
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2014–15 flu season (excluding the 2009 pandemic). For each MMWR week that would be 

predicted by the model, a Gaussian kernel density estimate using bandwidths estimated by 

the Sheather-Jones method (Sheather and Jones, 1991) was fit to that week’s previous 

observed ILINet values. Approximate probabilities for observing each of the prediction bins 

were calculated by integrating the kernel density using the bin boundaries, and the point 

estimate was generated using the median of the estimated distribution. For the onset week 

target, the probability of no start week (i.e. ILINet never went above baseline for three or 

more weeks in a season) was calculated as the percentage of seasons in which the criteria for 

season onset was not met. A Gaussian kernel density estimate was fit to observed onset 

weeks and probabilistic estimates for each week were calculated as described above and 

then normalized to reflect the previously calculated probability of no start week. These 

methods were repeated for each HHS region as well as the United States as a whole.

This study did not involve human participants, and institutional review board approval was 

not required.

RESULTS

Five teams predicted three seasonal targets and four short-term targets at 32 weekly intervals 

over the influenza season. Teams used Google Flu Trends (n=4 teams), Twitter (n=2), and 

weather data (n=2) to inform their forecasting models (Table 2). Four (57%) forecasts 

employed statistical methods, and three (43%) employed mechanistic models that 

incorporated compartmental modeling (e.g., Susceptible-Exposed-Infected-Recovered 

[SEIR] models) (Table 2). Four out of 5 teams made forecasts for the HHS regions (Table 2). 

One team provided the results of three separate forecast models for the United States and the 

10 HHS Regions. A total of 7 forecasts for the United States and 6 forecasts for the 10 HHS 

regions were evaluated.

National level forecasts

Different forecast models achieved the best average skill for each national-level seasonal 

target: Forecast E had the highest average forecast skill for season onset, Forecast B had the 

highest forecast skill for peak week and the highest forecast skill for the seasonal targets 

combined, and Forecast A had the highest skill for peak ILINet percent. In contrast, for the 

short-term targets, Forecast E had the highest forecast skill for ILINet forecasts 1–4 weeks 

in advance and the highest short-term forecast skill combined (Table 3a). When compared to 

the historic average model, four models had higher skill scores for season onset forecasts, 

six for season peak, one for season intensity, and two for the seasonal milestones combined 

while five models had higher skill scores for 1-week ahead forecasts, three for 2-week 

ahead, and two each for 3- and 4-week ahead forecasts and the short-term targets combined. 

Forecasts with the best skill scores outperformed the historical average model for all 

national-level forecast targets (Table 3a).

The weekly forecast skill score for seasonal targets was generally low for all forecasts in 

October, November, and December. Large increases in confidence for several season onset 

forecasts occurred after the publication of the first FluView showing ILINet above the 
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national baseline and for peak week forecasts after the publication of the first FluView 

showing ILINet decreasing after reaching 6.0% (Figure 1).

Other forecasts (e.g. Teams B and E for season onset and Teams B and D for peak week) 

more consistently placed a high confidence on the correct onset or peak week prior to the 

publication of these data. The skill scores for predictions of ILI 1–4 weeks in advance and 

the accuracy of point forecasts were highest 1 week ahead and declined for the 2–4 weeks 

ahead forecasts (Table 3a; Figures 2 and 3). Short-term forecasts had higher skill scores 

outside the influenza season than during the influenza season (Figure 2).

Regional level forecasts

Average forecast skill scores for the seasonal and short-term targets for the 10 HHS regions 

are presented in Table 3b. Forecast score varied by region and by forecast model. Forecast B 

had the highest average skill score for the seasonal targets in 5 HHS regions while Forecast 

E had the highest average score for the seasonal targets in 4 HHS regions and the highest 

average skill score for the short-term targets in 9 HHS regions. The highest average skill for 

the combined seasonal targets among the 10 HHS regions ranged from 0.09 in Region 1 to 

0.36 in Region 4 while the highest average skill for the combined short-term targets ranged 

from 0.17 in Region 6 to 0.50 in Region 8 (Table 3b). The highest average skill score for 

milestone forecasts (0.19) and near-term forecasts (0.31) for the 10 HHS Regions were 

similar to the highest average skill score for milestone forecasts (0.21) and near-term 

forecasts (0.38) for the United States (Tables 3a and 3b). When compared to the historic 

average model and using the scores for the 10 HHS regions averaged together, three models 

had higher scores for the combined seasonal targets while two models had higher skill scores 

for the combined short-term targets (Table 3b).

DISCUSSION

This challenge represents the second year of a CDC-coordinated effort to forecast influenza 

seasons in the United States. CDC and forecasting teams have continued to work together to 

ensure forecasting targets are feasible for constructing forecasting models and provide 

information for public health decision making. For the 2014–15 influenza season, the 

forecast targets were modified to better align them with public health needs and standardized 

metrics were added to quantitatively assess forecast accuracy. Differences in forecast 

accuracy were observed between models, with Forecast models B and E generally 

performing better than other forecasts and the historic average model. Nonetheless, the 

evaluation of forecast skill indicated that forecasting the different characteristics of an 

influenza epidemic accurately is challenging, even in the United States where researchers 

have access to robust traditional and non-traditional influenza surveillance data. Continued 

work to improve forecast accuracy and communication of accuracy and past forecast 

performance is needed to improve the contribution of forecasts to public health decision 

making.

One criterion for influenza forecasts to be useful to public health decision makers is that 

they must address key public health questions, and identifying the key targets for influenza 

forecasting was a major focus of the 2014–15 challenge. During the 2013–14 influenza 
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season, the included targets were the onset and peak weeks, the peak intensity, and the 

duration of the season. For the 2014–15 challenge, we maintained the onset, peak week, and 

peak intensity targets because of their variation season-to-season and the public health 

actions that could be informed by these forecasts. Historically, U.S. influenza seasons have 

begun between November and January, have peaked between December and March, and 

have had peak ILINet values ranging from 2.4% to 7.7% [13, 16]. Seasons that onset and 

peak earlier have less time for vaccination to occur before influenza activity starts, and 

higher ILINet values indicate seasons with an increased demand on health care services. 

Therefore, forecasts for the onset and peak week and the intensity can inform the timing of 

influenza vaccination and treatment efforts, communication around influenza season 

preparedness, and efforts to manage the influenza-associated healthcare surge (which can 

include staffing and inventory management). In the event of an influenza pandemic, 

forecasts with targets such as these could also be used to guide the timing and duration of 

non-pharmaceutical interventions, like school closures. We eliminated the season duration 

target because it did not inform a key public health question on its own.

The 2014–15 season was the first year that short-term targets were also included in the 

challenge. Because the most recent published ILINet data on Friday covers activity 

occurring during the previous MMWR week (e.g. the data published on November 6, 2016 

covered activity that occurred October 25–31, 2016) and forecasts are received the following 

Monday, forecasts for the short-term targets cover activity that has occurred during the past 

week, the present week, and the next two weeks in the future. They were included because 

they bridge the gap between surveillance data, which describe activity that has occurred in 

the past, and the seasonal targets, which describe one-time annual events that can be weeks 

to months away or already have passed. Therefore, short-term forecasts are an important tool 

for situational awareness because they provide the likelihood that influenza activity will be 

increasing, decreasing, or staying constant in the near future, which can help inform 

influenza-associated healthcare surge management and communication efforts.

Another factor identified to make forecasts more useful for decision making was to provide 

a measure of forecast confidence. During the 2013–14 influenza season challenge, we did 

not require forecasters to provide any metric of forecast confidence. Some teams provided 

no metric, others provided a qualitative metric (e.g. high, medium, low) or a confidence 

interval, while others provided a probability of the forecasted outcome occurring. The lack 

of a standardized way of communicating forecast uncertainty reduced the utility of the 

2013–14 forecasts [17]. Therefore, we collectively decided to standardize how forecast 

confidence was reported by having teams report forecasts as probability distributions in pre-

defined bins across the range of potential target values. Much like a weather forecast 

provides the probability that rain will occur on a given day and allows a person to decide to 

carry an umbrella, the probability of an influenza outcome occurring communicates both the 

most likely outcome and the forecast confidence to decision makers and can inform 

calculations about the potential cost and benefit of a decision against the likelihood of the 

outcome occurring.

The probabilistic forecast distributions also allow for a quantitative evaluation of accuracy, 

which can be used to compare and communicate forecast performance. The forecast skill for 
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the 2014–15 influenza season showed wide variation in the accuracy among the forecasts 

received, with Forecast B and E generally being the most accurate forecasts for both the 

United States and the 10 HHS regions. A major concern with forecasting is the use of an 

inaccurate forecast to inform a high consequence or high cost decision, which can have wide 

ranging consequences like wasted and misdirected resources, increases in morbidity or 

mortality, and the loss of credibility. In addition, because forecasts that assign little chance to 

the correct outcome occurring can be especially problematic for decision making, we 

utilized a skill score that averaged the weekly logarithmic scores before exponentiating 

instead of averaging the forecast probabilities before exponentiating. This approach 

penalizes teams more for forecasts that assign very low probabilities to the correct outcome. 

The goal of adding a standardized measure of forecast confidence and accuracy is to make 

decision makers as informed as possible when they use forecasts, and decision makers and 

other public health officials had access to the 2014–15 accuracy information during the 

2015–16 and 2016–17 influenza seasons to understand which teams had previously provided 

the most accurate forecasts.

The use of a standardized metric for forecast accuracy also aids in the comparison of 

forecast performance among geographic regions and influenza seasons. For example, the 

highest average skill score for the short-term targets for HHS Regions 3 and 6 were below 

the highest average skill score for the remaining HHS regions (Table 3). These findings may 

indicate that certain forecasting targets and geographic regions may be more challenging to 

forecast and that future forecasts for these targets or geographic regions should be 

interpreted accordingly until accuracy data from more influenza seasons are available to 

confirm if this finding is consistent or due to chance. A standardized accuracy metric also 

provides a benchmark to measure year-to-year changes in forecast accuracy, which can 

inform broader discussions around the consistency of the most accurate forecasts from 

season to season, overall accuracy trends, model performance in influenza seasons with 

certain characteristics (e.g., late seasons vs. early seasons; high severity seasons vs. low 

severity seasons), the accuracy of forecasts for influenza compared with other infectious 

diseases, and identifying model and data characteristics associated with more accurate 

forecasts. These analyses are being conducted as part of future forecasting challenges.

Because of the success of the 2013–14 and 2014–15 forecasting challenges, CDC and 

forecasting teams continued to work together to forecast subsequent influenza seasons. In 

January of 2016, CDC released a provisional public website where seasonal influenza 

forecasts from multiple teams could be accessed in real time [18]. CDC and forecasting 

teams published forecasts for the 2016–17 influenza season, and CDC plans to make a 

number of improvements to the website, including the addition of accuracy information from 

previous seasons, interactive graphs, and additional data sources that may be helpful for 

forecasting efforts. CDC and forecasting teams will also continue to engage federal, state, 

and local health officials to understand how forecasts are being used to inform public health 

decisions and how forecast accuracy and uncertainty are understood and incorporated by 

decision makers, which may lead to further refinement of the targets or the presentation of 

the forecasts.
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CONCLUSION

Preparing for and responding to influenza epidemics and pandemics are critical functions of 

public health. Infectious disease forecasting holds the potential to change the way that public 

health responds to epidemics and pandemics by providing accurate and timely forecasts, 

which could be used to make earlier and better decisions on pharmaceutical and non-

pharmaceutical countermeasures, communication strategies, and hospital resource 

management. CDC has collaborated with a group of external researchers to identify 

actionable forecast targets and better measure forecast accuracy. The results of the 2014–15 

influenza season challenge indicated that forecast accuracy varied by model and geographic 

location but that even in the best models, improvements in forecast accuracy were needed. 

Infectious disease forecasting is in its early years of development, and work continues 

between CDC and forecasting teams to fully incorporate it into public health decision 

making.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Weekly forecast skill scorea for A)onset week, B)peak week, and C)peak percent, as 

calculated from ILINet data during the 2014–15 influenza season, by the date of forecast, for 

the evaluation period, United States (n=7 forecasts).
aA forecast skill score of 0 indicates that the forecast assigned a 0% chance of occurrence to 

the correct outcome while a forecast confidence of 1 indicates that the forecast assigned a 

100% chance of occurrence.
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Figure 2. 
Weekly forecast skill scorea for A) ILINet values 1 week ahead, B) ILINet values 2 weeks 

ahead, C) ILINet values 3 weeks ahead, and D) ILINet values 4 weeks ahead, as calculated 

from ILINet data during the 2014–15 influenza season, by the date of forecast, for the entire 

forecast period, United States (n=7 forecasts).
aA forecast skill score of 0 indicates that the forecast assigned a 0% chance of occurrence to 

the correct outcome while a forecast confidence of 1 indicates that the forecast assigned a 

100% chance of occurrence.
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Figure 3. 
1-week- ahead, 2-week- ahead, 3-week- ahead, and 4-week-ahead point forecasts for the 

percent of visits due to influenza-like illness reported through the U.S. Outpatient Influenza-

like Illness Surveillance Network (ILINet) and the actual ILINet value (in black).
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Table 1

Onset week, peak week, peak percent, and the forecast evaluation period, as calculated from ILINet during the 

2014–15 influenza season, United States.

Baseline value 2.0%

Onset week WK 47 (week ending Nov. 22)

 Publish date December 1, 2014

Peak week WK 52 (week ending December 27)

Peak percentage 5.99

 Publish date January 5, 2015

Last week above baseline WK 13 (week ending April 4)

 Publish date April 10, 2015

Evaluation period for onset forecasts October 20, 2014–January 5, 2015

Evaluation period for peak week and percent October 20, 2014–April 13, 2015

Evaluation period for 4-wk ahead forecasts (in season) December 1, 2014–April 13, 2015
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Table 2

Characteristics of nine forecasts that competed in the Predict the 2014–15 Influenza Season Challenge.

Forecast Data source Model type Regional forecast* Brief description

A Google Flu Trends, Healthmap, 
Wikipedia, weather data, ILINet Mechanistic** No

Susceptible-Infected-Recovered-Susceptible 
(SIRS) using Bayesian data assimilation to 

drive a prediction ensemble

B ILINet, specific humidity data Mechanistic Yes

SIR, SIRS, Susceptible-Exposed-Infectious-
Recovered (SEIR), SEIRS models combined 

with three different ensemble filter algorithms 
(12 model-filter combinations)

C ILINet Statistical*** Yes
Spline-basis regression to match current 

observations with typical futures. Bootstrap to 
generate forecast distribution.

D Google Flu Trends, Twitter, ILINet Statistical Yes Extrapolation of correlation between Google 
Flu Trends and Twitter with ILINet data

E ILINet, crowd-sourced forecasts Statistical Yes
Crowdsourcing to collect many different 

influenza forecasts and generate an aggregate 
forecast

F Google Flu Trends, ILINet Statistical Yes
An empirical Bayes model of ILI trajectories, 

with iid Gaussian noise and importance 
sampling

G Twitter, ILINet data Mechanistic Yes Combines Twitter data, historical ILINet data 
and an epidemic stochastic generative model

*
Yes denotes forecast for ≥1 region (for all weeks)

**
Includes models that incorporate compartmental modeling like Susceptible-Exposed-Infected-Recovered [SEIR] models

***
Includes models like time series analysis and generalized linear models
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