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ABSTRACT

Network optimization problems with a “scalable” structure are examined in this report.

Scalable networks are embedded in a normed space and must belong to a closed family under

certain transformations of size (number of nodes) and scale (dimension of the norm.)  The

transportation problem of linear programming (TLP) with randomly distributed points and random

demands, the earthwork minimization problem of highway design, and the distribution of currents

in an electric grid are examples of scalable network problems. Asymptotic formulas for the

optimum cost are developed for the case where one holds the scale parameter constant while

increasing the size parameter, N.

As occurs in some applied probability problems such as the Ising model of statistical

mechanics, and the first passage of time of a random walk, the nature of the solution of linear

problems depends on the dimensionality of the space.  In the linear case, we find that the cost per

node is bounded from above in 3+-dimensions (3+-D), but not in 1- and 2-D.  Curiously, zone

shape has no effect (asymptotically) on the optimum cost per point in 2+-D, but it has an effect in

1-D.  Therefore, the 2-D case can be viewed as a transition case that shares some of the properties

of 1-D (unbounded cost) and some of the properties of 3-D (shape-independence).  A simple

formula for the 2-D, Euclidean TLP is given.  Asymptotic results are also developed for a class of

non-linear network problems with link costs that are a concave power function of flow.  It is found

that if these functions are strictly concave then the solution in 2+-D is bounded.
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1. INTRODUCTION

Asymptotic formulas exist for the traveling salesman problem, or “TSP” (Eilon et al., 1971, Karp,

1977, Daganzo, 1984a), and for the vehicle routing problem, or “VRP” (Eilon et al., 1971,

Daganzo, 1984b, Haimovich et al., 1985, Newell and Daganzo, 1986a and 1986b, and Newell,

1986).  The results apply to problems where N points are randomly and homogeneously distributed

on a region of a metric plane with area A, and density δ = N/A.  In all cases the distance traveled

per point for the TSP, or the “detour” distance per point for the VRP,1 tends to a fixed multiple of

δ -1/2 as N and A are increased in a fixed ratio.  Hence, this local structure of the TSP and VRP

problems allows the use of continuum approximations of the type proposed in Newell (1973) for

inhomogeneous problems. Extensions of this type can be used to design and configure many kinds

of one-to-many logistics systems; see Daganzo (1999). Hoping to extend these ideas to many-to-

many logistics systems, this paper develops similar formulas for a version of the transportation

                                                          
1 This is the distance traveled in excess of the lower bound.  The lower bound is the product of the (round trip)
distance between the depot and a point, and the fraction of a vehicle’s capacity consumed by each point.
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linear programming problem (TLP) where points lie on a region of a linear normed space.  The

paper investigates whether the optimal solution of the TLP exhibits a local structure, and also

presents asymptotic results for more general network problems.

Unfortunately, the TLP is more difficult to analyze than the TSP because more data are

required to define a problem instance, and because the TLP solutions must include some long trips

to balance interregional flows. The necessity of long trips suggests that the optimum solution may

not have a local structure. Interestingly, as occurs in some applied probability problems (e.g., the

Ising model of statistical mechanics, and the first passage of time of a random walk), the nature of

the solution depends on the dimensionality of the space. It will be shown that while the TLP is not

local in one dimension (1-D), it is local in 3+-D, and in a more limited sense in 2-D.  Related

results are derived for more general network problems.

In order to mitigate the above-mentioned difficulties the simplest possible problems are

presented first, followed by incremental generalizations. Section 2 introduces terminology and

some background on dimensional analysis.  Section 3 develops exact formulae for the optimum

TLP distance in the 1-D case.  Section 4 presents an upper bound for K-dimensional homogeneous

problems in a cubic region.  It is shown that if one holds δ  constant while increasing N and the

size of the cube in a constant ratio, then the distance traveled per point is of order N0 in 3+-D, as

occurs with the TSP and the VRP, of order log(N) in 2-D and of order  N1/2 in 1-D.  Section 5

introduces lower bounds and shows that the upper bounds are asymptotically exact

approximations.  This section also shows that the distance formulae hold asymptotically for 2+-D

regions with non-cubic shapes, but that this is not true in 1-D.  Section 6 shows how the results can

be modified for inhomogeneous problems.  Finally, in Section 7, results are generalized to a class

of ‘scalable’ network problems.
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2. BACKGROUND

2.1 Definitions

2.1.1 The TLP and ATLP

In this paper the TLP is defined as follows.  Given are N points, a set of real, non-negative inter-

point distances (or costs), {dij, ∀i,j  = 1,...N with i≠j}, satisfying the triangle inequality, and a set of

real-valued net supplies, vi , at each point, measured in units of “items”.  Positive vi are interpreted

as supplies and negative values as demands.  The goal is to find a set of real, non-negative

shipments, {vij, ∀i,j  = 1,...N with i≠j }, that minimizes the total distance traveled while satisfying

flow balance constraints at each point.  Here, a link-based network formulation is adopted.

(TLP) min             ∑=
ij

ijij vdz (1a)

s. t.: iji
j

ij vvv ≤∑ − )(  ;  i∀ (1b)

0≥ijv    ;  ji,∀ . (1c)

Equations (1b) specify flow-conservation at each point, ensuring that the net flow (number of

items) emanating from a point i never exceeds the net supply at i.

Problem TLP is feasible only if 0≥∑
i

iv , as can be seen by summing (1b) across i.  The

problem is “balanced” and denoted TLP(B) if 0=∑
i

iv .  In a balanced problem, constraints (1b)

are satisfied as pure equalities.  For infeasible TLP problems, we define a feasible (and balanced)

auxiliary problem, ATLP, that includes a fictitious source, i = 0, with positive net supply,
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∑
=

−=
N

i
ivv

1
0 , and distances, )sup(, 00 ijji dMdd >>= .  These distances represent a fixed penalty for

failing to ship an item. The optimal cost of the auxiliary problem, ∗z , includes two parts: a

distance component corresponding to the real points, and a penalty component corresponding to

the fictitious source. Because M is large, the set {dij}, including the fictitious source, continues to

satisfy the triangle inequality. Thus, there can be no flow into the fictitious source in an optimum

solution.  Since the auxiliary problem is balanced, the outflow from the fictitious source must be v0

with a penalty component v0M.   The distance component is the least total distance that satisfies

the most demand, d*.

For balanced problems, v0=0, TLP ≡ ATLP, and the optimal objective of TLP and ATLP,

z*, is also the least distance required to satisfy the maximum demand, i.e., ** dz = .  In summary,

the relationship between the optimum of ATLP and ∗d  is:

∗∗ = zd   if the TLP is feasible,  0
1

≥∑
=

N

i
iv (2a)

Mvzd 0−= ∗∗   if the TLP is infeasible, 00
1

<−=∑
=

vv
N

i
i . (2b)

2.1.2. The DTLP

In the solution of TLP and ATLP it is assumed that if supply exceeds demand, the excess

supply is left at the origins. In a variant of ATLP, excess supplies are carried to the extra point, or

“depot”.  This version of the problem will be called “depot-TLP”, or DTLP.  The DTLP is an

ordinary TLP, where the net supply at the depot precisely balances the problem.  In the DTLP the
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depot distances do not have to be fixed or large but they must be non-negative, 0),( 00 ≥ij dd , ji,∀ ,

and must satisfy the triangle inequality.  The minimum of the DTLP objective function, Dz , will

be denoted ∗
Dd .

Proposition 1 (DTLP as an upper bound to TLP).   For any TLP and its associated DTLP,

∗∗ ≤ Ddd .  Furthermore, if the TLP is balanced, then ∗∗ = Ddd �

Proof:  Recall that if the TLP is infeasible, a fictitious source is introduced in order to obtain z*

and d*.  The ATLP has the same constraints as the DTLP.  Therefore, a set of optimal shipments

for the DTLP, denoted ∗
Dv , is a feasible solution of the ATLP.  The associated ATLP distance,

including penalties, is denoted ( )∗
Dvz . If the DTLP is now adjusted by adding M to all the depot

distances, Mdd jj += 0
'
0 and Mdd ii += 0

'
0 , the objective function would become MvdD 0+∗ , since

0v  is the total flow to/from the depot in the optimum solution of DTLP.  All the link distances in

the ATLP are less than or equal to those of the adjusted DTLP, and ∗
Dv  is feasible in both cases;

therefore, it follows that ( ) Mvdz D 0+≤ ∗∗
Dv . Since ( )*

Dvzz ≤∗ , it is also true that Mvdz D 0
* +≤ ∗ ,

and hence that ∗∗∗ =−≥ dMvzdD 0  for the infeasible case.

In the feasible case, the non-depot flows )0,0( ≠≠ ji  in the optimal solution of the DTLP

incur a cost ∗≤ Ddd0 .  These non-depot flows are a feasible solution of the original TLP since the

depot cannot act as a transshipment point in the optimum DTLP solution.  Therefore,

∗∗ =≥ dd z    0  and it follows that ∗∗ ≤ Ddd .  If the problem is balanced, then 00 =v  and the DTLP

and TLP problems coincide �
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In what follows, we look for the average of ∗d  over a set of solutions (e.g., over an infinite

number of days) when conditions vary.  It is assumed that points are embedded in a K-dimensional

normed linear space where each point i is identified by a set of Cartesian coordinates, xi, and that

distances, dij, are given by the norm of the Cartesian separation between points, ji xx  - .

When conditions vary randomly, the notation 〉〈Y and 〈〉Y  will be used to denote,

respectively, the mean and variance of a random variable Y across the ensemble of possibilities;

e.g., across all days.  Different versions of the random TLP arise depending on which data are

allowed to vary.  In the simplest version of the problem the net supplies vary but the points are

fixed on a K-dimensional square lattice (grid) with Cartesian spacing, l.  Hence, N is fixed. If the vi

are independent, identically distributed (i.i.d.) random variables with mean 0 and variance 2σ , the

problem instances will be generally unbalanced.  However, if the vi have zero means, variances 2σ

and covariances )1/(2 −−= Nvv ji σ , the problem is balanced.2 Unless otherwise noted, it will also

be assumed that the { }iv  are multinormal. The modifiers “G” for “grid”, “U” for “unbalanced” and

“B” for “balanced” will sometimes be used as shorthand to specify the characteristics of a

particular problem; e.g., TLP(U,G) and TLP(B,G) will designate unbalanced and balanced

versions of the TLP where points are on a grid.

2.2. Dimensional analysis

Dimensional analysis can greatly simplify the solution task for any version of the TLP that

can be completely specified in terms of just three constants.  For example, given a norm, the

constants are l,σ  and N for DTLP(U,G).  For other, more general versions of the problem (i.e,

variations in demand that are not normal, points that are not fixed in number or location, or general
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service region shapes) these constants could be: σ , δ , and A.  In general we look for 〉〈 *d , or

alternatively for the average distance per point, defined as AdNdp δ// *** 〉〈=〉〈=〉〈 .

Consideration shows that only two independent dimensionless parameters can be formed

with either set of constants and the solution value, 〉〈 *p .  The two parameters are N and 
l

p

σ
〉〈 *

 if the

constants are l,σ  and N; and Aδ  and 
σ

δ k

p
1

* 〉〈  if the constants are σ, δ and A.  It therefore follows

that the exact solution for 〉〈 *p must be of the form:

)(* Nlfp σ=〉〈  (in the first case) (3a)

and

)(
1* Afp K δσδ −

=〉〈 (in the second case), (3b)

where f is the only unknown left to be determined. This function will generally depend on the type

of problem, the norm and the dimensionality of the space. The subscript “D” will be used with f

when it refers to a DTLP.  In a system of units where σ = 1 and l = 1, ( )Nfp =〉〈 * .  Thus, f has the

interpretation of a “dimensionless distance per point”.

3. EXACT RESULTS FOR THE 1-DIMENSIONAL CASE IN R 1

The balanced 1-D problem3 with distance function jiij xxd −= is simple. If one plots a

curve of cumulative supply vs. the x-coordinate, ∑
≤

=
xx

ivxv
i

)( , as shown in Fig. 1a, then d* is the

absolute area between v(x) and the x-axis. Figure 1a depicts a problem with evenly spaced points,

(although this is not required); the following is true.

                                                                                                                                                                                             
2 This is true because, with these covariances, both the mean and variance of Σvi are zero.
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Result 1. (Deterministic and balanced TLP).

ii

N

i
i xxxvdxxvd −== +

−

=

+∞

∞−
∑∫ 1

1

1

* )()( � (4a)

Proof:  For any point, xp, such as the one in Fig. 1a, v(xp) is the net flow across xp  because the

aggregate supply and demand on both sides of xp must be satisfied. Thus, dxxv p )(  is a lower

bound to the distance traveled in any small interval, (xp, xp +dx) where v(x) is constant.  Clearly,

the sum on the right side of (4a) is a lower bound for d*.

Conversely, a feasible solution can be constructed by considering horizontal slices of dv

items (as shown on the figure) and transporting these quantities from the points where the slice

intersects a rising portion of curve v(x) to the adjoining points where it intersects a falling portion.

In the case of the figure, dv items would be carried from A to B and from C to D. Thus, the

summation of all the slices for small dv (still given by (4a)) is the distance of a feasible solution

and an upper bound to d*.�

If points are evenly spaced, l distance units apart, (4a) reduces to

d* ∑
−

=

=
1

1

)(
N

i
ixvl . (4b)

If the net supplies are multinormal with 0=〉〈 iv , 2σ〈=〉 iv  and )1/(, 2 −−=〉〈 Nvv ii σ , as is required for

a homogeneous balanced problem, then the sum of the first i net supplies, v(xi), is a zero-mean

normal variable with variance







−
−−=〈〉

1

1
1ó  )(

N

i
i    xv 2

i . (5)

                                                                                                                                                                                             
3 1-D problems arise in connection with highway construction projects and the minimization of earthwork “haul”.
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Recall too that if X is a normal random variable with zero mean, then

[ ] 2
1

/)(2      π〈〉=〉〈 XX . (6)

Equations (5 and 8), applied to the expectation of (4b), yield the following result.

Result 2. (Random demand and balanced TLP).  For the 1-D, homogeneous, zero-mean

TLP(B,G) with normal demand,

( ) 2
1

1

1

2
1

*

1

1
12 ∑

−

=












−
−−=〉〈

N

i N

i
ild σπ . (7a)

The limit of this expression for ∞→N  is4

2

3
2

1

*

32
lNd σπ






→〉〈 . �    (7b)

Note from (7b) that, for a given density of points 1/l, the average distance traveled per

point for the (1-D) TLP(B), Ndp /** 〉〈=〉〈 , satisfies:

Nlp σπ
32

* → (8)

This function increases without limit with the number of points, unlike in the TSP and the VRP,

where there is a limit. The N  dependence is caused by the long-range interactions arising from

the flow balancing requirements. Equations (7b and 8) are quite general.  They hold if the vi are

not normal, but satisfy the conditions of the central limit theorem, and also if the point locations

                                                          
4 Equation (7b) is true because its right side tends to

( ) dx
2
1

N

0 N

x
1xló2

1

ð
2 ∫ 













 − ( ) 




















 −





= ∫ N

x
d

N

x

N

x
lN

2
1

1

0

2
3

2
1

12 σπ
2

3
2

1

32
lNσπ






= .
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vary across days as a homogeneous Poisson process, since (5) and (6) continue to hold under these

conditions if ∞→N .5

An expression for the unbalanced TLP is more difficult to obtain, but the task is easy for

the DTLP. First define the cumulative demand for the depot v’(x) as shown in Fig. 1b; i.e.,

)()(' 00 xxHvxv −−= , (9)

where H is the Heaviside unit step function and x0 is the depot location. Then, the same arguments

used with result 1 establish that the absolute area between curves v and v’ is d*D:

Result 3. (Deterministic DTLP).

dxxvxvdD ∫
+∞

∞−

−= )(')(* . � (10)

If the depot is centrally located, then similar manipulations to those leading to Eq. (7b) now yield:

Result 4. (Random demand DTLP).

2

3
*  

9

4
lNdD σ

π
→ and 2

1
*  

9

4
lNpD σ

π
→   .� (11)

                                                          
5 Clearly, (6) holds asymptotically because v(x) is normal for N → ∞ even if the vi aren’t. To see that the asymptotic
expression for 〈〉 )(xv  remains the same note that if i(x) is the number of points in [0, x], then the conditional random

variable (v(x)|i(x)) has zero mean, and variance 
( )
( ) 





−
−−=〈〉
1

1)(
12)(  )(|)(

N

xi
xixixv σ .  Therefore, the unconditional

variance is the expectation of this expression; i.e.,






















































−+

−
−

−
=

−
〉〈

−
−
〉〈

=〈〉
L

x

L

x
N

L

Nx

NNL

xN

N

xi

N

Nxi
xv 1

2

1

1

)1(

2
2

1

2)(

1

)(2     )( σσ ,

which has the same limit, 












−
L

x

L

x
N 1

2σ , as Eq. (5).
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Note that ** ddD > , as one might expect.  In the 1-D case f(N)~ N ; the following sections

show that f(N) = O(log(N)) in 2-D, and f(N) = O(N0) in higher dimensions.

The following sections show that f(N) = O(log(N)) in 2-D, and f(N) = O(N0) in higher dimensions.

4. UPPER BOUNDS

This section develops upper bounds for the distance traveled in several versions of the TLP

and DTLP. The bounds are based on a bilevel algorithm for the DTLP that is described below. It is

assumed that the service region has been partitioned into a finite number of subregions, CI with

their own subdepots.

Bilevel algorithm.  Step 1 (lower level): Solve a DLTP for each CI, using its subdepot, and route

the items accordingly. Step 2 (upper level): Using the main depot, route the regional over- or

under-supplies of step 1, ∑
∈

=
ICi

iI vv , from/to each subdepot as per an optimum DTLP.�
6

Since a DTLP is solved in step 2, the net flow of every subdepot is zero; i.e., items just

pass through these points.  It is therefore easy to express the result of the algorithm in path form,

by specifying the number of items vijk that share the kth path from origin i to destination j, including

any intermediate subdepots.   Since each point is part of a DTLP in step 1, the flows in and out of

all points satisfy the conservation equations of the original DTLP.  Therefore, the sums of the path

                                                          
6 The subscripts i and j are reserved for the original points, including the main depot in the case of the DTLP, but
excluding all the subdepots. Capital letters, I, J are used for subdepots.
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flows for every origin-destination pair, including the main depot, v =






 = ∑ ∀

k
ijkij ji,vv , , are a

feasible solution of the original problem with distance ( ) ∑=
ij

ijijD dvd v .  If we let the combined

distance of both steps of the bilevel algorithm be denoted d(b), it is now easy to see that the

following is true:

Proposition 2 (Bilevel upper bound to DTLP).     *)(
D

b dd ≥ .�

Proof:   From above, we see that ( ) *
DD dd ≥v . Since the triangle inequality ensures that dij is a

lower bound to the length of every path from i to j, dijk , we have:

( ) *)(
DDij

ij
ij

ijk ijk
ijijkijkijk

b d  ddvdvdvd ≥==≥= ∑∑ ∑ v .�

4.1 Homogeneous, unbalanced problems with independent normal demands on a K-D lattice

Consider now a K-dimensional cubic lattice of N points with Cartesian spacing l.  Let l

and l  denote, respectively, the largest and smallest of the K distances between a point and its

nearest neighbors in the direction of each axis.  (For the Euclidean norm, l  = l  = l.)  Assume too

that KN
1

 is an integer, the points form a cube with the depot at its center, and that the net supplies

are zero-mean, independent normal random variables with variance 2σ .

Define now two positive integers n and m such that Nmn KK = , and a partition of the cube

into Km  , I ...2,1=  identical cubes, CI, with n points to a side and centrally located subdepots; see

Fig.2.  Since KK mnN = , we see from (3a) that the optimum total expected cost is

( )KK
D

KK
D mnlfnmd σ=〉〈 * .  A similar expression is now developed for the bilevel cost, 〉〈 )(bd .
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Scalability of the bilevel algorithm: Because the normal distribution is infinitely divisible

the two subproblems of the bilevel algorithm have normal demand.  Furthermore, since both

subproblems pertain to cubic lattices with centrally located subdepots and the same norm, they are

DTLP’s of the same type as the original problem.  Therefore, they obey (3a) with the same fD as

the original, but different data, and this allows the expected total cost to be expressed as follows:

( ) ( ) ( )K
D

KKK
D

KKb mfnlnmnlfnmd 




+=〉〈 2)( σσ , (12)

where the first term is the aggregate cost of the mk lower-level problems and the second term the

cost of the high-level problem.  The two parenthetical factors of the second term are the standard

deviation and the lattice spacing of the upper level problem.

Proposition 2 implies that 〉〈≥〉〈 *)(
D

b dd .  Thus,

( ) ( ) ( ) ( )KK
D

K
D

KK
D nmfmfnnf ≥+ − 21

 ; m, n = 1, 2, 3 … (13)

It is now possible to establish the following.

Theorem 1 (Upper bound for DTLP).  If there is an 10 ≥N  such that Df  is monotone for

0NN > , then ( ) ( )NONfD =  in 1-D,  O(log(N) )  in 2-D  and  O(N0)  in 3+-D. �

Proof. Consider the following subset of (13), corresponding to m = 2 and n = 2, 4, 8 …

( ) ( ) ( ) ( )( )K
D

K
D

KK
D nffnnf 2221 ≥+ −

,  n = 2j (j = 1, 2, …), (14a)

and the related set of equalities,

( ) ( ) ( ) ( )( )K
D

K
D

KK
D nffnnf 2221 =+ −

,  n = 2j (j = 1, 2, …). (14b)

We look for the highest possible function with domain D = { },...2,1,2:  jnn jK ==  that satisfies

(14a) and matches fD when nK = 2K. Since (14a and 14b) have a recursive structure such a



14

function, Df
~

 , can be constructed by iterating (14b) starting with the given initial value for nK = 2K.

The result, given below, is an upper bound for fD in D.

( ) ( )
( )

( ) 







−
−= −

−

12

1
2

~
2/1

2/1

K

K
K

D
K

D

n
 fnf  if 2≠K , (15a)

( ) )(log2 2 n f K
D=   if 2=K . (15b)

Upon changing N for Kn in (15) it becomes apparent that ( ) NfD

~
 is ( )NO  if K=1, O(log(N) ) if

K = 2, and O(N0)  if 3  K ≥ .  Since fD is bounded by Df
~

 in D, fD satisfies the conditions of the

theorem in D.  The monotonicity of fD guarantees that these conditions are also satisfied over the

set of natural numbers.�7

In view of Proposition 1, it is easy to see that the bounds also apply to the TLP(U).

Corollary 1 (Upper bounds for TLP(U) ). Under the conditions of Theorem 1 stated at the outset

of this section,  f(N)  is ( )NO  in 1-D, O(log(N) ) in 2-D, and O(N0) in 3+-D. �

4.2 Balanced problems, random point locations and other extensions

4.2.1 Balanced problems

Consider now the balanced TLP (still on a grid), where ( )1/2 −−= Nvv ji σ . Recall that the

associated DTLP, also balanced, is now identical to the TLP.  The bilevel algorithm  is not

scalable now because the  upper level problem is a DTLP(B), like the original problem, but the

lower level subproblems exhibit correlations without being balanced. To avoid this difficulty,

bounds will be used for the lower level problem instead of the exact result.  These bounds are

tightest when n = 2; therefore, we will set n = 2 in (12).
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The cost of a feasible solution of a subproblem can be bounded by assigning to every pick-

up and delivery the distance from the centroid.  Since this distance is bounded by ( )2/l K , and

since the expected number of pick-ups and deliveries in a subregion is σ
π
2K

i
K nvn = , the

total lower level distance cannot exceed: 
2

2 Kl KmKn σ
π

.  This quantity will replace the first term

on the right side of (12).

The variance of the upper level net supplies is

K

Ci
i

Cji
ji

Cji
jiI

III

vvvvvv 222

,,

2 σ=≤== ∑∑∑
∈∈∈

,

where the inequality results from neglecting the (negative) covariance terms. Thus, 2/2Kσ  is an

upper bound for the standard deviation of vI , and the second term of (12), which uses 2/2Kσ  as the

standard deviation, is now an upper bound for the total high-level distance. The subscript “B” is

used to designate the optimal solution of the balanced DTLP.

Hence, instead of (12) we have:

( ) ( ),22
2

2 21
 mfl m

K
l md K

B

KKKKKb
B

−+



≤ σ

π
σ    for m = 1, 2, … (16)

and since ( ) ( ) ( )( )K
B

K
B

b
B mlf mdd 22* σ=≥ , it follows that:

( ) ( )( )K
B

K
B

K
mfmf

Kll
2

)/( 21
2

2
≥+ −

π
,    for m = 1, 2, … (17)

The arguments of Theorem 1 can now be repeated to obtain a recursive relation for the

supremum of fB, with essentially the same result. Therefore, we state without proof the following.

                                                                                                                                                                                             
7 The monotonicity assumption is needed because (13) can be satisfied with arbitrarily large values of ( )NDf
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Theorem 2 (Upper bound for balanced problems). If there is an N0 such that fB is monotone for

10 ≥> NN , then ( ) ( )NONf B =  in 1-D,  O(log(N) ) in 2-D and  O(N0) in 3+-D. �

Since the TLP(B) and its associated DTLP are equivalent, Theorem 2 applies to both.

4.2.2 Random point locations

In this subsection points are randomly distributed in a cube as a homogeneous Poisson process

with density δ  so that (3b) holds for the DTLP. The subscript “R” will be used where appropriate

to stress the changed nature of the problem.

If the cube is partitioned into mK subcubes, with their centroids arranged in a cubic lattice

(as before), and the bilevel algorithm is applied, then the expected total cost for the lower level

problem is an aggregation of the costs of mK scaled-down, random DTLP problems. Equation (3b)

applies to each one of these subproblems if A is replaced by A/mk.   Therefore, the expected total

lower level cost is

( ) 




= −

KDR
K

L

b
R m

A
fAd δσδδ

1
 , (18a)

since the expected number of total points at the lower level is δA.  

The high level problem is a fixed location (grid) problem with mK points and lattice

spacing A1/K/m.  The variance of the net supply at each point is that of the excess demand in one

cube, which is:8 KmA /2σδ . Thus, (3a) now yields:

                                                                                                                                                                                             

whenever KN
1

 is a prime number; e.g. let ( ) ∞→= MNfD  if KN
1

 is prime, and ( ) 0=NDf , otherwise
8 The conditional mean and variance of excess demand in one cube with P points are 0 and 2σP respectively.

Therefore, the unconditional variance is the mean of the conditional variance; i.e., KmA /2σδ .
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( ) ( ) ( )K
D

K
KK

H

b
R mf

m

A
mAmd














=

1

2
1

2 /σδ . (18b)

Note as well that the original DTLP problem satisfies:

( ) ( )AfAd DR
K

DR δσδδ
1

* −= . (18c)

Since Proposition 2 holds for each instance of the problem, it also holds for the expectation.  Thus,

*)()(
DRH

b
RL

b
R ddd ≥+ .  Substituting (18a– 18c) for these terms, and dividing both sides of the

resulting inequality by KA
1−σδδ , we find:

( )
( ) ( )Afmf

A

m

m

A
f DR

K
D

K

K

KDR δ
δ

δ ≥+






−

−

1
2

1

12
,   for 0≥Aδ , m = 2, 3, … (19)

This system of inequalities has the same structure as (13), as can be seen by the change of

variable KK mnA =δ (where n is now real and non-negative). The result is:

( ) ( ) ( )KK
DR

K
D

KK
DR mnfmfnnf ≥+

− 21 , for 0≥n , m = 1, 2, 3, … (20)

The proof of Theorem 1 can now be repeated step by step with the same conclusion. Thus, the

following is true.

Theorem 3 (Upper bounds for random location problems).  The function fDR of the random

DTLP(U) obeys Theorem 1.  Furthermore, insofar as the DTLP(U) distance bounds from above

the TLP(U) distance, the result also holds for the latter. �

The results can be extended to different variants of the problem using similar logic; e.g. if

the number of points is fixed but their location is random and also if the problem is balanced.
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4.2.3 Non-normal demand and the assignment problem

The results can also be extended to the case of non-normal demand by letting ∞→Aδ  and

then decomposing the problem in two levels, each with many points; i.e., where m is such that

( ) ∞→KK mAm /,δ . Only the logic behind the formal arguments is outlined here. If the main cube

is partitioned as before, then the lower level problems are scaled-down versions of the main

problem.  This is true for both lattice and random problems. Therefore, Eqs.(18a and 18c) continue

to hold for both types of problems; i.e., we can write

( ) ( ) 




= −

KX
K

L

b

m

A
fAd

δσδδ
1

and ( )δσδδ X
K fAd 1* −= ,

where the subscript “X” signifies non-normal demand.

Since the expected number of points in the lower level problem tends to ∞ , the distribution

of subcentroid supplies tends to the normal, and the high level problem should behave as in prior

sections for large n.  In other words, for any desired tolerance level there should be a value m0 such

that ( )
H

bd  is given by (18b) to within the prescribed tolerance for all 0mm≥ .

Thus, fX satisfies the same functional relation as fR , Eq. (18), albeit only for 0mm≥  and

within a tolerance. The arguments of Theorem 1 can then be modified slightly (using m = m0

instead of m = 2 as the fixed value of m, and incorporating the effect of the tolerance) with the

same final result.  Therefore, fX also obeys Theorem 1.

Note that in the special case where the net supplies are binary random variables,  vi = +1 or

-1 with probability 1/2, the TLP becomes the “assignment” LP. Therefore, Theorems 1 and 2 also

apply to the assignment problem.
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5. ASYMPTOTIC FORMULAE

Here we develop asymptotic formulae and investigate the effects of zone shape in 1-, 2-

and 3+- D spaces.

5.1 A lower bound

A lower bound to *p  for balanced problems, including the DTLP(U), is the product of

the expected distance from a nearest neighbor and the mean absolute value of the net supply from

a point. In all the problems studied, this product is a multiple of σδ K
1− .  Thus,

σδ Kcp
1* −≥ , (21)

where c is a problem-specific constant.  The same result holds asymptotically for the TLP(U),

since the amount not shipped becomes negligible as ∞→δ .

We have also found that in D3 −+ , ( )Afp K δσδ
1* −=  where ( )Af δ  is bounded above by

some constant, C, for all Aδ  exceeding a certain value which we denote N1. Equation (21) indicates

that ( )Af δ  is also bounded from below by a positive number, c, so that if f is monotone in the

sense of Theorem 1, then for all the problems studied there is a problem-specific positive constant

c0 such that:

σδ
δ

K

A
cp

1

0
*lim

−

∞→
= , if 3≥K . (22)

5.2 Asymptotic behavior of the bilevel algorithm

It is shown in this section that the bilevel algorithm is asymptotically optimal in all cases

where comparisons can be made with known asymptotic solutions.  Therefore, it may be
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conjectured that it is also asymptotically optimal in the remaining cases discussed in this paper.

This conjecture is tested in Section 5.3.

Assume that the bilevel algorithm is applied to a DTLP(U) problem whose dimensionless

distance per point f satisfies the monotonicity condition, so that either Theorem 1 or Theorem 3

holds, and let ( )KK mng ,  be the dimensionless distance per point obtained with the algorithm.9

(Note that g is just an abbreviation for the left-hand side of either (13) or (20).) Then, the

following is true.

Lemma 1.  For the DTLP(U) in D−+3 , ( ) ( )( ) ( ) 0/, →− KKKK nfnfmng  as ∞→n , uniformly for all

values of mk. �

Proof:  Equations (13) and (20) reveal that the ratio in question is ( ) ( )KK
D

K
nfmfn /21−

.  Since

Cmf K
D <)(  for 1NmK > , and cnf K <)(  (see Sec. 5.1), the ratio is bounded by cCn

K
/21−

if

1NmK > .  Since 021 <− K , this function tends to zero as ∞→n , and the lemma is proven. �

Theorem 4.  In R1 and D−+3 , the relative expected error of the bilevel algorithm for DTLP(U)

tends to zero as ∞→nm, .�

Proof:  It follows from the monotonicity property and from (13), (20) that:

( ) ( ) ( )KKKKK mngmnfnf ,0 ≤≤≤ if 0NnK ≥ . (23)

                                                          
9 Recall that nK is the average number of points per subzone ( KK

mAn /δ= in Sec. 3.2.2) if points are random.
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Consider now the D−+3  case. The relative expected error, defined as ( )( ) ** / DD
b ddd − , is

( ) ( )( ) ( )KKKKKK mnfmnfmng /, − .  Equation (23) guarantees that it satisfies

( ) ( )( ) ( ) ( ) ( )( ) ( )KKKKKKKKKK nfnfmngmnfmnfmng /,/,0 −≤−≤ .

Since the right side of the above expression tends to zero as ∞→nm,  by virtue of Lemma 1, so

does the relative expected error.

Consider now the 1-D case where the second inequality of (23) has the form

( ) ( ) ( )mfnnfnmf 2
1

+≤ . Recall from (8) that ( ) ( ) 2
1

32/NNf π=  in R1. Thus, the inequality becomes





 +





≤





 2

12
1

2
12

1

1
3232

m
n

m
n ππ , and the relative error is 2

1−
m , which also tends to 0 as ∞→nm, . �

5.3 Approximate formulae for 2-D problems

Theorem 4 suggests that the bilevel algorithm with n = m is also asymptotically optimal in

2-D, and therefore that for large values of n and m, ( ) ( ) ( )2222 mfnfmnf +≈ . If this is true, f cannot

be bounded from above.  Instead, it would increase logarithmically.  Therefore, we propose the

following.

Conjecture. If N is large, an approximation for the dimensionless distance per point in 2-D is:

( ) ( )NlogKKNfp 21
2

1* / +≈=σδ , (24)

where K1 and K2 are dependent on the version of the problem. �

To test this conjecture, a battery of Euclidean TLP(B) problems with random point

locations and fixed N were solved. The data for these problems are described in the appendix.
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Figure 3 displays the results on a diagram of σδ /2
1*p  vs. log(N). The results speak for

themselves.  The equation of the line is:

( ) )(031.042.0 2 Nlog Nf += , for [ ]5000,25∈N (25)

The deviations from the line are consistent with the standard errors estimated from the simulation.

Since the average number of items supplied per point is ( )
π

σ
2

=
+

iv  in the case of

normal demands, we see that the average distance traveled per item in the Euclidean case is

estimated to be ( ) 2
1

2
−δπNf .   That is,

))(078.01( 2
2

1
Nlog     item  per  distance +≈>< −δ .

As a point of reference, this distance is about twice as long as for the Euclidean TSP, for values of

N one is likely to encounter in actual logistics problems.

5.4 Size and shape effects

This subsection explores the effect of zone size and shape. It shows that if fS is the

dimensionless distance per point function in a region of a specific size and shape, then

( ) ( ) 1/lim =
∞→

NfNfS
N

 in 2+-D, but not in 1-D. Therefore, the 2-D case can be viewed as a transition

case that shares some of the properties of 1-D (unbounded f(N)) and some of the properties of 3-D

(shape-independence).

The analysis is based on the conjecture that the DTLP and TLP, with either regular or

random point locations, satisfy the following:
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Strong monotonicity conjecture.  If   S  is a region formed by a non-overlapping assembly of Q

volume-A cubes, it is conjectured that there is a number Ncrit for which the dimensionless distance

per point for the region, ( )AQfS δ , satisfies:

( ) ( ) critS N A               ,AfAQf ≥∀≥ δδδ  � (26)

This conjecture states that the dimensionless distance per point is larger in a region than in any

component cube, if one holds the density of points constant. When the arrangement is itself a cube,

as in Figs. 4a and 4b, (26) simply restates the monotonicity of f.  The conjecture is also true for

arrangements, such as those of Figs. 4c and 4d, whose points can be put in a 1:1 correspondence

with those of a cube of identical volume by means of a mapping that preserves volume without

increasing the distance between any pair of points.10

The following lemma relates the normalized distance functions for the DTLP, fD and fDS ,

and the diameter of the region, ( )21 xx −= supφ .

Lemma 2.  For some positive constant c, the expression ( ) ( ) 2
11 −+ AcAf K

D δδφδ  is an upper bound

to the normalized distance function of the DTLP, ( )AQf DS δ .�

Proof. If the bilevel algorithm is applied to the assembly with individual cubes as subregions,

Proposition 2 ensures that ( ) *
D

b dd ≥ . The lower level cost of ( )
L

bd  is ( ) ( )AfAQ D
K δδσδ

1−
.

(The function fD depends on the statistical distribution of the net supply). The upper level cost is

                                                          
10 To see this note that for regions with this weak contraction property, the optimum solution of a TLP or DTLP has a
mapped equivalent in the cubic arrangement with lower or equal cost. Thus,  fS(δAQ)  ≥  f(δAQ).  Eq. (26) follows per
the monotonicity of  f.
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bounded above by the product of the diameter of the region, φ , and the expected number of items

shipped from the subcentroids, which is ( ) 2
1

2 AQc δσ  for some constant c.  (This constant would

depend of the particulars of the problem; e.g., on the net supply distribution.)  Therefore,

( ) ( ) ( ) ( ) ( ) ( )AQfAQddAQcAfAQ DS
K

D
b

D
K δδσδδσφδδσδ

1*2
11 −− =≥≥+ ,

which implies

( ) ( ) ( )AQfAcAf DS
K

D δδδφδ ≥+ − 2
11

. � (27)

It is now possible to prove the following theorem.

Theorem 5 (Asymptotic shape independence).   If (26) holds then ( ) ( ) 1/ →AfAQf DDS δδ  as

∞→δ  (with A and Q constant) in D−+2 , but not in R1. �

Proof. Consider the D−+2  case first. Then Eqs. (26) and (27) imply that

( )
( )

( )
( )Af

A
c      

Af

AQf
      

D

K

D

DS

δ
δ

δ
δ 2

11

111
−

+≤≤  ,           for  δA  ≥  Ncrit , (28)

where φKcAc
1

1
−

= .

Since ( )Af D δ  increases without bound and ( ) 2

11
−

KAδ  is bounded from above for 2≥K , we

see that the last member of (28) tends to 1 as ∞→δ .  Thus, the theorem is proven for 2+-D.

To see that the shape independence result does not hold in R1 consider a DTLP for two

segments of length A that are separated end to end by a distance L with the depot in the middle; see

Fig.4d.  Consideration of the logic behind Fig.1b and Eq.(10) shows that the separation of the two

segments does not change the optimum vij but increases the total distance traveled by an amount

L/2 for each item shipped out of a zone and a like amount for each item received extra-zonally.
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(Items transshipped from one zone to the other pay L extra distance units, but items shipped from

the depot only pay L/2).   Thus, the expected distance is  <|v(A)|>L  and we have:

( ) ( ) ( ) 2
1

2
1*** /2 ALdAvLdd DDS δσπ+→+= .

The last expression follows from the central limit theorem and the formula for <|v(A)|> in the case

of normal independent demand; see (6).

Then, since ( ) ( ) ( ) ( ) 2
1

2
1

2
312

1* 9/49/4 AAAdD δσπδσδπ == −  (see Eq. (7)), we find:

( )
11

23
*

**

    
A

L    
d

dd

S

DS ≠





+=

−
. �

Theorem 5 implies size and shape independence in 2+-D (for a given density of points)

because the limiting ratio is 1 for any Q and S.  Note as well that, by letting ∞→Q , regions with

smooth boundaries can be considered. Therefore, the result is quite general.  Similar results can be

developed for the TLP.

A second order approximation to fS in Euclidean K-space is proposed below, based on the

example of Fig. 4c.  If 2  K ≥  and KAL
1

>>  then at optimality the items sent across cubes should

be minimized, as occurred in the 1-D case.  Therefore, the solution in each cube continues to be

independent of L, and we can write:

*
Sd = (term independent of L) + ( ) 2

1
2 ALc δσ ,

where π
2

2 →c  for the DTLP.  It can also be shown that 2c  takes the same value for the TLP(B).

Note that in 2-D L is proportional to the semi-perimeter of the region.  Therefore, one may
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speculate that if K = 2, then a second order approximation for zones of irregular shape may be

( ) 2
1

2
** Ac   ddS δσ∆≈− , where ∆  is the change in semi-perimeter; i.e.,

( ) ( )

















 ∆+≈ −

2
12

2
1*

A
cAfAdS δδσδ .

Thus, for the random location TLP(B) with normal demands and Euclidean distances, the

following is proposed:

( ) ( )Alog 
A

AfS δ
π

δ 2
2

1
31.0

2
42.0 +




 ∆+≈ , (29)

where (25) has been used instead of ( )Af δ . For a rectangle with an aspect ratio of 2, the

correction term is approximately 0.1; i.e. about 15% of the original value for problems of the size

one is likely to encounter in logistics applications.

6. INHOMOGENEOUS PROBLEMS

In actual problems point locations may be fixed but irregular, and the supply data may be

inhomogeneous, i.e., one may know statistics such as 0≠= ii mv , 2
iiv σ〈=〉  and 2

ijjiji mmvv σ+= .

Section 6.1 presents an approximation for situations where only a few parameters summarizing the

general distribution of the im , 2
iσ  and 2

ijσ  are known, and Sec. 6.2, develops bounds for problems

where the detailed statistics are available.

6.1 Confidence interval approximations based on summary data

Assume first that the problem has independent demands ( )02 =ijσ  and is homogeneous.

Assume too that the data, ( ){ }N    i  m ii ...,2,1;, 2 === σi×× , can be visualized as the realization of a
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K-D homogeneous compound Poisson process over the region A with independent batch sizes

( )2, iim σ .  Thus, the net supplies become conditional random variables, { }×|iv .  Only the moments

of X are known, i.e., ( )22 ,0),( σσ =ii  m , and ),(),( 22 Z S     m ii =〈〉 σ .

This set up is quite flexible. We have not said anything for example about the distribution

of { }im , which can be asymmetric and therefore capture problems with many more origins and

destinations (or vice versa). Deterministic supply problems are also included, if one just sets

02 == Zσ .  We desire a formula for ×|*d  where the variations come from the different net

supplies { }×|iv  that would be observed on each realization.  It will turn out that Z is not needed

for the approximation.

 Consider first the unconditional random variable, d*, whose variations come from those of

the unconditional vi .  These are obtained by first choosing X and then { }×|iv .  The unconditional

mean distance *d is given by the random-location results of Sec. 4.2.2 because the unconditional

vi are independent random variables with zero means 0== ii mv , and identical variances, 2σ .

The latter are 22
iii  m    v  σσ +〈〉=〈〉= 22 σ+= S .

Since *d  is the mean of ×|*d , a confidence interval for ×|*d  is

( ) 2
1

*   ]d[      d * 〈〉〈〉± Xκ , where κ is an appropriate number of standard deviations (e.g., 2 or 3)

for a desired confidence level.  Although the variance of ×|*d  in the 2nd term of this expression

is unknown, this variance is bounded by the variance of d*. This is true because    d =〈〉 *

〈〉〈〉≥〈〉〈〉+〉〈〉〈  ]d[        ]d[      ]d[  *** XXX .    Thus, an approximation for 〉〈 X*d  is:
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〉〈 X*d ( ) 2
1

** 〈〉±≈ dd κ .

Obviously, a similar expression holds for the normalized distance per point:

〉〈 X*p ( ) 2
1

** 〈〉±≈ pp  κ .

 It is reasonable to expect 〈〉 *p  to be bounded or perhaps even decline with problem size,

Aδ , because larger problems include more data.  This was confirmed by the simulations, where it

was estimated that

( ) 2
1

2
1

* 15.0
−≤〈〉 σδp ; (30)

see Fig.3b.  Since *p declines with δ  more slowly than ( ) 2
1

* 〈〉 p  (except in 1-D), the error

committed by using aggregate information goes to zero as the problem size increases; i.e.,

1    pp   limp ** =〉〈〉〈
∞→

X
δ

. (31)

Similar results can be developed for balanced problems and problems where only a subset

of X is fixed. Note in particular that the perfectly deterministic problem, where the vi are fixed,

obeys the same asymptotic formulae.  In this case one would put 022 ==〉〈 σσ .

6.2 Bounds for the detailed problem

It is assumed here that X is known. The results are based on the following self-evident

property of Eqs. (1).

Superposition property of TLP:  If  u = { }iju  and y = { }ijy  are feasible solutions of two TLP’s with

u = { }iu and y ={ }iy  as data, then v = u + y  is a feasible solution of the TLP with v = u + y as data.�
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Since X is known, let us decompose the net supplies as follows, iii umv += , where mi is

fixed and known and ui varies across realizations.  Define too, the “perturbation” function, d*(v),

which returns d* as a function of the data, v = {vij}.  This function is convex in our case, because

our problems always involve the minimization of a linear function over a convex set.  It is now

possible to show that the following is true.

Theorem 6 (Bounds for random demand and detailed data).

( ) ( ) ( ) ( ) ( )AfAmdudmdd    md S
K δδδσ 1***** )( −+=〉〈+≤〉〈≤ , (32)

where 2σ  is the average of iu  across all points.�

Proof:   Since d* is a convex function, Jensen’s inequality guarantees that ( )〉〈vd* ≤ 〉〈 )(* vd ; i.e.,

that ( ) 〉〈≤ ** d    md . Therefore, the lower bound holds.

For any realization, the superposition of the optimum (deterministic) solution with m as

data (and distance d*(m)), and the optimum (random) solution with u as data (and distance )(* ud )

is a feasible solution of the real problem with v as data.  Therefore, ( ) )()( *** udmdvd +≤  for

every realization. Clearly, the inequality must also hold for the averages across realizations and

hence, ( ) ( ) ( ) ( )AfAmdudmdd S
K δδδσ 1**** )( −+=〉〈+≤〉〈 , which proves the theorem. (The last

equality is based on the results of Sec. 5.1, since the ui are net supplies with zero means.) �

Whenever the second term of (32) is small relative to the first term, deterministic

approximations are reasonable. Otherwise, since the dependence of *p  on δ is very weak in 2-D

(and non-existent in 3-D for ∞→δ ) the exact cost of the problem may perhaps still be
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approximated by a formula where the dependence is ignored. One may then be able to use

continuum approximations for inhomogeneous problems where the spatial data change slowly

with location. These practical matters, however, are left to future work.

7. SCALABLE NETWORKS

Here, the supply points are nodes i with net supplies vi in a mixed graph with edges e. Assume

first that the graph is directed, and is characterized by input and output sets, I(i) and O(i), that

identify the edge pointing in and out of each node i.  It is assumed that points are identified by

Cartesian coordinates and that the non-negative edge distances de are given by a norm.  The

collection of all this information without the net supplies, {edges, nodes, depot, coordinates, norm

and p}, will be called a “network”.  For any given set of net supplies and edge distances, we solve

for the edge flows v(e) for the following network problem (NP), where p ≥ 0.

(NP) min             vdz
e

p
ee∑= )( )( (33a)

s. t.: i
iIe

e
iOe

e vvv ≤− ∑∑
∈∈ )(

)(
)(

)(  ,  i∀ (33b)

0)(   v e ≥ , e∀ . (33c)

Note the similarity to (1). As in that case, one can define feasible, auxiliary (ANP) versions of the

problem, and DNP versions where one of the nodes is designated as a “depot”.

The results in prior sections for fixed-point locations extend to this version of problem NP

if the network is “scalable”; i.e., a network belonging to a family whose members are fully

characterized by a scale parameter l and a size parameter N = mKnK, with the following two
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properties. First, the graph can be partitioned into mK identical subgraphs that define subnetworks

in the family, with scale parameter l and size parameter nK.  Second, paths can be extracted from

the original graph to connect the subdepots and form a graph that belongs to the original family,

with scale parameter nl and size parameter mK.  This definition of scalability is more general than

the definition presented in Section 4.1 because depots are no longer required to be centrally

located; see the 1-D example in Figure 5.  The networks in this figure belong to a family of equally

spaced nodes, which are connected from the left to the nearest neighbor and from the right by the

second nearest neighbor.  Note that the subnetworks are tiles that can be joined to fill the space and

make larger networks.  This is also true in 2 and 3 dimensions.

For these types of problems, dimensional analysis yields the following general solution:

)(* Nflnmd N
pKK σ=〉〈 , (34)

where the subscript “N” indicates that the dimensionless distance per point pertains to a network

problem with a specific structure. The bilevel algorithm for the DNP yields flows vL and vH at each

level that are feasible solutions to (33). Scalability implies that the resulting average total costs can

be expressed as follows:

( )K
N

pKK

L

b nflnmzd σ== )()(
Lv , (35a)

( ) ( )K
N

pKK

H

b mfnlnmzd 


== 2)( )( σHv . (35b)

If p ≤ 1, we can write  z )( Lv + )( Hvz  ≥  z )( HL vv + , and since (vL + vH) is a feasible solution

of the original problem,  z )( HL vv + ≥  z* .  Thus, if p ≤ 1, then the sum of (35) is an upper

bound for (34), and the following inequality results:

( ) ( ) ( )KK
N

K
N

pKK
N nmfmfnnf ≥+ −− ]/1(1[ 2  ; m, n = 1, 2, 3 … (36)
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This is the same as (13) when NP is linear (p = 1).  Thus, Theorem 1 applies to linear NPs.

Consideration shows that Theorems 2 and 4 also apply to the linear case.

Recall from the proof of Theorem 1 that the solution was bounded from above when the

coefficient of f in the second term of the left side of (13) declined with n.  This is also true now.

Thus, in the nonlinear case the solution is bounded if )2/1(1 pK −− < 0.  Note in particular that if

p < 0 (diseconomies of scale), the 2-D problem is bounded.
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Figure 1. Graphical solutions of 1-D problems
(a) TLP(B); (b) DTLP(U)
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Figure 2. Partition of a 2-D lattice with N = 64 points
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Figure 4. Shape effects
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Figure 5. Scalable networks: Linear tile directed graph
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APPENDIX

The total distance per point traveled was estimated using a Monte Carlo simulation of a

single commodity transportation problem.  It is assumed first that the service region is

square and node coordinates were drawn from a uniform distribution over the service

area.  The net supply of all items at each point is normally distributed with mean 0 and

standard deviation σ.  The problem is assumed to be balanced, i.e., total supply equals

total demand over the service area.  A Euclidean metric was used to calculate distance.

Twenty-five test runs at various levels1 of the following three parameters were

performed: number of nodes (N), service area (A), and standard deviation in items (σ).

In total, 769 simulations were run, with area ranging from 4000 to 90,000 area-units, 25

to 5,000 nodes, and standard deviation from 4.9 to 12.6.

                                                          
1 For N=4000, only 19 runs were performed
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Simulation results

distance per point
Test set N A σ sample

mean
sample
standard
deviation

1 25 5000 8.9 65.9 13.9
2 25 5000 6.3 47.3 10.1
3 50 5000 8.9 51.3 13.1
4 50 5000 6.3 39.6 7.6
5 100 4000 6.3 25.2 4.6
6 100 10000 8.9 56.6 9.6
7 200 10000 6.3 31.3 6.0
8 200 10000 8.9 41.1 7.5
9 250 5000 6.3 19.3 2.9

10 250 5000 4.9 14.3 2.2
11 500 75000 6.3 55.2 7.0
12 500 40000 8.9 56.4 3.8
13 500 40000 6.9 44.7 7.3
14 1000 40000 5.7 25.2 2.2
15 1000 50000 8.9 45.7 5.1
16 1000 50000 12.6 64.3 8.3
17 1500 50000 8.2 36.1 4.4
18 1500 50000 6.3 27.8 3.3
19 1500 50000 5.8 25.1 4.2
20 2000 50000 8.9 34.2 4.3
21 2000 75000 8.9 42.1 5.5
22 2000 75000 6.3 29.5 3.8
23 2500 75000 5.7 23.8 2.9
24 2500 90000 6.9 32.6 3.8
25 2500 75000 8.2 33.5 3.8
26 3000 75000 5.8 22.3 2.1
27 3000 75000 8.2 30.9 3.3
28 4000 90000 7.9 29.5 2.5
29 5000 75000 6.3 19.1 2.9
30 5000 75000 8.9 26.9 3.4
31 5000 90000 7.1 23.2 3.5




