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Recent advances in the treatment of cerebral gliomas have increased the demands on noninvasive neuroimaging for the diagnosis,
therapeutic planning, tumor monitoring, and patient outcome prediction. In the meantime, improved magnetic resonance (MR)
imaging techniques have shown much potentials in evaluating the key pathological features of the gliomas, including cellularity,
invasiveness, mitotic activity, angiogenesis, and necrosis, hence, further shedding light on glioma grading before treatment. In this
paper, an update of advanced MR imaging techniques is reviewed, and their potential roles as biomarkers of tumor grading are

discussed.

1. Introduction

Cerebral gliomas are the most common and devastating
primary brain tumors. Although these tumors are tradition-
ally considered to be arising from normal glial cells, the
origin of the tumors remains undetermined. More recently,
neural stem cells or progenitors are proposed to be the
source of glioma [1]. The World Health Organization (WHO)
published a classification system of central nervous system
tumors in 1979 and subsequently revised the system in 2000
and 2007. In 2007 system, the major neuroepithelial tumors
include astrocytic, oligodendroglial, oligoastrocytic, ependy-
mal, and choroid plexus tumors. The grading of gliomas
mainly relies on histological features, including cellularity,
nuclear atypia, mitotic activity, vascularity, and necrosis,
observed on light microscopy with the aid of immunohisto-
chemistry.

Among the gliomas, astrocytic tumors are the most com-
mon and usually divided into circumscribed and diffuse

tumors. The circumscribed tumors are generally in lower
grade occurring in young patients while the diffuse tumors
are the most common cerebral tumors in adults belonging
to WHO grades, II, III, and IV [2]. As the names imply,
circumscribed tumors, such as pilocytic astrocytoma (WHO
grade I), are localized with distinct margin and diffuse
tumors are notorious in their propensity to infiltrate sur-
rounding parenchyma, irrespective of the grades. The WHO
grade II astrocytomas consist of diffusely infiltrative and
well-differentiated fibrillary, protoplasmic, or gemistocytic
astrocytes with increased cellularity and nuclear atypia but
without mitoses, endothelial proliferation, or necrosis. The
WHO grade III astrocytomas, anaplastic astrocytomas, show
higher cellularity and nuclear atypia than the WHO grade
IT tumors with mitoses but without endothelial proliferation
or necrosis. The WHO grade IV astrocytomas, glioblastoma
(formerly, glioblastoma multiforme), are the most common
form of astrocytic tumors occurring in the subcortical
white matter of the cerebral hemispheres. Glioblastomas are
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FIGURE 1: (a) Contrast-enhanced T1-weighted image shows a glioblastoma with strong enhancement after intravenous gadolinium injection.
(b) The tumor shows decreased ADC values on ADC map (arrow in (b)).

densely cellular and pleomorphic tumors with highly mitotic
activity, endothelial proliferation, and necrosis. While the
majority of glioblastomas are primary (>90%), arising de
novo with a short clinical history and without a precursor
tumor, secondary glioblastoma (<10%) may transform from a
lower grade astrocytoma over a period of years [3]. Nonethe-
less, the histopathological appearances of the primary and
secondary glioblastomas are identical.

More recently, the advance of genetics and molecular
knowledge of gliomas have shown exciting values not only in
improving the correlation between the diagnosis and prog-
nosis but also in guiding novel therapy of these devastating
diseases [1, 4-6]. For example, mutations of the gene encod-
ing isocitrate dehydrogenase 1 (IDHI) are very common in
low-grade astrocytomas, anaplastic astrocytomas, oligoden-
drogliomas, anaplastic oligodendrogliomas, and secondary
glioblastomas but very rare in de novo glioblastoma [7, 8].
The fact that similar genetic aberrations exist in a variety of
gliomas suggests common progenitor cells of these tumors.
In addition to mutations of IDHI, low-grade astrocytomas
usually have TP53 mutation while oligodendrogliomas typ-
ically show 1p/19q loss [8]. The concurrent deletion of chro-
mosomes 1p and 19q, a result of an unbalanced translocation,
is associated with increased chemosensitivity and a better
prognosis [9, 10]. The most common genetic alteration in
de novo glioblastomas is loss of heterozygosity (LOH) on
chromosome 10 [11, 12]. LOH 1p is rare in both de novo and
secondary glioblastomas but has been found to correlate with
longer survival [13, 14].

Overall, the prognosis of high-grade gliomas remains
poor despite advances in diagnosis and therapy. The median
survival is 12 to 15 months in patients with glioblastomas and
2 to 3 years in patients with anaplastic gliomas [15, 16]. The
treatment failure is thought to stem from complex biology
and heterogeneity of the gliomas. Advances of the techniques
in neuroimaging have improved the characterization of the

physiology and metabolism of the tumors noninvasively,
leading to improved diagnosis and better detection of recur-
rence, as well as improving image-guided biopsy and therapy
[17-21]. This paper provides an update of the functional MR
imaging of gliomas, with focus on the imaging biomarkers
of the pathological stigmas of gliomas, including cellularity,
invasiveness, mitotic activity, angiogenesis, and necrosis.

2. MR Imaging of Cellularity and Invasiveness

2.1. Tumor Cellularity by Diffusion-Weighted Imaging. The
cellularity of gliomas can be evaluated by either T2-weighted
MR images or diffusion-weighted imaging (DWI) which
measures free water molecular diffusion and has been widely
used in the diagnosis of acute cerebral infarction and in
differentiating tumor necrosis from abscess cavity [22, 23]. In
tumor studies, DWI may serve as an early surrogate marker
of therapeutic efficacy by implying persistent cellular density
in the tumors where high cellularity may impede free water
diffusion, resulting in a reduction of apparent diffusion coeffi-
cient (ADC) values. Generally, lower ADC values correspond
to increased cellularity and high-grade gliomas (Figure 1).
This correlation is, however, not linear. In a study by Higano
et al. the minimum ADC varies significantly between WHO
grade IIT ((1.06 + 0.21) x 10~ mm?/sec) and WHO grade
IV gliomas ((0.83 + 0.14) x 107> mm?/sec) at b value of
1000 sec/mm? [24]. Because the nests of tumor cells tend to be
heterogeneous in distribution within the tumor, a measure-
ment of ADC values by manual drawing of the region of inter-
est from the imaging (ADC map) may cause significant sam-
pling bias. A recent study using minimum histogram analysis
of apparent diffusion coefficient (ADC) values, instead of
mean value, has shown promising correlation with glioma
grading [25, 26]. This study using high b value and cumula-
tive ADC histogram analysis revealed a significantly higher
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FIGURE 2: ((a), (b)) FLAIR images depict a diffuse and infiltrative oligodendroglioma, WHO grade III, which deviates the corticospinal tract

(arrow in (c)) medially, as demonstrated on DTI tractography (c).

frequency of low ADC values in high-grade gliomas than
those in low-grade ones [26]. The improved analysis methods
indeed enhance the role of DWTI as a biomarker of tumor cel-
lularity for the diagnosis and monitoring treatment response.

2.2. Tumor Invasiveness by Diffusion Tensor Imaging. Peritu-
moral invasion is another index of tumor aggressiveness [24].
However, conventional MR imaging cannot accurately evalu-
ate this invasive behavior due to overlapping of the edema and
tumor cells. Recent studies have shown a potential role of dif-
fusion tensor imaging (DTI) in this regard [24, 25]. The DTI
measures direction and magnitude of water diffusion based
on the data obtained from 6 or more gradient directions as
opposed to 3 directions in DWI. The water movement within
the white matter tracts is mainly restricted across the myelin
sheaths, a principal contributor to directionally dependent
water diffusion, that is, anisotropy. Mathematic indices such
as fractional anisotropy (FA) derived from DTI data can
imply microstructural integrity of brain tissue. Further appli-
cation using fiber-tracking techniques can reveal the rela-
tionship between gliomas and adjacent white matter tracts
(Figure 2), hence assisting surgical planning and monitoring
tumor response to treatment [27-29]. However, measure-
ments of FA for tumor grading may show conflicting results.
Inoue et al. reported that the FA values of low-grade gliomas
are significantly lower than those of high-grade by a threshold
of 0.188 [30], while Goebell et al. showed low FA ratios in the
tumor centers of both low-grade and high-grade gliomas [31].
In the peritumoral region, the T2-weighted hyperintense area
surrounding the high-grade glioma, the FA value is typically
reduced resulting from a combination of perifocal edema,
tumor mass effect, and invasion of tumor cells [28, 32].
Low-grade gliomas tend to deviate, rather than destruct
(Figure 3) or infiltrate (Figure 4), the adjacent white matter
[28]. Therefore, FA value is less reduced in low-grade gliomas.

Gliomas may affect both the functional cortex and the
corresponding white matter tracts. The combination of the
DTI and functional MR imaging can delineate an entire

functional circuit (Figure 5), which can help surgical plan-
ning, reduce the surgery time, and minimize the need for
intraoperative cortical stimulation [33]. However, the benefits
remain to be proven in randomized trials.

2.3. Non-Gaussian Diffusion Kurtosis Imaging (DKI). The
computational algorithms of DTI are based on the ideal
Gaussian distribution of water movement. However, this is
not realistic in vivo as the brain represents a complex environ-
ment where the movement of water is restricted. In addition,
the ADC values obtained from routine diffusion imaging
using b value at 1000 sec/mm?* might only reflect extracellular
water movement. Diffusion kurtosis imaging (DKI) is an
extension of the DTT model capable of measuring the degree
of non-Gaussian water diffusion [34]. The value of DKI has
been shown in a study of Van Cauter et al. with kurtosis
parameters contributing to better discrimination between
high-grade and low-grade gliomas than with conventional
diffusion parameters [35]. Further study is required to explore
the role of DKI in evaluation of tumor invasiveness.

3. MR Imaging of Mitotic Activity

3.1. Gadolinium-Enhanced T1-Weighted Imaging. The mitotic
activity or proliferation of gliomas significantly correlates
with prognosis [36, 37]. Among various approaches available
for assessing mitotic activity, MIB-1 antibody staining of the
nuclear antigen Ki-67 is the most reliable and widely used
method [38]. Ki-67 index has been shown to be a better
prognostic indicator than histological grades [37, 39]. Several
MR imaging techniques have been applied to correlate
with tumoral mitotic activity. Among those techniques,
conventional contrast-enhanced MR imaging was shown to
be best correlated with Ki-67 index up to 8.1% in gliomas with
contrast enhancement as opposed to 2.0% in those without
enhancement [40]. However, the binary discrimination is
insufficient in grading enhancing gliomas. As accelerated
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FIGURE 3: (a) Contrast-enhanced T1-weighted image demonstrates a butterfly glioblastoma involving the genu of corpus callosum with small
areas of low ADC value on ADC map (arrows in (b)). On color-coded diffusion tensor imaging, the normal left-right-oriented red color
(arrow in (c)) is lost due to destruction of the transverse tracts.

()

FIGURE 4: (a) Contrast-enhanced T1-weighted image shows a necrotic glioblastoma with rim-like enhancement. (b) On FA map, attenuated
FA (arrows) of the adjacent tracts is shown, indicating tumor infiltration.

(®) (c)

FIGURE 5: (a) Contrast-enhanced T1-weighted image shows an oligodendroglioma, WHO grade I, in the left frontal lobe. (b) Functional MR
imaging and DTI tractography (c) demonstrate the activation of Broca’s area (arrow in (b)) anterior to the tumor and the elevated arcuate
fasciculus (arrow in (c)), respectively. The grey sphere in Figure 5(c) indicates the location of tumor.
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FIGURE 6: (a) Contrast-enhanced T1l-weighted image depicts a glioblastoma involving the genu of corpus callosum. The arrows point two hot
spots (targets) for stereotactic biopsy based on the regions of increased Cho/Cr ratios ((b) Cho/Cr map).

proliferative activity is coupled with high tumor cellularity
and increased perfusion, DWI and perfusion MR imaging
have been used to indirectly reflect mitotic activity of gliomas
[24, 41, 42].

3.2. Tumor Activity and Image-Guided Biopsy by Proton MR
Spectroscopy. Proton MR spectroscopy (MRS) can noninva-
sively measure the brain metabolites in vivo. Some metabo-
lites commonly used in clinical MRS study include but are
not limited to N-acetyl aspartate (NAA, at 2.02 ppm), choline
(Cho, at 3.2 ppm), creatine/phosphocreatine (Cr, 3.0 ppm),
lactate (Lac, at 1.33 ppm), lipids (Lip, at 0.9-1.5 ppm range),
and myo-inositol (ml, at 3.56 ppm). Although no tumor-
specific metabolite has been labeled, the ratios of metabolites
such as Cho/Cr ratio (Figure 6) have been used to assess
cellular proliferation. Cho/Cr ratio has been shown to be
parallel with the Ki-67 index in studies of single-voxel MRS
[43-45]. In a study of multivoxel MRS, Tamiya et al. also
showed a positive correlation between Cho/Cr ratio and Ki-
67 index while NAA/Cho ratio has a negative relationship
with the index [46].

Another important clinical application of MRS is image-
guided biopsy. Although conventional contrast-enhanced
MR imaging is useful in delineating gliomas, the tumor
regions where the most active mitotic activity exists may not
always enhance and vice versa. Irrespective of contrast
enhancement, chemical shift imaging using multivoxel ratios
of Cho/NAA (the choline map) can be a valuable tool in
locating high proliferative potential regions for accurate
biopsy targets [47]. Furthermore, the resonances of Lac and
Lip were found to be independent predictors of intermediate
(Ki-67 index, 4—-8%) and high (Ki-67 index, >8%) prolifera-
tive activities, respectively [48], while a higher level of mI is
related to a lower grade of astrocytomas (Figure 7) [49].

4. Imaging of Angiogenesis

4.1. Perfusion-Weighted MR Imaging. Malignant gliomas are
characterized by high degree of angiogenesis, a marker of
histological grading system and one of the major therapeutic
targets in the development of novel treatments [50]. The
principal proangiogenic factor is vascular endothelial growth
factor (VEGF), which can result in increased neovascula-
ture, microvascular permeability, and vasodilatation [51-56].
The neovasculatures in gliomas function abnormally with
irregularity of the endothelial lining and disruption of the
blood-brain barrier (BBB) [57, 58]. The abnormal caliber and
number of tumor vessels resulting from abnormal angio-
genesis can be histologically measured by microvascular
density or area (MVA), which may represent an independent
prognostic biomarker [59]. However, the MVA calculation is
time consuming and clinically arduous. A fast and noninva-
sive alternative in assessing MVA is dynamic susceptibility-
weighted contrast-enhanced (DSC) MR imaging, which mea-
sures changes in tissue T2" following injection of contrast
agent [60]. With a model that assumes that the contrast
agent is restricted to the intravascular compartment, DSC
MR imaging can generate a series of perfusion parameters,
including relative cerebral blood volume (rCBV), referring
to volume of blood in a given region of brain tissue, relative
cerebral blood flow, referring to volume of blood per unit
time passing through a given region of brain tissue, and
mean transit time, referring to the average time for blood
to pass through a given region of brain tissue. Among the
parameters, rCBV is generally considered associated with
tumor energy metabolism and provides a reliable estimate of
tumor MVA [21, 61].

Dynamic contrast-enhanced (DCE) MR imaging is
another perfusion method, which relies on the relaxivity
effects, rather than the susceptibility effects assessed in DSC
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FIGURE 7: (a) Contrast-enhanced T1-weighted image shows a nonenhanced low-grade astrocytoma in the right superior frontal lobe with a

high mlI level on spectrum of proton MRS (arrow in (b)).

FIGURE 8: (a) FLAIR image shows a hyperintense low-grade glioma, WHO grade II, without significant contrast enhancement on T1-weighted

image (b) or increase of the rCBV (c).

method, and measures T1 signal changes following injection
of contrast agent. Because gadolinium exerts stronger relaxiv-
ity effects than the susceptibility ones, DCE method requires
a smaller amount of contrast agent than DSC method does,
allowing multiple repeated studies and better quantitation of
the perfusion parameters [62, 63].

Tumor neovasculatures tend to have leaky BBB, so the
small molecular-weight gadolinium-based contrast agent
readily extravasates, causing underestimation of the tumor
rCBV. Consequently, the correlation between the rCBV and
histologic tumor grading may not be always consistent unless
rCBV is corrected for contrast extravasation [64]. Nonethe-
less, low-grade gliomas usually show no increase in tumor
rCBV (Figure 8) while high-grade gliomas may demon-
strate high rCBV that in some cases extends outside the
contrast-enhancing portion of the tumor (Figure 9). Contrast
enhancement in tumor may suggest impaired blood brain

barrier with leakage of contrast agents into the extravas-
cular spaces. Tumor with relatively intact BBB may show
no enhancement. Therefore, conventional contrast-enhanced
Tl-weighted images and rCBV map can complement each
other in outlining tumor extent and differentiating tumor
from perifocal edema (Figure 10).

As a standard of care, radiotherapy in combination of
temozolomide chemotherapy for patients with newly diag-
nosed glioblastoma is related to enlarged enhancing areas
on contrast-enhanced T1-weighted images without clinical
worsening, a phenomenon known as pseudoprogression [65,
66]. Most often seen in patients with the concomitant radio-
chemotherapy, pseudoprogression can also occur in patients
treated with radiotherapy or chemotherapy alone. In contrast
to tumor progression, pseudoprogression is associated with
a favorable prognosis [66-68]. Although follow-up conven-
tional MR imaging studies can validate the initial worsening
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FIGURE 9: (a) Contrast-enhanced T1-weighted image demonstrates a ring-enhancing glioblastoma in the left parietal lobe with avid increase

of rCBV (b) extending beyond the extent of the contrast enhancement.

(a)

FIGURE 10: (a) Contrast-enhanced T1l-weighted image shows a butterfly glioblastoma, involving the genu of corpus callosum. (b) The right
aspect of the lesion appears to be heterogeneously contrast enhanced. (c) On rCBV map, the nonenhanced left aspect of the tumor (arrow)
shows high rCBV (arrow in (c)). This helps differentiate tumor infiltration from perifocal edema.

imaging findings, DSC MR imaging has been shown to be
helpful in evaluating treatment effects in the first place. In a
study of Sugahara et al. an enhanced lesion with a normalized
rCBV ratio (tumor rCBV/contralateral tissue rCBV) higher
than 2.6 suggests tumor recurrence while a normalized rCBV
ratio lower than 0.6 implies pseudoprogression [69].

4.2. Capillary Permeability Imaging. In addition to MVA,
capillary permeability is another feature of angiogenesis in
high-grade gliomas. MR imaging is capable of estimating
the capillary permeability based on measuring the contrast
leakage rate between the intravascular and extravascular
spaces, known as the contrast transfer coefficient (K"™") [70,
71]. Although controversies remain among different models,

the K"*™ generally correlates with histological grading and
length of survival in gliomas [72-74]. A typical low-grade
glioma without increase of K"™*" is shown in Figures 11 and
12 demonstrates high K™ in a high-grade glioma. Although
most researchers utilize MR imaging in assessing perfusion
parameters of brain tumors, CT perfusion can be an alterna-
tive for patients contraindicated to MR imaging and provides
parameters of tumor vascular physiology with various maps
comparable to those generated by DSC MR perfusion imag-
ing [75, 76]. Figure 13 shows comparable maps of rCBV and
K" derived from CT and MR perfusion imaging.

4.3. Imaging of Tumor Response to Bevacizumab. Until
recently, advances in molecular biology have shed light on
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FIGURE 11: (a) Contrast-enhanced Tl-weighted image depicts a nonenhanced astrocytoma, WHO grade II. (b) The K" map shows
consistently no leakage of contrast medium in the tumor region, suggesting a low grade.

FIGURE 12: An anaplastic oligodendroglioma, WHO grade I1I, in the left frontal lobe shows contrast enhancement and leakage on T1-weighted

image (a) and K" map (b), respectively.

the development of anti-VEGF monoclonal antibodies as a
novel therapy for high-grade gliomas [77]. Bevacizumab is a
FDA-approved monoclonal antibody that prevents the inter-
action of VEGF receptor tyrosine kinase and treats a variety
of cancers, including glioblastomas [78-80]. However, in
the maintenance of bevacizumab therapy, malignant gliomas
inevitably recur and appear to be more aggressive with
rebound edema [81]. The tumor response to bevacizumab
treatment is unique in terms of imaging finding as the drug
suppresses the enhancing component of tumor but not
the non-enhancing and infiltrative tumor growth [82]. As
a result, the traditional evaluation of treatment response,
mostly defined by the McDonald criteria, based on contrast-
enhanced CT or MR imaging, is not sufficient. New response

criteria were developed for clinical trials of brain tumors
by incorporating T2 and FLAIR changes on MR imaging
to evaluate the unique infiltrative progression pattern of
malignant gliomas [83].

4.4. Imaging of Microvasculature by Susceptibility-Weighted
Imaging. Taking the advantage of high sensitivity to tumor
microvasculature and hemorrhagic products, susceptibility-
weighted imaging (SWI) is recently introduced to the
array of imaging tools for evaluating angiogenesis. SWI is
a high-resolution, three-dimensional, gradient-echo T2* MR
technique that is blood oxygen level dependent and shows
high sensitivity to paramagnetic substances, such as blood
products, iron, and calcifications [84, 85]. In the study of
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FIGURE 13: (a) Contrast-enhanced T1-weighted image shows an anaplastic oligodendroglioma, WHO grade III, involving the genu of corpus
callosum and bilateral frontal lobes. rCBV (b) and K" (c) maps derived from MRI are comparable to those generated from CT perfusion

imaging ((d) CT perfusion map; (¢) CT K" map).

Park et al., glioblastomas showed increased intratumoral sus-
ceptibility signals that are significantly different from low-
grade gliomas and lymphomas with a specificity of 100%
[86]. In an ultrahigh-field-strength (7T) gradient-echo MR
study, serpentine hypointensities within gliomas (tumoral
pseudoblush) concur with microvascular size and density
in histopathological examination and were considered as a
promising imaging biomarker for increased tumoral micro-
vascularity [87]. Furthermore, SWI is also useful in the
assessment of the microvascular change in patients undertak-
ing bevacizumab therapy [88].

4.5. Molecular MR Imaging. With recent advances of nan-
otechnology and biotechnology, scientists are capable of
binding paramagnetic transition metal ion chelates, mainly
gadolinium chelates, or superparamagnetic iron oxide (SPIO)
nanoparticles with biologically active targeting moieties and
provide a new MR imaging tool to evaluate tumor-specific
vasculatures in vivo [89]. SPIO nanoparticles are biodegrad-
able iron oxide crystals with polymer coatings and have
properties that cause microscopic filed inhomogeneity that
dephase the neighboring proton magnetic moments and
reduce the T2" relaxation time. In a study of Tomanek et
al., an antibody-targeted MR contrast agent, consisting of
SPIO and anti-insulin-like-growth-factor binding protein 7,
was used to show abnormal vessels within a glioblastoma on
T2-weighted images in a mouse model [90].

As the key regulatory systems in angiogenesis of gliomas,
VEGF and VEGF receptors are targeted mainly in radio-
nuclide-based imaging and recently assessed by a molecular
MR imaging probe, anti-VEGF receptor-2 monoclonal anti-
body conjugated with a gadolinium-based contrast agent, in a
rat C6 glioma model by He et al. [91]. The expression of VEGF
receptor-2 on vascular endothelial cells in glioma tissue
was successfully visualized in vivo with the degree of the
expression concurring that of the tumor blood volume [91].

5. MR Imaging of Tumor Necrosis

5.1. Contrast-Enhanced T1-Weighted Imaging and Proton MRS.
Necrosis is the hallmark of glioblastoma and is caused by
tumor hypoxia as a result of increased cell proliferation and
mitotic activity, as well as insufficient tissue perfusion. On

conventional contrast-enhanced T1-weighted images, tumor
necrosis can be easily diagnosed with the fact that necrotic
zones are typically less enhanced, giving the tumor an
appearance of irregular rim enhancing mass (Figure 4(a)).
However, imaging diagnosis of necrosis can be problematic in
early stages or in micronecrosis in which the necrotic region
may show to be enhanced or not enhanced at all. MRS is
an imaging tool of choice to show characteristic metabolites
accumulated in the necrotic regions, even when necrosis is
not overtly seen on contrast-enhanced T1-weighted images.
The anaerobic glycolysis and cell death with membrane
breakdown in the hypoxic tumor can be revealed by the
increased Lac and Lip peaks on MRS (Figure 14) [92-94]. The
presence of Lip and/or Lac in high-grade gliomas has been
found in a number of studies [95-98].

5.2. Radiation-Induced Necrosis and Tumor Recurrence. The
differentiation between radiation necrosis and recurrent
high-grade gliomas remains challenging despite advances
of imaging modalities because both entities share similar
imaging features, such as irregular rim-like contrast enhance-
ment, mass effect, and vasogenic edema. Although guidelines
based on experiences on conventional MR imaging were
intended to resolve the dilemma [99, 100], advanced imag-
ing techniques have been shown to provide more reliable
and accessible differentiation between the two conditions.
In an MRS study of Nakajima et al., the Lac/Cho ratios
are significantly higher in radiation necrosis (2.35 + 1.81
(mean * standard deviation)) than those in tumor recurrence
(0.63 + 0.25) [101]. DSC perfusion MR imaging was also
shown to have higher relative peak height and rCBV in
patients with recurrent glioma than in patients with radiation
necrosis [102]. In a study of Larsen et al., a threshold of
2.0mL/100 g for CBV was suggested to have 100% sensi-
tivity and specificity for detecting gliomas in progression
[103].

Another clinical dilemma is the differentiation between
ring-enhancing brain abscess and tumor necrosis on TI1-
weighted images. DWI is routinely used to differentiate
the two conditions by showing restricted water diffusion
of the high viscosity and cellularity of pus cells in the
abscess cavity. However, the restricted diffusion within ring-
enhancing lesions is not pathognomonic for brain abscess,
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(c)

(d)

FIGURE 14: (a) Contrast-enhanced T1l-weighted image demonstrates a necrotic glioblastoma in the right parietal lobe with increased rCBV
(b) in the periphery of the tumor and peritumoral regions. (c) A single-voxel MRS, echo time 135 ms, obtained from region 1 of increased
rCBV (b) shows a high Lip peak, suggesting micronecrosis. (d) MRS obtained from the region 2 of low rCBV (b) depicts an inverted Lac

peak, representing hypoxia in the necrotic region.

and a small number of glioblastomas may show restricted
diffusion in the necrotic regions, probably resulting from a
various combination of intratumoral hemorrhage, cytotoxic
edema, or superimposed pyogenic infection [104, 105]. The
dilemma has recently been successfully resolved by the
application of perfusion MR imaging, which reveals distinct
pathophysiological alterations between brain abscess and
glioblastoma. In a prospective study Chiang et al. showed
decreased rCBV in the necrotic wall of the abscess where
regional poor vascularity exists and increased rCBV in the
periphery of the high-grade gliomas owing to the presence of
active angiogenesis [106]. Furthermore, a characteristic dual
rim sign, presumably resulting from the granulation tissue,
on SWI, found only along the wall of brain abscess but not in
glioblastomas, has been proposed by Toh et al. to effectively
differentiate the two conditions [107].

6. Conclusion

Advanced MR imaging techniques can potentially help
evaluate the underlying key histopathological features of

gliomas by showing the physiologic changes and metabolic
activities, thus improving diagnosis and tumor grading. These
functional tools help in better understanding of the tumor
behavior and also provide a new window to guide and
monitor the treatment of gliomas. Application of these imag-
ing techniques could lead to sophisticated and personalized
patient care.
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