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Machine learning for surrogate process models of bioproduction pathways 

Tyler Huntington a,b, Nawa Raj Baral a,b, Minliang Yang a,b, Eric Sundstrom b,c, 
Corinne D. Scown a,b,d,e,* 

a Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA 
b Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 
c Advanced Biofuels and Bioproducts Process Development Unit, 5885 Hollis Street, Emeryville, CA 94608, USA 
d Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA 
e Energy & Biosciences Institute, University of California, Berkeley, 282 Koshland Hall, Berkeley, CA 94720, USA   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Machine learning can be used to 
develop surrogate models from process 
simulations. 

• Surrogate models make technoeconomic 
models more accessible and fast to run. 

• Surrogate models are most useful when 
further design changes will not be made. 

• Automated design strategies can be 
complementary to machine learning 
approaches. 

• Advanced sampling strategies may yield 
further performance improvements.  

A R T I C L E  I N F O   
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A B S T R A C T   

Technoeconomic analysis and life-cycle assessment are critical to guiding and prioritizing bench-scale experi
ments and to evaluating economic and environmental performance of biofuel or biochemical production pro
cesses at scale. Traditionally, commercial process simulation tools have been used to develop detailed models for 
these purposes. However, developing and running such models can be costly and computationally intensive, 
which limits the degree to which they can be shared and reproduced in the broader research community. This 
study evaluates the potential of an automated machine learning approach to develop surrogate models based on 
conventional process simulation models. The analysis focuses on several high-value biofuels and bioproducts for 
which pathways of production from biomass feedstocks have been well-established. The results demonstrate that 
surrogate models can be an accurate and effective tool for approximating the cost, mass and energy balance 
outputs of more complex process simulations at a fraction of the computational expense.   

1. Introduction 

Technoeconomic analysis and life-cycle assessment are powerful 

analytical tools for evaluating novel bioproduction processes, identi
fying key cost bottlenecks, and drivers of greenhouse gas emissions and 
other environmental impacts (Mahmud et al., 2021; Scown et al., 2021). 
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For a wide range of chemical and biological processes, the critical first 
step is to design and simulate a production facility. This process simu
lation provides process equipment lists and sizing requirements, as well 
as mass and energy balances that are key inputs to cash flow analyses 
and life-cycle environmental assessments (LCAs). The demand for pro
cess design and simulation is vast, with applications in academic 
research, due diligence for investors, strategy development and fund
raising within startups, and evaluation of investments made by multi
national corporations (Burk, 2022). However, completing these analyses 
is resource intensive, requiring specialized commercial software pack
ages and engineering domain expertise to devise realistic facility design 
(s) (Scown et al., 2021). This barrier to entry can limit applications of 
technoeconomic analysis (TEA) in early stage technical decision making, 
where preliminary analysis can often deliver maximum value. A natural 
question is whether any parts of the process can be automated and 
broadly shared without inadvertently delivering inaccurate or otherwise 
flawed results. Machine learning, in combination with conventional 
process models, offers an opportunity to pursue this goal through the 
development of surrogate technoeconomic analysis models and other 
automated design tools. (see Fig. 1.) 

Applications of machine learning in the chemical industry have 
become increasingly widespread over the last several decades (Lee et al., 
2018). Examples in the literature range from the use of machine learning 
to predict chemical reaction properties (Marcou et al., 2015), screen and 
design catalysts (Li et al., 2017) and optimize the performance of 
chemical process unit operations (Ochoa-Estopier et al., 2013; Verma 
et al., 2018; Zheng et al., 2009). More relevant to this study, machine 
learning has played an important role in process system engineering 
with a focus on environmental sustainability (Negny et al., 2012). Liao 
et al. (2020) combined machine learning with kinetics-based process 
simulation to develop life-cycle inventory data for activated carbon 
production. Their approach yielded a modeling framework capable of 
predicting greenhouse gas (GHG) emissions associated with activated 
carbon production from 73 types of woody biomass (Liao et al., 2020). 
Song et al. (2017) demonstrated the use of deep artificial neural net
works (ANNs) to estimate life-cycle impacts of industrially produced 
chemicals based on their molecular structure (Song et al., 2017). Simi
larly, Kaab et al. (2019) developed ANNs and another machine learning 
technique called adaptive neuro fuzzy inference to predict cradle-to- 
grave environmental impacts and output energy of sugar cane produc
tion (Kaab et al., 2019). Romeiko et al. (2019) demonstrated the use of 
two other machine learning techniques–support vector machines and 
gradient boosting regression trees– to make spatially explicit predictions 
of life cycle global warming and eutrophication from corn production. 
They found that the gradient boosting regression model outperformed 
the support vector machine approach, despite requiring longer training 
time to achieve this superior level of predictive accuracy (Romeiko et al., 
2019). Applications of machine learning specific to biofuels have mainly 
focused on yield forecasting of feedstock crops (Huntington et al. 2020), 
and prediction of fuel physicochemical properties (Aminian and Zar
eNezhad, 2018; Özgür and Tosun, 2017) and combustion characteristics 
(Baghban et al., 2018; Comesana et al., 2022). 

Fewer studies have evaluated the potential of machine learning 
techniques as an alternative to traditional process simulation models for 
use in end-to-end technoeconomic analysis and life-cycle assessment. 

This study seeks to fill this research gap by presenting a modeling 
framework that leverages automated machine learning (auto-ML) to 
develop surrogate models trained on process simulation data for a range 
of biorefinery configurations, with the ultimate goal of predicting cost 
and mass/energy balances. While the machine learning models are not 
trained to directly predict life-cycle assessment outputs (i.e. greenhouse 
gas emissions and water consumption), this study demonstrates their 
ability to predict mass and energy balances, which can serve as inputs to 
conventional life-cycle assessments. To complement the surrogate 
modeling approach, a tool was also developed for automating the design 
and cost analysis of downstream separation, product recovery and pu
rification strategies, with the goal of providing more flexibility on the 
costly downstream process (typically between 20 % and 60 % of total 
costs (Martínez-Aragón et al., 2009; Wang et al., 2016)). Both the sur
rogate model and downstream separation tool are demonstrated using 
ethanol production as a case study. 

2. Materials and methods 

2.1. Process model development 

A commercial process modeling software package—SuperPro 
Designer— was used to develop a baseline process model for bioethanol 
from lignocellulosic biomass. Although this study makes use of a model 
in SuperPro, the approach presented here could be implemented with 
any process modeling software package, including AspenPlus. We used 
biomass sorghum as a lignocellulosic biomass feedstock. The process 
model includes several subsequent bioethanol production stages, 
including biomass production, supply, and preprocessing (milling), 
biomass pretreatment, sequential hydrolysis and bioconversion, recov
ery and separation, wastewater treatment, onsite energy generation 
(heat and power), and utilities (process water, cooling water, and clean- 
in-place system). Detailed descriptions of these production stages are 
documented in prior studies (Baral et al., 2020, 2019; Humbird et al., 
2011; Yang et al., 2020) and are summarized only at a high level in this 
section. 

Biomass production and supply includes biomass sorghum cultiva
tion, field operations (windrowing, field drying, baling, and stacking 
bales at the field edge), trucking bales to the biorefinery, and outdoor 
storage next to the biorefinery (Baral et al., 2020). Biomass sorghum 
cultivation includes establishment land, materials, fuel, labor, and ma
chineries as well as fertilizer and herbicide applications (Baral et al., 
2020). 

The biorefinery process model starts with conveying biomass sor
ghum bales from the outdoor storage to the preprocessing unit at the 
biorefinery. At the preprocessing unit, biomass sorghum bales are 
shredded, milled, and stored for a short time before transfer to the 
pretreatment unit (Aden et al., 2002). The milled biomass is mixed with 
water and a biocompatible ionic liquid (Cholinium Lysinate), and then 
sent to the pretreatment reactor (Magurudeniya et al., 2021). Sulfuric 
acid is mixed with the pretreated biomass to adjust pH (Magurudeniya 
et al., 2021). After pH adjustment, enzyme and water are mixed with the 
pretreated biomass slurry and sent to the batch sequential enzymatic 
hydrolysis and bioconversion reactor. For bioconversion, nitrogen 
sources (corn steep liquor and diammonium phosphate) and inoculum 

Fig. 1. Flowchart of methodological approach for developing surrogate process models using machine learning.  
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are added (Humbird et al., 2011). Following the bioconversion, the 
whole slurry is sent to the recovery and separation unit. 

The recovery and separation unit first separates the solid and liquid 
fraction of the fermented slurry. The solid fraction is routed to the onsite 
energy generation unit. Ethanol and subsequently ionic liquid are 
recovered from the liquid fraction by distillation (Humbird et al., 2011) 
and pervaporation (Sun et al., 2017), respectively. Ethanol is further 
dried using molecular sieve adsorption (Humbird et al., 2011) and 
stored onsite. The recovered ionic liquid is recycled back to the pre
treatment unit and reused. Following the recovery of ethanol and ionic 
liquid, the liquid fraction is routed to the wastewater treatment unit. 

The wastewater treatment unit includes a subsequent anaerobic and 
aerobic treatment processes, which are consistent with prior studies 
(Aden et al., 2002; Humbird et al., 2011). Biogas generated in the 
anaerobic digester from the remaining carbon sources, such as glucose 
and xylose, is sent to the onsite energy generation unit. The solid 
biomass generated following the anaerobic and aerobic treatments is 
separated and routed to the onsite energy generation unit. Water is 
recovered and reused. 

The remaining solid fraction of biomass (mainly lignin), biogas, and 
sludge (mainly cell mass) generated during wastewater treatment are 
combusted in a boiler to generate steam (Humbird et al., 2011). Natural 
gas is used as a supplemental energy source for the boiler when the 
biomass-derived energy sources available at the biorefinery are not 
sufficient to generate heat and power required for the facility. Steam is 
fed to the multistage turbine to generate power required for the facility. 
Part of steam extracted from the turbine is used for the upstream pro
cesses. Excess electricity is assumed to be sold to the grid. 

The utilities stage provides process water, cooling water, chilled 
water, and hot cleaning and sterilization chemicals (clean-in-place (CIP) 
system). Table 1 summarizes the major operating parameters used to 
develop the ethanol biorefinery model for analysis in this study. 

Once the material and energy balance analyses as well as equipment 
sizing and cost analyses were computed, the model was run for 10,000 
simulation trials, randomly selecting values of each input process 
parameter assuming uniform distribution from a range of reasonable 
estimates of their minimum and maximum values. The range of each 
parameter was determined considering prior studies and are listed in 
Table 1. Upon completion of each simulation trial, key technoeconomic 
outputs of the model were recorded. These include the results of mate
rial and energy balances as well as capital and operating costs of each 
major process stage. The minimum selling price of bioethanol was 
computed by using a standard discounted cash flow rate of return 
analysis (Humbird et al., 2011) achieving a net present value of zero. 
Basic input parameters for the cash flow analysis include an internal rate 
of return of 10 %, income tax rate of 35 %, annual operating time of 
7920 h (24 h/day and 330 days/year), and a plant service life of 30 years 
(Humbird et al., 2011; Yang et al., 2020). 

2.2. Training the machine learning models 

To evaluate the potential for machine learning models trained on 
SuperPro simulation data to accurately predict mass and energy bal
ances, we used the process simulation model for lignocellulosic ethanol 
production as a case study. Twenty-one key process parameters were 
selected to serve as training features for the surrogate machine learning 
models (Table 1) based on their impacts on the production cost and life- 
cycle carbon footprint of the final fuel. We established a range for each 
input parameter and then sampled randomly from those ranges, 
assuming a uniform distribution for all parameters within the defined 
ranges. 

Randomly sampling data inputs and their corresponding SuperPro- 
generated results ensures that the machine learning model does not 
“learn” correlations between input parameters that are simply an arti
fact of the sampling method. However, random sampling does create its 
own practical challenges because it requires large changes to input 

Table 1 
Key process parameters used as training features for the surrogate models.  

Process 
Parameter 

Units Range Description 

Biorefinery size Bone-dry metric 
tons (bdt)/day 

1000–4000 Bone-dry metric tons of 
biomass feedstock 
supplied to the 
biorefinery per day. 

Biomass 
feedstock cost 

USD/bdt 65–150 Cost (USD) per bone-dry 
metric ton of delivered 
biomass feedstock. 

Cellulose Weight fraction 
(%) of bone-dry 
biomass 

20–44 Cellulose present in the 
delivered feedstock 
(percent by mass). This 
determines the maximum 
glucose available in the 
biomass feedstock. 

Hemicellulose Weight fraction 
(%) of bone-dry 
biomass 

14–30 Hemicellulose present in 
the delivered feedstock 
(percent by mass). This 
determines the maximum 
xylose (mainly) available 
in the biomass feedstock. 

Lignin Weight fraction 
(%) of bone-dry 
biomass 

9–24 Total lignin content 
(soluble and insoluble) in 
delivered biomass 
(percent by mass). The 
insoluble lignin 
represents the maximum 
lignin that can be sent to 
the combined heat and 
power (CHP) unit for 
combustion (the actual 
value depends on types of 
pretreatment method). 

Ionic liquid 
loading rate 

Weight fraction 
(%) of whole 
slurry 

2.5–15.0 Fraction of ionic liquid in 
the pretreatment reactor 
(percent by mass-based 
on the whole slurry). 
Changing this parameter 
alone does not alter the 
predicted sugar yields. 
Glucose and xylose yields 
must be adjusted 
accordingly. 

Ionic liquid cost USD/kg 0.5–5.0 Cost (USD) per kg of ionic 
liquid (which is used as 
the solvent for 
pretreatment) delivered 
to the biorefinery. 

Sulfuric acid 
loading rate 

kg/kg-ionic liquid 0.1–0.2 Mass (kg) of sulfuric acid 
per kg of ionic liquid, 
which is required for pH 
adjustment after 
pretreatment. 

Sulfuric acid cost USD/kg 0.03–0.28 Cost (USD) per kg of 
sulfuric acid delivered to 
the biorefinery. 

Solid loading rate 
for 
pretreatment 

Weight fraction 
(%) of whole 
slurry 

20–40 Fraction of biomass solids 
in the pretreatment 
reactor (percent by mass- 
based on the whole 
slurry). 

Enzyme loading 
rate 

mg-protein/g- 
glucan 

7–20 Mass of enzyme (mg of 
protein) required per g of 
glucan (cellulose), which 
is essential to release 
sugars (mainly glucose 
and xylose) from the 
pretreated biomass. 

Enzyme cost USD/kg-protein 4–6 Cost (USD) per kg of 
enzyme delivered to the 
biorefinery or produced 
at the biorefinery. 

Cellulose to 
glucose 
conversion rate 

% 70–96 Combined (pretreatment 
and hydrolysis) 

(continued on next page) 
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parameters between individual runs of the original process simulation 
model. In contrast, the SuperPro model performs best—easily 
converging material and energy balances— when input parameters are 
gradually increased or decreased with each model run. In the future, 
more advanced sampling strategies could be implemented to avoid 
problems with the process model failing to converge. Sampling more 
frequently where combinations of input parameters result in inflection 
points or other nonlinear effects can also improve the accuracy of the 
resulting surrogate model (Bhosekar et al., 2018). 

To determine the amount of training data required, we used the 
event per variable (EPV—a rule of thumb) (100 + EPV × number of 
independent variables) assuming an EPV value of 50 (Bujang et al., 
2018). EPV is determined on a case-by-case basis and the minimum 
recommended value is 10 (Vittinghoff and McCulloch, 2007). This study 
relied on a statistical sampling method following the technique pro
posed by Cochran (1977), which resulted in about 9,000 training data 
inputs to achieve a 95 % likelihood of the desired error of 1 %. Since 10 
% of the data is required for testing, a total of 10,000 SuperPro trials 
were needed to satisfy the minimum training data needs. 

The 10,000 simulation trials of the SuperPro models were randomly 
split into a training set of 9,000 and a test set of 1,000 samples respec
tively. Next, 20 separate surrogate machine learning models for 20 
different outputs of the SuperPro simulation model were developed. 

These outputs included six mass balance model outputs (diammonium 
phosphate (DAP) input, enzyme input, ionic liquid input, corn steep li
quor (CSL) input, sulfuric acid input, and total product output), six en
ergy model outputs (electricity use during ionic liquid pretreatment, 
electricity use during recovery and separation, electricity use for 
wastewater treatment, electricity use for bioconversion, electricity 
consumption in the combined heat and power section, and total onsite 
electricity demand), and eight section-specific cost contributions to the 
minimum selling price (feedstock handling and supply, ionic liquid 
pretreatment, enzymatic hydrolysis and bioconversion, utilities, recov
ery and separation, wastewater treatment, onsite energy generation, and 
the overall minimum selling price). Recognizing that the input process 
parameters used for training would differentially affect these various 
outputs, the 20 surrogate models were trained and evaluated separately 
in order to account for this variability in input/output relationships and 
ensure the highest possible model specificity and performance. 

The Tree-Based Pipeline Optimization Tool (TPOT) was used to build 
and train the surrogate models. TPOT is an auto-ML library written in 
Python which utilizes a genetic programming algorithm to identify and 
optimize the best-fitting “pipeline” of machine learning algorithms for a 
given classification or regression problem. Since the output variables 
targeted for prediction (costs, mass balances and energy balances) in this 
analysis are quantitative and continuous in nature, the TPOTRegressor 
class was selected to determine the optimal regressor pipelines for the 
data. The TPOTRegressor class allows for numerous parameters to be 
manually defined, such as the number of generations, population size, 
offspring size, mutation rate and crossover rate, all of which affect how 
its genetic programming algorithm navigates the search space of 
candidate pipelines. TPOT provides reasonable default values for all of 
these parameters, and this study relied upon these defaults to streamline 
the pipeline selection process, this procedure had to be repeated 20 
times to obtain 20 separate surrogate model pipelines for the different 
mass, energy and cost outputs of the SuperPro simulation model. 

During the optimization process for each surrogate model, TPOT 
performed a search over supervised regression models, implemented in 
scikit-learn (Pedregosa et al., 2011), the underlying library upon which 
TPOT is built (Le et al. 2020). Specifically, the scikit-learn regressor 
functions considered by TPOT included the RandomForestRegressor, 
StackingRegressor, ExtraTreesRegressor, and GradientBoosting
Regressor. To determine which pipeline of these functions would yield 
the best performance for each of the key output variables, TPOT per
formed internal k-fold cross validation, using mean squared error (MSE) 
as the objective function to be minimized. MSE is generally regarded as a 
suitable metric for this purpose and is also TPOT’s default setting (Le 
et al. 2020). Once an optimal pipeline is determined, TPOT subsequently 
automated the process of tuning hyperparameters of the constituent 
machine learning models to further minimize prediction error. Once 
hyperparameters were tuned, pipelines were fitted to the entire training 
dataset and evaluated for their predictive accuracy on the 1,000 test 
data samples withheld from training. 

TPOT was chosen as the preferred auto-ML library for this analysis 
due to the intuitive, thorough and well-documented application pro
gramming interface (API). While deep learning approaches such as 
artificial neural networks and convolutional neural networks can be 
effective alternatives, these techniques can be more “black box” in na
ture with respect to interpreting potential mechanistic relationships 
between input parameters and model output (Rudin, 2018). The TPO
TRegressor function was applied to the training set of 9,000 SuperPro 
simulation trials to identify optimal machine learning pipelines for 
predicting minimum selling prices, mass balances and energy balances 
of each major process stage in the ethanol production pathway. TPOT 
was run separately for all output variables of interest (24 in total) to 
obtain specifically optimized pipelines for predicting each one. After 
running TPOTRegressor for each output variable, the optimal pipeline 
was extracted and evaluated based on its performance on the test set of 
1,000 SuperPro trials withheld from training. Since TPOT is built on top 

Table 1 (continued ) 

Process 
Parameter 

Units Range Description 

percentage of cellulose 
converted into glucose 

Xylan to xylose 
conversion rate 

% 50–90 Combined (pretreatment 
and hydrolysis) 
percentage of 
hemicellulose converted 
into xylose 

Aeration rate volume of air 
sparged per unit 
volume of growth 
medium per 
minute (vvm) 

0 Volume of air under 
standard conditions per 
volume of the whole 
slurry per minute (oxygen 
should be sufficient at 
least to meet the cell 
redox balancing.) 

Glucose 
conversion rate 

% 90–95 Total product yield 
during bioconversion 
(percent by mass of the 
initial glucose in a 
bioreactor) 

Xylose 
conversion rate 

% 80–90 Total product yield 
during bioconversion 
(percent by mass of the 
initial xylose in a 
bioreactor) 

Bioconversion 
time 

hours 36–72 Time required for the 
complete utilization of 
sugars (or retention time) 
in the bioconversion 
reactor (except setup 
time) 

Biofuel recovery 
rate 

% 95–99 Overall recovery of 
biofuel during recovery 
and separation processes 
(percent by mass of 
product after 
bioconversion). 

Ionic liquid 
recovery rate 

% 80–99 Overall recovery of ionic 
liquid during the 
recovery process (percent 
by mass of the initial 
required ionic liquid: the 
difference between the 
initial ionic liquid and the 
recovered ionic liquid 
results in the makeup 
ionic liquid).  
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of scikit-learn, the candidate regressor functions are sourced from the 
scikit-learn API. Different sets of regressors were selected by TPOT for 
each of the separate models for prediction mass balances, energy bal
ances and costs. 

Mean absolute percent error (MAPE), as shown in eq. (1), was used to 
evaluate the performance of the surrogate models. This error metric 
accounts for discrepancies in units across models outputs (i.e. US dollars 
for cost outputs, and physical units for mass and energy balances) so that 
the relative performance of these models can be more easily compared in 
a standardized way. 

MAPE =
1
n
∑n

t=1

⃒
⃒
⃒
⃒
At − Pt

At

⃒
⃒
⃒
⃒ (1) 

In the eq. (1), n represents the number of test samples used for 
validation, At represents the actual value of a given sample, and Pt 

represents the predicted value for the sample. 

2.3. Adding flexibility for downstream separation and purification 

An important limitation in surrogate models like those developed 
here is their lack of flexibility beyond the selected input parameters. 
Once the training data is generated and the surrogate model has been 
trained and tested, any further changes to the process configuration or 
operating conditions (beyond the selected parameters) are not possible 
without restarting the entire process beginning with generation of new 
training data. Thus, combining surrogate models with mechanistic 
modeling could ostensibly result in a balance between the performance 
of machine learning models and the flexibility of simplified mechanistic 
models. To complement the surrogate modeling approach described in 
previous sections, this study explores the potential for automated design 
of downstream separation and product recovery in biorefineries, based 
on the type of product and how it is generated by host microbes. While 
not fully integrated with the machine learning approach in the present 
study, this type of automated design and cost modeling has the potential 
to be combined with surrogate models to offer greater flexibility. 

Although designing downstream separation and product recovery 
processes requires deep engineering expertise and some unavoidable 
trial-and-error, it is possible to generate guesses that reflect configura
tions that process engineers would likely test initially. To accomplish 
this goal, we developed a decision tree capable of automating the initial 
design of separation and product recovery. The decision tree starts from 
the bioreactor (see Fig. 5). 

Microbially produced products can be accumulated within micro
organisms (known as intracellular products) or in the fermentation 
broth (known as extracellular products) (Petrides, 2015; Seader et al., 
2010). Intracellular products, such as antibiotics and proteins, need to 
be harvested from the cell biomass prior to product purification pro
cesses. Briefly, the cells are harvested out of the fermentation broth by a 
solid–liquid separation process; then cells must be lysed to expose bio
products inside the cell. After cell disruption, cell debris becomes the 
main impurity needed for removal. Once cell debris is discarded, based 
on the purity requirement or applications of the desired product, prod
uct purification process is conducted to obtain the final product for 
short-term on-site storage. 

For extracellular products, the first step is to remove cells from the 
fermentation broth through a solid–liquid separation and then conduct 
an initial concentration of the product in the broth. After getting rid of 
the large impurities, depending on the desired purity of the final product 
and its target market, a product purification step is needed to reach the 
required purity level of the final product and stored onsite. Aside from 
intracellular and extracellular products, industries are also interested in 
harvesting cells such as probiotics (Grand View Research, 2022) used in 
the food and beverage industries. In this case, cell harvesting is per
formed as the first step and followed by a drying process to obtain high 
purity of the cell itself (Fenster et al., 2019). Lastly, some renewable 

gaseous products, such as isoprene require a different separation and 
recovery processes. For gaseous products, the product is recovered from 
the bioconversion reactor, condensed, and then sent to a purification 
process, depending on the purity requirement. Detailed selection of the 
unit process for different product categories can be found in the Sup
plementary Information. When calculating the minimum separation 
cost, we assume an optimal recovery efficiency (>90 % depending on 
the unit process) of bioproducts and no side reaction will happen during 
downstream separation and recovery process. 

3. Results and discussion 

The machine learning surrogate models for predicting mass and 
energy balances of bioethanol production trained on SuperPro process 
simulation trials achieved very high performance on the 1,000 test 
samples withheld from training. Since individual surrogate models were 
developed for separate cost, mass and energy outputs estimated by the 
underlying SuperPro model, we aggregated performance metrics of the 
models in these three categories and report categorical summary sta
tistics here. Of all three types of outputs, the surrogate models for pre
dicting mass balances achieved the highest accuracy. Surrogate models 
for predicting mass balance outputs from SuperPro simulation trials for 
bioethanol also performed very well on the test set. The performance of 
these models in terms of MAPE ranged from 0.002 to 0.013 with a mean 
of 0.007 and standard deviation of 0.003 (Fig. 2). Surrogate models for 
predicting energy balance outputs from SuperPro simulation trials for 
bioethanol displayed a similarly high level of performance. The MAPE 
values of these models ranged from 0.006 to 0.08 with a mean of 0.022 
and standard deviation of 0.028 (Fig. 3). The largest MAPE of 0.08 was 
found for predicting onsite electricity generated. Lastly, the surrogate 
models for predicting minimum selling price exhibited slightly higher 
errors than those for mass and energy balances with a mean MAPE of 
0.064, range of 0.03 to 0.12 and standard deviation of 0.034 (Fig. 4). 
However, the discrepancies in performance among all these models are 
relatively small, especially with respect to the generally low magnitude 
of their error rates. 

Adding flexibility in the downstream separation and recovery pro
cess can help scientists gain a better understanding of the complexity of 
the downstream processes and adjust their time and budgets accord
ingly. A decision tree approach like the one presented in this paper can 
be used as a standalone tool, or in combination with conventional or 
machine learning-based models of an entire process. Users can input the 
physical and chemical properties of the desired product, and key 
process-related parameters, such as yield/tier and purity, in the addi
tional separation tool; we then use the above-mentioned separation 
decision tree to recommend a strategy with total capital investment and 
annual operating costs associated with the process. A sample user 
interface of the separation tool (publicly available at lead.jbei.org) can 
be found in SI-Fig. S3. 

Although an automated design tool is not a viable substitute for pilot 
and demonstration runs, users can vary the input parameters, such as 
target product purity or product titer, to better understand how sepa
ration costs will be impacted. Users can also compare the separation 
costs by selecting alternative unit processes. Taking ethanol separation 
as an example, the default titer is 5.4 wt% and final product purity is 97 
% based on NREL’s report (Humbird et al., 2011). When separating 
ethanol after fermentation, the separation tool suggests starting from 
centrifugation and filtration before distillation to remove large impu
rities first; then, a molecular sieve is added to eliminate water. A drying 
process is further added to reduce moisture content in the product before 
stored onsite. The total capital investment of this ethanol separation 
process is ~$30 million and the operating cost is ~$2 million. The 
estimated separation cost of ethanol is $0.24/gal according to the tool’s 
calculation. For comparison, Amornraksa et al. evaluated three different 
separation processes (conventional molecular sieve, extractive distilla
tion, and pervaporation) of bioethanol produced from corn stover and 
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they reported that the total capital investment varied between $22 
million to $36 million, with the conventional molecular sieve being the 
highest (Amornraksa et al., 2020). The ethanol separation cost from the 
biomass sorghum to ethanol process modeled in SuperPro Designer is ~ 
$0.28/gal. If the product titer is decreased by 50 %, the separation costs 
will be increased to $0.45/gal. When the final purity requirement de
creases from 97 % to 90 %, the corresponding separation cost could be 
reduced to $0.16/gal. In product concentration steps, instead of distil
lation, users can also select filtration; however, switching to filtration 
could increase the separation costs to $0.27/gal. The market value of the 
final product also has a large impact on the separation costs. In the 
ethanol case, if the market selling price of ethanol is high (>$100/kg), 
the final separation cost jumps to $4.81/gal with the large contribution 
from the freeze dryer, which is the last concentration step. Although 
mass and energy balances were not explored in this particular case 
study, a decision tree approach can apply to such analyses, assuming it is 
well integrated with the full-scale biorefinery model to account for 
waste heat recovery and other recycle streams. 

The results show that machine learning can be used to develop fairly 
accurate surrogate models for complex process simulations of biofuel 
production pathways. The predictive accuracy of such models varies 
depending on the model output of interest, with mass and energy bal
ance surrogate models generally performing better than those for pre
dicting minimum selling price models. However, it is important to 
highlight the variability in surrogate model performance depending on 
the major process stage for which outputs are being predicted. While the 
mass and energy balance surrogate models had lower mean error rates, 
the standard deviation in performance was greatest for the energy pre
diction surrogate models, followed by the minimum selling price 

surrogates and lastly the mass balance surrogates. The largest MAPE 
values of 0.08 and 0.02, were for predicting onsite electricity generated 
and electricity required for ionic liquid pretreatment, respectively. The 
high errors are related to the ionic liquid recycle stream. In 141 of the 
10,000 SuperPro trials run for this study, material and energy balances 
for the pretreatment stage fail to converge. This failure to converge 
resulted from the ionic liquid recovery rate changing from a low to a 
high value in back-to-back runs. An inaccurate prediction of electricity 
requirements during pretreatment also increases the error for total 
electricity generated onsite. The modeling error caused by the failed 
convergence of the SuperPro model can be minimized by adding a 
dummy unit to flush out the main stream where the recycling stream is 
connected, then re-running the material and energy balances. Further, 
adding more dependent variables, including material flow through the 
pretreatment reactor or size of the pretreatment reactor as well as pa
rameters that determine biogenic energy sources routed to the boiler, 
including lignin and biogas, can minimize the error found in this study. 

This study adds to a growing body of work in the biofuels or bio
chemicals production industry to leverage machine learning techniques 
for modeling tasks that have conventionally relied upon costly and 
complex process simulation software. In the last several decades, rapid 
computational advances have made machine learning tools increasingly 
accessible across a wide range of scientific domains, especially in the 
chemical engineering space (Dobbelaere et al., 2021; Lee et al., 2018; 
Schweidtmann et al., 2021). Examples in biofuel production span from 
the use of artificial neural networks to estimate the density and kine
matic viscosity of biodiesel (Özgür and Tosun, 2017) to support vector 
machines for predicting metabolic fluxes (Wu et al., 2016). With 
growing interests in making industrial system processes more 

Fig. 2. Parity plots of mass balance predictions by ML surrogate models versus SuperPro Designer simulation outputs for major process stages of the ethanol 
production pathway. The MAPE values of these models on test data (withheld from training) ranged from 0.002 to 0.013 with a mean of 0.007 and standard deviation 
of 0.003. A greater clustering of points around the y = x line (dashed red) in these plots indicates closer agreement between predicted and actual values, and thus 
higher prediction accuracy. DAP = diammonium phosphate; CSL = corn steep liquor. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 3. Parity plots of energy balance predictions by ML surrogate models versus SuperPro Designer simulation outputs for major process stages of the ethanol 
production pathway. The MAPE values of these models on test data (withheld from training) ranged from 0.006 to 0.08 with a mean of 0.022 and standard deviation 
of 0.028. A greater clustering of points around the y = x line (dashed red) in these plots indicates closer agreement between predicted and actual values, and thus 
higher prediction accuracy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Parity plots of minimum selling price (MSP) predictions by ML surrogate models versus SuperPro Designer simulation outputs for major process stages of the 
ethanol production pathway. The MAPE values of these models on test data (withheld from training) ranged from 0.03 to 0.12 with a mean of 0.064 and standard 
deviation of 0.034. A greater clustering of points around the y = x line (dashed red) in these plots indicates closer agreement between predicted and actual values, 
and thus higher prediction accuracy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sustainable, there has been an emerging trend in the application of 
machine learning to techno-economic and life-cycle impact modeling. 
Machine learning techniques combined with kinetic simulation 
modeling have been shown to be effective in predicting generating en
ergy and greenhouse gas inventory data of activated carbon production 
(Liao et al., 2020) and support vector regression models have proven 
useful in system optimizations to lower NOx emissions from a coal-fired 
utility boilers (Zheng et al., 2009). While these examples illustrate that 
conventional simulation modeling methods in the chemical industry 
have started to become accompanied and enhanced by machine learning 
techniques, fewer studies have explored the potential of tree-based 
models, specifically via the use of automated machine learning algo
rithms, to serve as surrogates for estimating costs, mass and energy 
balances of process simulations for modeling the production of high 
value biofuels and bioproducts. Thus, the demonstration that such an 
approach can yield high-performing models in this study sets it apart in 
the literature as a novel application of these computational methods in 
an industrial sector where technological development is imperative to 
securing a clean and sustainable future. Moreover, we show that tree- 
based decision algorithms for determining specific equipment configu
rations of certain system model components can offer a powerful com
plement to surrogate modeling. In this study, we demonstrate the 
viability of this approach for downstream separation processes. Such 
algorithms could enable rapid development of prospective system de
signs that could then be used to build process simulation models that 
could serve as the basis for training ML-based surrogate models as we 
have demonstrated in this study’s methodology. Thus, there is vast po
tential for a synergistic link between these computational approaches 
which could serve to accelerate the design, build and test cycle of bio
process system development and optimization. Future work that ex
plores the integration of these methods would be a worthwhile pursuit 
that stands to advance the field. 

4. Conclusions 

Technoeconomic analyses and life-cycle assessments are critical to 
estimating costs and environmental impacts of biofuel and bioproduct 

production pathways. The ability to run these computations rapidly is 
important to fully explore the design space for biorefineries. While these 
approaches have limitations with regard to model generalizability, the 
methodology presented in this study shows that machine learning and 
decision-tree algorithms can usefully extend the utility of conventional 
process simulations in order to more rapidly predict model outputs and 
iterate over potential equipment layouts. Future work is needed to 
develop these approaches further with an aim toward increasing their 
flexibility and accuracy. 
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