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ARTICLE

Automated acquisition of explainable knowledge
from unannotated histopathology images
Yoichiro Yamamoto1,2*, Toyonori Tsuzuki 3, Jun Akatsuka1,4, Masao Ueki5, Hiromu Morikawa1,

Yasushi Numata1, Taishi Takahara3, Takuji Tsuyuki3, Kotaro Tsutsumi 1, Ryuto Nakazawa6, Akira Shimizu7,

Ichiro Maeda 1,8, Shinichi Tsuchiya9, Hiroyuki Kanno2, Yukihiro Kondo4, Manabu Fukumoto 1,10,

Gen Tamiya5,11, Naonori Ueda12 & Go Kimura4*

Deep learning algorithms have been successfully used in medical image classification. In the

next stage, the technology of acquiring explainable knowledge from medical images is highly

desired. Here we show that deep learning algorithm enables automated acquisition of

explainable features from diagnostic annotation-free histopathology images. We compare the

prediction accuracy of prostate cancer recurrence using our algorithm-generated features

with that of diagnosis by expert pathologists using established criteria on 13,188 whole-mount

pathology images consisting of over 86 billion image patches. Our method not only reveals

findings established by humans but also features that have not been recognized, showing

higher accuracy than human in prognostic prediction. Combining both our algorithm-

generated features and human-established criteria predicts the recurrence more accurately

than using either method alone. We confirm robustness of our method using external vali-

dation datasets including 2276 pathology images. This study opens up fields of machine

learning analysis for discovering uncharted knowledge.

https://doi.org/10.1038/s41467-019-13647-8 OPEN
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Trained on massive amounts of annotated data, deep
learning algorithms have been successfully used in medical
image classification and cancer detection. Esteva et al.

successfully used a deep neural network to categorize fine-grained
images of skin tumors, including malignant melanomas, at a
dermatologist level1. Fauw et al. detected a range of sight-
threatening retinal diseases as efficiently as an expert ophthal-
mologist, even on a clinically heterogeneous set of three-
dimensional optical coherence tomographs (OCTs)2. Chi-
lamkurthy et al. retrospectively collected a large annotated dataset
of head computed tomography (CT) and evaluated the potential
of deep learning algorithm to identify critical findings on CT
images3. Bejnordi et al. evaluated the performance of deep
learning algorithms submitted as part of a challenge competition
and found that the performance of the high-ranking algorithm
was comparable to that of pathologists in the detection of breast
cancer metastases in histopathological tissue sections of lymph
nodes4. Currently, machine learning-enhanced hardware is also
being developed. Google has announced the development of an
augmented reality microscope based on deep learning algorithms
to assist pathologists5.

Pathological examinations are used to provide definitive diag-
noses and are one of the most reliable examinations in current
cancer medicine6, but diagnostic pathology knowledge and skills
can only be acquired by completing a long fellowship program7.
Although machine learning-driven histopathological image
analysis4,8,9 is an attractive tool for assisting doctors, it faces two
significant hurdles: the need for explainable analyses to gain
clinical approval and the tremendous amount of information in
histopathological images8,10. Acquiring explainable knowledge
from medical images is imperative for medicine. Furthermore,
there are substantial size differences between histopathological
images and other medical images1–3,11,12. A pathology slide
contains large number of cells and the image consists of 10-
billion-scale pixels8.

We develop a method to acquire explainable features from
diagnostic annotation-free histopathological images and assess
the prediction accuracy of prostate cancer recurrence using our
algorithm-generated features by comparison with that of human-
established cancer criteria, the Gleason score, provided by expert
pathologists in the diagnosis of prostate cancer.

Results
Key feature generation. First, we have developed a method of
generating key features that employs two different unsupervised
deep neural networks (deep autoencoders13,14) at different
magnifications and weighted non-hierarchical clustering15 (Fig. 1
and Supplementary Figs. 1 and 2). This takes histopathological
images with 10-billion-scale pixel data and reduces them to only
100 feature data with scores while retaining the images’ core
information (see Key feature generation method in the Methods
section and Fig. 2). This method is a type of dimensionality
reduction and was inspired by the complementary diagnostic
process of pathologists that emphasizes not only the nucleus
structure examined at high magnification but also the structural
pattern examined at low magnification. These features can be
effective for tasks such as predicting cancer recurrence, under-
standing the contributions of particular features and auto-
matically annotating images. In the key feature generation
dataset, short-term biochemical recurrence (BCR) cases from
Nippon Medical School Hospital (NMSH) were considered
positive purely based on the recurrence time for patients (the
recurrence period range: 1.7–14.4 months). No direct informa-
tion regarding cancer images was provided to deep neural
networks.

BCR predictions for evaluation of generated features. Next, we
evaluated the accuracy of cancer recurrence prediction using deep
learning-generated features by comparing the predicted results
with that using the Gleason score, one of the most crucial clin-
icopathological factors in the current prostate cancer practice16.
The main purpose of the Gleason score is to predict prognosis.
The Gleason grading system defines five architectural growth
patterns, which provides information on prostate cancer aggres-
siveness and facilitates patients’ appropriate care. As prostate
cancer usually harbors two or more Gleason patterns, the sum of
primary and secondary patterns yields the Gleason score. In this
paper, all images’ Gleason scores were evaluated by expert
pathologists.

We conducted two evaluations: BCR predictions based on the
cross-validation method using dataset from NMSH excluding 100
cases that were used for key feature generation, and external
validation of BCR predictions based on datasets from St.
Marianna University Hospital (SMH) and Aichi Medical
University Hospital (AMH).

NMSH dataset included a total of 13,188 whole-mount
pathology images from 1007 patients who received radical
prostatectomy (Supplementary Fig. 3). We excluded 115 cases
involving neoadjuvant therapy and 7 cases involving adjuvant
therapy, as well as 43 cases who could not be followed up within 1
year because of hospital transfer or death due to other causes,
thus leaving 842 cases for analysis (Supplementary Fig. 4a).
Table 1 and Supplementary Table 1 summarize the clinical
characteristics of NMSH dataset. Cancer was more likely to recur
in patients with higher prostate-specific antigen (PSA) levels (P-
value < 0.001, Wilcoxon rank sum test). It was more likely to
recur in patients with higher Gleason scores (≥8) than in patients
with lower Gleason scores (<8). Similar patterns were observed
for 1-year and 5-year recurrence rates. No significant differences
existed for the average age, height, weight, or prostate weight
between patients in whom cancer recurred and those in whom it
did not. We categorized the data for 842 patients into the
following two sets: 100 patients (100 whole-mount pathology
images, the largest among available images per each patient) were
used to generate key features using the deep neural networks, and
742 (9816 whole-mount pathology images) were used to perform
the BCR predictions using these features (Supplementary Fig. 4a).
We applied lasso17 and ridge18 regression analyses and a support
vector machine (SVM)19 to the features to predict the BCR of
prostate cancer. We evaluated the areas under the receiver
operating characteristic curves (AUCs) with a 95% confidence
interval (CI), receiver operating characteristic (ROC) curves20,21

and pseudo R-squared values22. Table 2 and Fig. 3 present the
AUCs, pseudo R-squared values and ROC curves of BCR
prediction using the deep learning-generated features and we
compared these values to those of the Gleason score. The AUC
for BCR prediction based on the deep neural networks within 1
year was 0.820 (95% CI: 0.766–0.873), while that on the Gleason
score was 0.744 (95% CI: 0.672–0.816). Interestingly, combining
both methods produced a more accurate BCR prediction [AUC,
0.842 (95% CI: 0.788–0.896)] than either method alone. Likewise,
the 5-year prediction accuracies were 0.721 (95% CI: 0.672–0.769;
deep neural networks), 0.695 (95% CI: 0.639–0.750; Gleason
score), and 0.758 (95% CI: 0.710–0.806; both criteria combined)
(Supplementary Table 2 and Supplementary Fig. 5). We also
obtained the highest pseudo R-squared values by combining
Gleason score and criteria generated by deep neural networks,
followed by that based on deep neural network predictions alone
then that based on Gleason score alone.

As external validation of BCR predictions, we applied our
method and the 100 features derived from training data from
NMSH to the datasets from two other hospitals: SMH and AMH,
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in total 102 patients who received radical prostatectomy. These
cases corresponded to a total of 2276 pathology images. We
excluded 1 case involving neoadjuvant therapy and 1 case because
of missing slides, as well as 5 cases who could not be followed up
within 1 year because of hospital transfer, thus leaving 95 cases
for analysis (Supplementary Fig. 4b). Supplementary Table 3
summarizes the clinical characteristics of the validation datasets.
Only PSA level of patients with recurrent cancer at SMH
was significantly higher than that of non-recurrent patients
(P-value= 0.0043, Wilcoxon rank sum test). In external valida-
tion, the 1-year prediction accuracies were 0.845 (95% CI:
0.761–0.928; deep neural networks), 0.721 (95% CI: 0.552–0.889;
Gleason score), and 0.884 (95% CI: 0.782–0.985; both criteria
combined) (Table 3 and Supplementary Fig. 6). Similar tendency
was observed in AUCs and pseudo R-squared values for
prediction of cancer recurrence. The results of external validation
indicate robust applicability of our method and rule out
overfitting that is often encountered in deep neural networks
studies. Supplementary Tables 4 and 5 show comparison of BCR
for each hospital (SMH and AMH) independently.

Explainable features from histopathology images. We then
selected the images that were closest to each centroid as being
representative of the features (see Key feature generation method
in the Methods section and Fig. 4). The expert GU pathologist (T.
Tsuzuki, the second author) analyzed these images to search for
pathological meanings (see figure legend in Fig. 4 and Supple-
mentary Figs. 7–36). In summary, the pathologist found that the
deep neural networks appeared to have mastered the basic con-
cept of the Gleason score fully automatically, generating
explainable key features that could be understood by pathologists.
Furthermore, the deep neural networks identified the features of
stroma in the noncancerous area as prognostic factors, which
typically have not been evaluated in prostate histopathological
images. Figure 5 and Supplementary Movies 1 and 2 show feature
maps for a whole-mount pathology image, as well as cell-level
information of images; the predicted high-grade cancer regions
are shaded in red, whereas normal ducts/low-grade cancer
regions are shaded in blue.

Discussion
We achieved fully automated acquisition of explainable features
from histopathological images in the raw. Pathologists can
understand these features in terms of histopathology because the
images described in this study were large enough for pathologists
to understand and included not only the nucleus structure
examined at high magnification but also the structural pattern
examined at low magnification. Our method found not only
human-established findings but also previously-unrecognized
pathological features, resulting in higher prediction accuracy of
cancer recurrence than that of diagnosis performed by expert
pathologists using human-established cancer criteria, the
Gleason score.

The Gleason score23 is a unique pathological grading system,
purely based on architectural disorders, without considering
cytological atypia. In this study, none of the cancer cells in the
images identified by the deep neural networks as representative of
high-grade cancer showed severe nuclear atypia or prominent
nucleoli. Our results indicate that the central ideas behind
Gleason’s grading system are sound.

The most accurate BCR predictions were produced by com-
bining the deep learning-generated features and Gleason score,
possibly because the automatically derived features included
factors different from those used for the Gleason score, such as
the surgical margin status. Various and complex factors are
believed to be associated with BCR24,25. Interestingly, repre-
sentative images of the features nominated by the deep neural
networks comprised of not only human-established findings but
also previously unspotlighted or neglected features of stroma at
the noncancerous area. These findings indicate that the deep
neural networks could explore unique features that could be
underestimated or overlooked by a human.

In this study, the deep neural networks identified compre-
hensible key features from scratch. Silver et al. reported that the
AlphaGo Zero26 program, which is solely based on reinforcement
learning without any human knowledge inputs, could defeat their
previous AlphaGo27 program, which conducted supervised
learning using human expert moves. In this study, we demon-
strated another algorithm that performs well, is based on deep
autoencoders13,14, and does not need human knowledge.

Step 1

Step 3 Step 2
0.9
0.7
0.6

0.5

0.4

Fig. 1 Key feature generation method. This method is a type of dimensionality reduction that emphasizes not only the nucleus structure examined at high
magnification but also the structural pattern examined at low magnification. Step 1: First, we divide low-magnification pathology images into smaller
images, then perform dimensionality reduction using a deep autoencoder followed by weighted non-hierarchical clustering. This process reduces an image
with 10-billion-scale pixel data to only 100 feature data with scores. Step 2: Next, we analyze high-magnification images in order to reduce the number of
misclassified low-magnification images. Again, we divide these into smaller images, before applying a second deep autoencoder and calculating average
scores for the images. Step 3: Results of Step 2 complementarily correct those of Step 1. We remove images in which the results of Steps 1 and 2 do not
match. Finally, we use the total numbers of each type of feature to make predictions, for example, to make cancer recurrence predictions, create human-
understandable features or automatically annotate images. The color of each region indicates positive (red) and negative (blue) for characteristics
detected.
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Fig. 2 Examples of compressed images. Whole-mount pathology images with 10-billion-scale pixel data were reduced to only 100 feature data, while
retaining core image information. a Images of biochemical recurrence (BCR) cases, b images of no BCR cases. The color of each region indicates positive
(red) and negative (blue) for characteristics detected.

Table 1 The clinical characteristics of Nippon Medical School Hospital (NMSH) dataset.

BCRa (within 1 year), n= 79 No BCRa (within 1 year), n= 763 P-value

Mean age, years (S.D.b, range) 66.8 (5.7, 53–76) 66.7 (6.0, 41–81) 0.94
Mean height, cm (S.D.b, range) 165 (7.0, 147–185) 166 (5.7, 150–194) 0.17
Mean weight, kg (S.D.b, range) 65.4 (10, 42–96) 65.0 (11, 40–193) 0.99
Gleason score (≥8)/n (%) 57/79 (72%) 231/763 (30%) 5.2 × 10–13

Mean PSAc, ng/mL (S.D.b, range) 24.5 (27, 4.3–165) 11.7 (15, 0.6–218.9) 1.1 × 10–13

Mean prostate weight, g (S.D.b, range) 49.2 (21, 11–142) 45.9 (17, 10–138) 0.060
Clinical recurrence/n (%) 14/79 (18%) 9/763 (1%) 5.5 × 10–10

We compared the characteristics of patients whose cancer did or did not recur using the Fisher’s exact test for categorical data and the Wilcoxon rank-sum test for continuous data
aBiochemical recurrence (BCR)
bStandard deviation (S.D.)
cProstate-specific antigen (PSA)
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Hopefully, this study will provide a tool for discovering uncharted
findings. In addition, our method can be applied to non-verbal
information, such as that derived from the subjective experience
of experts, as long as it is used to classify images. For example,
data from patients with similar symptoms but unknown causes
could be used to discover the key underlying factors, resulting in
more effective treatments and the development of medicines. We
anticipate that our method will lead to innovative therapeutic
strategies and will help reduce the workloads of busy physi-
cians28. In the next step, we are planning to conduct clinical trials
in order to confirm whether our method is universally effective
for improving the prediction accuracy.

Human and computer analyses have different strengths. Our
deep learning approach analyzes huge medical images broadly
and without oversights or bias; human pathologists analyze the
disease more accurately and with a greater focus on medical
importance. Each approach can, therefore, complement the other.
Medicine aims to save patients, and both medical doctors and
artificial intelligence (AI) systems can contribute to this goal. The
more effectively and deeply medical experts can utilize AI sys-
tems, the more patients will benefit. Increasing collaboration

between medical experts and informaticians will surely improve
outcomes for patients.

Methods
Data for key feature generation and BCR predictions (NMSH). This hospital-
based cohort comprised of all patients with prostate cancers who received radical
prostatectomy from April 2000 to December 2016 at the NMSH (N= 1007). We
collected whole-mount pathology slides and clinical data for all patients. Of note,
no patients were enrolled on clinical trials of radical prostatectomy. We excluded
115 cases involving neoadjuvant therapy and 7 cases involving adjuvant therapy, as
well as 43 cases who could not be followed up within 1 year because of hospital
transfer or death due to other causes, thus leaving 842 cases for analysis (Sup-
plementary Fig. 4a).

We categorized the data for 842 patients into the following two sets: 100
patients (100 whole-mount pathology images, the largest available image per each
patient) were used to generate key features using the deep neural networks, and 742
(9816 whole-mount pathology images) were used to perform BCR predictions
using these features (Supplementary Fig. 4a). We carefully ensured that no direct
information regarding cancer concepts was provided to deep neural networks. In
addition, histopathological images were not checked or annotated by pathologists
before key feature generation was performed by the deep neural networks. In the
key feature generation dataset, short-term BCR cases were considered positive
purely based on the recurrence time for patients (the recurrence period range:
1.7–14.4 months). To avoid bias, we also used the same surgery year distribution to
select negative cases. Of note, images that extended beyond the edge of the cover
glass were not used for key feature generation. During the key feature generation
process, we simply selected the largest available image per each patient without
checking whether any cancer was included.

Data for external validation of BCR predictions. This validation set comprised of
all patients with prostate cancers who received radical prostatectomy from August
2013 to August 2017 at the SMH (N= 55) and from January 2016 to June 2016 at
the AMH (N= 47). We collected whole-mount pathology slides and clinical data
for all patients. No patients were enrolled on clinical trials of radical prostatectomy
nor were part of the NMSH cohort. We combined both datasets of SMH and AMH
(N= 102). We excluded 1 case involving neoadjuvant therapy and 1 case because
of missing slides, as well as 5 cases who could not be followed up within 1 year
because of hospital transfer, thus leaving 95 cases for analysis (Supplementary
Fig. 4b).

Ethics statements. This research has been approved by each Institutional Review
Board (IRB): NMSH (reference 28-11-663), SMH (reference 3887), AMH (refer-
ence 2019-H045) and RIKEN (reference Wako3 29-14). It complies with all rele-
vant ethical regulations. The informed consent was obtained in the form approved
by each hospital IRB and the opportunity for refusal to participate in research has
been guaranteed by an opt-out manner.

Definition of BCR. We defined the BCR following radical prostatectomy based
on the European Association of Urology guidelines of increasing PSA levels
>0.2 ng/mL29. All patients were followed and checked for the BCR at the longest
interval of every 3 months postoperatively; the follow-up duration was 72.8 ± 49.8
(mean ± standard deviation (S.D.)) months in the dataset from NMSH, 31.7 ± 17.8
(mean ± S.D.) months from SMH and 35.7 ± 9.51 (mean ± S.D.) months
from AMH.

Statistical analysis. We compared the characteristics of patients whose cancer did
or did not recur using the Fisher’s exact test for categorical data and the Wilcoxon
rank-sum test for continuous data (Table 1, Supplementary Tables 1 and 3). All

Table 2 Comparison of biochemical recurrence (BCR) within 1 year.

AUCa Pseudo R-squared

Gleason score (pathologist) 0.744 [95% CI 0.672–0.816] 0.182 [p-value 0.11]
Ridge (automated) 0.801 [95% CI 0.748–0.854] 0.222 [p-value 0.018]
Lasso (automated) 0.804 [95% CI 0.749–0.860] 0.227 [p-value 0.018]
SVM (automated) 0.820 [95% CI 0.766–0.873] 0.194 [p-value 0.090]
Ridge+Gleason score 0.824 [95% CI 0.770–0.878] 0.267 [p-value 0.0098]
Lasso+Gleason score 0.830 [95% CI 0.772–0.888] 0.334 [p-value 0.0060]
SVM+Gleason score 0.842 [95% CI 0.788–0.896] 0.247 [p-value 0.037]

BCR predictions at Nippon Medical School Hospital (NMSH) (cross validation)
AUCa: the reported values are averages with 95% confidence interval. The bold values indicate the highest accuracies for lasso, ridge and support vector machine (SVM)
aArea under the curve (AUC)
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Fig. 3 Biochemical recurrence (BCR) prediction. Average receiver
operating characteristic (ROC) curves for the BCR prediction within one
year. Gleason score (black solid line), Ridge (red dot line), Lasso (green dot
line), support vector machine (SVM; blue dot line), Ridge+Gleason score
(red solid line), Lasso+Gleason score (green solid line), SVM+Gleason
score (blue solid line).
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tests were two-tailed and were considered statistically significant if P-value < 0.05.
All statistical analyses were performed using R, version 3.4.4.

Preparation of whole-mount pathology images. Whole prostates were fixed in
10% formalin and embedded in paraffin. All samples were sectioned at a thickness
of 3 μm and stained with hematoxylin and eosin (H&E). All H&E-stained slides
were scanned by a whole-slide imaging scanner (Hamamatsu NanoZoomer S60
Slide Scanner) with a ×20 objective lens and were stored on a secure computer.

Histological grading. We classified prostate cancer histologically based on the
International Society of Urological Pathologists (ISUP) classification criteria16. For
NMSH cases, all slides were initially reviewed independently by two board-certified
pathologists and our conclusions were confirmed by an expert pathologist (T.
Tsuzuki) without using clinical data nor BCR data. For SMH and AMH cases, the
Gleason score was provided independently by expert pathologists at each hospital
without using clinical data nor BCR data.

Key feature generation method. The proposed method does not require human
annotation for image classification and reveals statistical distortions in image
datasets by employing multiple deep autoencoders13,14 at different magnifications
and weighted non-hierarchical clustering15. This takes histopathological images
with 10-billion-scale pixel data and reduces them to only 100 feature data with
scores while retaining the images’ core information. Supplementary Figs. 1 and
2 provide detailed algorithm flowcharts and descriptions of the autoencoder net-
works. We also evaluated 10, 50, 100 and 200 features (Supplementary Table 6). It
was revealed that all these features showed almost same accuracies of BCR, but that
100 features set was the best. Previous methods include a region selection step, for
example to extract or annotate the region of interest30. In contrast, our method
derives the key features directly from the whole image, without requiring such a
step. Our method is a type of dimensionality reduction and was inspired by the
complementary diagnostic process of pathologists that emphasizes not only the
nucleus structure examined at high magnification but also the structural pattern
examined at low magnification.

In Step 1, we generated the key features from 100 whole-mount pathology
images (100 cases), taken at low magnification (25×). We divided each pathology
image (Si), into a set of 128 × 128-pixel image patches Si,j using NDP.convert
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Fig. 4 Representative images of key features. The top 10 images are closest to the centroids of the 100 features, with higher-ranking images being larger,
in the biochemical recurrence (BCR) group (a–j) and no BCR group (k–t). a–j Cancers equivalent to Gleason patterns 4 or 5, which usually indicate
aggressive clinical behavior. c Dense stromal components without cancer cells. g Hemorrhage. p Cancers equivalent to Gleason pattern 3, which usually
indicates benign clinical behavior. k–o, q–s Loose stromal components without cancer cells. t Surgical margin without cancer cells. The scale bar included in
each image represents a length of 100 μm. Expert genitourinary pathologist’s comments on BCR images (a–j): Cancers show Gleason patterns 4 or 5
indicating aggressive clinical behavior. Stromal component without cancer cells tends to show dense cellularity compared to those of normal structure. The
pathologist’s comments on no BCR images (k–t): Cancers show Gleason pattern 3 indicating indolent clinical behavior. Stromal component without cancer
cells tends to show relatively loose cellularity suggesting normal peripheral zone structure. Cauterized extraprostatic connective tissue without cancer
cells, which indicate that the surgical margin is free from cancer.

Table 3 Comparison of biochemical recurrence (BCR) within 1 year.

AUCa Pseudo R-squared

Gleason score (pathologist) 0.721 [95% CI 0.552–0.889] 0.110 [p-value 0.030]
Ridge (automated) 0.829 [95% CI 0.743–0.915] 0.244 [p-value 0.0010]
Lasso (automated) 0.810 [95% CI 0.700–0.921] 0.207 [p-value 0.0026]
SVM (automated) 0.845 [95% CI 0.761–0.928] 0.260 [p-value 0.00069]
Ridge+Gleason score 0.871 [95% CI 0.782–0.960] 0.310 [p-value 0.00019]
Lasso+Gleason score 0.884 [95% CI 0.782–0.985] 0.294 [p-value 0.00029]
SVM+Gleason score 0.882 [95% CI 0.803–0.962] 0.319 [p-value 0.00015]

BCR predictions at St. Marianna University Hospital (SMH) and Aichi Medical University Hospital (AMH) (external validation)
The reported values are averages with 95% confidence interval. The bold values indicate the highest accuracies for lasso, ridge and support vector machine (SVM)
aArea under the curve (AUC)
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software (Hamamatsu Photonics K.K., version 2.0.7.0). Mean pixels of Si was
145,025,449 ± 39,899,884 (mean ± S.D.). The number of images Si,j per Si was
8770 ± 2430 (mean ± S.D.). All these image patches completely cover the pathology
images and were not allowed to overlap. We then applied a deep autoencoder we
had developed for pathology images (Supplementary Fig. 2) to 128 × 128-pixel
image patches, clustering the 2048 intermediate-layers to form 100 features
(clusters) by k-means clustering. Features that included white background areas
without tissue were automatically removed. Next, we found the centroid of each
cluster generated by k-means, and calculated a score ui,j,k (a score of kth feature in
an image Si,j) based on the distance from each centroid di,j.k. Here, we applied the
simplest possible scoring method as follows:

ui;j;k ¼ 1 if k ¼ argmink di;j:k and

0 otherwise k ¼ 1; 2; ¼ ; 100ð Þ: ð1Þ

Defining the total number of small images belonging to the positive and
negative groups and npositive and nnegative, respectively, we defined the positive and
negative degrees rpositive,k and rnegative,k for the kth feature as

rpositive;k ¼ Σþui;j;k=npositive k ¼ 1; 2; ¼ ; 100ð Þ; ð2Þ

rnegative;k ¼ Σ�ui;j;k=nnegative k ¼ 1; 2; ¼ ; 100ð Þ; ð3Þ
where the sums Σ+ and Σ− are over all i,j pairs such that image Si,j belonged to the
positive and negative groups, respectively. Finally, we defined the impact score Ik
for the kth feature and the impact score Ii,j of image Si,j for this step as

Ik ¼ rpositive;k= rpositive;k þ rnegative;k
� �

ð4Þ

Ii;j ¼ ΣkIk ´ ui;j;k: ð5Þ
In Step 2, high-magnification (200×) images (S’i) were analyzed to reduce the

number of misclassified low-magnification images. Mean pixels of S’i was
9,281,628,733 ± 2,553,592,545 (mean ± S.D.). Here, 1024 × 1024-pixel image
patches for each of 128 × 128-pixel image patches in Step 1 (S’i,j) were divided into
small 28 × 28-pixel image patches S’i,j,j’ (the number of images S’i,j,j’ per S’i,j was
1296). A second deep autoencoder (Supplementary Fig. 2) was then applied to each
of 28 × 28-pixel image patches. The 1568 intermediate-layer features were given
scores u’i,j,j’,k’ based on the intensity values v’i,j,j’ of each node. Again, we used the

following simple scoring method:

u0 i;j;j0;k0 ¼ 1 if k0 ¼ argmaxk0 v
0
i;j;j0 ;k0 and

0 otherwise k0 ¼ 1; 2; ¼ ; 1568ð Þ: ð6Þ

Defining the total number of small images belonging to the positive and
negative groups as n’positive and n’negative, we defined the positive and negative
degrees r’positive,k’ and r’negative,k’ for the k’th feature as

r0positive;k0 ¼ Σþu
0
i;j;j0 ;k0=n

0
positive k0 ¼ 1; 2; ¼ ; 1568ð Þ; ð7Þ

r0negative;k0 ¼ Σ�u
0
i;j;j0 ;k0=n

0
negative k0 ¼ 1; 2; ¼ ; 1568ð Þ; ð8Þ

where the sums Σ+ and Σ−, analogously to those in Step 1, are over all i,j,j’ such
that the image S’i,j,j’ belonged to the positive and negative groups, respectively. For
this step, we defined the impact score I’i,j as

I0i;j ¼ Σj0Σk0 r0positive;k0= r0positive;k0 þ r0negative;k0
� �� �

´ u0i;j;j0 ;k0=m;
ð9Þ

where m denotes the total number of small images S’i,j,j’ used for Si,j.
In Step 3, results of Step 2 complementarily corrected those of Step 1. Images

that were frequently in the positive and negative groups had impact scores above
and below 0.5, respectively, so we defined images with impact scores above and
below 0.5 as having positive and negative characteristics, respectively. We then
removed images whose characters, based on the impact scores in Steps 1 and 2, did
not match. Finally, we used the total numbers of each feature type for the
subsequent predictions.

Comparison of BCR predictions. To evaluate our approach, we predicted cancer
recurrence using deep learning-generated 100 features. We used AUC and pseudo
R-squared for comparison of deep learning-generated features and Gleason score31.
AUC is the most frequently used metric to compare classifier performance, taking
values ranging from 0 to 1. Higher the AUC, better the model is at classification.
The pseudo R-squared value22 is a goodness-of-fit metric for regression models
with a categorical response variable. It is an analogue to the R-squared for the
ordinary least-squares regression and takes a value between 0 and 1. Higher the
pseudo R-squared value, the better the model is at classification. We conducted two

Fig. 5 Automatically annotated whole-mount pathology image. Our method directly generates key features based on the whole image without requiring a
region selection step. Using the key features and cell-level information found by the deep neural networks, we automatically annotated whole-mount
pathology images. Here we show an automatically annotated whole-mount pathology image (left), as well as a low-magnification image of the yellow
region (upper right) and the associated high-magnification images with number of Step 2 feature (lower right). The regions with impact scores above and
below 0.5 in Step 1 are shaded in red and blue, respectively. The indicated yellow cell shows [number of Step 1 feature (100 total features)] [impact score,
Step 1] [impact score, Step 2] (see Key feature generation method in the Methods section). The black scale bar included in the image represents a length
of 1 cm. The green scale bar represents a length of 100 μm. The blue scale bar represents a length of 12.3 μm.
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evaluations: BCR predictions based on cross validation using data at NMSH
excluding 100 cases that were used for key feature generation, and external vali-
dation of BCR predictions based on data at SMH and AMH using the prediction
model only trained by data at NMSH.

First, we predicted cancer recurrence using 9816 whole-mount pathology
images (742 cases) at NMSH, excluding 100 cases that were used for key feature
generation. In particular, we assessed the potential of the 100 features to predict the
recurrence of cancer within 1 or 5 years postoperatively using Lasso17 and Ridge18

regression and a support vector machine (SVM)19, all popular methods for
building prediction models. In addition, we created prediction models based on the
application of logistic regression to an ISUP grade group assessed on the basis of
the Gleason score and similarly created models combining the 100 features with the
grade. If multiple images were available for a given patient, we averaged each
feature over all the images. To address the fact that the feature values were not
evenly distributed amongst patients where cancer did and did not recur, we
multiplied each feature value by 1+ | Ik–0.5| (see Key feature generation method in
the Methods section), which augmented the predictive power of the models. We
used 10-fold cross-validation32,33 to test the prediction models, randomly dividing
the whole sample set in a 1: 9 ratio, using one part for testing and the other nine
parts for training. In the cross-validation, the mean ratio of BCR cases to non-BCR
cases within 1-year period was 4.00 ± 0.00 (mean ± S.D.): 70.2 ± 0.632 (mean ± S.
D.). The ratio within 5-year period was 13.4 ± 1.26 (mean ± S.D.): 60.8 ± 0.632
(mean ± S.D.). For each testing/training split, we used the AUC and the pseudo R-
squared metrics to assess the performance of trained prediction models on the test
data20,21.

Next, using combined data of SMH and AMH, we predicted cancer recurrence
using 2276 pathology images (95 cases) as external validation. We also assessed the
potential of the same 100 features to predict the recurrence of cancer within 1 year
postoperatively using the prediction models only trained by NMSH data. We also
used the AUC and the R-squared metrics to assess the performance of trained
prediction models on the test data20,21.

We determined hyperparameters for ridge (λ), lasso (λ) and SVM (C and γ)
only within NMSH dataset (training data) by cross-validation. Those calculations
were performed automatically using ready-made software packages. We used R for
the analysis, using the glmnet package (version 2.0.16) for ridge and lasso
regression, the e1071 package (version 1.7.0) for the SVM, and the cvAUC package
(version 1.1.0) and pROC package (version 1.13.0) to evaluate the AUC with a CI.
The pseudo R-squared were computed using rcompanion package (version 2.2.1).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
The clinical datasets used were collected at the NMSH, SMH and AMH. This work and
the collection of data were approved by the IRB of each hospital. They are not publicly
available, and restrictions apply to their use. All the other data supporting the findings of
this study are available within the Article and its Supplementary Information files. A
Reporting Summary is available as a Supplementary Information file.

Code availability
In the Key feature generation section, we presented our detailed algorithm flowchart,
networks of deep autoencoders and the methods in this paper instead of full source code.
All processes are described in enough detail to enable independent replication and the
full source code were submitted for review process. All software (packages for R) in BCR
predictions for evaluation of generated features are publicly available: the glmnet package
(version 2.0.16), the e1071 package (version 1.7.0), cvAUC package (version 1.1.0),
pROC package (version 1.13.0) and rcompanion package (version 2.2.1).

Received: 14 December 2018; Accepted: 19 November 2019;

References
1. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep

neural networks. Nature 542, 115–118 (2017).
2. De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral

in retinal disease. Nat. Med. 24, 1342–1350 (2018).
3. Chilamkurthy, S. et al. Deep learning algorithms for detection of critical

findings in head CT scans: a retrospective study. Lancet 392, 2388–2396
(2018).

4. Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning
algorithms for detection of lymph node metastases in women with breast
cancer. JAMA 318, 2199–2210 (2017).

5. Chen, P. H. C. et al. An augmented reality microscope with real-time artificial
intelligence integration for cancer diagnosis. Nat. Med. 25, 1453–1457 (2019).

6. Connolly, J. L. et al. in Holland-Frei Cancer Medicine 8th edn (ed. Hong, W.
K.) 473–488 (PMPH-USA, Philadelphia, 2009).

7. Barger, L. K. et al. Extended work shifts and the risk of motor vehicle crashes
among interns. N. Engl. J. Med. 352, 125–134 (2005).

8. Komura, D. & Ishikawa, S. Machine learning methods for histopathological
image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018).

9. Yamamoto, Y. et al. Quantitative diagnosis of breast tumors by morphometric
classification of microenvironmental myoepithelial cells using a machine
learning approach. Sci. Rep. 7, 46732 (2017).

10. Gurcan, M. N. et al. Histopathological image analysis: a review. IEEE Rev.
Biomed. Eng. 2, 147–171 (2009).

11. Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated
classification of pulmonary tuberculosis by using convolutional neural
networks. Radiology 284, 574–582 (2017).

12. Kim, K. et al. Performance of the deep convolutional neural network based
magnetic resonance image scoring algorithm for differentiating between
tuberculous and pyogenic spondylitis. Sci. Rep. 8, 13124 (2018).

13. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (eds) in Parallel Distributed
Processing 318–362 (MIT Press, Cambridge, 1986).

14. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with
neural networks. Science 313, 504–507 (2006).

15. Arthur, D. & Vassilvitskii, S. k-means++: The advantages of careful seeding.
In Proc. of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (ed. Gabow, H.) 1027–1035 (Society for Industrial and Applied
Mathematics, 2007).

16. Epstein, J. I. et al. The 2014 international society of urological pathology
(ISUP) consensus conference on Gleason grading of prostatic carcinoma:
definition of grading patterns and proposal for a new grading system. Am. J.
Surg. Pathol. 40, 244–252 (2016).

17. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc.
B. 58, 267–288 (1996).

18. Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for
nonorthogonal problems. Technometrics 12, 55–67 (1970).

19. Vapnik, V. (ed.) in Statistical Learning Theory Ch.12 (John Wiley and Sons,
New York, 1998).

20. Pirracchio, R. et al. Mortality prediction in intensive care units with the Super
ICU Learner Algorithm (SICULA): a population-based study. Lancet Respir.
Med. 3, 42–52 (2015).

21. LeDell, E., Petersen, M. & van der Laan, M. Computationally efficient
confidence intervals for cross-validated area under the ROC curve estimates.
Electron. J. Stat. 9, 1583–1607 (2015).

22. Nagelkerke, N. J. D. A note on a general definition of the coefficient of
determination. Biometrika 78, 691–692 (1991).

23. Phillips, J. L. & Sinha, A. A. Patterns, art, and context: Donald Floyd Gleason
and the development of the Gleason grading system. Urology 74, 497–503
(2009).

24. Tsuzuki, T. Intraductal carcinoma of the prostate: a comprehensive and
updated review. Int. J. Urol. 22, 140–145 (2015).

25. Kato, M. et al. Integrating tertiary Gleason pattern 5 into the ISUP grading
system improves prediction of biochemical recurrence in radical
prostatectomy patients. Mod. Pathol. 32, 122–127 (2019).

26. Silver, D. et al. Mastering the game of Go without human knowledge. Nature
550, 354–359 (2017).

27. Silver, D. et al. Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016).

28. Robboy, S. J. et al. Pathologist workforce in the United States: I. Development
of a predictive model to examine factors influencing supply. Arch. Pathol. Lab.
Med. 137, 1723–1732 (2013).

29. Cornford, P. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. part II:
treatment of relapsing, metastatic, and castration-resistant prostate cancer.
Eur. Urol. 71, 630–642 (2017).

30. Doyle, S., Feldman, M., Tomaszewski, J. & Madabhushi, A. A boosted
Bayesian multiresolution classifier for prostate cancer detection from digitized
needle biopsies. IEEE Trans. Biomed. Eng. 59, 1205–1218 (2012).

31. Purcell, S. M. et al. Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

32. Stone, M. Cross-validatory choice and assessment of statistical predictions. J.
R. Stat. Soc. B 36, 111–147 (1974).

33. Hastie, T., Tibshirani, R. & Friedman, J. H. (eds) in The Elements of Statistical
Learning 2nd edn Ch.7 (Springer, New York, 2009).

Acknowledgements
This study was conducted by the RIKEN AIP Deep Learning Environment (RAIDEN)
supercomputer system for the computations. We thank Prof. Takeo Kanade for his
valuable comments. This research was supported by the ICT Infrastructure for the
Establishment and Implementation of Artificial Intelligence for Clinical and Medical
Research of the Japan Agency for Medical Research and Development (AMED), and the
Centre for Advanced Intelligence Project, RIKEN.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13647-8

8 NATURE COMMUNICATIONS |         (2019) 10:5642 | https://doi.org/10.1038/s41467-019-13647-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Author contributions
Y.Y. designed this study, invented the method, programmed the machine learning system,
analyzed the data, performed pathological diagnoses and wrote the paper. T.Tsuzuki per-
formed pathological diagnoses, evaluated the Gleason score and helped with both writing the
paper and discussion. J.A. digitized the histopathological slides, constructed the dataset and
participated in discussions. M.U. conducted statistical analyses of the dataset and AUC
comparisons. H.M. programmed the machine learning system and helped with data analyses.
Y.N. helped with the programming of the machine learning system and analyzed the data.
T.Takahara and T.Tsuyuki performed pathological diagnoses and evaluated the Gleason
score. K.T. digitized the histopathological slides, participated in discussions and helped with
writing the manuscript, R.N. constructed the dataset and participated in discussions, A.S. and
his laboratory members made whole-mount histopathology slides and helped with patho-
logical discussion and diagnosis. I.M. performed pathological diagnoses and helped with
pathological discussion and diagnosis. S.T. and H.K. helped with pathological discussion and
diagnosis. Y.K. helped with dataset construction and clinical discussion. F.M. helped with
writing the manuscript and discussion. G.T. helped with discussion and statistical analysis.
N.U. helped with discussion and supervised the study. G.K. designed the study, constructed
the dataset, helped with discussion and supervised the study.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-13647-8.

Correspondence and requests for materials should be addressed to Y.Y. or G.K.

Peer review information Nature Communications thanks Nasir Rajpoot, and the other,
anonymous, reviewer for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13647-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5642 | https://doi.org/10.1038/s41467-019-13647-8 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-019-13647-8
https://doi.org/10.1038/s41467-019-13647-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Automated acquisition of explainable knowledge from unannotated histopathology images
	Results
	Key feature generation
	BCR predictions for evaluation of generated features
	Explainable features from histopathology images

	Discussion
	Methods
	Data for key feature generation and BCR predictions (NMSH)
	Data for external validation of BCR predictions
	Ethics statements
	Definition of BCR
	Statistical analysis
	Preparation of whole-mount pathology images
	Histological grading
	Key feature generation method
	Comparison of BCR predictions
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




