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Improving Oral Cancer Outcomes with Imaging and Artificial 
Intelligence 
B. Ilhan1, K. Lin2, P. Guneri1, and P. Wilder-Smith2 

Abstract 

Early diagnosis is the most important determinant of oral and oropharyngeal squamous cell 
carcinoma (OPSCC) outcomes, yet most of these cancers are detected late, when outcomes are 
poor. Typically, nonspecialists such as dentists screen for oral cancer risk, and then they refer 
high-risk patients to specialists for biopsy-based diagnosis. Because the clinical appearance of 
oral mucosal lesions is not an adequate indicator of their diagnosis, status, or risk level, this 
initial triage process is inaccurate, with poor sensitivity and specificity. The objective of this 
study is to provide an overview of emerging optical imaging modalities and novel artificial 
intelligence–based approaches, as well as to evaluate their individual and combined utility and 
implications for improving oral cancer detection and outcomes. The principles of image-based 
approaches to detecting oral cancer are placed within the context of clinical needs and 
parameters. A brief overview of artificial intelligence approaches and algorithms is presented, 
and studies that use these 2 approaches singly and together are cited and evaluated. In recent 
years, a range of novel imaging modalities has been investigated for their applicability to 
improving oral cancer outcomes, yet none of them have found widespread adoption or 
significantly affected clinical practice or outcomes. Artificial intelligence approaches are 
beginning to have considerable impact in improving diagnostic accuracy in some fields of 
medicine, but to date, only limited studies apply to oral cancer. These studies demonstrate that 
artificial intelligence approaches combined with imaging can have considerable impact on oral 
cancer outcomes, with applications ranging from low-cost screening with smartphone-based 
probes to algorithm-guided detection of oral lesion heterogeneity and margins using optical 
coherence tomography. Combined imaging and artificial intelligence approaches can improve 
oral cancer outcomes through improved detection and diagnosis. 

 

Introduction 

Early diagnosis is the most important determinant of oral and oropharyngeal squamous cell 
carcinoma (OPSCC) outcomes, yet most of these cancers are detected late, when outcomes are 
poor. In this article, novel, combined imaging and artificial intelligence (AI)–based approaches 
to screen for, diagnose, and map OPSCC are discussed. 

 

Clinical Need 

OPSCC is the sixth most common cancer in the United States, with approximately 52,000 new 
cases and 11,000 related deaths annually (American Cancer Society 2018). The 5-y survival rate 
for US patients with localized disease at diagnosis is 83%, but it is only 32% for those whose 
cancer has metastasized (Llewellyn et al. 2001). Therefore, early detection is essential to ensure 



the best possible outcomes. Worldwide, there  are  over  640,000  new  cases  of  OPSCC  each  
year (Llewellyn et al. 2001) with approximately two-thirds in low- and middle-income countries 
(LMICs) (Llewellyn et al. 2001). Tobacco and alcohol use are considered the primary cause of 
OPSCC (Shopland 1995). The rapid increase in the number of human papillomavirus (HPV)–
related cancers in some countries, especially in Europe and North America, poses an additional 
challenge (Chaturvedi et al. 2011). HPV-related cancers are often initially asymptomatic and 
remain undetected until they reach an advanced stage. Currently, more than two-thirds of all 
OPSCCs are detected after metastasis, and morbidity and mortality are among the highest of any 
major cancers. 

 

Current Practice 

Over 60% of adults visit a dentist each year (National Center for Health Statistics 2016), making 
routine dental care an ideal setting to improve early detection of OPSCC. Indeed, OPSCC is 
detected primarily by dentists, who refer patients with suspect lesions to specialists for diagnosis 
and treatment (Alston et al. 2014; American Academy of Oral Medicine 2019). A noninvasive 
visual and tactile oral mucosal examination with risk factor assessment for oral diseases 
including OPSCC is part of the standard visit by oral health care providers and is recommended 
for all patients (American Academy of Oral Medicine 2019). A positive screening outcome leads 
to referral to a specialist for biopsy and histopathological analysis. Figure 1 depicts a schematic 
of the conventional pathway to care. As dentists typically represent the first step in the pathway 
to care, it is critical that they are effective in their “gatekeeper” role. However, studies have 
identified a lack in knowledge and practice of dentists to recognize and diagnose oral potentially 
malignant lesions (OPMLs) and OPSCC. There is a need to raise awareness and institute 
continuing education programs for general dentists on this topic. Moreover, there is a lack of 
knowledge and awareness from the general population, which serves as a barrier to seeking early 
diagnosis (Laronde et al. 2014; Hashim et al. 2019; Webster et al. 2019). In current clinical 
practice, due to lack of knowledge and reliance on subjective analyses of clinical features, 
screening accuracy by dentists remains poor (Sardella et al. 2007; Epstein et al. 2012; Yang  et 
al. 2018; Grafton-Clarke et al. 2019, Ries et al. 2019). 

Given that more than two-thirds of all OPSCCs are detected after metastasis, improving early 
detection provides the most effective means of improving OPSCC outcomes. There exist 2 major 
barriers to early OPSCC detection: the poor accuracy of existing approaches and the need for 
surgical biopsies to establish a diagnosis. 

 



 
Figure 1. Schematic of the diagnostic process for oral cancer and precancers with typical 
decision-making junctures and their impact on the process of care. OC, oral cancer; OPML, oral 
potentially malignant lesion. By courtesy of and with permission from Dr. Diana Messadi. 

 

Most Oral Mucosal Lesions Identified during Routine Dental Visits Are Benign Confounders 

Diagnosing oral lesions is challenging due to a reliance on subjective analyses of clinical features 
such as color, texture, and consistency; therefore, subtle lesions can pass undetected. Benign oral 
lesions are difficult to distinguish from dysplasia and early stage cancer (Epstein et al. 2012; 
Cleveland and Robison 2013; Grafton-Clarke et al. 2019). Therefore, it is not surprising that 
screening accuracy in dental offices varies considerably. In 1 study, dentists discriminated 
OPSCC from benign confounders with 57.8% sensitivity and 53% specificity; a recent meta-
analysis concluded that dentists achieve only 31% specificity in distinguishing OPSCC and 
OPMLs from benign lesions. A third study found that only 40% of referring dentists’ diagnoses 



coincided with specialist diagnosis, and it was reported that dentists’ delay in referring to a 
specialist is the primary cause of poor OPSCC outcomes, with dentists on average recalling the 
patient for 2 or 3 additional visits before specialist referral (Mehrotra and Gupta 2011; Epstein et 
al. 2012; Grafton-Clarke et al. 2019). The rapid increase in the number of HPV-related OPSCC 
in some countries poses an additional challenge (Amarasinghe et al. 2010; Tong et al. 2015). A 
recent survey of 130 clinicians found that 89% cited “ineffective” (65%) or inexpert (24%) as a 
primary barrier to effective OPSCC screening (Fig. 2) (Wilder-Smith, unpublished data, 2019). 

 
Figure 2. Primary barrier to effective oropharyngeal squamous cell carcinoma screening: survey 
of 130 California clinicians. 

 

Biopsies Are Required for Definitive Diagnosis, but These Are Invasive, Resource Intensive, Do 
Not Provide Immediate Results, and Often Result in Underdiagnosis Due to Sampling Bias 

Biopsy is mandatory for diagnosing OPMLs and OPSCC. Auxiliary methods are needed to assist 
the clinician in identifying the need for biopsy and in selecting appropriate sites to avoid false-
negative results. Most dentists are reluctant to perform biopsies because of unfamiliarity with 
technique and uncertainty in choosing sites (Wan and Savage 2010). Selecting biopsy sites relies 
on visual examination, yet this is an unreliable criterion for selecting sampling sites (Wan and 
Savage 2010). Lesion heterogeneity can result in histological diagnosis at the biopsy site that 
differs from the adjacent, unsampled area. Thus, the histopathological information that provides 
the diagnosis does not necessarily indicate risk levels of the entire lesion. Moreover, because 3-
dimensional mapping of lesions is currently impossible, point-based histopathological sampling 
guides presurgical treatment planning. Further intraoperative sampling and histopathology are 
then required during surgery to ensure complete removal of all pathological tissues and an 



adequate excision margin. Intraoperative histopathology considerably increases surgical risk, 
duration, and cost without providing confirmation that the entire continuous surgical margin is 
indeed clear. Finally, treatment-related changes in the appearance and feel of the intraoral tissues 
hinder monitoring for recurrence of neoplasia using customary visual exam and palpation. 
Consequently, recurrences are not detected sufficiently early to minimize long-time morbidity 
and mortality. 

 

Principles of Successful Technology Innovation Translation 

The success of biomedical innovation is defined by a host of factors beyond efficacy. No matter 
how accurate the information provided by a novel device, if it does not translate directly into 
clinical decision-making guidance and improved outcomes, the device will have little impact. 

 

Technology Should Be Designed to Meet End Users’ Decision-Making Needs 

The complexity and diversity of information that can be gathered by cutting-edge biomedical 
technologies is immense. However, any information that is generated by a device that does not 
add value in the sense of improving decision making or outcomes adds unnecessary cost and 
wastes precious clinical time (Litscher 2014). For example, if a device is intended to assist 
dentists with managing OPMLs, it should quantify any change in lesion status from one visit to 
the next in a manner that assists the dentist in recognizing increased risk levels and in 
determining whether to refer the patient to a specialist. A device that does less is not meeting its 
purpose; a device that goes beyond this is equally unsuccessful as it provides greater cost and 
complexity without improving outcomes. 

 

 

Technology Should Be Calibrated Specifically to Meet the End Users’ Parameters for Cost, 
Skills, Training, Time, and Space 

A device will only become a part of the end user’s clinical routine if it fits into the office 
workflow and its cost is commensurate with compensation and frequency of use (Slavkin 2017). 
For example, a device intended for OPSCC screening in a community setting must be very low 
cost, robust, and portable. Its user interface should be simple, be intuitive, and produce only the 
input and output parameters that are directly linked to improving patient outcomes—in this case, 
identifying OPSCC risk and connecting the patient with the pathway to care. 

 

Imaging Oral and Oropharyngeal Squamous Cell Carcinoma 

It is possible to image many phenomena related to the presence, progression, or regression of 
neoplasia. Such biomarkers include metabolic rates, oxygenation, blood flow, spatial and 



structural characteristics of tissue architecture, biochemical pathways, and cell viability 
(O’Connor et al. 2015). Imagingbased approaches to screening, early detection, and surveillance 
of OPSCC are attractive because they allow for immediate, nonsurgical interrogation of the oral 
tissues. Because it is completely noninvasive, imaging can be repeated as needed. Yet, overall, 
existing guidelines do not recommend for community screeners or dentists the use of currently 
available imaging-based adjuncts such as autofluorescence imaging (Macey et al. 2015; Lingen 
et al. 2017), in part due to low accuracy in distinguishing OPSCC/OPMLs from benign 
confounders, as well as challenges in interpreting images. However, other recent works have 
validated the use of autofluorescence within the context of population screening and recommend 
it as an adjunct method to conventional oral examination to detect OPMLs and OPSCC 
(Simonato et al. 2017; Farah et al. 2019; Simonato et al. 2019; Tiwari et al. 2019; Tomo et al. 
2019). 

Several innovative high-resolution imaging approaches have also been investigated that are 
specifically designed for use by specialists. These devices have frequently performed well in 
clinical tests; nevertheless, none have been adopted for routine use in specialty practice. Their 
failure to bridge the gap to clinical adoption is more about overall logistics and effect on 
outcomes than diagnostic performance. Optical coherence tomography (OCT) provides a good 
illustration for this observation. 

OCT was introduced as an imaging technique in 1991. It has been compared to ultrasound 
imaging. Both technologies employ backscattered signals reflected from within the tissue to 
reconstruct structural images, with OCT measuring light rather than sound. The resulting OCT 
image is a 2-dimensional representation of the optical reflection within a tissue sample at near 
histologic resolution. These images can be stacked to generate 3-dimensional reconstructions of 
the target tissue. Images are acquired using a flexible fiber-optic probe, which is placed on the 
tissue surface to generate real-time surface and subsurface images of tissue microanatomy and 
cellular structure. OCT can image to a depth of approximately 2 to 3 mm in oral mucosa. 

Several OCT systems have received Food and Drug Administration (FDA) approval for clinical 
use, and OCT is an essential imaging modality in ophthalmology. Multiple studies have 
investigated the diagnostic utility of OCT to detect and diagnose oral premalignancy and 
malignancy, with reported diagnostic sensitivities and specificities typically ranging between 
80% to 90% and 85% to 98%, respectively (Doi 2007; Tsai et al. 2008; Wilder-Smith et al. 2009; 
Sunny et al. 2016; Tran et al. 2016; Munir et al. 2019). However, despite excellent diagnostic 
performance, OCT has overall not been adopted as a clinical tool for OPSCC diagnosis for 
several reasons: 1) images are difficult to interpret; 2) the device is large, heavy, and fragile; 3) 
the operating software and user interfaces are daunting; and 4) the cost is high. In a recent 
project, innovative engineering techniques were used to reduce the size, fragility, and cost of 
OCT technology. A prototype OCT system was constructed at 10% of the cost of typical existing 
commercial systems (Sunny et al. 2016; Tran et al. 2016). Despite excellent diagnostic accuracy 
and an improved user interface, clinicians who tested the device stated that the need to learn to 
read and interpret the images continued to present a significant barrier to clinical adoption of the 
system. 



 

Artificial Intelligence 

Artificial intelligence techniques are gaining attention as a means of improving image-based 
diagnosis (Munir et al. 2019). Machine learning and deep learning are 2 subsets of AI, which, 
although the terms are sometimes used interchangeably, have some important differences. 
Briefly, machine learning algorithms typically require an accurately categorized data input, 
whereas deep learning networks rely on layers of the artificial neural networks to generate their 
own categories based on identifying edges (differences) within layers of neural networks when 
exposed to a huge number of data points. Therefore, although both of these subsets of AI are 
“intelligent,” deep learning requires much more data than a traditional machine learning 
algorithm, while machine learning performs better with fewer data sets that are clearly labeled or 
structured with regard to a gold standard or specific criteria of interest. 

Both approaches are used for intelligent image analysis, depending on the application and data 
sets that are available. Manual interpretation of medical images is very time-consuming, requires 
considerable specialist expertise, and is prone to inaccuracy. For this reason, in the early 1980s, 
computer-aided diagnosis (CAD) systems were developed to improve the efficiency of medical 
image interpretation (Bengio et al. 2013). Feature extraction was the key step in early efforts to 
automate medical diagnosis. Next, AI techniques were developed and progressively improved to 
overcome some of the early weaknesses in feature extraction techniques (Bengio et al. 2013; 
LeCun et al. 2015). For example, the development and refinement of convolutional neural 
networks improved dramatically the ability for automated cancer detection (Xu et al. 2015). 
Briefly, there are 3 main steps to applying AI to medical imaging: preprocessing, image 
segmentation, and postprocessing. 

 

 

Preprocessing 

To overcome the noise contained in raw images, unwanted image information must be removed. 
Many filters can be applied to remove optical noise. At the preprocessing stage, contrast is also 
adjusted, for example, to improve differentiation and delineation between different structures or 
between healthy versus pathological structures. For example, an image of skin with hairs in it as 
well as a lesion may cause misclassification of the lesion. 

Cutting-edge imaging approaches that map multiple levels and types of biomarkers are well 
suited to addressing OPSCC. However, the large volumes of complex data generated by these 
devices are poorly compatible with the diagnostic needs and workflow parameters of the settings 
in which OPSCC is detected, diagnosed, and managed. Deep learning excels at recognizing 
complex patterns in images and thus offers an important means of transforming image 
interpretation from a qualitative subjective task with unclear cutoffs and no decision-making 
guidance to a process that is quantifiable, reproducible, and customized to providing only the 
information needed for decision making. It is this unique capability that primarily powers the 



impact of AI on clinical outcomes. Moreover, AI can quantify subtle variations that are not 
detectable by the human eye. It can also combine multifactorial data streams into powerful 
integrated diagnostic and predictive systems spanning divergent data streams from sources such 
as images, genomics, pathology, electronic health records, and even social networks. A recent 
survey of the literature reported a 15% to 20% improvement in the accuracy of cancer prediction 
outcomes in clinical practice using AI techniques (Kourou et al. 2014). 

To date, there are few publications on the application of these techniques to imaging in the oral 
cavity. In 1 recent study, the performance of a deep learning algorithm for detecting oral cancer 
from hyperspectral images of patients with oral cancer was evaluated (Jeyaraj and Samuel Nadar 
2019). The investigators reported a classification accuracy of 94.5% for differentiating between 
images of malignant and healthy oral tissues. Similar results were described both in a recent 
animal study (Lu et al. 2018) and in another project that imaged human tissue specimens (Fei et 
al. 2017). In another study, deep learning techniques were applied to confocal laser 
endomicroscopy to analyze cell structure as a means of detecting OPSCC. A mean diagnostic 
accuracy of 88.3% (sensitivity 86.6%, specificity 90%) was reported (Aubreville et al. 2017). 

 

Image Segmentation 

This process recognizes and delineates the region of interest. For cancer imaging, pathological 
areas of the lesion are distinguished from nonpathological sites. While segmentation can be 
divided into 4 main classes, there exist a host of different approaches to this process, and often 
hybrid models combining multiple techniques have been used to improve accuracy. 

 

 

 

Postprocessing 

Multiple postprocessing methods exist, whose primary function is to target and extract 
information on features of interest such as islands, borders, and regions that share the same 
defined properties (Lee and Landgrebe 1993; Sikorski 2004; Zhou et al. 2009). Many different 
postprocessing techniques are being applied to medical imaging, including convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), multiscale convolutional neural network 
(M-CNN), and multiinstance learning convolutional neural network (MIL-CNN). Neural 
networks can perform complex computational tasks because of the nonlinear processing 
capabilities of their neurons. A general schematic of an artificial neural network is shown in 
Figure 3. Briefly, test data such as images of OPSCC with matching histopathological diagnosis 
and risk factors are input into the neurons to train the network to recognize specific features. 
Then, network performance is tested using additional data sets, and the generated output is 
matched with the goldstandard diagnosis (such as histopathology). An error signal is generated in 
all the cases where the outputs do not match the gold-standard criterion. This error signal 



propagates in the backward direction. Weightings for the specific features used by the neurons 
are adjusted for error reduction. This processing is repeated to minimize error while avoiding 
overfitting the data. The number of studies investigating the use of these approaches for 
diagnosing and mapping different types of cancers is increasing exponentially, especially for 
breast, lung, brain, and skin cancer (Xu et al. 2015). 

 
Figure 3. Simplified schematic of artificial neural networks (ANNs). Source: Munir K, Elahi H, 
Ayub A, Frezza F, Rizzi A. Cancer diagnosis using deep learning: a bibliographic review. 
Cancers (Basel). 2019;11(9):E1235. 
 

CNNs are one form of deep learning that is frequently applied to medical imaging tasks. These 
systems function using a direct feed-forward trajectory as shown in Figure 4. Here, the signal is 
processed directly without any backward loops or cycles. The pooling steps of the CNN have the 
function of summarizing neighboring pixels and propagating these summarized characteristics in 
the output (subsampling) to make the representation invariant to small changes to translation in 
the input. CNNs were used to develop the algorithms described below. 

 

 
Figure 4. General convolutional neural networks (CNNs). Source: Munir K, Elahi H, Ayub A, 
Frezza F, Rizzi A. Cancer diagnosis using deep learning: a bibliographic review. Cancers 
(Basel). 2019;11(9):E1235. 



 

Applying AI to Imaging to Improve OPSCC Outcomes 

AI is able to automate processes that combine complex variables with different levels of 
weighting into an analytic pathway whose outcome provides guidance for clinical decision 
making. For example, micromorphological features can be combined with disease risk factors, 
geographical data, and differing gradients of signal intensity or varying voxel-by-voxel signal 
patterns to generate risk assessments for specific conditions. 

Below we present 2 scenarios that demonstrate the application of these approaches to 
increasingly complex situations: 1) OPSCC screening and diagnosis and 2) intraoperative 
mapping of OPSCC heterogeneity and margins. 

 

Oral Cancer Screening Using a Simple Smartphone Probe with Deep Learning Algorithm 

In their landmark randomized clinical trial, Sankaranarayanan et al. for the first time 
demonstrated that effective screening by community health workers using only visual 
examination combined with risk factors can almost halve OPSCC-related mortality in high-risk 
groups (Sankaranarayanan et al. 2005; Subramanian et al. 2009). They also demonstrated that 
this intervention is cost-effective with considerable cost per lifeyear saved in the high-risk group 
(Sankaranarayanan et al. 2005; Subramanian et al. 2009). However, this outcome was quite 
different from those of other major OPSCC screening studies, which typically determined no 
impact on OPSCC outcomes such as mortality, morbidity, and cost (Kuriakose 2018). The 
accuracy and effectiveness of the screening process was identified as the primary and 
predominant determinant factor for the unique success of the Sankaranarayanan group in 

improving long-term OPSCC outcomes (Kuriakose 2018). The researchers had invested an 
extraordinary amount of time, innovation, and effort into intensive, detailed, frequently repeated 
training and standardization of its field staff for their screening activity, which went far beyond 
standard practice, and these measures were each implemented at an intensive level that would be 
difficult to maintain or upscale. However, deep learning techniques are ideally suited to 
achieving a similar or better level of screening efficacy and accuracy while overcoming the 
challenging need for highly skilled, trained, and constantly retrained screeners. 

In a recent multistage, multicenter study, a very low-cost point-of-care deep learning–supported 
smartphone-based oral cancer probe was developed specifically for screeners in highrisk 
populations in remote regions with limited infrastructure (Firmalino et al. 2018; Song et al. 2018; 
Uthoff, Song, Birur, et al. 2018; Uthoff, Song, Sunny, et al. 2018). The probe is designed to 
access all areas of the oral cavity, including sites that are often inaccessible to conventional 
approaches and that carry high risk of HPV-related lesions (Fig. 5). The probe’s 
autofluorescence and polarization images are combined with OPSCC risk factor tabulation 
(habits, signs, and symptoms) for analysis by a proprietary deep learning–based algorithm to 
generate a screening output that provides triage guidance to the screener. 



The deep learning algorithm was initially trained using 1,000 data sets of images, risk factors, 
and matching histopathological diagnoses. It was then tested and refined using an additional 300 
data sets from our database. In the first clinical study in 92 subjects with oral lesions, the initial 
screening algorithm performed well, with an agreement with standard-of-care diagnosis of 
80.6% (Uthoff, Song, Birur, et al. 2018). After additional training, the algorithm was able to 
classify intraoral lesions with sensitivities, specificities, positive predictive values, and negative 
predictive values ranging from 81% to 95%. In another study, screening accuracy approximated 
85%, whereas conventional screening accuracy by community health workers ranged from 30% 
to 60% (Cleveland and Robison 2013; Uthoff, Song, Birur, et al. 2018; Uthoff, Song, Sunny, et 
al. 2018). Figure 5 shows the results of a recent field study in which community health workers 
screened 292 individuals with increased OPSCC high risk in 3 ways: 1) by conventional clinical 
examination and risk factor tabulation, 2) by combining conventional clinical examination and 
risk factor tabulation with their visual assessment of the OPSCC probe image, and 3) using the 
deep learning diagnostic algorithm. Interestingly, mean screening accuracy only improved 
marginally, from 59% to 64.8% accuracy, when the pretrained screener “read” the probe image 
in additional to conventional screening. Using the same information as the screener, the deep 
learning algorithm improved mean diagnostic accuracy from 59% to 86.6% (Wilder-Smith, 
unpublished data, 2019). 

 
Figure 5. Probe design and performance. (A) Fourth-generation oropharyngeal squamous cell 
carcinoma probe prototype. (B) Soft bendable probe tip (b1) extends intraoral reach (b2). (C) 
Screening accuracy of community health workers using conventional exam (left-hand side), 



community health workers using conventional exam and probe image (center), and machine 
learning algorithm (right-hand side). 
 

Diagnosing, Mapping Heterogeneity, and Margins Using OCT with Machine Learning and Deep 
Learning Algorithm 

Adding a diagnostic algorithm to an OCT system overcomes the need to train users to read the 
OCT images. In a recent study using a prototype low-cost OCT system (Fig. 6), investigators 
developed and tested an automated diagnostic algorithm linked to an image-processing app and 
user interface (Heidari et al. 2019). After preprocessing, OCT images were classified as normal, 
dysplastic, or malignant through a 2-step automated decision tree. Initially, OCT images were 
categorized into 2 groups: nonmalignant (normal and dysplastic) versus malignant through a 
comparison of optical tissue stratification. Subsequently, the “nonmalignant” group was broken 
down into either “healthy” or “dysplastic” by observing changes in the linearity of the basement 
membrane. The automated cancer screening platform differentiated between healthy versus 
dysplastic versus malignant tissues with a sensitivity of 87% and a specificity of 83% versus the 
histopathological gold standard (Heidari et al. 2019). 

To test the ability of the system to map tumor heterogeneity and margins, intraoperative images 
from 125 sites in 14 patients with histopathologically confirmed OPSCC were captured from 
multiple zones within and adjacent to the tumor area. The AI diagnosis was compared with the 
clinical and pathologic diagnosis for each site imaged. The spatially resolved diagnostic accuracy 
of the system was 92.2% versus histopathology, with 100% sensitivity and specificity for 
detecting malignancy within the clinically delineated tumor and tumor margin areas. For 
dysplastic lesions, the AI algorithm showed a location-specific sensitivity of 92.5%, specificity 
of 68.8%, and a moderate concordance with histo-pathological diagnosis (κ = 0.59). In addition, 
the AI algorithm significantly differentiated squamous cell carcinoma (SCC) from dysplasia (P ≤ 
0.005) and dysplasia from non-dysplastic lesions (P ≤ 0.05) (Sunny et al. 2019). 



 
Figure 6. Optical coherence tomography (OCT) device, use, and algorithm. (A) Low-cost, 
robust prototype OCT system. (B) Imaging with high- resolution probe in low-resource setting. 
(C) OCT images and matching depth resolved intensity maps for healthy (C1), dysplastic (C2), 
and malignant (C3) oral mucosa. (D) Segmented OCT images of healthy (D1) and dysplastic 
(D2) oral tissues with graph showing lateral deviation versus layer average thickness of the 
epithelium-lamina propria boundary (D3). 
 

Conclusion 

Novel imaging technologies provide information on a wide range of biomarkers of neoplasia. 
However, the unaided human mind is unable to process and interpret these data sets without 
computational assistance. AI approaches can rapidly analyze complex images to provide 
decision-making guidance. Additional studies are needed to identify optimal imaging approaches 
for each clinical need and to finalize the configuration and clinical guidance outcomes of AI-
based algorithms. 
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