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Methane (CH4), an important greenhouse gas and pollutant, has been targeted for 

mitigation. Our recent California airborne survey identified >500 CH4 point sources, which 

accounted for 34-46% of the statewide CH4 emissions inventory for 2016. Individual 

plumes were observed in close proximity to expected CH4 emitting infrastructure. In order 

to systematically attribute these plumes to their sources, we developed Vista-CA a 

geospatial database, that contains more than 900,000 validated CH4 infrastructure elements 

in the state of California. In parallel, we developed a complimentary algorithm that 

attributes any individual CH4 plume observation to high confidence Vista-CA source with 

99% accuracy. This research illustrates the capabilities of the Vista-CA CH4 database along 

with Airborne Visible/Infrared Imaging Spectrometer – Next Generation’s (AVIRIS-NG) 

airborne CH4 retrievals to locate and attribute CH4 point sources to specific economic 

sectors. Additionally, this research delivers two emissions products for Kern County: a top-
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down estimate called the AVIRIS-NG Source Data product and the Vista-CA Bottom-Up 

emissions dataset. We found general agreement in the source apportionment and 

magnitudes between these datasets. Moreover, due to current CH4 inventories having large 

uncertainties in emissions from the energy processing and production sectors where 

fugitive emissions predominate, we used airborne CH4 imaging survey data to show that 

CH4 emissions from power plants in California are underestimated by current CH4 

inventory approaches. We developed process-based bottom-up emission estimates for over 

300 power plants in California using Intergovernmental Panel on Climate Change (IPCC) 

methods. We used airborne CH4 imaging to attribute CH4 observations to over 250 

California power plants and characterize the frequency and persistency of top-down CH4 

emissions. We found that fugitive emissions constitute 90% of total observed emissions 

from power plants with the remainder derived from process-driven activity while bottom-

up emissions are 28 – 54 times smaller than top-down observations. Comparing the 

inventory-based estimates with observations, the data show “super-emitter” behavior with 

60% of total power plant emissions coming from a handful of facilities, likely due to 

fugitive CH4 emissions. Future inventories should take advantage of emission observations 

to quantify CH4 from these sources to improve the state CH4 budget and identify mitigation 

targets.  
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Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG) 

with regards to climate change.1 Its four hydrogen atoms are held to its single carbon atom 

by what amounts to a spring. As they float in the air, they bounce around similar to a slinky 

toy. Pulling one of these atoms far away causes it to snap back together and vice versa. 

Essentially, CH4 bounces back and forth with this frequency feature. GHG’s like CH4 and 

Carbon Dioxide (CO2) absorb electromagnetic radiation from the Sun which contains all 

wavelengths of light.1 The photons from the sun are absorbed by Earth’s surface, re-emitted 

in the infrared, or heat energy part of the spectrum. Thus, a gas which absorbs more of the 

infrared spectrum of light would be able to trap the most heat. These gases are known as 

“greenhouse gases”. CH4, due to its physical and chemical makeup, does this work better 

than CO2. Thus, being able to absorb more infrared radiation enables it to be a better heat 

absorber than CO2, giving it a higher radiative forcing, or heating effect on the Earth 

system.1 CH4 strongly absorbs a few very small wavelength regions occurring around 2.5, 

3.5 and 8 microns, all of which are all in the infrared region of the electromagnetic 

spectrum.1  

With respect to climate change, CH4 is a relatively short-lived climate pollutant 

with respectively around 30 and 85 times the cumulative radiative forcing of CO2 on a 

mass basis over 100-year and 20-year lifetimes.1, 2 Pre-industrialization, global CH4 

atmospheric concentrations leveled around 700 ppb and have since passed 1,900 ppb over 

the last decade.1 CH4 is responsible for ~20% of the radiative forcing since the Industrial 

Revolution, however, uncertainty in the anthropogenic source distribution of CH4 

emissions presents a challenge for implementing mitigation, globally and in policy relevant 
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domains.1, 2  A majority of anthropogenic CH4 sources are separated into two categories: 

fossil and biogenic. Fossil sources include power plants, refineries, and oil and gas 

infrastructure while biogenic sources include landfills, dairy livestock farms, rice 

paddies/wetlands.1 Atmospheric CH4 sinks exist in the troposphere in the form of hydroxyl 

radicals with an average lifetime of around 10 years while in the stratosphere as CH4 decays 

when reacting with hydroxyl radicals, chlorine, or O(1D) over a 120-year lifetime.1 Surface 

level sinks include consumption in the soil by methanotrophs, with around 160-year partial 

lifetime for CH4.
1 The level of CH4 continues to rise due to atmospheric and surface level 

sources primarily caused by anthropogenic activities.1 The rise in industrial agriculture 

especially dairy production, increase in the production of waste, and mass adoption of 

natural gas energy resources has been adding to the global CH4 budget.   

The work presented here focuses on the State of California and investigates its CH4 

emissions budget across relevant sectors. In California, multiple pieces of legislation have 

been passed to curb this increase in CH4 while introducing strategies for monitoring and 

mitigation.3, 4, 5, 7 In 2006, California passed executive order Assembly Bill 32 titled the 

Global Warming Solutions Act which required the state to reduce its greenhouse gas 

emissions levels to 2000 levels by 2010, to 1990 levels by 2020, and to a level 80% below 

1990 levels by 2050 and gave power to the California Air Resource Board (CARB) to 

implement/enforce these standards on industry.3 In 2015, California passed Assembly Bill 

1496 for CH4 hotpot monitoring which included monitoring and measuring CH4 hot spots, 

lifecycle analysis of GHG emissions from natural produced and imported into California, 

assessing the atmospheric reactivity of CH4 as a precursor to the formation of 
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photochemical oxidant, and updating policy to incorporate new data.4 The following year, 

California passed Senate Bill 32, further defining emissions by mandating reductions in 

GHG emissions to 40% of 1990 levels by 2030.5 As a result, total GHG emissions 

(predominantly CO2) have been steadily decreasing in California which is a testament to 

the policies set forth by these legislation, enforcement, and investment bills, but CH4, on 

the other hand, has been steadily increasing due to increases in activities and operations 

from waste, energy, and agriculture sectors.6 A few examples of these that are covered in 

this work include California’s electric generating sector and Kern County’s oil and gas 

infrastructure. Consequently, in 2016 California enacted legislation in the form of Senate 

Bill 1383 for specifically targeting the reduction of CH4.
7 To this end, it is necessary that 

California has an appropriate and sufficient CH4 observing system and analytical 

methodologies to evaluate progress towards its emission reduction goals given large 

uncertainties in current techniques. 

 Full accounting of CH4 from a large geographic area involves utilizing two main 

methods: top-down observations and bottom-up modeling.1 Top-down approaches 

measure patterns through direct atmospheric observation of various CH4 sources and sinks. 

Bottom-up approaches require utilizing specific activity data and local processes to develop 

models that can estimate and scale emissions across sectors. Both top-down and bottom-

up methods contain their own advantages and deficiencies. Top-down and bottom-up 

emission estimates allow for the estimation of CH4 in a given area and can be used 

complementary to one another. CH4 hotspots or point sources are thought to be important 

to overall emissions and the nature of localized CH4 emissions enables a geospatial 
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approach towards quantification and assessment.8, 9, 10 The identification of CH4 emission 

sources, both process-based and fugitive, is important for effective development of 

appropriate policy and corresponding mitigation methods.1, 6, 8, 9, 10 Process-based 

emissions result from the operations or processes occurring at a given facility or are the 

byproduct of combustion activities that are usually persistent given the facility’s 

operational status. Fugitive emissions are the result of incomplete combustion or leaks in 

the components or infrastructure of a given facility. 

 However, uncertainty in both the quantification and allocation of California CH4 

emissions hinders mitigation and emission reduction evaluations. Furthermore, a lack of 

fine-scale CH4 emission assessments for California necessitates further investigation and 

improvement of CH4 emission estimates.8, 9, 10 Atmospheric top-down measurement 

estimates of CH4 emissions in California have shown that bottom-up inventories 

underestimate total CH4 emissions by about half in many areas of California.11, 12, 13, 14, 15 

GHG inventories that incorporate information on CH4 sources often lack necessary spatial 

information, and inaccurately represent the spatial distribution of these sources. 

Uncertainties in these inventories limits the performance of inverse modeling and may be 

the cause of discrepancies in observed top-down and modeled bottom-up estimates with 

top-down approaches estimating higher emissions than bottom-up methods.8, 15  Top-down 

estimates of CH4 regularly exceed bottom-up estimates due to uncertainties in the 

apportionment approaches and show that CH4 emissions for California are underestimated 

by ~50% or more depending upon the area.16, 17 Similarly, bottom-up datasets often rely on 

inadequate sampling outdated emission factors, and/or inaccurate spatial data of facility 
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and site locations.8, 11, 12, 13, 15 For example, a large fossil signature contribution from energy 

industries is undercounted in some bottom-up inventories.10, 18 Additionally, many studies 

attempting to estimate total emissions lack the ability to resolve their estimates to the sub-

facility or component scale as they are too spatially coarse for individual source 

identification.17, 19, 20 Moreover, significant differences in CH4 source apportionment were 

seen between atmospheric observations and expected emissions for urban areas in 

California as well. These studies revealed these estimates differed from the source 

contributions detailed in regionally downscaled versions of the CARB GHG Inventory.  

This research provides appropriate context from existing CH4 regulatory tools from 

2 main state and federal repositories: The California Air Resources Board Pollution 

Mapping Tool (CARB PMT: https://ww3.arb.ca.gov/ei/tools/pollution_map/) and the U.S. 

Environmental Protection Agency Facility Level Information on GreenHouse gases Tool 

(EPA FLIGHT: https://ghgdata.epa.gov/ghgp/main.do).21, 22 CARB and EPA facility 

emission databases contain data on facilities that exceed annual emissions of 10,000 or 

25,000 metric tons CO2-eq, respectively.21, 22 It is unclear how accurately CH4 emissions 

are represented given that these thresholds for emissions reporting are mostly driven by 

CO2 emissions, and CH4 is more difficult to inventory given the importance of fugitive 

sources. The primary policy tools are the state and EPA GHG inventories, and facility level 

information only exists in the CARB PMT and EPA FLIGHT datasets. As such, this 

research provides a foundation to reconcile these governmental planning inventories (based 

on Intergovernmental Panel on Climate Change methods) with facility level information. 

https://ghgdata.epa.gov/ghgp/main.do
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Top-down measurements have also provided a viable source for CH4 estimates, 

especially in California. Precision airborne remote sensing of CH4 has provided sub-meter 

spectroscopy of CH4 point sources over large swaths of geography.8, 23, 24, 25, 26 This level 

of detailed information is not available from any publicly available state and federal 

repositories. This research utilizes this type of airborne data and expands upon work 

collected as part of the California Methane Survey by NASA Jet Propulsion Laboratory’s 

Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG). Using 

AVIRIS-NG, Duren et al. (2019) surveyed CH4 emission sources in California and 

visualized CH4 plumes at the scale of their sources.8 Their research confirmed the "super-

emitter” characteristic where a handful of emission sources constituted a significant 

amount of the CH4 budget.8  

 This research provides a foundation for efficient and high-resolution CH4 

measurements over large swaths of geographic area. The individual chapters provide a 

detailed breakdown of CH4 emissions analysis using advanced geospatial techniques, 

geospatial data, and GHG inventory models. In Chapter 2, this works seeks to address how 

CH4 point sources be attributed to infrastructure with increased efficiency towards 

estimation of emissions through geospatial methods.10 For Chapter 3, we explore how top-

down and bottom-up emissions illustrate the impact that oil and gas facilities and 

infrastructure have on CH4 emissions in Kern County, California. Finally in Chapter 3, we 

outline what the impacts of fugitive CH4 emissions are from California’s power plants and 

their respective super-emitter influence. 

  



 8 

   I. References 

 

1. National Academies of Sciences, Engineering, and Medicine. 2018. Improving 

Characterization of Anthropogenic Methane Emissions in the United States. Washington, 

DC: The National Academies Press. doi: https://doi.org/10.17226/24987. 

 

2. Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine. 2016. Radiative forcing 

of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane 

radiative forcing, Geophys. Res. Lett., 43, 12,614–12,623, DOI: doi:10.1002/ 

2016GL071930. 

 

3. Nunez and Pavley. AB-32 Air pollution: greenhouse gases: California Global 

Warming Solutions Act of 2006. California Legislative Information. 2006. 

https://leginfo.legislature .ca.gov/faces/billNavClient.xhtml?bill_id=200520060AB32. 

(accessed 6th September 2022). 

 

4. Thurmond. AB-1496 Methane emissions (2015-2016). California Legislative 

Information. 2015. 

https://leginfo.legislature.ca.gov/faces/billCompareClient.xhtml?bill_id= 

201520160AB1496 (accessed 6th September 2022). 

 

5. Pavley. SB-32 California Global Warming Solutions Act of 2006: emissions limit 

(2015-2016). California Legislative Information. 2016. 

https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB32 

(accessed 6th September 2022). 

 

6. California Air Resources Board. Methane CH4 Research Program. 2022. 

https://ww2.arb.ca.gov/our-work/programs/methane-research (accessed 6th September 

2022). 

 

7. Lara. SB-1383 Short-lived climate pollutants: methane emissions: dairy and 

livestock: organic waste: landfills (2015-2016). 2016. 

https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB1383 

(accessed 6th September 2022). 

 

8. Duren, R. M., Thorpe, A. K., Foster, K.T., Rafiq, T., Hopkins, F. M. Yadav, V., 

Bue, B. D., Thompson, D. R., Conley, S., Colombi, N.K., Frankenberg, C., McCubbin, I. 

B., Eastwood, M. L., Falk, M., Herner, J. D., Croes, B. E., Green, R. O., Miller, C. E. 

2019. California’s Methane 1 Super-Emitters. Nature 575, 180–184. 

https://doi.org/10.1038/s41586-019-1720-3. 

 

9. Carranza, V., Rafiq, T., Frausto-Vicencio, I., Hopkins, F. M., Verhulst, K. R., 

Rao, P., Duren, R. M., and Miller, C. E. 2018. Vista-LA: Mapping methane-emitting 



 9 

infrastructure in the Los Angeles megacity, Earth Syst. Sci. Data, 10, 653-676, DOI: 

https://doi.org/10.5194/essd-10-653-2018. 

 

10. Rafiq, T. Duren, R. M., Thorpe, A. K., Foster, K., Patarsuk, R., Miller, C. E., 

Hopkins, F. M. 2020. Attribution of methane point source emissions using airborne 

imaging spectroscopy and the Vista-California methane infrastructure dataset. Environ. 

Res., Lett. 15, 1-12, DOI: https://doi.org/10.1088/1748-9326/ab9af8. 

 

11. Wennberg, P. O., Mui, W., Wunch, D., Kort, E. A., Blake, D. R., Atlas, E. L., 

Santoni, G. W., Wofsy, S. C., Diskin, G. S., Jeong, S., and Fischer, M. L. 2012. On the 

Sources of Methane to the Los Angeles Atmosphere. Environmental Science & 

Technology, 46, 9282-9289, DOI: https://doi.org/10.1021/es301138y. 

 

12. Peischl, J., Ryerson, T. B., Brioude, J., Aikin, K.C., Andrews, A. E., Atlas, E.,  

Blake, D., Daube, B. C., de Gouw, J. A., Dlugokencky, E., Frost, G. J.,  Gentner, D. R., 

Gilman, J. B., Goldstein, A. H., Harley, R. A., Holloway, J. S.,  Kofler, J., Kuster, W. C., 

Lang, P. M.,  Novelli, P. C., Santoni, G. W., Trainer, M., Wofsy, S. C., and Parrish, D. D. 

2013. Quantifying sources of methane using light alkanes in the Los Angeles basin, 

California, J. Geophys. Res. Atmos., 118, 4974 – 4990, DOI: 

https://doi.org/10.1002/jgrd.50413. 

 

13. Cui, Y. Y., Brioude, J., McKeen, S. A., Angevine, W. M., Kim, S.-W., Frost, G. 

J., Ahmadov, R., Pieschl, J., Bousserez, N., Liu, Z., Ryerson, T. B., Wofsy, S. C., 

Santoni, G. W., Kort, E. A., Fischer, M. L., and Trainer, M. 2015. Top-down estimate of 

methane emissions in California using a mesoscale inverse modeling technique: The 

South Coast Air Basin, J. Geophys. Res. Atmos., 120, 6698–6711, DOI: 

https://doi.org/10.1002/2014JD023002. 
 

14. Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z., and Blake, D. R. 2014. 

Mapping of North American methane emissions with high spatial resolution by inversion 

of SCIAMACHY satellite data, J. Geophys. Res. Atmos., 119, 7741–7756, DOI: 

https://doi.org/10.1002/2014JD021551. 

 

15. Jeong, S., Zhao, C., Andrews, A. E., Bianco, L., Wilczak, J. M., and Fischer, M. 

L. 2012. Seasonal variation of CH4 emissions from central California, Journal of 

Geophysical Research: Atmosphere, 117, DOI: https://doi.org/10.1029/2011JD016896. 

 

16. Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., Hamburg. S. P. 

2012. Methane leakage from natural gas infrastructure. Proceedings of the National 

Academy of Sciences, 109, 6435-6440, DOI: http://doi.org/10.1073/pnas.1202407109. 

https://doi.org/10.1088/1748-9326/ab9af8
https://doi.org/10.1021/es301138y
https://doi.org/10.1002/jgrd.50413
https://doi.org/10.1002/2014JD023002
https://doi.org/10.1002/2014JD021551
https://doi.org/10.1029/2011JD016896


 10 

17. Jeong, S., Millstein, D., and Fischer, M. L. 2014. Spatially Explicit Methane 

Emissions from Petroleum Production and the Natural Gas System in California. 

Environmental Science & Technology, 48, 5982–5990, DOI: 

https://doi.org/10.1021/es4046692.  

 

18. Hajny, K. D., Salmon, O. E., Rudek, J., Lyon, D. R., Stuff, A. A., Stirm, B. H., 

Kaeser, R., Floerchinger, C. R, Conley, S., Smith, M. L., Shepson, P. B. 2019. 

Observations of Methane Emissions from Natural Gas-Fired Power Plants. Environ. Sci. 

Technol. 53, 8976 – 8984, DOI: https://doi.org/10.1021/acs.est.9b01875.  

 

19. Maasakkers J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, 

T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad, L., Bloom, A. A., 

Bowman, K. W., Jeong S., and Fischer, M. L. 2016.Gridded National Inventory of U.S. 

Methane Emissions. Environmental Science & Technology. 50, 13123-13133, DOI: 

http://doi.org/10.1021/acs.est.6b02878. 

 

20. Yadav, V., Duren, R., Mueller, K.,Verhulst, K. R., Nehrkorn, T., Kim, J., Weiss, 

R.F., Keeling, R., Sander, S., Fischer, M. L., Newman, S., Falk, Matthias, Kuwayma, T., 

Hopkins, F., Rafiq, T., Whetstone, J., and Miller, C. 2019. Spatio‐temporally resolved 

methane fluxes from the Los Angeles megacity. Journal of Geophysical Research: 

Atmosphere, 124, DOI: https://doi.org/10.1029/2018JD030062. 

 

21. California Air Resources Board. 2020. Pollution Mapping Tool Sources in Your 

Community. https://ww3.arb.ca.gov/ei/tools/pollution_map/pollution_map.htm. (accessed 

6th September 2022). 

 

22. Environmental Protection Agency. Facility Level Information on GreenHouse 

Gases Tool. 2017. https:// ghgdata.epa.gov/ghgp/main.do. (accessed 6th September 2022). 

 

23. Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., 

Vance, N., Borchardt, J., Krings, T., Gerilowski, K., Sweeney, C., Conley, S., Bue, B. D., 

Aubrey, A. D., Hook, S., Green, R. O. 2016. Airborne methane mapping in the Four 

Corners area. Proceedings of the National Academy of Sciences. 113 (35) 9734-

9739, DOI: 10.1073/pnas.1605617113. 

 

24. Thorpe, A.K., Duren, R., Conley, S., Prasad, K., Bue, B., Yadav, V., Foster, K., 

Rafiq, T., Hopkins, F., Smith, M., Fischer, M. L., Thompson, D., Frankenberg, C., 

McCubbin, I., Eastwood, M., Green, R. and Miller, C. E., 2020. Methane emissions from 

underground gas storage in California. Environ. Res. Letters, DOI: 

https://doi.org/10.1088/1748-9326/ab751d. 

 

http://doi.org/10.1021/acs.est.6b02878
https://doi.org/10.1029/2018JD030062


 11 

25. Thorpe, A., Frankenberg, C., Aubrey, A.D., Roberts, D., Nottrott, A.A., Rahn, T., Sauer, 

J.A., Dubey, M., Costigan, K.R., Arata, C., Steffke, A.M., Hills, S., Haselwimmer, C., 

Charlesworth, D., Funk, C.C., Green, R.O., Lundeen, S.R., Boardman, J.W., Eastwood, M., 

McFadden, J.P. 2016. Mapping methane concentrations from a controlled release experiment 

using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG). Remote 

Sensing of Environment. 179. 104-115. 10.1016/j.rse.2016.03.032.  

 

26. Thorpe, A.K., Frankenberg, C., Thompson, D.R., Duren, R.M., Aubrey, A.D., 

Bue, B.D., Green, R.O., Gerilowski, K., Krings, T., Borchardt, J. and Kort, E.A. 2017. 

Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at 

high spatial resolution: application to AVIRIS-NG. Atmospheric Measurement 

Techniques, 10(10), 3833-3850, DOI: http://dx.doi.org/10.5194/amt-10-3833-2017. 

  



 12 

 

 

 

Chapter 2 

 

Attribution of Methane Point Source 

Emissions using Airborne Imaging 

Spectroscopy and the Vista-California 

Methane Infrastructure Dataset 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rafiq, T. Duren, R. M., Thorpe, A. K., Foster, K., Patarsuk, R., Miller, C. E., Hopkins, F. 

M. 2020. Attribution of methane point source emissions using airborne imaging 

spectroscopy and the Vista-California methane infrastructure dataset. Environ. Res., Lett. 

15, 1-12, DOI: https://doi.org/10.1088/1748-9326/ab9af8. 

 

© IOP Publishing. Reproduced with permission. All rights reserved.  

https://doi.org/10.1088/1748-9326/ab9af8


 13 

   I. Introduction  

 

Methane (CH4) is a powerful greenhouse gas (GHG) responsible for ~20% of 

radiative forcing since the Industrial Revolution16; however, uncertainty in the source 

apportionment of CH4 emissions poses a challenge for implementing mitigation, globally 

and in policy relevant domains. In the State of California, reductions in CH4 emissions are 

explicitly required by law (2016 SB 1383) as a way to achieve California’s climate goals 

for significantly reducing overall GHG emissions by 2030.30, 37 To this end, it is necessary 

that California has an appropriate and sufficient CH4 observing system to evaluate progress 

towards its emission reduction goals given large uncertainties in current techniques.23 

Notable differences in CH4 source apportionment have been observed between 

atmospheric observations and expected GHG emissions for urban areas in the state 20, 38, 40. 

These studies used measurements of CH4 and its tracer species in well-mixed air to infer 

the contributions of different source sectors to regional CH4 emissions, and found that these 

estimates differed from the source contributions detailed in regionally downscaled versions 

of the California Air Resources Board GHG Inventory (CARB GHG Inventory). Given 

that the CARB GHG Inventory is the primary tool used for tracking GHG emissions in the 

state, this discrepancy poses a challenge for verifying state-mandated CH4 mitigation 

efforts.  

Another policy tool for tracking GHG emissions is facility-level governmental 

reporting programs. The California Air Resources Board Pollution Mapping Tool (CARB 

PMT: https://ww3.arb.ca.gov/ei/tools/pollution_map/) and the U.S. Environmental 

Protection Agency Facility Level Information on GreenHouse gases Tool (EPA FLIGHT: 



 14 

https://ghgdata.epa.gov/ghgp/main.do) show maps of facilities that exceed annual 

emissions of 10,000 or 25,000 metric tons CO2-e for CARB and EPA, respectively, along 

with their annual reported GHG emissions, including CH4. Facility level emissions 

tracking is useful because this is the scale where mitigation actions are most often taken; 

however, these emissions are not verified by independent methods. It is unclear how 

accurately CH4 emissions are represented given that these thresholds for emissions 

reporting are mostly driven by CO2 emissions, and CH4 is more difficult to inventory given 

the importance of fugitive sources and fat-tailed distributions. 

Recent advances in airborne remote sensing of CH4 have enabled meter-scale 

imaging of CH4 point sources over areas from 1,000 to 100,000 km2.11, 17 Using this 

technique, Duren et al. (2019) surveyed methane emission sources in California and found 

that a few hundred CH4 point sources contributed 34-46% of the overall statewide 

emissions. The high spatial resolution, 1-3 m per pixel, of airborne imaging spectrometers 

is capable of visualizing CH4 plumes at the scale of their sources. Combining plume 

imagery with detailed geospatial information from high-resolution satellite imagery in a 

platform such as Google Earth, enables one to attribute CH4 emissions to specific facilities 

and infrastructure components.5, 22, 34 However, analysis of these CH4 point sources 

requires an accurate, systematic method to identify infrastructure components at policy 

relevant (e.g., facility) levels. Such detailed information is not provided in a state level, 

aggregated inventory such as the CARB GHG Inventory or even in high resolution (~10 

km) disaggregated inventories [e.g., Maasakkers et al. 2018]. 
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A different approach for systematically understanding the distribution of CH4 

sources was demonstrated by Carranza et al. (2018) for the Los Angeles (LA) Basin 

through the development of Vista-Los Angeles (Vista-LA).4 Vista-LA is a geospatial 

dataset of all anthropogenic CH4 infrastructure within the LA Basin that attempts to 

represent all potential sources of CH4 emissions regardless of the expected size of 

emissions. Vista-LA is organized in the same way as the CARB GHG Inventory for 

sectoral analyses, but is spatially disaggregated with representations of CH4 emission 

sources at the facility scale and down to individual components, such as gas pipelines. 

Combining this detailed dataset with new, high resolution observational data of CH4 

emissions from airborne remote sensing enables a more thorough “inventory” of CH4 based 

on actual observations that is likely to be more robust than activity/emission factor methods 

that do not capture fugitive or anomalously large sources that are thought to be common 

for CH4. 

In this study, we expand the Vista approach to the whole state of California (Vista-

CA) for analysis of CH4 plume data collected by the Airborne Visible/InfraRed Imaging 

Spectrometer-Next Generation (AVIRIS-NG) in California in 2016-218. Previously, we 

showed that Vista-CA was used for survey planning and manual source attribution for a 

subset of these flights (Duren et al., 2019). Here, we (1) detail further updates to the Vista 

methodology to enable automated source attribution, and (2) compare its performance to 

attributions made from existing facility data from government reporting programs,8, 9 and 

(3) demonstrate that source attribution can be automated for fast-turnaround data 
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processing for all 2016-2018 plume datasets using the Geospatial Source Attribution 

Automated Model (GSAAM).  

   II. Methods 

Vista-CA is a geospatial database of 901,009 validated elements of potential CH4 

emitting infrastructure developed from publicly available datasets that have been validated 

and standardized for the entire state of California (Figure 2.1). Vista-CA includes 17 

different CH4 source layers that have been systematically categorized into facilities and 

sub-facilities. These include power plants, refineries, natural gas fueling stations, natural 

gas stations, pipelines, distribution pipelines, natural gas processing plants, natural gas 

storage fields, oil and gas facilities, oil and gas field boundaries, oil and gas wells, dairies, 

feedlots, digesters, composting sites, solid waste disposal sites, and wastewater treatment 

plants (Table 2.1). New source layers were added to Vista-CA that were not present in 

Vista-LA because they were (1) not included as CH4 sources in the CARB inventory, but 

were observed to emit by AVIRIS-NG8 (composting sites), (2) not present in the LA 

domain (digesters, feedlots), and (3) comprise datasets that were published after Vista-LA 

(oil and gas facilities). Federal and state data repositories were used as the primary data 

sources.1, 2, 12, 13, 14 These datasets were validated by cross-comparing multiple datasets for 

spatial consistency and accuracy. We used Google Earth aerial imagery to either identify 

or confirm geolocations as well to denote geographic extents of individual facilities and 

infrastructure. All feature datasets were georeferenced and updated with standardized 

metadata, and are freely available on the Oak Ridge National Laboratory Distributed 

Active Archive Center for Biogeochemical Dynamics.21 Vista-LA layers that previously 
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covered only the LA Basin were expanded to include the full extent of California.4, 9 All 

datasets are formatted as vectors stored as either lines, points, or polygons (Table S2.1). 

Vista-CA is organized according to the CARB GHG Inventory, which itself is 

based on the framework established by the Intergovernmental Panel on Climate Change 

(IPCC).10 However, both IPCC and CARB are process-based inventories that use state 

level activity data to estimate GHG emissions, whereas Vista-CA is database of actual 

facilities that may emit CH4 in California. Organizing Vista-CA source types in this way 

is critical for comparison with inventory and for categorizing contributions of different 

emission sectors.    

   CARB provides annual CH4 estimates for top-emitting facilities across California.1 Their 

pollution mapping tool (PMT) is a geospatial database that enables users to query, locate, 

and view reported GHG and criteria pollutant emissions at the facility scale.1 CH4 data is 

only reported for facilities emitting >10,000 metric tons CO2e annually. PMT contains 

facility addresses that are sometimes inaccurate, often giving the address of operator 

headquarters instead of the emitting facility. True addresses were obtained from publicly 

available records and were used to validate locations in the CARB PMT data. CARB PMT 

CH4 data for 2016 contained a geospatial dataset of 597 CH4 reporting facilities in 

California.1 

EPA FLIGHT is a geospatial database of the locations of approximately 8,000 

facilities that report annually to the EPA Greenhouse Gas Reporting Program (GHGRP). 

EPA FLIGHT tracks facilities that emit more than 25,000 MTCO2eq/year, and accounts 

for 85-90% of emissions included in the official EPA GHG Reporting Program.15 EPA 
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FLIGHT CH4 data for 2017 contained geospatial data of 389 CH4 reporting facilities for 

California.13 Both CARB PMT and EPA FLIGHT differ from the official GHG inventories 

from their respective agencies in that they are based on reported emissions at the facility 

scale, not activity data.  

    We used CH4 plume observations from a survey of California conducted using the 

Airborne Visible/Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) 

instrument.8, 9 AVIRIS-NG is capable of detecting concentrated CH4 plumes by measuring 

ground-reflected solar radiation across 427 contiguous spectral bands ranging from 350 to 

2,500 nm wavelengths with 5 nm spectral sampling at 3 m spatial resolution. The CH4 

retrieval is based on absorption spectroscopy between 2,100 and 2,500 nm and provides a 

mixing ratio length that represents CH4 enhancement integrated along the column beneath 

the aircraft in parts per million x meter (ppm m).32 AVIRIS-NG’s spectral resolution, high 

spatial resolution, and high signal-to-noise ratio has permitted high-resolution mapping of 

CH4 as well as CO2 and H2O.5, 32, 35, 36 AVIRIS-NG has consistently detected and quantified 

CH4 point sources from multiple emissions sectors for emissions as small as 2-10 kg 

CH4/hr, depending on surface albedo and aircraft/ground speed.8, 9 For further information, 

the specific plume localization and identification process has been detailed by Duren et al. 

2019.8  

We used AVIRIS-NG CH4 plume observations from 2016-2018 collected during 

the California Methane Campaign,8 in which 2,424 CH4 plumes were identified manually 

with high confidence. These plume observations are available to the public at the Methane 

Source Finder web portal (https://data.carbonmapper.org). Emissions from 1,181 of the 
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2016-2017 plume detections were quantified and published by Duren et al. (2019) along 

with manual source attribution using Vista-CA. Here we performed source attribution on 

the additional 748 unpublished plumes from 2016-2017 for which emissions quantification 

was uncertain, and the 495 plumes from 2018. 

The meter-scale resolution and geolocation accuracy of AVIRIS-NG observations 

enabled us to determine the source location of nearly all CH4 plumes within a radius of 5 

meters or less. We then attributed each plume observation to an emission source 

facility/sub-facility in the Vista-CA database based on spatial proximity (Figure 2.2). First, 

we manually identified the emissions origin of each observed CH4 plume using preliminary 

versions of Vista-CA. This process entailed overlaying orthorectified grayscale images of 

CH4 retrieved by a linearized matched filter (AVIRIS-NG Level 3 data) on high resolution 

Google Earth aerial imagery for broader context with Vista-CA infrastructure maps 

simultaneously displayed. This process was conducted for the 1,181 plumes published by 

Duren et al. (2019). We treat this manual attribution as the true attribution for development 

of automated attribution algorithms. Next, we automated the attribution of observed 

AVIRIS-NG CH4 plumes based on proximity to Vista-CA features (Figure S2.2). We 

developed a decision-tree framework to attribute AVIRIS-NG plumes to the nearest logical 

Vista-CA feature while considering the effect of known spatial biases that impact 

proximity attribution (Figure 2.3). Specifically, there is a large degree of spatial overlap 

amongst Vista-CA source layers (Table S2.2). These overlaps often occur because Vista-

CA layers are organized by source type, e.g., power plants, without considering whether 

each individual feature is part of a larger facility, such as a landfill or refinery which often 
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contain their own power plants. An overlap analysis was conducted among all 17 Vista-

CA source layers (Table S2.2) to distinguish facility vs. sub-facility scale features (Table 

2.1). Finally, within each branch and sub-branch of the framework, a specific radius was 

determined to maximize attribution accuracy and reduce the number of false positives and 

false negatives (Table 2.1). Using the greatest distance between a methane plume and its 

source feature in Vista-CA, we determined a radius for each Vista-CA layer using the near 

function in ArcGIS. 

 To develop the automated model, we first employed an automated simple distance 

method to attribute 1,181 plumes from the published Duren et al. dataset to the nearest 

Vista-CA feature without providing any spatial logic or hierarchal considerations (Figure 

2.3). This baseline allowed us to see where improvements would have to be initiated, how 

to prioritize or develop the data hierarchy, and how to logically assess spatial complexities 

within the data. Consequently, a hierarchical structure was developed within the decision-

tree framework to account for spatial biases in order to reduce the number of 

misattributions (Figure 2.3). Attributions are done at the facility level, which also gives a 

sectoral attribution by IPCC source category. Further, we attribute plumes to sub-facilities 

if present to enable better understanding of the emitting process. For example, if the 

workflow attributed a given plume to a refinery, it would further assess whether it could 

also be attributed to relevant sub-facility components such as an oil & gas well or a sub-

facility power plant. If so, they would be appropriately attributed; if not, they would simply 

stay as being attributed to the refinery facility-level. If a plume was unable to be identified 

by any of these features, then the plume would pass to the next sector for attribution 
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according to the decision tree structure. This process would continue until all sectoral, 

facility, and sub-facility Vista-CA data is parsed. The remaining un-attributed plumes are 

labeled “Unknown”.     

    Manually attributing plumes required significant time and effort; however, the 

decision-tree workflow was strategically designed for easy automation. The resulting 

Geospatial Source Attribution Automated Model (GSAAM) is an efficient plume-to-

source attribution framework designed with 2 main inputs: latitude/longitude (X, Y) 

coordinates as a comma-separated values spreadsheet and Vista-CA geospatial datasets. 

After all attributions have been completed according to the decision tree, the model merges 

the result together into a final product outputting a tabular spreadsheet along with an ESRI 

point shapefile (Table S2.1).  

   III. Results 

We used Vista-CA to perform source attribution of 2,424 methane plumes observed 

by AVIRIS-NG during the 2016-2018 California Methane Survey (Figure 2.2).8 First, we 

manually attributed plumes to facilities in Vista-CA to determine the maximum possible 

number of sources attributed using the Vista-CA dataset. Of the total 2,424 methane plumes 

observed, 2,407 (99.3%) were manually attributed to a Vista-CA feature (Table 2.2). 

Unattributed plumes, hereafter called unknowns, were either found far from any methane 

emitting infrastructure, such as in an agricultural field, or were found associated with 

methane emission sources not included in Vista-CA, such as a beef processing plant.8 

We compared manual attribution with the Vista-CA dataset to manual attribution 

with other CH4 facility databases: CARB PMT and EPA FLIGHT for a subset of 1,181 
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plumes with high confidence emissions estimates from 2016-2017 (published in Duren et 

al., 2019). Manual attribution of airborne CH4 plume detections with both CARB PMT and 

EPA FLIGHT data resulted in significantly lower attribution accuracies across the 6 IPCC 

sectors (Figure 2.4). Use of CARB PMT attributed 39.5% of observed CH4 plumes 

(466/1,181), and after comparison with the original manual attribution, only 30.6% of 

plume attributions using PMT were considered correct (361/1,181 plumes) (Figure 2.4). 

CH4 plume attribution with EPA FLIGHT had similar results, with attribution of 38.8% of 

CH4 plumes (458/1,181), with 30.9% correct (366/1,181 plumes) (Figure 2.4). 

Performance of PMT and FLIGHT varied greatly across sectors, with much better source 

attribution for Energy (IPCC 1A1) and Waste (IPCC 4A1) compared to Oil and Natural 

Gas (IPCC 1B2) and Manure Management (IPCC 3A2) (Figure 2.4). In total, CARB PMT 

only had 18% (52) and EPA FLIGHT only had 15% (44) of the 290 unique facilities in 

Vista-CA that were observed to be emitting CH4 by AVIRIS-NG in our dataset (Table 2.3).  

Next, we used Vista-CA to automate source attribution based on spatial 

relationships between observed CH4 plumes and Vista-CA infrastructure. As discussed 

previously, a simple distance analysis to attribute each CH4 plume to a Vista-CA feature 

served as the validation baseline for measuring model performance. Vista-CA GSAAM V4 

improved attribution accuracy over the simple distance method from 51.3% to 99.6% at 

the facility level across all seven IPCC Level 3 source categories. The total number of 

facilities broken down by Vista categories along with the number of unique correctly 

attributed facilities across all three datasets was also calculated for a direct comparison of 

completeness (Table 2.2).  
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    For all plume observations, Vista-CA GSAAM V4 correctly attributed 2,384 of 

2,403 (99.2%) total plume observations at the facility level, excluding the 21 plumes from 

unknown sources described above (Table 2.2). Only 8 plumes were attributed to incorrect 

Vista-CA facilities, yielding a false positive rate (mis-attributions) of 0.45% (6 times for 

Harris Ranch Meat Plant and 2 times for the Palos Verdes Landfill). The overall false 

negative rate, indicating missed attributions when there was in fact a source from manual 

attribution, was 0.18%. Moreover, GSAAM attributed 19.5% of the plumes to sub-facility 

level infrastructure with an attribution accuracy of 100% (Table 2.2). We achieved ideal 

1:1 plume-to-source attribution accuracies (100%) for three of the six IPCC source 

categories: 1A1 Energy Industries, 4B Biological Treatment of Solid Waste, and 4D1 & 

4D2 Domestic Wastewater Treatment & Discharge, with the other three categories 

averaging 99.19% (Figure 2.4).  

   IV. Discussion 

 

The identification, geolocation and attribution of anthropogenic CH4 emissions 

remains a major challenge for emissions monitoring and mitigation. We developed a 

method for high confidence attribution of meter scale CH4 plume observations to their 

emission sources at the facility scale by spatially relating the locations of airborne CH4 

plume detections to geographic datasets that represent locations of potential CH4 emission 

sources. We demonstrate this using Vista-CA and CH4 plumes observed by AVIRIS-NG 

in both a manual and automated mode. We found that the vast majority of CH4 plumes in 

California were found in association with infrastructure known to handle or produce CH4, 

consistent with the expectation that these large point sources are anthropogenic, and thus 
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potential targets for CH4 mitigation. Vista-CA and AVIRIS-NG results are visually 

depicted in NASA JPL’s Methane Source Finder (https://data.carbonmapper.org).  

We compared the ability of our Vista-CA dataset to attribute CH4 plume 

observations to facility-level regulatory datasets, CARB PMT and EPA FLIGHT (Figure 

2.4). Unlike GHG emission inventories that encompass emissions at the level of a state, 

the CARB PMT and EPA FLIGHT reporting program datasets provide facility-level spatial 

information and reported estimates of CH4 emissions. However, they were not as effective 

as Vista-CA for CH4 source attribution. The threshold for inclusion in CARB PMT and 

EPA FLIGHT, based on total expected facility GHG emissions, is ill suited for CH4 

emissions that are characterized by fugitive sources and skewed emissions distributions 

that make inventories of CH4 challenging to construct. In contrast, Vista-CA was designed 

to assume that CH4 emissions can potentially come from any CH4 relevant infrastructure. 

Vista-CA includes (1) sources previously omitted from the regulatory inventories, such as 

composting sites and natural gas fueling stations, (2) sources with emissions expected to 

be too small or zero, but that might still be emitting, such as closed landfills,20 and (3) 

sources for which there are not readily available public maps, such as dairy farms.19 In 

addition, Vista-CA has confirmed geolocations for all sources, avoiding the problem of the 

address of an emitter differing from the actual location of emissions, as occurs in regulatory 

datasets. Finally, much effort was put into delineating the geographic extents of Vista-CA 

sources that have large spatial extents, such as landfills. These spatial extents improve the 

ability of an automated model to match a plume location with its source facility compared 

to point locations 
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Proximity-based attribution methods are limited by the availability of datasets that 

are used to inform them. 1.6% (39/2,424 plumes) of plumes that were either unknown or 

misattributed, come from 16 sources that are not currently included in Vista-CA: one meat 

processing plant; one liquified natural gas terminal; two oil and gas tanks that were not 

associated with an oil and gas field, facility, or refinery; five landfills; two agricultural 

sites; one dairy; and four related to oil and gas fields with no other spatial details. False 

negatives—plumes that were not attributed to any feature— persisted mainly due to 

inconsistent spatial coverage in the oil and gas field boundary dataset. Better accounting 

for the spatial extents of various facilities in Vista-CA, such as dairies, could reduce these 

problems, but manual digitizing of facility extents would require significant additional 

effort. For these more complex or confounding cases, we suggest a “human-in-the-loop” 

method to reconcile some of these discrepancies.  

We also distinguished facility level sources from sub-facility features in the Vista-

CA dataset to improve automated source attribution. Vista-CA was originally designed 

with a focus on the facility level because of its relevance for mitigation activities; however, 

linking CH4 plume observations to sub-facility level infrastructure can give deeper insight 

into the process producing emissions. This has been demonstrated with AVIRIS-NG data 

for underground storage fields and landfills.5, 34 We recognize that sub-facility level 

infrastructure included in Vista-CA is very limited, given that we rely on public databases 

for our data sources. This problem is most acute in oil and gas fields, which account for 

122 plume attributions without more detailed sub-facility attribution. Oil fields such as 

Midway-Sunset can span hundreds of kilometers, but we have limited information on the 
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oil and gas production infrastructure located therein, such as gathering pipelines, storage 

tanks, and other oil and gas facilities that are present but not currently included in the Vista-

CA oil and gas facilities source layer. This can be further improved with more complete 

accounting of oil and gas production structures located within these CH4 source areas. 

Because of the vast extent of oil and gas fields, we include oil and gas fields at the end of 

the attribution tree to avoid mis-attribution of CH4 plumes located there to the oil and gas 

field when another possible CH4 emission infrastructure is present (e.g., a dairy located on 

an oil and gas field). In addition, we distinguish urban from non-urban oil and gas fields, 

since urban oil and gas fields are much more likely to include CH4 emission sources that 

are not related to oil and gas production activities. 

One assumption of our approach is that the apparent origin of the plume in 

hyperspectral imagery is indeed its source; this may not be the case under swirling or still 

wind conditions.28 This uncertainty is particularly relevant in areas densely populated with 

potential sources where Vista-CA facilities overlap one another or are in close spatial 

proximity. In industrial urban areas, for example, high spatial density of sources from 

multiple collocated sectors complicates source attribution.  

    By cataloguing all potential CH4 emission sources in Vista-CA, we add to a 

growing body of evidence that a small number of emitters contribute to a large fraction of 

the total CH4 emissions8, with 3.3% (290/8,878) of Vista-CA facilities responsible for all 

CH4 plumes observed by AVIRIS-NG (Figure 2.2, Table 2.3). Given that the spatial extent 

of Vista-CA is only 3.46% of California’s area, both the Vista-CA spatial model and the 
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attributions of AVIRIS-NG observations to a subset of Vista-CA allows for a more focused 

approach when it comes to developing mitigation strategies.  

Our source attribution methodology can attribute observed CH4 plumes down to 

individual sub-facility infrastructure elements, enabling detailed investigation of sectoral 

contributions of CH4 point source emitters, comparison to reported emissions at the facility 

level, reporting of anomalous activity to facility operators, and investigation of emissions 

distributions within a source category, as demonstrated in Duren et al. (2019). Moreover, 

we demonstrated that source attribution can be automated, enabling rapid analysis of large 

surveys. This is a critical step toward operationalizing airborne CH4 emissions monitoring, 

and similar approaches may be needed for analyzing CH4 point sources detected globally 

by new satellite missions.7 A typical plume dataset from an airborne campaign consists of 

2,000 plumes, and requires roughly 15-20 hours for manual attribution analysis with a tool 

like Vista in hand, which is reduced to approximately 5 minutes with automation, and close 

to 99% attribution accuracy (Figure 2.4). While presently limited to the state of California, 

Vista-CA and GSAAM are useful tools for any future CH4 monitoring the state undertakes 

by allowing a more focused mitigation approach. We suggest the Vista approach may also 

be applied more broadly for CH4 point source attribution with new imaging spectrometry 

from airborne and spaceborne platforms. Expanding Vista globally will require additional 

automation and methods to deal with the different degrees of sectoral data and metadata 

available in different regions.  
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Figure 2.3 A.) Geospatial Source Attribution Automated Model (GSAAM) V4 Decision-

Tree Logic. This figure illustrates the framework used to for the model logic. The model 

uses a spatial function at each node (Vista-CA dataset) and to attribute a methane plume 

observation to a source from amongst Vista-CA infrastructure elements based on a 

predetermined distance from the feature. Each pathway (attribution) ends with one of 

three options: Facility (purple text); Sub-facility (red text); or Unknown (black text). 

GSAAM is organized by IPCC categories: 1) Agriculture, Forestry & Other Land Use 

(green boxes); 2) Waste (orange boxes); and 3) Energy (blue boxes).   
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Figure 2.4 Overall Attribution Accuracy Results. Manual attribution performance as a 

percentage for CARB PMT, EPA FLIGHT, and Vista-CA GSAAM attribution model 

performance for IPCC Level 3 source categories. (3A1 Enteric Fermentation: 0 

Attributions detected for Feed Lots).   
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   V. Supplementary 

 

   S1. Introduction 

 

    This document outlines the specific steps and procedures conducted to develop and 

construct the data, methods, and algorithms summarized in the main paper. The datasets 

and algorithm are accessible at https://doi.org/10.3334/ORNLDAAC/1726. 

Intergovernmental Panel on Climate Change (IPCC) and California Air Resources Board 

(CARB) inventories are organized by commercial and industrial economic activity that 

results in greenhouse gas (GHG) emissions. IPCC Level 1 base categories: (1) energy, (2) 

agriculture, and (3) waste, broadly represent different emission source sectors. For Vista-

CA the primary level of organization are spatial layers comprising groups of individual 

facilities that are fixed locations of identified infrastructure or an area where the activities 

of processing and production occur organized by source type, and then categorized by 

sector. Facilities can contain many sub-facility system infrastructure and components. The 

sub-facility category refers to identified infrastructure components which are located 

within a facility-system that directly or indirectly aid in operation and can spatially overlap 

with the identified facility. This categorization scheme accounts for duplicate sub-facility 

infrastructure components occurring within different facilities across different sectors. This 

setup also allows for the start of process-based understanding of each sector for emissions 

prediction and quantification. For example, a dairy digester can be considered a sub-facility 

of a dairy, or a power plant can be considered a sub-facility level feature for a larger 

refinery or wastewater treatment plant. 
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   S2. Vista-CA Datasets 

    All Vista-CA datasets underwent significant QA/QC using a variety of GIS 

methods (Figure S2.1). We utilized ArcGIS 10.6.1 to conduct all GIS related tasks 

including dataset development. All datasets are available in ESRI shapefile format. Google 

Earth and ESRI Basemaps were the primary aerial image sources used for validation and 

polygon generation. All Vista-CA datasets contain Vista-related metadata which include 

Vista-ID, Vista Date, Vista IPCC, Vista Name, Vista Source, and Vista Source Type. Vista-

ID is a unique alphanumeric feature identifier for every feature in the Vista database. Vista 

Date contains the most recent date of data update and change. Vista IPCC identifies the 

IPCC sector designation of a given Vista feature. Vista Name is the name of the given Vista 

facility or infrastructure. Vista Source outlines the original source that the respective Vista 

dataset was developed from and Vista Source Type identifies the infrastructure/sector type 

for each Vista-CA dataset. The following sections provide a detailed outlined of major 

updates and changes made to specific Vista-CA datasets along with the procedures 

undertaken to perform those tasks. 

   S2.1 Vista-CA Composting Sites 

    Vista-CA Composting Sites were developed as a subset from the 2015 CalRecycle 

data. We decided on incorporating these landfills types because of observed emissions by 

AVIRIS-NG. Based on activity categories, we filtered and maintained the following 

Composting Site types: Biosolids Composting at Publicly Owned Treatment Works 

(POTWs), Chipping and Grinding Activity Facility/Operation, Composting Facility (Green 

Waste), Composting Facility (Mixed), Composting Facility (Other), Composting Facility 
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(Sludge), Composting Operation (Ag), Composting Operation (Green Waste), and 

Composting Operation (Research). In total there were 430 facilities that were included in 

the final Vista-CA Composting Site dataset.  

   S2.2 Vista-CA Dairies 

  Vista-CA Dairies and Vista-CA Feed Lots were developed by matching physical 

locations of dairy farms with information obtained from permits granted by several 

government agencies that regulate water and air emissions from dairies and contextualized 

through aerial imagery. We obtained annual reports from 909 (420 facilities from Rancho 

Cordova and 489 facilities from Fresno) dairies from the California Regional Water 

Quality Control Board (RWQCB) Central Valley (Region 5) and Santa Ana (Region 8) 

offices for 2015 (Carranza et al., 2018). These reports contain the name, physical address, 

coordinates, herd size, and management information related to the nutrient budget of dairy 

farms located in the Central Valley. State regulations require all dairies in this region to 

submit this data annually for purposes of regulating waste discharge that could impact 

water quality (CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD 

CENTRAL VALLEY REGION Order No. R5-2007-0035 WASTE DISCHARGE 

REQUIREMENTS GENERAL ORDER FOR EXISTING MILK COW DAIRIES: 

https://www.waterboards.ca.gov/centralvalley/board_decisions/adopted_orders/ 

general_orders/r5-2007-0035.pdf). These regions account for more than 95% of milk 

production in the state (CDFA, 2017), and include the counties of Butte, Fresno, Glenn, 

Kern, Kings, Madera, Merced, Riverside, Sacramento, San Bernardino, San Joaquin, 

Siskiyou, Solano, Stanislaus, Tehama, Tulare, Yolo, Yuba, and others containing no dairies 
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(for a complete list, see 

https://www.waterboards.ca.gov/publications_forms/publications/factsheets/docs/region_

brds.pdf). 

  We also used air permit data collected by the San Joaquin Valley Air Pollution 

Control District (SJAPCD) under California Senate Bill 700, 2003 

(http://www.leginfo.ca.gov/pub/0304/ bill/sen/ sb_0651-

0700/sb_700_bill_20030922_chaptered.html). These permits are required for dairies with 

more than ~1954 cows (https://www.valleyair.org/farmpermits/updates/draft_dairy_ 

bact.pdf). These permits contain information about the location of the facility including 

addresses and coordinates, maximum number of cows the facility could house, and manure 

management infrastructure. This data included information for 1,036 dairies, 69% 

(718/1,036) of which overlapped with the RWQCB permit facilities. 

  Finally, we obtained a list of permitted facilities from the California Integrated 

Water Quality System (CIWQS) Project (e.g., National Pollutant Discharge Elimination 

System surface water discharge permits required under the Clean Water Act). CIWQS 

provides the facility name, addresses, and coordinates, for all active, permitted dairies in 

the state (CIWQS Regulated Facility Reports, 

https://ciwqs.waterboards.ca.gov/ciwqs/readOnly/CiwqsReportServlet?in 

Command=reset&reportName=RegulatedFacility). We used CIWQS records of facility 

name and address for 330 dairies located outside of the central valley. CIWQS R5 included 

1,520 dairies across the state. Both CIWQS and CIWQS datasets contained information on 
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coordinates, addresses, and names.  Additionally, 56% (844/1,520) of CIWQS R5 dairies 

overlapped with both RWQCB and SJAPCD dairies.  

    We determined the locations of dairy farms in California from satellite imagery 

viewed primarily in Google Earth.  Secondary sources include Google Maps, ESRI 

Basemaps and tertiary sources were through sites such as Manta.com that included 

facility/business records online. High-resolution aerial imagery permits geolocation of 

dairy farms due to their distinctive appearance, typically with long white roofs for shelter, 

dark colored square or rectangle manure lagoons, and staggered corral areas located 

together in proximity. These spatial features enabled identifications of facilities. Using this 

methodology, we manually isolated and identified point locations for 1,709 dairy-related 

facilities across the state (RAFIQ). RAFIQ data only includes geographic coordinates and 

reverse geocoded address information. We utilized the following hierarchy to prioritize 

inclusion and validation from the data sources described above: RWQCB > SJAPCD > 

CIWQS > CIWQS R5 > RAFIQ. All data from RWQCB was maintained, while only 

unique (non-overlapping) data were maintained from subsequent datasets in the hierarchy. 

First, data from all 909 RWQCB dairies were examined and duplicate entries of facility 

names and facility addresses along with missing or incorrect spatial data were identified 

and removed resulting in 850 total remaining dairies maintained from this dataset. Next, 

data from 318 unique SJAPCD dairies were examined and duplicate entries of facility 

names and facility addresses along with missing or incorrect spatial data were identified 

and removed resulting in 274 total remaining dairies stored from this dataset. Data from 

330 unique CIWQS dairies were examined and duplicate entries of facility names and 
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facility addresses along with missing or incorrect spatial data were identified and removed 

resulting in 311 total remaining dairies maintained from this dataset. Similarly, data from 

676 unique CIWQS R5 dairies were examined and duplicate entries of facility names and 

facility addresses along with missing or incorrect spatial data were identified and removed 

resulting in 218 total remaining dairies stored from this dataset. Lastly, the remaining 

dataset resulted in a total of 1,653 dairies (RWQCB, SJAPCD, CIWQS, CIWQS R5, 

RAFIQ). These 1,653 dairies spatially overlapped against 91.3% (1,562/1,709) of RAFIQ 

dairies and the remaining 127 RAFIQ dairies were appended to the RSCC dataset. In order 

to constrain the domain or spatial extent of each facility, dairies were geocoded using their 

coordinates and addresses in order to determine the approximate location of each dairy. 

Using contextual aerial imagery, point vectors were manually adjusted to reflect the center 

of a given dairy facility (typically overlaid on feed lot features) and coordinates were 

recalculated and updated for the entire dataset. The final dairy facility dataset contains 

1,780-point locations across California. A unique 9-digit alphanumeric identifier, the 

Vista-identification number (Vista-ID), was attributed to all 1,780 facilities for data 

management and organizational purposes. 

    A query was used to extract relevant feed lot designated facilities from the point 

locations of 1,780 dairies. Facilities with names that contained any of the following phrases 

or words were extracted: “beef”(2), “cattle”(29), “cattle ranch”(1), "feeders”(2), "feed 

lot"(2), "feedlot"(5), "feed yard"(1), "feedyard”(3), “livestock”(7), “livestock market”(3), 

and “stockyard”(1), other (3). This resulted in an extraction of 59 facilities. The Vista-ID 

of the 58 extracted feed lot facilities was exported and subsequently joined to the 1,780 
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dairy dataset based on the Vista-ID in order to maintain geospatial and attribute records 

during final extraction. Matched Vista-ID records were extracted and stored as a separate 

dataset for the 72 facilities in the Vista-CA Feed Lot layer. Remaining records of 1,708 

dairies in the final dairy dataset were extracted from the 1,780 point dataset as an 

independent portion for the Vista-CA Dairy layer and 7 additional dairies were added to 

the dataset for a total of 1,715 dairies. Every facility in both final Vista datasets contains 

appended Vista metadata which includes a Vista-ID, source of the data, IPCC sector 

designation (3A1 Enteric Fermentation for Feed Lots and 3A1 & 3A2 Enteric Fermentation 

and Manure Management), source type description, and the last date of update.  

   S2.3 Vista-CA Digesters 

    Vista-CA Digester data was collected from the 2016 Environmental Protection 

Agency’s database on Agricultural Biogas Recovery program called AGSTAR. This 

dataset contained 27 point locations of digesters in California of which 21 were validated 

using aerial imagery. Digesters located on 12 farms were further found using aerial imagery 

and were added to the dataset. All points were converted to polygons based on the physical 

locations of relevant digester infrastructure as seen using aerial imagery. In total there were 

33 digesters validated with associated polygons generated for the Vista-CA Digester 

dataset.
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   S2.4 Vista-CA Landfills 

  Vista-CA Landfill data was collected from the 2018 Vista-LA published dataset 

(Carranza et al. 2018), the 2015 CalRecycle data, the 2015 CARB dataset along with the 

2016 EPA FLIGHT dataset. Out of the original 3,087 landfills we selected the following 

activity categories: Asbestos Containing Waste (ACW) Site, Construction and Demolition 

(CDI) Waste Disposal Facility, Engineered Municipal Solid Waste (EMSW) Conversion, 

Industrial Waste Codisposal Facility, Inert Debris ENG Fill Operation, Inert Waste 

Disposal Site, Land Application, Limited Volume In-Vessel Digestion, Medium Volume 

In-Vessel Digestion, Solid Waste Disposal Site, Solid Waste Landfill, Treatment Unit (in 

situ) resulting in a total of 714 landfills. Each landfill was then validated and a polygon 

extent was created using aerial imagery. Based on AVIRIS-NG retrievals we created 

placeholder polygons for 3 landfills located in isolated/rural oil fields (Buena Vista Hills 

Disposal Site LNF000083, Arco Fairfield Lease Disposal Facility LNF000030/Derby 

Acres Bd LNF000200 (overlapped), and Kern Front Disposal Site LNF000335).  

   S2.5 Vista-CA Natural Gas Fueling Stations 

    Vista-CA Natural Gas Fueling Station data was obtained from the 2017 U.S. 

Department of Energy’s Alternative Fuels Datacenter portal. This dataset contained 

information on 162 compressed natural gas fueling stations and 46 liquefied natural gas 

fueling stations. We identified the pertinent infrastructure using high-resolution aerial 

imagery and generated polygons around them. Finally, we combined all 209 stations from 

both datasets into the Vista-CA Natural Gas Fueling Station layer. 

   S2.6 Vista-CA Natural Gas Stations 



 48 

     New data for 1,120 natural gas compressor stations was collected from the 

California Energy Commission (CEC) along with 10 stations from the EPA FLIGHT tool. 

Each individual station was validated using aerial imagery and standardized with Vista 

metadata. Attempted to create polygons for points but resulted in mediocre success, and 

reverted back to validating only points. 

   S2.7 Vista-CA Oil & Gas Field Boundaries and Facilities 

    Oil and gas facility and field boundaries, not previously in Vista-LA, were 

additionally added to the database as well. Data was obtained from the Division of Oil, 

Gas, and Geothermal Resources for the entire state for 2018. There were 516 field 

boundaries and 3,356 facility boundaries in the datasets. Each dataset was georeferenced 

and standardized with Vista metadata. 

   S2.8 Vista-CA Oil & Gas Wells 

   Vista-CA Oil and Gas Well data was obtained from the Division of Oil, Gas, and 

Geothermal Resources in 2017 (DOGGR). This dataset contained 226,652 wells. We 

identified 886 wells that contained insufficient geolocation metadata information which we 

omitted, leaving a total of 225,766 wells for the Vista-CA Oil and Gas Well dataset.  

   S2.9 Vista-CA Pipelines & Distribution Pipelines  

    Data for natural gas pipelines includes information on both transmission and 

distribution networks. The natural gas pipeline dataset was derived by appending unique 

lines from the Pipeline and Hazardous Materials Safety Administration (PHMSA) 2013 

dataset, 2012 California Energy Commission (CEC) dataset, and the 2016 U.S. Energy 

Information Administration (EIA) dataset. A separate urban residential distribution line 
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network was geospatially constructed using parts of the 2018 California road network (U.S 

Census Bureau) and was overlaid on the 2018 NLCD landcover dataset. Raster cells that 

were classified as being 20-100% impervious in urban areas were extracted and used to 

define the extent of the road network. The resulting lines were then spatially connected to 

the existing California natural gas pipeline infrastructure network using a 10km proximity 

tolerance. Vista metadata was appended for each line segment in the network. In total, there 

were 216,774 km of lines for the entire network of which 196,670 km were derived from 

the California road/NLCD network and 20,104 km were from the NPMS/CEC/EIA 

network derived dataset. 

   S2.10 Vista-CA Wastewater Treatment Plants 

    Vista-CA wastewater treatment plant data was collected from the 2018 Vista-LA 

dataset and the 2016 CARB dataset. Combined, there were 148 point locations for 

wastewater facilities. We then converted all points to polygons through aerial image 

assessment. Using AVIRIS-NG observations we identified one additional facility and 

added it to our dataset. In total, the Vista-CA Wastewater Treatment Plant dataset contains 

149 validated polygons.  

   S3. Geospatial Source Attribution Automated Model (GSAAM) 

    The geospatial source attribution model automatically and efficiently attributes 

Vista-CA potential methane emitting facilities and infrastructures to latitude/longitude 

point source retrievals. Built on ESRI ArcGIS Model Builder 10.6.1 and Python 2.7.14, 

this model automates the identification of a methane plume through proximity-based 

spatial analysis using a systematic decision-tree scheme incorporating Vista-CA data. 
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Vista-CA sectors were implemented in the decision-tree based on overall spatial patterns 

and relation to plume occurrence persistence. Vista-CA facility ID’s are logically assigned 

to each latitude/longitude plume occurrence. Currently this automated model yields an 

accuracy measure of 99% for attributing a Vista-CA facility to a methane plume 

occurrence. Accuracy measure was based on the number of matches found between the 

automated source attribution result and the AVIRIS-NG manual source identification 

effort. 

    Spatial biases taken into account for GSAAM development included spatial 

density, spatial extents, and spatial overlaps (Figures S2.2). Spatial density refers to the 

number of features in a given area. GSAAM accounts for sub-facilities with high spatial 

density such as Oil and Gas Wells and facilities like Natural Gas Storage Fields that are 

low spatial density cases. Spatially dense Vista-CA datasets can potentially yield false 

positives (attribution result which incorrectly indicates that a particular plume is attributed 

to a sector, facility, or sub-facility) while low-density sectors can lead to false-negatives 

(attribution result which incorrectly misses an attribution for a particular plume to a sector, 

facility, or sub-facility). GSAAM accounts for spatial extent which evaluates the amount 

of geographic space one Vista-CA feature occupies or covers compared to a different 

feature. An example of a feature with a large spatial extent would be the Oil and Gas Field 

Boundaries sector which covers a footprint of tens of hundreds of square kilometers, while 

smaller spatial extents would be exemplified in the Oil and Gas Wells covering about a 

square meter at most on the ground. A larger spatial extent has the potential to lead to more 

false positive cases, while a smaller spatial extent feature can potentially result in false 



 51 

negatives. GSAAM Version 4 accounts for spatial extent biases by individually 

incorporating a field for Oil and Gas Field Boundaries as we recognize the spatial biases 

associated with coverage (Figure S2.2). Finally, an extensive spatial overlap analysis was 

conducted to spatially recognize any potential facility and sub-facility associations among 

the Vista-CA datasets (Table S2.2). 

  The basic geospatial functions used in GSAAM include Select, Near, Join Field, 

Merge, Feature to Point, Make XY Event Layer, Delete Field, Add Field, Calculate Field, 

and Table to Excel of which the first 4 are the most important as it relates to model function. 

Select extracts features from the input feature using Structured Query Language (SQL) 

expression and stores them in the output. This is essentially used to partition the plume data 

for attribution to the Vista-CA datasets based on the predetermined hierarchy (Figure 2.3). 

Near calculates distance and additional proximity information between the input and the 

closest feature in another layer. The near function is the crux of the proximity attribution 

framework as it relates plumes to the nearest Vista-CA layer (Figure S2.2). Join Field joins 

the contents of one table in a feature to another table based on a common attribute field, 

which is used to associate Vista-ID’s to individual plumes. Merge combines multiple input 

datasets into a single, new output dataset, which is used to combine all the attributions and 

non-attributions back into one table as the final result. As a simple example, for one given 

attribution assessment against one Vista-CA layer, this is the order of the model workflow: 

Make XY Events Layer > Feature to Point > Delete Field > Add Field > Calculate Field > 

Near > Select > Join Field > Merge > Table to Excel. GSAAM is an ArcGIS Executable 

Function that can either be run using ArcGIS or independently in a Python console/shell. 
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The end result of GSAAM produces a Microsoft Excel comma separated value (.csv) file 

that contains 6 new fields (in addition to any existing fields including latitude and 

longitude) (Table S2.1): IPCC Level 1, IPCC Level 3, Vista-CA Facility, Vista-CA Sub-

Facility, Oil and Gas Field, and Urban OG Field. IPCC Level 1 and 3 are the first and third 

levels of the IPCC framework that Vista-CA is based off of. Vista-CA Facility and Vista-

CA Sub-Facility fields respectively provide the Vista-ID associated to that individual 

plume as determined by the algorithm. Oil and Gas Field identifies the Vista-ID for the Oil 

and Gas Field that is spatially associated with any plume points. Finally, Urban OG Field 

column determines whether or not the Oil and Gas Field associated to a plume falls in an 

urban area.  
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Figure S2.2 A) Aspects of Spatial Attribution: False Positive and False Negatives. The 

following biases were accounted for to reduce uncertainty in the attribution of CH4 

plumes. False Positives and False Negatives: This false positive example (left) illustrates 

how a dairy farm (yellow point) is adjacent to a plume detected on separate farm (green 

point), yet the attribution algorithm assigned the source of that plume to be the dairy 

farm, which would lead to an inaccurate attribution. This false negative example (right) 

shows that a plume was located outside of the immediate boundary of an Oil and Gas 

Field (tan polygon) and based on the preexisting attribution logic the plume (green point) 

was labeled as “Unknown” despite being adjacent to the Vista-CA Oil and Gas Field 

Boundary feature in an isolated oil and gas production region.   
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Figure S2.2 B) Aspects of Spatial Attribution: Proximity Spatial Attribution:  The 

following biases were accounted for to reduce uncertainty in the attribution of CH4 

plumes. Using a predefined radius (red circle) from the plume point (red point) based on 

the relevant CH4 emitting sector in order to search for the nearest Vista-CA feature 

(yellow star) within that given radius for the purposes of logical spatial attribution.  

Attribution to 

nearest Vista 

feature by 

straight-line 

distance within 
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bias reduction 



 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.3 A) Geospatial Source Attribution Automated Model (GSAAM) Versions 1: 

Simple decision-tree model that contained a hierarchy based on limiting false-positives 

and preventing false-negatives but lacked inclusion and distinction of facility and sub-

facility attributions.  
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Figure S2.3 B) GSAAM Version 2: Multiple decision-tree model that restructured the 

Version 1 hierarchy by systematically incorporating spatial overlap and included sub-

facility attribution but lacked distinction between sub-facility and facility attributions.  
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Figure S2.3 C) GSAAM Version 3: Multiple decision-tree model that incorporated all 

aspects of Version 2 and added functionality to differentiate between facility and sub-

facility attributions while also allowing for IPCC Level 1 and Level 3 attribution outputs.  



 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.3 D) GSAAM Version 4: Multiple-decision tree model that incorporated all 

aspects of Version 3 and added functionality to specifically identify plume occurrences 

on Oil and Gas Fields and determine urban vs non-urban distinction.  
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   I. Introduction 

 

California’s Kern County contains a plethora of methane (CH4) emitting 

infrastructure which constitute a significant portion of the state’s CH4 emissions budget. 

Kern County contains the largest number of oil and gas infrastructure in the state of 

California (~90% of the state’s total).4 Proximity to CH4 oil and gas sources poses a health 

risk to the nearly 1 million people that reside and work in Kern County. Consequently, 

California has committed to reductions in CH4 emissions and enacted legislation (SB 1383) 

to achieve its climate goals of significantly reducing greenhouse (GHG) emissions 

(Assembly Bill 32) by 2030.1, 2, 3 However, uncertainty in the quantification and source 

apportionment of California CH4 emissions hinders effective policy planning and 

mitigation implementation along with the substantiation of emission reductions for the 

future. Additionally, a lack of fine-scale CH4 emission assessments for this region 

necessitates further investigation and development of robust CH4 emission products.  

There have been two main methods of quantifying CH4 emissions from a large 

geographic area such as Kern County: top-down observations and bottom-up modeling. 

Top-down and bottom-up emission estimates allow for the estimation of CH4 in a given 

area and can be used complementary to one another. Bottom-up approaches require 

utilizing specific activity data and local processes to develop models that can estimate and 

scale emissions across sectors. Top-down approaches measure patterns through direct 

atmospheric observation of various CH4 sources and sinks. Both top-down and bottom-up 

methods contain their own advantages and deficiencies. Discrepancies in these methods 

make it more difficult to quantify emissions and spatially attribute them accurately. 
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Downscaled versions of state‐wide inventories have been found to consistently 

underestimate emissions compared to top‐down atmospheric studies.10, 11, 12, 13, 16 Top-

down emission evaluations show that CH4 emissions for California are underestimated by 

~50% or more depending upon the area.8, 9, 10, 11 With regards to spatial context, existing 

top‐down studies aggregate CH4 emission estimates, while bottom‐up inventories are often 

too spatially coarse to identify individual sources from facilities.16, 17, 18 These differences 

between top-down and bottom-up emissions estimates indicate that the understanding of 

CH4 sources and overall emissions can be incomplete in some areas. This incompleteness 

in turn can potentially yield uncertainty in the application of appropriate policy measures 

that are designed to mitigate CH4 emissions accordingly.  

We explored a complementary method of contextualization by developing and 

utilizing both top-down and a bottom-up approaches. We hypothesized that there is a 

greater impact on CH4 emissions from the oil and gas sector that has been previously 

unaccounted or underrepresented in publicly available CH4 emissions datasets for Kern 

County. This research builds a foundation for future studies measuring and modeling CH4 

emissions produced from the considerable number of oil and gas infrastructure and 

facilities in this region. This study shows how the impacts from under accounting in the oil 

and gas sector resulted in significant underestimation of CH4 emissions in the CARB, EPA, 

and CALGEM products. Here we present two approaches for constraining and estimating 

CH4 emissions in California’s Kern County: 1) A top-down facility-level measurement 

attributed to CH4 emitting infrastructure and 2) A high-resolution bottom-up facility-level 

model developed from validated geospatial data. Tracking emissions at the facility level is 



 72 

valuable since mitigation is most actionable at this scale. We expand on previous work and 

use the end-products generated from Rafiq et al.’s Vista-CA Geospatial Source Attribution 

Automated Model (GSAAM) (2020) that attributes Duren et al.’s Airborne Visual Imaging 

Infrared Spectrometer – Next Generation (AVIRIS-NG) (2019) emissions survey data 

(https://data.carbonmapper.org) to Vista-California (Vista-CA) geospatial data 

(https://doi.org/10.3334/ORNLDAAC/1726) in order to systematically estimate and scale 

CH4 emissions in Kern County.4, 19 Using this dataset, we analyzed CH4 emission trends at 

the facility and Intergovernmental Panel on Climate Change (IPCC) sectoral levels and 

compared them with the California Air Resources Board’s Pollution Mapping Tool (CARB 

PMT) facility-level data (https://ww3.arb.ca.gov/ei/tools/pollution_map/)15, the California 

Greenhouse Gas Emissions Measurement (CALGEM) Project bottom-up inventory 

(http://calgem.lbl.gov/about.html)16, the Environmental Protection Agency’s EPA GHG 

bottom-up Inventory (Maasakkers’ EPA) (https://www.epa.gov/ghgemissions/gridded-

2012-methane-emissions#data)17, and the publicly available EPA geospatial GHG 

emissions inventory: Facility Level Information on GreenHouse gases Tool (EPA 

FLIGHT) (https://ghgdata.epa.gov/ghgp/main.do#)20. Finally, we contextualize how our 

estimates compare with those from the aforementioned studies in order to assess the 

consistency and relevancy of our approach.  

   II. Methods 

 

We collected, processed, and generated 6 different CH4 emissions datasets for Kern 

County. First, we utilized geospatial CH4 inventories, specifically the Vista-California 

database (Vista-CA). Vista-CA is a geospatial database of 901,009 validated elements of 
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potential CH4 emitting infrastructure developed from publicly available datasets that have 

been validated and standardized for the entire state of California.4, 22 This database includes 

17 CH4 source layers that were categorized into facilities and sub-facilities and is organized 

according to the CARB GHG Inventory, which itself is based on the framework established 

by the Intergovernmental Panel on Climate Change (IPCC).23, 24 This systematic approach 

for understanding the distribution of CH4 sources was demonstrated by Carranza et al. for 

the Los Angeles (LA) Basin and Rafiq et al. for California through the development of 

Vista-CA.4, 21  

We further employed two policy tools used for tracking GHG emissions for this 

study. The first was the U.S. Environmental Protection Agency Facility Level Information 

on GreenHouse gases Tool (EPA FLIGHT: https://ghgdata.epa.gov/ghgp/main.do).20 EPA 

FLIGHT contains a geospatial database of approximately 8,000 facilities that report 

annually to the EPA Greenhouse Gas Reporting Program (GHGRP). EPA FLIGHT tracks 

facilities that emit more than 25,000 MTCO2 eq a-1, and accounts for 85-90% of emissions 

included in the official EPA GHG Reporting Program. We collected EPA FLIGHT CH4 

data for 2016, 2017, and 2018 which contained a geospatial dataset of around 400 CH4 

reporting facilities for California. EPA FLIGHT differs from the official EPA GHG 

inventory because they are based on reported emissions at the facility scale, not activity 

data. EPA FLIGHT data was manually binned into Vista-CA categories based either on 

direct spatial or tabular matches with Vista-CA facilities or publicly available facility 

records. The second tool was the emissions data from California Air Resources Board’s 

Pollution Mapping Tool (CARB PMT) (https://ww3.arb.ca.gov/ei/tools/pollution_map/). 
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CARB PMT tracks GHG and criteria pollutant emissions from large facilities in California 

that are subject to the GHG Mandatory Reporting Regulation.16 

Additionally, we utilized the 2016 California Greenhouse Gas Emissions 

Measurement (CALGEM) Project bottom-up gridded product for California for this 

project.6, 8, 16 CALGEM computes emissions for landfills, dairy and non-dairy livestock, 

wastewater treatment plants, natural gas and petroleum production/local processing, and 

petroleum refining and mobile sources. It provides gridded emissions at annual average 

surface fluxes in units of 1x10-9 mol m-2 s-1 at 0.1° × 0.1° spatial resolution. CALGEM’s 

livestock and non-livestock data incorporated the 2012 county-level dairy statistics from 

the U.S. Department of Agriculture. CALGEM utilized natural gas well data from 

California’s Department of Conservation (CDC) and estimated gas well emissions using 

production data while assuming a leakage rate of 1%.6, 8, 16 Additionally, they utilized data 

from the 2012 California Air Resources Board (CARB) state totals for the rest of their 

anthropogenic and fossil sectors including petroleum refining and wastewater treatment 

plants. CARB borrows their bottom-up methods for calculating sectoral CH4 emissions 

from the 2006 IPCC report (Supplement S4.1).  

We also obtained the 2016 EPA GHG Inventory developed by Maasakkers et al.17 

Maasakkers et al. developed a gridded anthropogenic CH4 emissions inventory of the U.S. 

at a 0.1° × 0.1° spatial resolution using units of molecules cm-2s-1.17 They utilized 2012 

CH4 emissions from the 2014 EPA Greenhouse Gas Inventory (GHGI) which includes 

detailed calculation methods to estimate emissions from all CH4 relevant sectors 
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(Supplement S4.2). CALGEM and Maasakkers’ EPA calculation methods are detailed in 

the supplement to this work (Supplement S3).  

Advances in top-down measurements have allowed the detection of CH4 point 

sources from surveys of areas spanning 1,000 to 100,000 km2 to be detected at sub-meter 

scales through imaging spectroscopy. We used these CH4 plume observations from the 

California survey conducted using the Airborne Visible/Infrared Imaging Spectrometer - 

Next Generation (AVIRIS-NG) instrument.19 AVIRIS-NG is capable of detecting 

concentrated CH4 plumes by measuring ground-reflected solar radiation across 427 

contiguous spectral bands ranging from 350 to 2,500 nm wavelengths with 5 nm spectral 

sampling at 1 - 3 m spatial resolution.25, 26, 27 The CH4 retrieval is based on absorption 

spectroscopy between 2,100 and 2,500 nm and provides a mixing ratio length that 

represents a CH4 enhancement in parts per million-meter (ppm-m). AVIRIS-NG’s spectral 

resolution, high spatial resolution, and high signal-to-noise ratio has permitted high-

resolution mapping of CH4 as well as CO2 and H2O. AVIRIS-NG has consistently detected 

and quantified CH4 point sources from multiple emissions sectors for emissions as small 

as 2-10 CH4 kg hr-1, depending on surface albedo and aircraft/ground speed. Through this 

system, Duren et al. surveyed 60% of Vista-CA CH4 emitting infrastructure in California 

and found that a few hundred CH4 point sources accounted for 34-46% of the overall 

statewide CH4 budget.4, 19, 22 AVIRIS-NG is able to detect fugitive CH4 point sources with 

high precision but is unable to quantify area sources or sources that are spread out over a 

large scale (km2). Consequently, sectors with large footprints such as landfills are more 

difficult to integrate using AVIRIS-NG measurements. 
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 In this study we used the 2,424 AVIRIS-NG CH4 plume observations collected 

during the 2016 – 2018 California Methane Campaign for facility-level attribution across 

Kern County. All data presented comes from the surface coverage of the AVIRIS-NG 

campaign that surveyed approximately 16% of Kern County by area. We utilized Vista-

CA Geospatial Source Attribution Automated Model’s (GSAAM) attribution results of the 

AVIRIS-NG data against the Vista-CA dataset for facility-based emissions assessment in 

this study.4 GSAAM enables automated attribution of Vista-CA facility and sub-facility to 

point locations of CH4 plumes using a series of structured geospatial relationships. Further 

details on the methods of this process can be found in Rafiq et al. 2020. The facility 

attribution of individual AVIRIS-NG plumes with Vista-CA enabled emissions 

categorization and comparison with EPA FLIGHT facility emissions. 

After attributing observed plumes to each facility, we reanalyzed the data to account 

for overflights of emitting facilities where no plumes were seen. While AVIRIS-NG is a 

high spatial resolution product, it only provides a snapshot of emissions during sporadic 

overflights. In order to account for temporal gaps in observation from AVIRIS-NG into 

our emissions calculation, we developed data that identifies all plumes flown and all 

flightlines that flew over those plumes, and for each plume, whether that flightline that 

flew over it, observed that given plume or did not observe that given plume (Supplement 

S3). This CH4 emissions source data resulted in a total of 9,482 plume-to-flightpath spatial 

connections stemming from the 795 unique sources as identified by AVIRIS-NG. We ran 

the finalized source data product through Vista-CA GSAAM to obtain Vista-CA facility 

and sub-facility spatial attributions, along with explicit identification of Oil and Gas Field 
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spatial attributions for all 9,482 plume-to-flightpath spatial connections. We have taken the 

total number of times a given facility in each study area was flown by AVIRIS-NG and 

recorded the number of times it was observed to be emitting and observed to not be emitting 

in order to utilize our methods for emissions estimation (Tables S3.1 and S3.2). 

Across Kern County, over 2,000 facilities surveyed by AVIRIS-NG were observed 

to be emitting (Table S3.1).19 Because of the CH4 sensitivity limitations of the AVIRIS-

NG instrument we developed an emissions constraint. This was based on the notion that 

each facility that was flown by AVIRIS-NG but not observed to be emitting any CH4 could 

potentially be emitting CH4 below the sensitivity limits of the AVIRIS-NG instrumentation 

of 2-10 kg CH4 hr-1.19 For such a given facility where AVIRIS-NG did not observe any 

emissions, we applied two different measures for constraining potential emissions: a 

randomized estimate and the maximum bound. We took AVIRIS-NG’s sensitivity limits 

into account by assigning estimates that ranged from 0-10 kg CH4 hr-1. For the random 

assignment, all non-observationally emitting facilities were assigned a randomly generated 

number between 0-10 kg CH4 hr-1. For the maximum bound, we assigned the highest 

sensitivity value of 10 kg CH4 hr-1 to all non-observationally emitting facilities. Both 

observed and flown facilities and non-observed but flown facilities that belonged to a given 

Vista-CA category were then summed together for both the random assignment and the 

maximum bound. This method of sensitivity consideration did not result in any significant 

differences to facility, sectoral, or regional emissions estimates and thus was not further 

utilized. We used the direct observational AVIRIS-NG data to develop our results.  
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The direct observational data method utilizes the sum of all fugitive and hotspot 

plume emissions from a given facility and multiplies it by a persistence measurement which 

is the ratio of the observed plumes to the total number of overflights. Normalizing by the 

persistence allows for us to potentially account for various temporal characteristics in 

facility observations.  

Equation 1. 

𝑸𝑻𝑼 = ∑(𝑸̅𝒏 × 𝑷𝒏), 𝒘𝒉𝒆𝒓𝒆  𝑷 = (
𝑶

𝑻
) 

Where QTU is the total facility emissions estimate, Q is the individual plume estimated by 

AVIRIS-NG,19 P is the persistence, n is the source number, O is the total number of 

observed plumes, and T is the total number of overflights for a given facility.  

 In order to generate bottom-up emission estimates we employed a combination of 

methods ranging from obtaining facility numbers from CARB and EPA, generating our 

own numbers using IPCC bottom-up equations, or through adapting existing bottom-up 

models. We developed emissions for 14 Vista-CA categories which include composting 

sites, dairies, digesters, feed lots, landfills, natural gas stations, oil and gas facilities, oil 

and gas fields, oil and gas wells, pipelines, power plants, processing plants, refineries, and 

wastewater treatment plants. Using the EPA’s GHG inventory for natural gas systems, we 

employed emission factors and the IPCC tier 1 methodology for the following sectors: 

natural gas stations, oil and gas facilities, oil and gas wells, pipelines, and processing plants. 

We adopted Maasakkers’ EPA modeled CH4 data for the following sectors: composting 

sites, landfills (portion of the data was obtained from CARB), and wastewater treatment 

plants. Furthermore, we leveraged Marklein et al.’s work for computing emissions for 
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dairies, digesters, and feedlots, employed Vafi et al.’s modeled emissions for oil and gas 

fields, and utilized Rafiq et al.’s study for modeled power plant emissions (Vafi et al. 2021). 

Lastly, we utilized CARB’s reported facility CH4 emissions data for refineries. Vista-CA 

Bottom-Up data was gridded to 1 km by 1 km and 10 km by 10 km. Detailed information 

for Vista-CA Bottom Up CH4 emissions generation can be found in the supplementary 

document (Supplement S2).  

We categorized CH4 emissions based on biogenic and fossil signal types among all 

of the datasets by binning facilities to those two categories. Biogenic type emissions relate 

to emissions from the anerobic process or decay of matter which includes the following 

facilities: composting sites, dairies, digesters, feed lot, landfills, and wastewater treatment 

plants. Fossil type emissions relate to emissions originating from the process of using, 

distributing, processing, and the creation of fossil fuels, and includes the following 

facilities and sub-facilities: distribution pipelines, natural gas fueling stations, natural gas 

stations, oil and gas facilities, oil and gas fields, power plants, processing plants, refineries, 

and storage fields. For comparative purposes, CARB PMT, EPA FLIGHT, CALGEM, 

Maasakkers’ EPA, AVIRIS-NG Source Data, and Vista-CA Bottom-Up emissions were 

converted to Gg of CH4 a
-1 and all gridded emissions products were gridded to 10 km by 

10 km (Figures 3.1 and 3.5). Lastly, emissions from all 6 datasets were apportioned and 

normalized to IPCC level 3 source categories: 1A1 Energy Industries, 1B2 Oil and Natural 

Gas, 3A1 and 3A2 Enteric Fermentation and Manure Management, 4A1 Managed Waste 

Disposal, 4B Biological Treatment of Solid Waste, and 4D1 & 4D2 Domestic and 

Industrial Water Treatment and Discharge (Figure 3.5).  



 80 

   III. Results 

 

We present here two systematic methods and products: 1) AVIRIS-NG Source 

Data: top-down accounting of flight line coverages of categorical fugitive emissions 

towards facility estimates and 2) Vista-CA Bottom-Up modeling derived from a 

combination of activity data, emission factors and existing facility-level geospatial 

emissions datasets. Using the IPCC methodology along with ancillary datasets for bottom-

up emission modeling, we generated a 10 km x 10 km grid that encompasses 14 Vista-CA 

layers for Kern County (Figure 3.1A). The majority of emissions are concentrated in the 

western half of the county which is also evidenced by other estimates (Figures 3.2 and 3.3). 

The majority of the hot spots (red grid cells) in both Vista-CA Bottom-Up and AVIRIS-

NG Source Data come from dairy farms and oil and gas related infrastructure. There exists 

a heavy influence of CH4 emissions from the western border where an enormous amount 

of oil and gas infrastructure exists, specifically from the Midway-Sunset oil and gas field 

(Figures 3.2 and 3.4). The cluster in the center of the county is located near the City of 

Bakersfield and the long line extended over into the southeast is indicative of the pipeline 

infrastructure (Figure 3.2). Highly concentrated CH4 emissions are exemplified in Vista-

CA Bottom-Up’s 1 km pixel which is at least 5 times larger than the highest concentrated 

10 km pixel of the other datasets (Figures 3.1 and 3.3).  

Vista-CA contains more records for facilities than other publicly accessible 

geospatial products and has attributed and generated emissions for close to 150,000 

infrastructure elements and facilities in Kern County (Figures 3.2 and 3.3). Vista-CA 

Bottom-Up’s total CH4 emissions estimate for Kern County was 133.18 Gg CH4 a
-1, which 
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was 30% higher than total estimates from CALGEM and lower than estimates from 

Maasakkers’ EPA. Vista-CA Bottom-Up’s four highest emitting sectors were dairies 

(59.03 Gg CH4 a
-1), oil and gas fields (43.91 Gg CH4 a

-1), natural gas stations (12.86 Gg 

CH4 a
-1), and landfills (10.71 Gg CH4 a

-1), which constituted 96% of the total emissions 

from Kern County (Table S3.1).  

The AVIRIS-NG Source Data product contains 79 persistence normalized CH4 

facility estimates which were derived from 631 detected plumes from dairies, landfills, 

natural gas stations, oil and gas facilities, oil and gas fields, power plants, processing plants, 

refineries, and wastewater treatment plants (Figure 3.4). AVIRIS-NG surveyed over 90% 

of the entire Kern County Vista-CA infrastructure dataset, of which does not even account 

for the repeated flights conducted over infrastructure dense and CH4 hotspots. AVIRIS-

NG Source Data’s total CH4 emissions estimate for Kern County of 130.1 Gg CH4 a
-1 was 

comprised of a majority fossil signal, predominantly from oil and gas infrastructure 

(Figures 3.4 and 3.5B). This estimate was 30% higher than CALGEM and lower than 

Maasakkers’ EPA. The AVIRIS-NG Source Data product accounts for around 98% of the 

entire Kern County CH4 budget as compared with Vista-CA Bottom-Up.  

It is evident that there is general spatial agreement of the distribution of CH4 

emissions among all datasets in this study (Figures 3.1A-3.1E and 3.4). The intensity of 

emissions is captured by Vista-CA Bottom-Up, Maasakkers’ EPA, and CALGEM. CARB 

PMT and EPA FLIGHT are similar to one another, but their distributions seem to not 

capture the majority of the CH4 signal emanating from these different oil and gas and dairy 

infrastructures. Furthermore, the magnitude of emissions is highest in the Maasakkers’ 
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EPA. dataset. CALGEM, AVIRIS-NG Source Data, and Vista-CA Bottom-Up’s overall 

magnitudes are very similar while CARB PMT and EPA FLIGHT account for less than 

4% of the total CH4 emissions from Kern County (Figure 3.5A). While CALGEM has the 

smallest maximum grid cell value (1.65 Gg CH4 a
-1), the maximums are similar between 

CARB PMT (2.76 Gg CH4 a
-1), EPA FLIGHT (2.26 Gg CH4 a

-1), and Maasakkers’ EPA 

(2.56 Gg CH4 a-1) (Figure 3.1B – 3.1E). Vista-CA Bottom-Up’s maximum grid cell 

magnitude is more than 7 times higher than any of the other datasets presented when 

viewed within the 10 km x 10 km summation grid (Figure 3.1A). When looking at the 

magnitude of the emissions across the data, Maasakkers’ EPA total emission was the 

highest by a wide margin at 274.5 Gg CH4 a
-1 (Table S3.1). CALGEM, AVIRIS-NG and 

Vista-CA Bottom-Up were more in line with each with an average of 121.3 Gg CH4 a
-1 

(Figure 3.5A). 

There is some evidence of agreement in the CH4 emissions assessment of biogenic 

and fossil type emissions across these datasets (Figure 3.5B). Because CARB PMT does 

not contain any data on biogenic infrastructure, the entire signal was fossil. Maasakkers’ 

EPA and AVIRIS-NG Source Data ratio of biogenic emissions to fossil emissions 

constituted a majority fossil signal at 70% and 92%, respectively (Figure 3.5B). The 

opposite was evident for both CALGEM and EPA FLIGHT as biogenic related emissions 

signaled the majority with 70% and 86%, respectively (Figure 3.5B). Vista-CA Bottom-

Up had a near even split between both with a slight edge to biogenic emissions by about 

3% (Figure 3.5B). EPA FLIGHT’s entire biogenic signal was derived from 2 landfills. 

Additionally, the magnitude of biogenic emissions in Vista-CA Bottom-Up, Maasakkers’ 
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EPA and CALGEM were very similar at 72.5 Gg CH4 a
-1, 82.4 Gg CH4 a

-1, and 69.2 Gg 

CH4 a
-1, respectively (Table S3.1 and S3.2).  

Source apportionment of CH4 was determined by proportionally normalizing 

emissions into IPCC Level 3 categories to enable comparison among the datasets (Figure 

3.6). EPA FLIGHT contained emissions for 3 out of the 6 IPCC Level 3 categories and is 

dominated by Managed Waste Disposal (4A1) category while CARB PMT only contained 

emissions for 2 out of the 6 categories which comprised of Energy Industries and Oil and 

Natural Gas (1A1 and 1B2) at 6% and 94%, respectively (Figure 3.6). Vista-CA Bottom-

Up’s Oil and Natural Gas (1B2) and Enteric Fermentation and Manure Management (3A1 

& 3A2) categories were the highest and pretty even at around 45% with the next highest 

category being Managed Waste Disposal (4A1) at 8%. AVIRIS-NG Source Data and 

Maasakkers’ EPA identified 1B2 Oil and Natural Gas (90% and 70% respectively) as their 

largest emitting category with 3A1 & 3A2 Enteric Fermentation & Manure Management 

as their second largest category (5.2% and 24%, respectively) (Figure 3.6). The opposite 

was modeled with CALGEM data with 64% of the emissions coming from the 3A1 & 3A2 

category while around 10% came from the 1B2 category and CALGEM is the only dataset 

with significant signals coming from the 4B and 4D1 & 4D2 categories (Figure 3.6). 

   IV. Discussion 

 

The Vista-CA Bottom-Up and AVIRIS-NG Source Data products have provided 

high resolution CH4 emissions of Kern County that are comparable if not improved to 

existing inventories. The AVIRIS-NG Source Data product enables a more thorough 

source apportionment accounting of CH4 based on actual measurements that is likely to be 
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more robust than simple activity and emission factor methods that do not capture fugitive 

or anomalously large sources that are thought to be common for CH4, especially in 

California. There was general agreement in biogenic and fossil emission characterization 

among AVIRIS-NG Source Data and Maasakkers’ EPA suggesting that the methods used 

to generate and scale CH4 emissions for AVIRIS-NG Source Data were consistent and 

robust for source apportionment analysis. Vista-CA was better paired with CALGEM as 

the biogenic signal seemed to be a little greater but was not as stark as with AVIRIS-NG 

or Maasakkers’ EPA While biogenic and fossil proportions across all datasets illustrate the 

differences in source apportionment of CH4 emissions, they also highlight that the majority 

of the signal is constituted from two sectors: dairy and oil and gas. With this in mind, this 

further demonstrates the notion that a small number of super-emitters that encompass a 

small surface area are responsible for the majority of Kern County’s CH4 budget.19  

Dairy emissions were fairly consistent among CALGEM, Maasakkers’ EPA and 

Vista-CA Bottom-Up showing contributions close to 60 Gg CH4 a
-1. This suggests that the 

dairy sector is producing on average at least 45% of the emissions for Kern County from 

only 44 facilities (Figure 3.5B). This is significant as it not only exemplifies Duren et al.’s 

super-emitter characteristic but potentially enables a more targeted approach to curb and 

mitigate CH4 emissions.17 Measured emissions from AVIRIS-NG’s survey of 35 dairies 

showed about a 5% contribution to the total versus a 45% contribution to the total budget 

from the Vista-CA Bottom-Up modeled data. This indicates the need for improved 

techniques for observing dairy emissions in the field as AVIRIS-NG is possibly 

underestimating emissions from this sector due to a few factors. Some of these factors 
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include inability to persistently monitor a given facility, changes in operations over a given 

period of time, and seasonal changes across the dairy facility. Dairies were not included in 

CARB PMT and EPA FLIGHT which highlights critical need to account for them in their 

reported emission products (Table S3.2).  

Over 90% of the emissions in the observation-based AVIRIS-NG Source Data 

came from the oil and gas sector. In the Vista-CA Bottom-Up dataset, the oil and gas sector 

contributed around 45% towards the total Kern County CH4 emissions budget. 

Maasakkers’ EPA oil and gas contribution of 70% is in the middle of AVIRIS-NG Source 

Data and Vista-CA Bottom-Up. CALGEM, CARB PMT, and EPA FLIGHT show 

significant differences in the oil and gas emissions budgets. These results suggest that the 

oil and gas infrastructure in Kern County is not completely quantified nor is it completely 

accounted for. Furthermore, even with proper accounting of CH4 emission sources from 

this sector, emissions have not been quantified accordingly as is evident by the AVIRIS-

NG top-down observations of oil and gas wells, oil and gas fields, and oil and gas facilities. 

It is also evident that the number of facilities that are being tracked in these datasets are 

incomplete as evidenced from the Vista-CA Bottom-Up dataset. This is critical due to the 

high number of fugitive CH4 emissions observed from this sector. We find the oil and gas 

sector is underestimated in public inventories and datasets. Even the modeled and observed 

measurements we developed (Vista-CA Bottom-Up and AVIRIS-NG Source Data) could 

potentially be under accounting emissions since Vista-CA does not track other possible 

fugitive sources such as well pump jacks, gathering lines and ancillary structures and 
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AVIRIS-NG could have missed emissions that were below its sensitivity threshold of 2 kg 

CH4 h
-1.  

High concentrations of CH4 emissions from oil and gas infrastructure were also 

observed in another independent top-down study by NASA’s CO2 and Methane 

Experiment (COMEX) team.30 COMEX looked at infrastructure and facilities located in 

the Kern River oil and gas field, Kern Front oil and gas field, and Poso Creek oil and gas 

field.30 For example, in 2014 they detected leaks in oil and gas wells in the Poso Creek Oil 

field emitting point source concentrations greater than 1,000 kg CH4 hr-1 and was 

corroborated by complementary AVIRIS-NG data at the time.30 Similarly, between 2016 

– 2018, AVIRIS-NG detected 67 CH4 plumes within Poso Creek Oil field with emissions 

ranging from 41 - 724 kg CH4 hr-1. Our AVIRIS-NG Source Data product estimates 

persistence normalized emissions from all AVIRIS-NG detections within Poso Creek Oil 

field from 2016-2018 to be 187.6 kg CH4 hr-1. Both the COMEX study and AVIRIS-NG 

Source data suggest that a small number of fugitive leaks from faulty infrastructure can 

disproportionately contribute to CH4 emissions from oil and gas related operations.19 

Fugitive leaks, which are unpredictable, can be difficult to account for in bottom-up 

modeling proposing that actual emissions estimates could be higher than even modeled 

estimates. 

The lack of accounting in the oil and natural gas sector is greatly exemplified in 

Kern County with around 90% of the total potential CH4 emitting facilities and 

infrastructure coming from this sector alone and neither CARB PMT nor EPA FLIGHT 

contain at least 1% of the records from the IPCC Level 3 1B2 category as compared to the 
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Vista-CA CH4 dataset.4, 20 This explains the discrepancy in source apportionment and 

magnitude of emissions for CARB PMT and EPA FLIGHT Kern County emissions. As 

described earlier, EPA FLIGHT tracks facilities that emit more than 25,000 MTCO2 eq a-

1 which means that any facilities that do not meet this threshold are not included in their 

database (25 facilities in Kern County) and CARB PMT tracks pollutants from large 

facilities that are subjected to their Mandatory Reporting Regulations (43 facilities Kern 

County), which also means that smaller facilities that are not subjected to this program are 

not included (Table S3.2). This suggests both of their bottom-up data collection 

methodologies are potentially missing facilities and sectors altogether that do significantly 

contribute to the overall CH4 budget for Kern County (2,018 facilities for the region) (Table 

S3.1). As a result, reported emissions are not a good proxy for observed fugitive CH4 

emissions nor are they are they near modeled emission estimates. Vista-CA contains 

records for close to 150,000 CH4 emitting facilities and infrastructure in Kern County, 

which is several magnitudes higher than any available geospatial dataset for this region 

(Tables S3.1 and S3.2).  

The method we present here for developing the AVIRIS-NG Source Data product 

focuses primarily on point sources, fugitive emissions, and hot spots and thus it is able to 

reveal super-emitter activity. Yet, persistent observations are difficult to complete using 

the top-down AVIRIS-NG instrument as it flies and completes surveys for a certain period 

of time. These gaps in temporal coverage make it difficult to assess the persistence of high 

or anomalous CH4 sources. For example, dairy facilities operate differently throughout the 

day and year, and to track these changes requires a more persistent technique closer to the 
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actual facilities which the AVIRIS-NG instrument is not completely ideal for. Moreover, 

there are inherent limitations in employing CH4 emissions calculations based on activity 

data and emission factors as was done for the Vista-CA Bottom-Up product. The accuracy 

of this technique is dependent on the accuracy and specificity of the underlying emission 

factors. Specific emission factors must be validated over time and requires thorough 

technical evaluation. Validity of emission factors and activity data relies on the age of the 

data and where it is sourced from as estimates of CH4 emissions could be unintentionally 

calculated as higher or lower than what is actually observed based on these two factors. 

Older emission factors may not include updates in technology or adopt newer procedures 

that could potentially result in an incorrect emission characterization. Utilizing the most up 

to date emission factor and activity data can be challenging since verification of data and 

accessibility to data vary.  

There exists a clear gap in emission estimates among the data that we have 

developed for Kern County and the data we have obtained from these publicly available 

ancillary sources. The existing geospatial inventories and bottom-up models underestimate 

the signals from the dairy and oil and gas sectors, they are unable to capture the influence 

of super-emitters, and are insufficient in providing high-resolution facility level scales for 

characterization of sources. The explanatory capability of the Vista-CA Bottom-Up and 

AVIRIS-NG Source Data emissions products provide complementary and comparable 

source apportionment information along with geospatial characteristics. Accounting for 

nearly all potential CH4 emitters, allows for better constraining of emissions and improves 

the geospatial understanding of sources. Using a combination of bottom-up constraints and 
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top-down attribution can produce valuable results and there is a clear need for additional 

bottom-up and top-down CH4 emissions research for Kern County  

Overall, these findings suggest that Kern County CH4 emission trends observed in 

the AVIRIS-NG Source Data and modeled in Vista-CA Bottom-Up are in line with or 

exceed other publicly available bottom-up emission estimates. The trends at the facility 

and IPCC category scales require further analysis and this work can be further utilized to 

develop a more spatially resolved bottom-up emissions product to inform an emissions 

prior for inverse modeling analysis. This study provides a foundation for potentially 

extending these bottom-up and top-down methodologies to other critical areas across the 

state and country that are affected by CH4 and towards augmenting future work addressing 

climate change. The City of Bakersfield in Kern County has a large population of close to 

400,000 people and is adjacent to half a dozen oil and gas fields, dozens of dairy farms, 

hundreds of oil and gas facilities, and thousands of oil and gas wells, all within a few 

kilometers. Higher CH4 emissions in proximity to these populated areas in Kern County 

opens up the potential for harmful health consequences and further research will be needed 

to assess these dynamics. Ultimately, addressing emissions at finer scales can yield 

meaningful actionable policies and productive monitoring procedures that are beneficial 

for these communities that live in proximity to these CH4 emitting structures.  
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Figure 3.1 Kern County A) Vista-CA Bottom-Up CH4 10 km by 10 km gridded data, B) 

CARB PMT facility CH4 inventory, C) EPA FLIGHT facility CH4 inventory, D) 

Maasakkers et al. 10 km x 10 km CH4 gridded emissions data, and E) CALGEM 10 km x 

10 km CH4 gridded emissions data for Kern County. All data is presented in Gg CH4 a
-1. 

(CARB PMT and EPA FLIGHT location data was converted into a 10 km x 10 km 

gridded format for comparison).  
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Figure 3.5 A) Magnitude of total estimated emissions (top) and B) Proportions by 

percentage of total emissions (bottom) classified into biogenic (green) and fossil (yellow) 

emission type for each dataset (Gg CH4 a
-1).  
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Figure 3.6. Source apportionment for all datasets organized into IPCC Level 3 

categories.  

Maasakkers’ EPA 
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   V. Supplementary 

 

   S3.1. Introduction 

 

 This document outlines the specific steps and procedures taken to develop and 

construct the data, methods, and analysis summarized in the main paper. The Vista-CA 

dataset is available at https://doi.org/10.3334/ORNLDAAC/1726. Attribution products 

from the Geospatial Source Attribution Automated Model (GSAAM) are available by 

request (https://doi.org/10.1088/1748-9326/ab9af8). The Next Generation Airborne 

Visible / Infrared Imaging Spectrometer (AVIRIS-NG) dataset is available at 

https://data.carbonmapper.org. Information on the California Greenhouse Gas Emissions 

Measurement (CALGEM) dataset can be found at http://calgem.lbl.gov/about.html and 

data is available by request. Information about the Maasakkers et al. 2016 dataset can be 

found at https://www.epa.gov/ghgemissions/gridded-2012-methane-emissions#data. EPA 

Facility Level Information on GreenHouse gases Tool (FLIGHT) dataset and information 

can be found at https://ghgdata.epa.gov/ghgp/main.do#. California Air Resource Board 

Pollution Mapping Tool (CARB PMT) dataset and information can be found at 

https://ww3.arb.ca.gov/ei/tools/pollution_map/. All emission estimates were converted 

into Gg CH4 a
-1.  

   S3.2. Vista-CA Bottom-Up Data Development 

 

In the following sections we provide a sectoral breakdown for the methods used to 

estimate CH4 emissions. In order to generate the gridded product, we first converted all 

polygons and polylines to points. We appended emissions to each point accordingly and 

merged all points to one feature dataset. We converted the points to raster format dataset 
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and summed the CH4 emission values within each 1 km x 1 km and 10 km x 10 km grid 

cell. Finally, we standardized the gridded product.  

We calculated CH4 emissions at the facility level for each emission source feature 

in Kern County as included in Vista-CA (Rafiq et al. 2020). Detailed emission estimates 

for dairy farms, feed lots, and digesters were drawn from Marklein et al. (2021), which 

uses emission factors from CARB along with facility level herd data and regional manure 

management information. Oil and gas related emissions including fields, facilities, and 

wells were taken from the Vafi et al. (in review 2021), which uses the Oil Production 

Greenhouse Gas Emissions Estimator (OPGEE) model to calculate CH4 emissions on site 

from within oil fields. Power plant emissions utilizing Intergovernmental Panel on Climate 

Change bottom-up modeling methods using the base equation: ECH4 = Sum of types 

(Activitytype x EFtype), were taken from Rafiq et al. (2022).  When more limited information 

was available which was the case for landfills, composting sites, and wastewater treatment 

plants, emissions were spatially disaggregated from previously calculated estimates in the 

U.S. EPA/Maasakkers et al. 2016 dataset. Emissions for natural gas compressor stations, 

natural gas processing plants, and transmissions pipelines were calculated using emission 

factors from the 2020 U.S. EPA Greenhouse Gas Inventory (GHGI) (GHGI 2020). Finally, 

reported emissions from CARB and EPA were used to allocate to Kern County refineries.  

   S3.2.1 Composting Sites 

 

Vista-CA contains records for 18 composting sites for Kern County. Vista-CA 

utilized records from the California Department of Resources Recycling and Recovery 

(CalRecycle).  Downscaled CH4 emissions of composting sites do not currently exist in 
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publicly available data. Instead, we used data from the U.S. EPA/Maasakkers et al. 2016 

where they calculated state-level emissions from composting using the tonnage of 

municipal solid waste composted or from the correlated tonnage recycled. Emissions were 

assigned to locations from the US Composting Council, BioCycle composter database, and 

composting entries in the Facility Registry Service (FRS). If there were fewer than three 

facilities found in a given state, they allocated them based on the gridded population instead 

(Maasakkers et al. 2016). We utilized this emissions allocation for composting sites 

totaling 0.76 Gg CH4 a
-1 and divided it evenly across the 18 composting sites that resulted 

in a per facility estimate of 42,000 kg CH4 a
-1. 

   S3.2.2 Natural Gas (Compressor) Stations 

 

Vista-CA contains records for 142 stations for Kern County. We utilized 2020 U.S. 

EPA Greenhouse Gas Inventory (GHGI) for natural gas emissions to obtain emission 

factors in kg per unit activity based on the type of compressor station (GHGI 2020). EPA 

developed these emission factors through either random or stratified sampling and then 

summing these samples and dividing by the number of total sources sampled. Further 

information can be found at https://www.epa.gov/natural-gas-star-program/methane-

emissions-natural-gas-industry. Specifically for natural gas stations, they took the number 

of stations from the Greenhouse Gas Reporting Program (GHGRP) and multiplied it by a 

scaling factor of 3.52 (from Zimmerie et al. 2015). Natural gas station type was stored in 

the Vista-CA metadata. The following breaks down the type of stations that were in the 

dataset and the respective emissions: 22x COMP: compressor station, 310,708.7 kg/station 

a-1, 6x DEHY: dehydration station, 50x MTR: metering station, 2,142.7 kg/station a-1, 9x 
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ODOR: odor stations, 17x PLS: pressure limiting stations, 22x REG: regulation stations, 

15x STR: storage stations, 369,797.4 kg/station a-1, and 1x TAP stations. Emissions from 

dehydration stations, odor stations, pressure limiting stations, regulations stations, storage 

stations, and TAP stations are considered negligible.  Emissions were converted into kg 

CH4 a
-1. 

   S3.2.3 Dairies 

 

Vista-CA contains records for 53 dairies for Kern County. We utilized emission 

estimates for Kern County dairies from Marklein et al.’s work (Marklein et al. 2021). 

Marklein et al. developed a spatially explicit database of dairies in California using 

information from operating permits and California-specific reports detailing herd 

demographics and manure management at the facility scale. They estimated manure 

management and enteric fermentation CH4 emissions utilizing previously published 

bottom-up approaches and a new farm-specific calculation. Marklein et al.’s data contained 

emissions for 44 of the 53 dairies in Kern County. The remaining 9 dairies were not 

considered significant emitters after additional correspondence with the author of Marklein 

et al.’s work and final emission estimates were converted into kg CH4 a
-1. 

   S3.2.4 Digesters 

 

Vista-CA contains records for 5 digesters in Kern County. We utilized emission 

estimates for Kern County dairies from Marklein et al.’s work (Marklein et al. 2021). From 

the breakdown below we used the emissions from the “digester_ch4” category. 

 



 100 

These emissions were calculated using the following description from Marklein et al.: “We 

determined the 106 dairies that have installed or are planning to install anaerobic digesters 

from reports from the CDFA Dairy Digester Reports in 2017–2019 (CDFA, 2020b). We 

used our database to estimate the effects of anaerobic digesters on CH4 emissions from 

these 100 dairies in the Central Valley. We assumed a 75 % efficiency of CH4 capture in 

anaerobic digesters (Charrier, 2016; US EPA, 2017).” “Post_digester_total_manure” field 

refers to the total manure CH4 emissions when you consider that the digester is in use, 

“Total_CH4_postdigester” refers to the total manure + enteric CH4 emissions when you 

consider that the digester is in use, and “Predigester_total_CH4” refers to the total manure 

and enteric CH4 emissions if the facility did not have a digester. Emissions were converted 

into kg CH4 a
-1. 

   S3.2.5 Feed Lots  

 

Vista-CA contains records for 2 feed lots in Kern County. We used the total number 

of cows in Kern County from the United States Department of Agriculture’s National 

Agricultural Statistics Service Information (USDA NASS) livestock census from 2017 and 

assumed the population remained constant in 2018 because the emission factors remained 

the same. The USDA NASS reports 41,537 cows, which we divided evenly between the 2 

feedlots in Kern County, for a total of 20,768.5 cows per farm. We used emissions 

estimates from the 2018 CARB’s inventory to determine the CH4 emissions per head of 

feedlot animals. The ARB reports 715.97 tons of CH4 emitted by 330,227 head of feedlot 

steers 500+lbs and 383.75 tons CH4 produced by 171,796 head feedlot heifers that were 

500+ lbs. This equates to 2.171052 kg/head steers 500+lbs and 2.233754 kg /head of 
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feedlot heifer 500+ lbs. By dividing the populations of steers and heifers by the total cattle 

heads, we determined that 65% of the animals that were 500+lbs were steer and 35% were 

heifers. We took a weighted average of the total CH4 per head to estimate the average CH4 

emissions/head to be 2.192998 kg/head (Marklein et al. 2021). We multiplied the 

population on each farm by the emissions factor Alison calculated below, 2.19 kg CH4 per 

head, to get 45,483.015 kg CH4 per farm a-1.   

   S3.2.6 Landfills 

 

Vista-CA contains records for 107 landfills in Kern County. We obtained CARB 

2014 emissions data for 17 landfills in Kern County. We utilized U.S. EPA emissions for 

county wide data for municipal landfills for the remaining 90 landfills without emissions 

through budget allocation (Maasakkers et al. 2016). U.S. EPA allocated emissions from 

landfills based on a combination of data from the GHGRP (1,231 municipal landfills and 

175 industrial landfills), the Landfill Methane Outreach Program (LMOP) (municipal 

landfill only), and the FRS. GHGRP landfills were assigned their reported emissions and 

they utilized waste-in-place combined with a decay factor for the other landfills. For the 

unassigned landfills they assigned the median emissions from the landfills for which 

information was available (Maasakkers et al. 2016). County wide data totaled at 13.51 Gg 

CH4 a
-1. We subtracted the CARB 2014 emissions which totaled 5.012 Gg CH4 a

-1. We 

allocated the remaining 5.69 Gg CH4 a
-1 evenly for the remaining 90 facilities at 63,314 kg 

CH4 a
-1 per facility.  
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   S3.2.9 Oil and Gas Fields 

 

Vista-CA contains records for 100 oil and gas fields in Kern County and also 

contains records for 1,888 oil and gas facilities as well as 142,534 oil and gas wells. We 

obtained CH4 emissions from Oil Production Greenhouse Gas Emissions Estimator 

(OPGEE) model which calculates CH4 emissions from oil and gas fields and also 

incorporates emissions from oil and gas wells as well as oil and gas facilities found within 

the bounds of these oil and gas fields (Note: while OPGEE only includes emissions from 

power plants associated with electricity consumption to produce crude oil, Vafi et al. 2021 

calculated these separately for their onsite emissions since the model includes only LCA 

emissions). OPGEE is a life cycle assessment model that includes offsite emissions and 

borrows emissions factors from CARB and the American Petroleum Institute (API) which 

was reorganized to report only onsite emissions by Vafi et al. 2021. Vafi et al. utilized 

OPGEE 2.0 to produce emissions for 145 oil and gas fields in California which include all 

100 oil and gas fields in Kern County (Vafi et al. 2021). These also incorporate 1,878 oil 

and gas facilities and 139,235 oil and gas wells. The remaining oil and gas wells and oil 

and gas facilities from Vista-CA are calculated separately and are discussed in their 

respective sections. Emissions were converted into kg CH4 a
-1. 

   S3.2.8 Oil and Gas Facilities 

 

Vista-CA contains records for 1,888 oil and gas facilities in Kern County. We 

calculated emissions for all 1,888 oil and gas facilities and then at the end removed 1,878 

oil and gas facilities as they were already included in the OPGEE modeled emissions for 

oil and gas fields. We utilized county-wide U.S. EPA/Maasakkers et al. 2016 emissions for 
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Petroleum facilities at 154.44 Gg CH4 a
-1, Natural Gas Distribution facilities 0.84 Gg CH4 

a-1, Natural Gas Processing facilities 15.31 Gg CH4 a
-1, Natural Gas Production facilities 

19.83 Gg CH4 a
-1, and Natural Gas Transmission 0.73 Gg CH4 a

-1 (Maasakkers et al. 2016). 

Within the Vista-CA Oil and Gas Facilities data, we utilized the metadata to identify and 

remove facilities based on status, specifically 81 no status and 392 idle/out of 

service/removed were removed from the list leaving 1,415 active and deserted oil and gas 

facilities. 369 of those 1,415 facilities were combo gas/oil, gas facilities and we utilized 

the U.S. EPA/Maasakkers et al. 2016 processing and production number of 35.14 Gg CH4 

a-1 and divided by 369 to obtain 95,230.35 kg CH4 a
-1 per facility. For the remaining 1,026 

facilities, we utilized the Petroleum number of 154.44 Gg CH4 a
-1 and divided among the 

1,026 facilities to obtain an emission estimate of 150,526.316 kg CH4 a
-1 per facility. The 

remaining 3 facilities tagged as injection, steam and treatment were negligible. The final 

dataset contains emissions for 10 oil and gas facilities independent of oil and gas fields and 

emissions were converted into kg CH4 a
-1. 

   S3.2.9 Oil and Gas Wells 

 

Vista-CA contains records for 142,534 oil and gas wells in Kern County. We 

calculated emissions for all 142,534 oil and gas wells and then at the end removed 139,235 

wells as they were already included in the OPGEE modeled emissions for oil and gas fields. 

We obtained emission factors from the 2020 U.S. EPA GHGI for specific oil and gas wells 

(GHGI 2020). There are 64,258 oil and gas wells whose status are plugged or abandoned 

which are treated as negligible based on Fischer et al.’s work. Fischer et al. stated “The 

limited data presented [in their work] suggest that CH4 emissions from abandoned/plugged 
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(AP) wells in California are negligible, at least for wells located primarily outside large 

active oil and gas fields. Excluding measurements from wells in the tar pit (which may 

have their own natural sources), the authors found no AP wells to be leaking above 1 g/hr.” 

(Fischer et al. 2020). The remaining 78,276 oil and gas wells had statuses of active, buried, 

idle, new, and unknown. 15,824 of the 78,276 oil and gas wells were identified as 

directionally drilled and were assigned an emission factor of 51 kg CH4 a-1. The other 

62,452 were non-directional drilling. 407 of the 62,452 oil and gas wells were assigned 

89.4 kg CH4 a-1 they were identified as the following types and were non-hydraulic 

fracturing: Air Injector/Oil and Gas, Dry Gas/Oil and Gas, Gas Disposal, Gas Disposal/Oil 

and Gas/Pressure Maintenance/Cyclic Steam, Observation/Oil and Gas/Cyclic Steam, Oil 

and Gas, Oil and Gas/Pressure Maintenance, Oil and Gas/Cyclic Steam, Oil and Gas/Cyclic 

Steam/Steam Flood, Oil and Gas/Cyclic Steam/Steam Flood/Water Disposal/Water Flood, 

Oil and Gas/Cyclic Steam/Steam Flood/Water Flood, Oil and Gas/Cyclic Steam/Water 

Disposal, Oil and Gas/Steam Flood, Oil and Gas/Steam Flood/Water Flood, Oil and 

Gas/Water Disposal, Oil and Gas/Water Disposal/Water Flood, Oil and Gas/Water Flood, 

Oil and Gas/Water Source. The following 62,045 oil and gas well types were also treated 

as negligible since they did not have anything related to natural gas: Air Injector, 

Observation/Steam Flood, Pressure Maintenance, Cyclic Steam, Cyclic Steam/Steam 

Flood, Cyclic Steam/Water Flood, Steam Flood, Steam Flood/Water Disposal, Steam 

Flood/Water Flood, Water Disposal, Water Disposal/Water Flood, Water Flood, Water 

Source. The final dataset contains emissions for 3,299 oil and gas wells and emissions 

independent of oil and gas fields were converted into kg CH4 a
-1. 
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   S3.2.10 Natural Gas Processing Plants 

 

Vista-CA contains record for 9 natural gas processing plant facilities in Kern 

County.  We utilized 2020 U.S. EPA GHGI for natural gas emissions to obtain emission 

factors in kg per unit activity based on the type of compressor station (GHGI 2020). EPA 

developed these emission factors through either random or stratified sampling and then 

summing these samples and dividing by the number of total sources sampled. Further 

information can be found at https://www.epa.gov/natural-gas-star-program/methane-

emissions-natural-gas-industry. Specifically, for natural gas processing plants, they 

recorded the number of facilities from the Oil and Gas Journal "Worldwide Gas 

Processing" survey for the years 1997-2014. This survey contained information on gas 

capacity, gas throughput, and total natural gas produced per day for 29 facilities in 

California. We utilized the calculated emission factors from the GHGI report for natural 

gas processing plants at 212,382.3 kg CH4 a
-1 per facility.  

   S3.2.11 Pipelines 

 

Vista-CA contains records for 3,696 transmission pipeline segments that span 

2173.13 km total. We obtained emission factors from the 2020 EPA Greenhouse Gas 

Inventory (GHGI) specifically for pipeline leaks under “transmission and storage” 

calculated at a rate of 10.9 kg/mile (GHGI 2020). EPA developed these emission factors 

through either random or stratified sampling and then summing these samples and dividing 

by the number of total sources sampled. Further information can be found at 

https://www.epa.gov/natural-gas-star-program/methane-emissions-natural-gas-industry. 

EPA utilized the total transmission pipeline mileage for a given year using data from the 
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Pipeline and Hazardous Materials Safety Administration (PHMSA). We obtained a total 

emission estimate of 14,718.53 kg of CH4 a-1 for the pipeline sector. Emissions were 

converted into kg CH4 a
-1. 

   S3.2.12 Power Plants 

 

Vista-CA contains records for 43 power plants total in Kern County. 35 of these 

plants contained records from Rafiq et al. 2022. Rafiq et al. utilized IPCC tier 2 methods 

for stationary combustion to model power plant emissions which multiplies country-

specific emission factors by fuel-type with total fuel combusted. Specifically, they utilized 

annual fuel consumption metrics from the U.S. Energy Information Administration (EIA), 

emission factors from the EPA’s Electronic Code of Federal Regulations (ECFR) and plant 

type from Vista-CA to establish bottom-up estimates of power plants in California.  Three 

additional plants from the CARB PMT matched with the remaining 8 but contained no 

emissions or were not significant. We were unable to match the other 5 power plants with 

CARB or EPA data. Emissions were converted into kg CH4 a
-1.  

   S3.2.13 Refineries 

 

Vista-CA contains records for 7 refineries total in Kern County. Four of these 

refineries contained emission records from CARB and EPA. Both CARB and EPA contain 

reported emissions from these refineries. The remaining 3 refineries were individual 

facilities that shared names and possible infrastructure with the other four existing 

refineries (from aerial imagery analysis). These 3 refineries were Alon Bakersfield 

Refining 3, San Joaquin Refining Co, and Alon Bakersfield Operating Inc. Emissions were 

converted into kg CH4 a
-1.  
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   S3.2.14 Wastewater Treatment Plants 

 

Vista-CA contained records for 7 wastewater treatment plants in Kern County. We 

utilized U.S. EPA emissions for wastewater treatment plants. Emissions from wastewater 

treatment were reported as municipal or industrial in the GHGI and facilities that reported 

to the GHGRP accounted for the majority of the national industrial wastewater treatment 

emissions. To allocate the remaining industrial emissions as well as the municipal 

emissions, they used facility-level wastewater flow data from the Clean Watersheds Needs 

Survey (Maasakkers et al. 2016). We utilized U.S. EPA emissions for county wide data for 

domestic and industrial wastewater treatment plants at 1.08 Gg CH4 a
-1. We allocated the 

emissions evenly for the 7 facilities at 150,000 kg CH4 a
-1 per facility.  

   S3.2.15 Negligible Emissions 

 

The two Vista-CA sectors that were considered negligible for CH4 emissions were 

storage fields and natural gas fueling stations. There were no storage fields located within 

Kern County. Vista-CA contains records for 5 natural gas fueling stations. Fischer et al. 

determined that fugitive emissions from natural gas stations were negligible (Fischer et al. 

2017).  

   S3. AVIRIS-NG Source Data Development 

 

In order to account for gaps in observation from AVIRIS-NG into our emissions 

calculation, we developed data that identifies all plumes flown and all flightlines that flew 

over those plumes and for each plume whether that flightline that flew over it, observed 

that given plume or did not observe that given plume.  
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We used the AVIRIS-NG 2016, 2017, and 2018 plume data that contains 1,704 

plumes across California. We geocoded source locations of each plume using the source 

latitude and source longitude in ArcGIS into point vector locations. We also used line 

vector data for all 1,943 flightlines flown in 2016, 2017, and 2018 AVIRIS-NG campaigns. 

We generated 1,800 m wide buffer polygon vectors from the line vectors of each flightline 

to simulate projected flight path or swath width of the AVIRIS instrument. Next, we took 

both the point vector data and the polygon vector data and utilized the intersect tool in 

ArcGIS. This intersect tool allowed us to compute thousands of geometric intersections 

between the point and polygon vector data. Any overlap between point and polygon vectors 

indicates that all possible flightpaths over a given plume location to identify how many 

times a plume was flown over and how many times it was actually observed by AVIRIS-

NG. In total, this resulted in 28,989 plume-to-flightpath spatial connections. Consequently, 

we wanted to identify which plumes were actually flown by the flightline that was spatially 

associated with it and which plumes were not. In order to do this, we extracted out the 

tabular file from our previous 28,989 plume-to-flightpath data for further development. We 

added a new field called “Plume_Detected?” that evaluates whether the “linename” field 

that comes from the plumes data matches the “LineName” field from the flightlines dataset. 

Essentially, if these two fields matched that meant that a given plume observed and 

spatially associated to a specific flightline was indeed observed by that specific flight line, 

which in this case meant it was marked with a “yes”. Conversely, if those two fields did 

not match, meaning a given plume observed and spatially associated with a given flightline 

did not match with the flightline that originally observed with that plume, then we take this 
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as the flightline flew over that given location but did not observe that given plume and 

mark it with a “no” in the “Plume_Detected?” field. The total number of “yes”s should 

exactly equal 1,704 since that’s how many total plumes we have in the AVIRIS-NG 

dataset. Our spatial and tabular methods resulted in 1,579 “yes”s which still doesn’t 

account for the missing 125 plumes observed. This is because some of the flightline buffers 

we generated using the centerline and swath of 1,800 m of each flightline are assumed to 

be uniform and ideal and are not completely based on actual paths flown. Therefore, we 

had to manually locate the missing 125 “yes” plumes.  These 125 additional “yes” plumes 

were identified by comparing the 1,579 “yes” plumes to the original 1,704 plumes using 

the “Candidate_ID” field and those that didn’t match were appended. In this case, these 

125 additional “yes” plumes were added to the existing 1,579 “yes” plumes bringing the 

total to 1,704 and also brought the sum total of 28,989 to 29,114 total plume-to-flightpath 

spatial connections.  

To obtain the final product as we first defined, we needed to remove redundant 

plume-to-flightpath connections that are identified as “no” under the “Plume_Detected?” 

field. The term “redundant connections” refers to all possible spatial connections made for 

plumes of a given source that were already labeled by the “Plume_Detected?” field as “no” 

to begin with. To do this, we created a new temporary identification for each plume-to-

flightpath connection by concatenating the plume “Source_ID” field and flightpath 

“LineName” field in the dataset in order to systematically isolate the redundant spatial 

connections. We identified and removed duplicates based on this temporary identification 

field and only kept the connections that were labeled as unique by this temporary 
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identification field. This process reduced our total plume-to-flightpath spatial connections 

to 9,473. Additionally, we identified 9 spatial connections that were removed by our 

redundancy process that actually needed to be added to our total connections list. These 9 

connections were identified because in the original AVIRIS-NG plume dataset, there are 9 

repeating “Candidate_ID”s with different emissions estimates and thus they were not 

detected by our methods early on until we conducted checks at the very end for consistency. 

After verifying and adding in these 9 spatial connections, the source data resulted in a total 

of 9,482 plume-to-flightpath spatial connections stemming from 795 unique sources as 

identified by AVIRIS-NG. Lastly, we ran the finalized source data product through Vista-

CA GSAAM to obtain Vista-CA facility and sub-facility spatial attributions, along with 

explicit identification of Oil and Gas Field spatial attributions for all 9,482 plume-to-

flightpath spatial connections. We have taken the total number of times a given facility in 

each study area was flown by AVIRIS-NG and recorded the number of times it was 

observed to be emitting and observed to not be emitting.  

Tables S3.1 and S3.2 show facility breakdowns by sector and region. They also 

highlight emissions estimates and survey coverages. This data in both geospatial and 

tabular formats can be extracted from the Vista-CA and AVIRIS-NG datasets listed above.  

   S4. Ancillary Emissions Data Calculation Methods 

 

We standardized both the CALGEM and Maasakkers et al. dataset from netcdf 

format to a gridded raster format. The following sections breakdown the methods employed 

for emission estimation for each sector in each dataset.  
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   S4.1 CALGEM Sectoral Emissions Estimate Methods 

 

Jeong et al. 2016 developed CALGEM prior emission distributions and scaled them 

to match 2012 California Air Resources Board (CARB) state totals for anthropogenic 

emission sectors (CARB, 2014), with small (<50 Gg CH4 a
-1) adjustments for some regions 

and sectors. 2012 CARB data is based off of methods developed in the 2006 

Intergovernmental Panel on Climate Change (IPCC) report. Other sectors used data from 

ancillary state government sources. Raw data was converted into Gg CH4 a
-1 for this work.   

   S4.1.1 Livestock/Non-livestock: Jeong et al. 2016 revised the spatial distribution of the 

dairy livestock emissions by incorporating the 2012 county-level dairy statistics from U.S. 

Department of Agriculture 

(http://www.nass.usda.gov/Statistics_by_State/California/Publications/County_ 

Estimates/) to the spatial distribution from Jeong et al. [2013]. They also used a map of 

dairy livestock density supplied by the California Department of Water Resources and 

scaled to annual CH4 emissions assuming a constant emission factor of 0.39 kg C/cow/d 

from Salas et al. 2009. 

   S4.1.2 Natural Gas: Jeong et al. 2016 used information from the California Department 

of Conservation (CDC, http://www.consrv.ca.gov/dog/Pages/statistics.aspx) to generate an 

emissions map of Natural Gas wells in California. CH4 emissions from gas wells were 

estimated using gas production information from California Department of Conservation 

[2009]. They also assumed a leakage rate of 1% related to gas production and 

transmission/storage processes in the gas fields. Some CH4 emissions were estimated from 

California mandatory reports on oil and gas and the remainder of natural gas emissions was 
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apportioned by population density in California using 4 km population maps available from 

the Socioeconomic Data and Applications Center (Center for International Earth Science 

Information Network (CIESIN) and Centro Internacional de Agricultura Tropical (CIAT), 

Gridded population of the world, version 3, population density grid, 2005, 

http://sedac.ciesin.columbia.edu/gpw).  

   S4.1.3 Wastewater Treatment: Jeong et al. 2016 used the 2012 CARB state totals for 

anthropogenic emissions for this sector [CARB, 2014]. The 2012 CARB wastewater 

treatment plant emissions data is based on the 2006 IPCC report. Description below shows 

the Tier 1 equations for calculating domestic and industrial wastewater treatment plant 

emissions are found here: 2006 IPCC Report Volume 5 Ch. 6, Pg. 6.11 and 6.20. 
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(https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf) 

   S4.1.4 Petroleum Refining and Mobile Sources: Jeong et al. 2016 used the 2012 CARB 

state totals for anthropogenic emission for this sector [CARB, 2014]. The 2012 CARB 

refinery and mobile sources emissions data is based on the 2006 IPCC report. Tier 1 

equations for stationary combustion emissions are found here: 2006 IPCC Report Volume 

2 Ch. 2, Pg. 2.11. (https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf)  
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Tier 1 equations for calculating mobile combustion CH4 emissions can be found here: 2006 

IPCC Report Volume 2 Ch. 3, Pg. 3.13. (https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf). 
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   S4.1.5 Landfills: Jeong et al. 2016 used the 2012 CARB state totals for anthropogenic 

emission for this sector [CARB, 2014]. The 2012 CARB landfills emissions data is based 

on the 2006 IPCC report. Tier 1 equations for calculating landfill CH4 emissions are found 

here: 2006 IPCC Report Volume 5 Ch. 3, Pg. 3.8. (https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf) 

   S4.2 Maasakkers et al. 2016 Sectoral Emissions Estimate Methods 

 

Maasakkers et al. 2016 used the 2012 emissions from the 2014 EPA Greenhouse 

Gas Inventory (GHGI) published in 2016, which includes detailed descriptions of the 

national emission calculation methods. GHGI derives most of their methods from the 2006 

IPCC Report. Raw data was converted into Gg CH4 a
-1 for this work.   

   S4.2.1 Landfills: Landfill emissions were estimated as the CH4 produced from MSW 

landfills, plus the CH4 produced by industrial waste landfills, minus the CH4 recovered and 

combusted from MSW landfills, minus the CH4 oxidized before being released into the 
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atmosphere; The methodology for estimating CH4 emissions from landfills is based on the 

first order decay (FOD) model described by the 2006 IPCC Guidelines. Tier 1 equations 

for calculating landfill CH4 emissions are found here: 2006 IPCC Report Volume 5 Ch. 3, 

Pg. 3.8. (https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_3_Ch3_SWDS.pdf) (See S4.1.5) 

   S4.2.2 Enteric Fermentation: Maasakkers et al. 2016  estimated CH4 emissions from 

enteric fermentation by using the following method: the population was divided into state, 

age, sub-type (i.e., dairy cows and replacements, beef cows and replacements, heifer and 

steer stockers, heifers and steers in feedlots, bulls, beef calves 4 to 6 months, and dairy 

calves 4 to 6 months), and production (i.e., pregnant, lactating) groupings to more fully 

capture differences in CH4 emissions from these animal types. They simulated the age and 

weight structure of each sub-type on a monthly basis in order to reflect the fluctuations that 

occur throughout the year. Cattle diet characteristics were used in conjunction with Tier 2 

equations from 2006 IPCC report to produce CH4 emission factors for the following cattle 

types: dairy cows, beef cows, dairy replacements, beef replacements, steer stockers, heifer 

stockers, steer feedlot animals, heifer feedlot animals, bulls, and calves. Information on tier 

2 equations for calculating CH4 emissions are found here: 2006 IPCC Report Volume 4 

Ch. 10, Pg. 10.10. (https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf) Finally, they 

estimated emissions from cattle using monthly population data and multiplying it by the 

calculated emission factor for each cattle type. 
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   S4.2.3 Manure Management: Maasakkers et al. 2016 estimated CH4 emissions from 

manure management by using the following method: the animal population data (by animal 

type and state): Typical animal mass (TAM) data (by animal type); Portion of manure 

managed in each WMS, by state and animal type; Volatile solids (VS) production rate (by 

animal type and state or United States); CH4 producing potential (Bo) of the volatile solids 

(by animal type); and CH4 conversion factors (MCF), the extent to which the CH4 

producing potential is realized for each type of WMS (by state and manure management 

system, including the impacts of any biogas collection efforts). 

   S4.2.4 Wastewater Treatment Plants: Maasakkers et al. 2016 estimated CH4 emissions 

from publicly owned treatment works (POTWs) using EPA GHGI methodology. They 

began by multiplying the total Biochemical Oxygen Demand5 (BOD5) produced in the 

United States by the percent of wastewater treated centrally (about 80 percent), the relative 

percentage of wastewater treated by aerobic and anaerobic systems, the relative percentage 

of wastewater facilities with primary treatment, the percentage of BOD5 treated after 
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primary treatment (67.5 percent), the maximum CH4-producing capacity of domestic 

wastewater (0.6), and the relative CH4 correction factor for well-managed aerobic (zero), 

not well managed aerobic (0.3), and anaerobic (0.8) systems with all aerobic systems 

assumed to be well-managed. The methodology is summarized below and full details can 

be found in Chapter 7-18, page 464. (https://www.epa.gov/sites/production/files/2017-

04/documents/us-ghg-inventory-2016-main-text.pdf) 
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 S4.2.5 Composting: Maasakkers et al. 2016 estimated emissions from composting sites 

using the IPCC Tier 1 methodology (IPCC 2006), which is the product of an emission 

factor and the mass of organic waste composted. Tier 1 equations for calculating CH4 

emissions from composting facilities are found here: 2006 IPCC Report Volume 5 Ch. 4, 

Pg. 4.5. (https://www.ipcc-

nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf)  

   S4.2.6 Petroleum: Maasakkers et al. 2016 estimated emissions from petroleum facilities 

using the 2014 EPA Greenhouse Gas Inventory (GHGI). Emissions are estimated for each 

activity by multiplying emission factors by the corresponding activity. Emission factors 

were gathered from the following sources: DrillingInfo (2015), “Methane Emissions from 

the Natural Gas Industry by the Gas Research Institute and EPA” (EPA/GRI 1996a-d), 

“Estimates of Methane Emissions from the U.S. Oil Industry” (EPA 1999), consensus of 

industry peer review panels, BOEMRE and BOEM reports (BOEMRE 2004, BOEM 

2011), analysis of BOEMRE data (EPA 2005, BOEMRE 2004), and the GHGRP (2010 

through 2014). Activity data were gathered from the following sources: DrillingInfo 
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(2015), the Energy Information Administration annual and monthly reports (EIA 1990 

through 2015), (EIA 1995 through 2015a, 2015b), “Methane Emissions from the Natural 

Gas Industry by the Gas Research Institute and EPA” (EPA/GRI 1996a-d), “Estimates of 

Methane Emissions from the U.S. Oil Industry” (EPA 1999), consensus of industry peer 

review panels, BOEMRE and BOEM reports (BOEMRE 2004, BOEM 2011), analysis of 

BOEMRE data (EPA 2005, BOEMRE 2004), the Oil & Gas Journal (OGJ 2015), the 

Interstate Oil and Gas Compact Commission (IOGCC 2012), the United States Army Corps 

of Engineers, (1995 through 2015), and the GHGRP (2010 through 2014). Further details 

can be found in Chapter 3-61, Page 169. (https://www.epa.gov/sites/production/files/2017-

04/documents/us-ghg-inventory-2016-main-text.pdf) 

   S4.2.7 Natural Gas: Maasakkers et al. 2016 estimated emissions from natural gas 

infrastructure using the 2014 EPA Greenhouse Gas Inventory (GHGI). This inventory 

breaks down the calculation into three steps. First, they calculate the potential CH4 by 

collecting activity data on production and equipment in use and applying emission factors. 

Next, they calculate the amount of the CH4 that is not emitted and use data on voluntary 

action and regulations. Finally, they calculate the net emissions by subtracting the CH4 that 

is not emitted from the total CH4 potential estimates to develop net CH4 emissions. Further 

details can be found in Chapter 3-71, Page 179. 

(https://www.epa.gov/sites/production/files/2017-04/documents/us-ghg-inventory-2016-

main-text.pdf).  
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   I. Introduction 

 

Even with the progress in adopting alternative fuel technology and renewable 

energy resources, the energy industry is still a significant contributor to greenhouse gas 

(GHG) emissions. While most attention has been given to carbon dioxide (CO2) emissions, 

energy industries also produce significant methane (CH4) emissions, which are not as well 

understood. CH4 is a relatively short-lived climate pollutant with respectively around 30 

and 85 times the cumulative radiative forcing of CO2 on a mass basis over 100-year and 

20-year time frames.1 Natural gas, which mostly consists of CH4, is considered a “cleaner” 

fuel alternative, producing half the amount of CO2 per unit of energy as coal, and has been 

considered a viable transitional resource until future renewable energy technologies 

mature.2 While the transition from coal to natural gas has lowered overall GHG emissions 

from the electricity sector, it has also increased CH4 emissions; over the last 30 years, CH4 

emissions in California from the electric generation sector have doubled.3, 20 This increase 

in CH4 emissions may be an underestimate as it does not completely account for fugitive 

emission occurring in the natural gas lifecycle. When fugitive CH4 emissions are accounted 

for, the 20-year climate impact of natural gas increases by 50%, and can nullifying natural 

gas’s benefits relative to other fuels.4, 5 California’s Assembly Bill 1496 and Senate Bill 

1383 set CH4 emissions reduction targets in order to reduce short-lived climate pollutants 

along with achieving its climate goals for significantly reducing greenhouse (GHG) 

emissions by 2030.6, 7, 8 As such, the identification of CH4 emission sources in electricity 

generation is important for effective development of appropriate policy and corresponding 

mitigation methods.  
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In California, close to 50% of all in-state electric generation comes from natural 

gas firing power plants (90.7 TWh).3 CH4 emissions at power plants are produced from the 

processes generating electricity (e.g., combustion of natural gas) and from fugitive leaks in 

the natural gas handling system. Process-based emissions result from the operations 

occurring at a given plant or are the byproduct of combustion activities that are usually 

persistent while the facility is operating. In contrast fugitive emissions are the result of 

leaks in the components or infrastructure of a given facility. To further classify different 

types of power plants, we organized power plants into two categories: stand-alone power 

plants (SPWP) and co-located power plants (CPWP). SPWP’s house infrastructure 

dedicated to electric generation and on average they consume more fuel than CPWP’s, 

leading to higher activity-based emissions estimation. We define CPWP’s as power plants 

located or connected to an existing facility from different CH4 emission sources that either 

provide power for operations for that facility or utilize captured CH4 to generate power. 

For example, cogeneration power plants utilizing landfill gas are defined as being co-

located with that specific landfill rather than being stand-alone power plants. CPWP’s on 

average consume less fuel from other sources, given that they are designed to utilize local 

CH4 sources such as landfills or dairy biogas.2  

CH4 inventories used by regulatory agencies quantify sectoral and facility 

emissions from power plants include process-driven emissions, such as from combustion 

of fuels, but lack accounting for fugitive emissions. However, fugitive emissions have been 

observed in many energy systems, particularly those that use natural gas as a fuel.17, 18 

Understanding the contribution of fugitive emissions is critical since they are more 
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prevalent under direct observations and traditional methods of estimation do not account 

for them. Some approaches, such as IPCC tier 1 methods, use activity data, such as the 

amount of fuel burned, along with an emission factor to estimate power plant methane 

emissions. The Environmental Protection Agency (EPA) calculates CH4 emissions from 

electric generation in the Greenhouse Gas Reporting Program (GHGRP) consistent with 

Intergovernmental Panel on Climate Change (IPCC) tier 1 methods.33 IPCC tier 1 methods 

solely incorporate combustion processes by fuel type and do not include fugitive or venting 

emissions.1  

Other regulatory inventories rely on data that is either reported by producers or 

measured at the stack. The U.S. EPA’s Facility Level Information on GreenHouse gases 

Tool (EPA FLIGHT) tracks facilities that emit more than 25,000 MTCO2eq/year, and 

accounts for 85-90% of emissions included in the official EPA GHGRP.19 EPA FLIGHT 

differs from the official EPA GHG inventory because they are based on reported emissions 

at the facility scale, not activity data. EPA requires power plant facilities to install 

Continuous Emissions Monitoring Systems (CEMS) devices to measure CO2, NOx, and 

SOx emissions from flaring or vent stacks but do not require the incorporation or the 

capability to measure emissions from fugitive leaks in the infrastructure.19 Consequently, 

EPA FLIGHT’s reported emissions do not include fugitive CH4 emissions. Similarly, the 

California Air Resources Board’s Pollution Mapping Tool (CARB PMT) records GHG and 

criteria pollutant emissions from large facilities in California that are subject to the GHG 

Mandatory Reporting Regulation (MRR).20, 46 GHG MRR requires all electric generating 

facilities to self-report CH4 emissions if they emit greater than or equal to 10,000 
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MTCO2eq/year.46 Vented and fugitive emissions are not required to be included in the 

GHG MRR.46 

Uncertainty in both the quantification and source apportionment of California’s 

CH4 emissions hampers mitigation and convolutes emission reduction evaluations. There 

have been multiple studies focused on measuring CH4 emissions from the production, 

storage, and processing within the energy and oil and gas industries, but little work has 

been conducted on understanding and quantifying fugitive CH4 emissions from power 

plants in California. Some work looking at CH4 emissions from power plants has been done 

in other parts of the U.S. Lavoie et al. studied 6 facilities, 3 natural gas-fired power plants 

and 3 refineries using top-down mass-balance approaches to quantify CH4 and found 

resulting emissions to be higher than those reported to the EPA by factors of 21 – 120 for 

natural gas power plants.17 Hajny et al. continued Lavoie et al.’s work by surveying 14 

natural gas-fired power plants utilizing a similar mass-balance technique, compared 

CH4:CO2 ratios, and attributed emissions to un-combusted natural gas from power plant 

stacks rather than fugitive emissions, which again was unaccounted for in reported 

datasets.18  

To understand these gaps in regulatory inventories, we first developed a bottom-up 

dataset of power plant CH4 emissions using geospatial records of facility and infrastructure 

information for California coupled with fuel metrics and IPCC methodologies. Our bottom-

up modeled dataset accounts for process emissions from fuel combustion, which produces 

CH4 as a by-product of the incomplete combustion of fuel. We compared the modeled 

emissions to CH4 plume observations made from airborne CH4 imaging surveys of 
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California that have been extensively conducted over the last few years.21 22, 23 We used 

CH4 retrievals from the Next Generation Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS-NG), which measures ground-reflected solar radiation in the 380 to 2,510 nm 

range with a field of view of 1.8 km and spectral sampling of 5 nm. At normal survey 

altitudes of 3 km AVIRIS-NG captures data at a 3 m pixel resolution and can consistently 

detect and measure CH4 point sources with emissions typically as small as 2 – 10 kg CH4 

h-1
 for typical surface winds ≤ 5 m s-1.24, 25, 26 AVIRIS-NG surveys in California were 

conducted from 2016 – 2018 and covered facilities in the waste, agriculture and energy 

sectors.27 We also used CH4 imaging from the Hyperspectral Thermal Emission 

Spectrometer (HyTES), a push-broom imaging spectrometer that produces a wide swath 

Thermal Infrared (TIR) image collecting spectral data from 256 bands ranging from 7.5 – 

12 µm with a spatial resolution of around 2 m at a 1 km altitude.28, 29, 30 Airborne surveys 

using the HyTES instrument targeting California oil and gas infrastructure were conducted 

from 2014 – 2017.30 The meter-scale spatial resolution of both methane imagers enables 

attribution of methane plumes to source facilities (Rafiq et al., 2020), and also to individual 

infrastructure within a facility. By linking methane plume observations to infrastructure 

with a specific function, such as a chimney as the source of combustion emissions, we are 

able further attribute emissions to processes. Finally, we compare the modeled emissions 

with these airborne CH4 plume observations to identify discrepancies in emission rates. 

We hypothesize that fugitive emissions that do not emanate from power plant stacks 

are responsible for higher CH4 emissions as compared to the publicly reported inventories. 

We further hypothesize that emissions we attribute to power plant processes are persistent 
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while the power plant facility remains operational, and we expect to see these types of 

emissions exhibited periodically over the course of multiple top-down observations. We 

hypothesize that fugitive emissions to be one-off or emitted at a single time and due to their 

unpredictable nature, we also presume observing them once or twice given a facility is 

sampled multiple times. Moreover, we surmise higher overall CH4 emissions from stand-

alone power plants (SPWP) than co-located power plants (CPWP) as SPWP’s house 

dedicated power generation infrastructure and consume more fuel on average than 

CPWP’s.  Overall, this study aims to show that fugitive emissions from power plants are 

underestimated in reported emission inventories which can affect potential mitigation 

strategies.  

   II. Methods 

 

We used three bottom-up datasets to establish CH4 emission estimates and identify 

locations for power plants in California: Vista-CA power plant geospatial dataset, 2017 

CARB PMT facility data, and 2017 EPA FLIGHT facility data. Vista-CA is a geospatial 

database of 901,009 validated features of potential CH4 emitting infrastructure in 

California for 2017 developed from publicly available datasets organized into the IPCC 

framework.21, 22, 23 Vista-CA contains records for 433 power plants in California and 

categorizes them by their primary firing source: 114 are biomass, 2 are coal-powered, 283 

are natural gas firing, 1 is nuclear-powered, 10 petroleum powered, and 23 are 

miscellaneous. Of those 433 power-plants, 329 are stand-alone power plants (SPWP) and 

104 are co-located power plants (CPWP). In total, 104 power plants in Vista-CA are co-

located with at least 1 or more of the following Vista-CA sectors: 42 power plants are co-



 134 

located with landfills, 26 power plants co-located with wastewater treatment plants, 16 are 

co-located with oil and gas facilities, 1 is co-located with a dairy, 19 are co-located with 

refineries, and 3 are co-located with natural gas processing plants.  CARB PMT data 

contained records for 592 facilities in California of which 227 were power plants 

(https://ww3.arb.ca.gov/ei/tools/pollution_map/).20 EPA FLIGHT data contained records 

for 325 facilities in California of which 173 were power plants 

(https://ghgdata.epa.gov/ghgp/main.do).19  

IPCC published guidelines for national GHG inventories in 2006 

(https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html).32, 33 These guidelines 

provide sector-specific methodologies for estimating greenhouse gas emissions using three 

tiers of increasing specificity for estimating CH4 emissions for a given facility.  We 

calculated power plant emissions using the guidance for stationary combustion (IPCC 

Level 1A Energy Industries), where stationary combustion refers to emissions from the 

intentional oxidation of materials within a power plant that is designed to raise heat and 

provide it either as heat or as mechanical work such as electricity. This study utilizes tier 2 

stationary combustion method which solely requires multiplying fuel combustion statistics 

by country-specific emission factors derived from national fuel characteristics and do not 

include fugitive emissions.32  
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Equation 1.  

 

𝑬𝒇 = 𝑬𝑭𝒇 𝒙 𝑭𝑪 

 

Where Ef refers to the total CH4 emissions by type of fuel (kg), EFf refers to country-

specific emission factor of a given GHG by type of fuel (kg gas/TJ), and FC refers to 

amount of fuel combusted (TJ).  

The U.S. Energy Information Administration (U.S. EIA) annually publishes 

individual plant and generator data that includes metrics such as heat content of fuels and 

total fuel consumed. We obtained EIA plant information for 2019 which contained 

specific records of monthly and total fuel consumed for over 14,000 U.S. power plants. 

U.S.-specific fuel-based emission factors for 2018 were obtained from the Electronic 

Code of Federal Regulations (ECFR) via the EPA (https://www.ecfr.gov/cgi-bin/text-

idx?SID=ae265d7d6f98ec86fcd8640b9793a3f6&mc=true&node=pt40.23.98&rgn=div5#

ap40.23.98_138.2).34 Next, we matched the fuel consumption power plant data from 

Vista-CA using the plant identification code, and we were able to match 321 power 

plants in total. Details on the emissions factors used can be found in the Supplementary 

Information (S1.1). Fuel type for each Vista-CA power plant was based on the primary 

firing source in the metadata. Finally, we used the IPCC Tier 2 equation to generate our 

bottom-up estimates in kg CH4 a
-1 for all 321 matched power plants.  

Progress in spectroscopic instrumentation for top-down observations have allowed 

the detection and retrieval of CH4 plumes at sub-meter scales across large areas. Here, we 

use CH4 retrievals from two airborne infrared imagers, AVIRIS-NG and HyTES. The 

AVIRIS-NG instrument is unique in terms of its high signal to noise ratio, response 
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uniformity, and calibration accuracy. Close to 2,000 flights conducted using the AVIRIS-

NG instrument covered key CH4 point source emission sectors including oil and natural 

gas production, processing, transmission, storage and distribution infrastructure. While 

AVIRIS-NG operates in the visible to shortwave spectrum and utilizes reflected solar 

radiance to detect CH4,
24, 25, 26 HyTES’ thermal infrared spectrometer relies on the thermal 

emission and thermal contrast between the ground and CH4.
28, 29, 30 Close to 300 flights 

were conducted with the HyTES instrument over California, with multiple detections of 

CH4 plumes. We used CH4 plume observations data from AVIRIS-NG’s and HyTES’ 

California campaigns from 2014-2018.23, 30 There were a total of 1,704 AVIRIS-NG plume 

observations with integrated CH4 enhancement values (kg h-1) collected during the 2016 – 

2018 surveys.23, 27 We linked quantified emission plumes to their source facilities and 

analyzed emission persistence to get a facility-level estimate of point source methane 

emissions across surveys for 795 unique methane sources of which included 24 power plant 

related sources.16, 27 This method calculates the sum of all CH4 plume emissions from a 

given facility and multiplies it by a persistence measurement defined as the ratio of 

observed plumes to the total number of AVIRIS-NG flights over a given area.16 

Additionally, the attribution algorithm, Geospatial Source Attribution Automated Model 

(GSAAM) was employed to geospatially associate AVIRIS-NG and HyTES plumes to 

power plants.23 GSAAM attributes CH4 point locations to facilities in the Vista-CA dataset 

through automated spatial association using a series of structured geospatial and logical 

relationships and sector-specific functions. Further details on the methods of this process 

can be found in Rafiq et al. 2020 (Supplementary S1.2).23  
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Subsequently, we obtained HyTES data and developed methods for vectorizing and 

operationalizing the hyperspectral imagery from each flight line for spatial analysis.30 We 

collected the level 3 cluster-match-filtered CH4 retrieval product 

(https://hytes.jpl.nasa.gov/order) for 252 flight-lines (July 2014 – June 2017). The 

available raw format of the hyperspectral data was in keyhole markup language zipped 

format (KMZ) which needed to be converted to a GeoTIFF format in order to execute 

operations. KMZ’s were batch converted using QGIS’ “translate” function. From there we 

developed a Python model to automate radiometric isolation of pixels highlighting CH4 

emissions for extraction (Supplementary S1.2). Next, all the extracted CH4 emission 

GeoTIFF’s were batch converted into polygon vectors using QGIS and then merged 

together to form one combined vector layer that identified 22,739 CH4 emission polygons 

and associated metadata containing flight records for each plume. Finally, the centroid 

position of each polygon was taken in order to use this location within the GSAAM 

algorithm for HyTES plume attribution.23 In order to derive HyTES flight coverage 

metrics, we used the 4th band in each HyTES multispectral GeoTIFF to extract and simplify 

flight outlines using a number of batch process functions and merged them all into one 

layer with associated flight metadata statistics (Supplementary S1.2). 

 Power plant attributions for AVIRIS-NG and HyTES were obtained using 

GSAAM. Power plant coverage for AVIRIS-NG was conducted using an assumption of 

1800 m swath width across the centerline for each flight.27 All Vista-CA power plant 

facilities lying inside this distance were considered to be included in the AVIRIS-NG 

survey. We repeated this process using the vectorized HyTES flight outlines to obtain 

https://hytes.jpl.nasa.gov/order
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coverage measurements. AVIRIS-NG plume points and HyTES plume polygons were 

directly overlaid on one another in order to spatially determine areas of overlap in 

California with a focus on power plant facilities. Finally, CH4 emissions data from Vista-

CA IPCC Tier 2 bottom-up emissions, AVIRIS-NG GSAAM source data, CARB PMT, 

and EPA FLIGHT were directly matched based on plant name and plant identification 

number for comparison and analysis. Finally, we explicitly identified CH4 super-emitter 

influence in the power plant sector for all four datasets. Duren et al. defined sectors 

exhibiting CH4 “super-emitter” influence where typically fewer than 20% of sources 

contribute to more than 60% of the total emissions from a given sector.27 Vista-CA 

metadata and EIA metadata was used to establish the CH4 emission relationship among 

SPWP’s and CPWP’s categories, fuel source type (biomass, petroleum, coal, natural gas, 

and other) and annual power generation (MWh) records.  

We derived time series for all 37 power plants from which airborne methane plumes 

were observed to determine both the type of emissions possibly occurring and the degree 

to which they were persisting across flights or occurring as one-off fugitive emissions. All 

AVIRIS-NG CH4 emissions attributed to 24 power plants through GSAAM were then 

further analyzed using geospatial methods and aerial imagery. We sought to identify sub-

facility infrastructure to determine whether it was a fugitive leak or process emission and 

how often that piece of infrastructure was emitting, depending on the number of 

observations available for that given power plant facility. If a CH4 plume was observed 

adjacent to a stack, we considered the emission to be related to fuel combustion at the plant 

(e.g., process emissions). If a CH4 plume was observed elsewhere on the facility (e.g., near 
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pipes, etc.), then we assumed it was a fugitive emission. Ambiguous cases occurred when 

plumes were found within the bounds of a power plant facility but were not tied to any 

particular piece of infrastructure or component. We utilized high-resolution 1 m aerial 

imagery from the U.S. Department of Agriculture’s National Agriculture Imagery Program 

(NAIP) along with Google Earth’s aerial imagery and street view images. Image analysis 

of the 24 AVIRIS-NG emitting power plants allowed us to pinpoint specific infrastructure 

in order to better determine emission type.  

   III. Results 

 

The bottom-up and top-down survey of power plants presented here is the largest 

CH4 emissions survey developed for California power plants. We calculated total expected 

CH4 emissions of 2.76 Gg CH4 a-1, or 96.8% of the total in-state generation CH4 

emissions,20 from the 321 out of 433 power plants in the Vista-CA dataset, accounting for 

44.7 TWh of power (Figure 4.1 and Table 4.1).3 Our power plant emission estimates 

revealed that natural gas power plants are expected to have a lower contribution to CH4 

emissions than biomass fueled plants, despite producing more power (Table 4.1). Of the 

321 power plants modeled in Vista-CA, 0.7 Gg CH4 a
-1, or 25% of total CH4 was from 242 

natural gas plants producing 88% of the power, while 2.04 Gg CH4 a
-1 was from 73 biomass 

fueled plants that produced close to 11% of the total power (Table 4.1).  

CARB PMT and EPA FLIGHT data contain fewer power plants, with the Vista-

CA power plant dataset cataloging 3 times and 6 times more power plants than the CARB 

PMT and EPA FLIGHT power plant datasets, respectively (Figure 4.1 and Table 4.2). The 

addition of more than 150 power plant facilities in the Vista-CA dataset over both CARB 
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PMT and EPA FLIGHT enables information on plants not tracked or surveyed before by 

these reporting agencies, which is critical for a thorough quantitative emissions assessment.  

Vista-CA power plant CH4 emissions exclude fugitive CH4 given that IPCC Tier 2 

methodology for power plant CH4 only includes process emissions resulting from 

combustion of different fuels. Comparison of the Vista-CA emissions to CARB PMT and 

EPA FLIGHT shows a near 1:1 relationship, suggesting that similar methods were 

employed to calculate or report emissions, further suggesting that fugitive CH4 emissions 

occurring at power plant facilities are not included in regulatory accounting of these 

facilities’ CH4 emissions (Figure S4.6A and S4.6B). As CARB PMT and EPA FLIGHT 

do not differ systematically from Vista-CA, it can be reasonably assumed that the modeled 

numbers are based on fuel consumption estimates.  

AVIRIS-NG surveyed 253 power plants in California from 2016-2018 and 

observed 71 CH4 plumes emitted from 24 power plants (Figure 4.2A, Tables 4.2 and 

S4.1A). Of the 24 emitting power plants, 8 power plants were SPWP’s (all 8 natural gas 

firing) and 16 power plants were CPWP’s (6 biomass, 5 natural gas firing, 5 other) (Tables 

2 and S1A). Emission rates for individual plumes ranged from around 1 – 600 kg CH4 h
-1 

(Table S1A). Comparatively, HyTES surveyed 30 power plants in California from 2014 – 

2015 and observed 266 CH4 plumes (via GSAAM) emitting from a total of 16 power plants 

(Figure 4.2B, Tables 4.2 and S4.1B). Of the 16 emitting power plants, 9 power plants were 

SPWP’s (7 natural gas firing, 1 coal, and 1 other) and 7 were CPWP’s (4 natural gas firing, 

3 other) (Tables 2 and S1B). Only one GSAAM-attributed power plant was observed to be 

emitting by both AVIRIS-NG and HyTES (Figure S1A and S1B). 
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Using the CH4 plume imagery, we then assessed the probable source of CH4 

emissions within each power plant, with a focus on determining whether emissions were 

from a fugitive or process-based origin. We analyzed imagery of CH4 plumes from the 24 

power plants observed to be emitting by AVIRIS-NG to determine the likely CH4 emission 

source, which revealed 17 power plants emitting fugitive CH4, and the remaining 7 plants 

producing process-based CH4 (Table S1). CH4 plumes we attributed to processes (Figures 

4.4A, 4.4C, 4.4E) include plumes emanating from flaring heat stacks (Figures 4.4B, 4.4D, 

4.4F), likely caused by the combustion process, and were observed from 7 different power 

plants. These observations of CH4 from the same flaring heat stacks were repeatable in 

nearly half of facilities, with 4 observed emitting once and 3 observed emitting persistently 

in least 3 or more instances of observation of the same flaring heat stack. We also observed 

fugitive CH4 plumes coming from pipelines (Figures 4.5A, 4.5B), storage tanks (Figures 

4.5C, 4.5D), and natural gas related infrastructure (Figures 4.5E, 4.5F). Of the 17 AVIRIS-

NG observed power plants showing fugitive leaks, 8 were one-time leaks, and 9 were 

showing signs of persistent activity with 5 of these 9 power plants seen emitting at least 3 

more separate times from the same component.  

Time series analysis of both HyTES and AVIRIS-NG data further confirmed that 

the observations attributed to processes were more persistent than those attributed to 

fugitive sources (Table S4.1). Process-attributed plumes were observed frequently over the 

course of multiple top-down observations while fugitive emissions were observed once or 

twice during multiple sampling periods. On average, fugitive plumes were observed 2-3 

times more often than process-based plumes. We were able to derive more information 
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using the time series for AVIRIS-NG since we had access to quantitative integrated CH4 

enhancements for detected plumes. AVIRIS-NG flights over the 24 GSAAM attributed 

power plants showed that the top 3 emitters, all of which were natural gas-firing, were only 

flown once and were observed to be emitting at a rate of at least 85 kg CH4 h
-1 (2 were 

classified as fugitive and one was process-based) (Table S1). 3 of the 24 AVIRIS-NG 

observed CPWP power plants were flown more than 12 times each and were observed 

emitting 8 or more CH4 plumes (2 were classified as fugitive and one process-based, seen 

over multiple flights). It should be noted, there were temporal gaps spanning months 

between observation across most of those individual flights. Additionally, as stated in the 

methods, multiple plumes were observed in the same power plant facility from one flight 

were summed if those plumes were determined to be coming from the same origin or 

averaged if they were determined to be coming from different origins.   

Further detailing the breakdown of fugitive and process- based emissions of the 

remaining 18 AVIRIS-NG-observed emitting power plants, 7 CPWP’s (4 were fugitive 

and 3 were process-based) and 1 SPWP (process-based) were flown more than 10 times 

each and exhibited anywhere between 1 to 6 CH4 plumes (Table S1A). 5 CPWP’s (4 

fugitive and 1 process-based) and 4 SPWP’s (all fugitive) were flown at least 4 times and 

were observed producing 1-3 CH4 plumes each (Table S1A). Only 1 biomass fueled CPWP 

was flown once and observed to be exhibiting fugitive emissions with a CH4 plume 

observation of around 52 kg CH4 h
-1 (Table S1A). Table S1 outlines the above descriptions 

in more detail.  
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While emission rates are not quantified for HyTES, we were able to assess plume 

observation and attribution at the facility level. Of the 16 HyTES attributed power plants, 

3 SPWP’s (2 natural gas firing and 1 coal) and 2 CPWP’s (2 natural gas firing) were flown 

more than 30 times with 181 attributed CH4 plumes (Table S1B). 5 SPWP’s (4 natural gas 

firing and 1 other) and 2 CPWP’s (2 other) were flown more than 10 times with 70 

attributed CH4 plumes (Table S1B). Of the remaining 5 HyTES-attributed power plants 

that were flown more than 3 times with 15 attributed CH4 plumes, 2 were SPWP’s (3 

natural gas firing) and 3 were CPWP’s (2 natural gas firing and 1 other) (Table S1B). 

With quantified CH4 emissions observed by AVIRIS-NG for individual power 

plants, it is possible to compare observations to the expected emissions calculated using 

inventory methods. It should be noted that AVIRIS-NG instrument is unable to detect 

smaller emission sources below 2 – 10 kg h-1, and is hence likely to underestimate overall 

emissions (Figures S4.4, S4.5).27 Applying this sensitivity limit to the downscaled Vista-

CA bottom-up emissions revealed 34 power plants expected to emit more than 2 kg CH4 

hr-1 and 9 plants emitting more than 10 kg CH4 hr-1. Simply put, scaling the AVIRIS-NG 

observations, we expect to see 1% or around 4 power plants to potentially exhibit emissions 

greater than 100 kg hr-1, if all 433 Vista-CA power plants were surveyed in a day. Figure 

4.3 illustrates this by showing the differences in cumulative percentages between power 

plants observed as emitting by AVIRIS-NG and the modeled rates from Vista-CA. 

AVIRIS-NG and Vista-CA vary from one another likely due to the occurrence of fugitive 

emissions at power plants that is unaccounted in the modeled estimates. Downscaling of 

Vista-CA emissions to the per hour mark (8,760 hours) greatly exemplifies the under 
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accounting of emissions as compared to AVIRIS-NG (Figure S4.7). We further assumed a 

variety of down-scaling scenarios for CH4 to be emitted a few hours out of the year (175 

hours to 1,752 hours) to account for start-stop procedures and venting, and still found 

Vista-CA emissions to be lower than AVIRIS-NG emissions for the same facilities (Figure 

S4.7). On a per facility level, the differences in emissions between AVIRIS-NG and Vista-

CA are more apparent. Comparing Vista-CA Bottom-Up power plants that overlap with 

AVIRIS-NG flight extents with AVIRIS-NG attributed power plants shows a difference in 

the distribution between biomass plants and natural gas firing plants (Table 1). For Vista-

CA Bottom-Up, biomass plants emit 2.75 times more CH4 than natural gas firing plants 

while AVIRIS-NG showed a reverse trend with natural gas firing plants emitting 2 times 

more CH4 than biomass plants (Table 4.1). Both Vista-CA Bottom-Up and AVIRIS-NG 

modeled/observed at least twice as many natural gas firing plants as biomass plants (Tables 

1, S1A, and S1B).    

   IV. Discussion 

 

This work provides a first step towards assessing how remotely sensed observations 

of CH4 plumes might be used to better understand actual CH4 emissions from power plants. 

We hypothesized that there are undercounted fugitive emissions of CH4 from power plants, 

and we showed that (a) regulatory datasets, such as EPA FLIGHT and CARB PMT, include 

fewer power plants than actually exist (b) power plant CH4 emissions follow a heavy-tail 

distribution that suggests super-emitter behavior, and (c) attribution of individual CH4 

plumes to their likely sources supports the notion that fugitive emissions are undercounted, 

and may be responsible for a discrepancy between observations and modeled emissions. 
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Our newly calculated Vista-CA power plant CH4 emissions dataset, along with 

remotely sensed CH4 emissions from AVIRIS-NG provide the largest documented power 

plant CH4 emissions dataset compiled for California (Table S4.3). These complimentary 

products illustrate a lack of relationship between power generation capacity and observed 

CH4 emissions, despite being the core of currently used bottom-up models (Table 1). Both 

our bottom-up and top-down results show significant super-emitter behavior in the power 

plant sector (Figures S4.3, S4.4, and S4.5). We are able to show that AVIRIS-NG detected 

fugitive emissions emanating from power plants (Figure 4.5 and Table S4.1A). Both the 

bottom-up modeled emissions and the top-down measurements reinforced the notion of 

discrepancies existing in the assessment of fugitive emissions (Figure 4.3).  

The total AVIRIS-NG emission estimate for all 24 facilities was 1,071 kg CH4 hr-

1, of which half is derived from one natural gas stand-alone power plant facility (515 kg 

CH4 hr-1). In order to compare this figure with Vista-CA, we downscaled Vista-CA 

emissions, calculated annually, to hourly, assuming uniform emissions over the course of 

a year, resulting in a total of 311 kg CH4 hr-1 for 321 power plants, which is 1.78-3.44 times 

smaller than AVIRIS-NG observations. Comparing across the same 24 plants between both 

datasets, AVIRIS-NG is at least 28-54 times larger than Vista-CA. Additionally, almost 

90% of the 1,071 kg CH4 hr-1 AVIRIS-NG observation was a result of fugitive-based 

emissions, while 137.4 kg CH4 hr-1 was process-based. We upscaled every power plant 

emission observed by AVIRIS-NG, constrained it by potential operational hours of high 

emission and compared it with the total emissions estimate from Vista-CA. We saw that 

constraining AVIRIS-NG emissions to 10% high operation hours (876 hours resulting in 
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938,196 kg CH4 a
-1) makes up about 35% of emissions from the total Vista-CA dataset 

(2,761,807.42 kg CH4 a
-1). In other words, if power plants are assumed to be emitting 876 

hours in a given year, AVIRIS-NG observations explain 35% of the total Vista-CA bottom-

up inventory from only 24 AVIRIS-NG observed power plants. For context, this number 

increases to 70% explained emissions by AVIRIS-NG of total Vista-CA emissions with 

20% assumed hours (1,752 hours) of operation time and almost 350% explained emissions 

by AVIRIS-NG of total Vista-CA emissions with 100% assumed hours (8,760 hours) of 

operation time. Similarly, Vista-CA downscaling under different hours of operation 

scenarios in a given year (175 hours to 1,752 hours) results in under accounting of AVIRIS-

NG observed emissions by 1.5x to 10x. This suggests that emissions from the power plant 

sector seem to be underestimated in bottom-up models when compared to top-down 

observations.  

On a per power plant facility level, natural gas firing power plants were observed 

to be emitting more CH4 than biomass plants while the opposite was analyzed from the 

bottom-up product (Table 1). This result is also evident in the CARB GHG bottom-up 

inventory where biomass plants are modeled to out-emit natural gas plants 1.5:1.20 This is 

likely due to the nature of the Tier I calculation for CH4 emissions used, since burning 

natural gas has a lower emission factor than burning biomass. Because these models 

neglect fugitive CH4, natural gas firing plants are not only producing more power on a 

MWh basis but are actually emitting more CH4 on that basis as well. Vista-CA bottom-up 

revealed higher emissions for power plants that were detected to be less than 50 kg hr-1 as 

observed by AVIRIS-NG (Figure S4.5). Conversely, for the power plants detected by 
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AVIRIS-NG showing emissions greater than 50 kg hr-1, the Vista-CA bottom-up product 

showed emissions that were negligible (Figure S4.5). Both of these notions can be related 

to temporal variability and not capturing peak emissions at the right time. Finally, both 

bottom-up and top-down datasets reconfirmed strong super-emitter behavior across the 

California power plant sector (Figures S4.3, S4.4, and S4.5).  

Super-emitter behavior was evident for all power plant CH4 emissions, but a heavier 

tailed distribution was exhibited in the AVIRIS-NG observations compared to the bottom-

up and reported datasets (Figure S4.3 and S4.4). With 1.2% of the power plants surveyed 

responsible for 60% of total observed AVIRIS-NG power plant CH4 emissions, this was 

the most skewed version of super-emitter influence out of all the datasets analyzed (Figure 

S3). Furthermore, looking at individual AVIRIS-NG power plant plume data, this super-

emitter behavior was also observed, with 19 out of the 75 observed plumes constituting 

more than 60% of the observed AVIRIS-NG emissions (Figure S4.3). Vista-CA bottom 

up, CARB PMT, and EPA FLIGHT all exhibited super-emitter behavior to a lesser degree 

ranging from 5 – 18% contribution towards the 60% emissions cumulation mark (Figure 

S4.4). This suggests that CH4 top-down observations can better constrain the super-emitter 

influence among these top emitting power plants better than the modeled versions. It also 

reaffirms that a handful of facilities emitting the greatest proportion of CH4 can be more 

specifically targeted for CH4 emissions reduction with a higher probability of success. 

There were two major spatial clusters for super-emitting power plants as identified by all 

four datasets in California: the western Kern County oil fields and the South Bay complex 

in Los Angeles. The relationship among the types of power plants, the fuel types consumed 
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by these power plants, and the quantity of CH4 emissions produced by the bottom-up and 

the top-down results illustrated that there are significant fugitive emissions of CH4 from 

power plants, and that there are super emitters that exceed the expected emissions (Tables 

4.1, 4.2, and S4.1A). 

Time series and remote sensing analysis of AVIRIS-NG observations of power 

plants demonstrate that CPWP’s are more likely to show infrequent smaller magnitude 

fugitive-based emissions while SPWP’s are more likely to show significant or higher 

magnitude fugitive-based emissions (Table S1A). Simply put, SPWP’s are spatially larger 

than CPWP’s which means they potentially house more infrastructure. Consequently, the 

likelihood of any leakages or failures in these components increases simply with more of 

these components existing at a SPWP facility. In accordance with the bottom-up emission 

modeling, we observed that SPWP’s produced higher CH4 emissions than CPWP’s. Vista-

CA accounts SPWP’s as producing 122.54MW of power per facility on average versus 

CPWP’s 46.35MW. AVIRIS-NG observed SPWP’s produced five times more CH4 than 

CPWP’s as observed by AVIRIS-NG, while Vista-CA Bottom-Up showed a doubling of 

CH4 emission between SPWP’s and CPWP’s (Tables 1, S1A, and S3). Only 7 of the 24 

observed power plants exhibited persistent process-driven emission patterns while 17 of 

the 24 observed exhibited fugitive-type emissions (Figures 4.2A and Table S4.1A). 

Additionally, only 2 of those 24 facilities showed infrequent fugitive-type emissions 

greater than 100 kg CH4 hr-1. This again speaks to the characteristics of persistence versus 

one-off fugitives with AVIRIS-NG revealing larger emissions only seen once at a given 

power plant while smaller or more process-based emissions are seen with more frequency 
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(Table S4.1A). Time series plots of one SPWP and one CPWP are provided in the 

Supplement that include both AVIRIS-NG observations and Vista-CA averages from the 

different emission scenarios discussed previously (Figure S4.7). Image analysis suggests 

fugitive leaks are much more common in power plants than process-based emissions and 

these fugitive leaks are more likely than not to be persistent or occurring with some 

frequency (Figure 4.5 and Table S4.1A). CPWP’s were recorded as emitting more than 

SPWP’s yet fugitive leaks dominate both types of plants. Emissions mitigation would be 

most effective in targeting and assessing fugitive leaks in CPWP’s from storage tanks and 

natural gas related infrastructure and components.  

Limited number of observations by AVIRIS-NG and HyTES reduce the assessment 

efficacy for analyzing temporal variability of SPWP and CPWP CH4 emissions and hinder 

high confidence determination of episodic and persistent categorization to CH4 

observations (Tables S4.1A and S4.1B). This also limits analyzing CH4 emissions in the 

context of diurnal power generation variability which needs to be further investigated. 

While AVIRIS-NG and HyTES have significantly higher spatial resolution compared to 

existing satellites such as Tropospheric Monitoring Instrument (TROPOMI), Scanning 

Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and 

Greenhouse Gases Observing Satellite (GOSAT), the temporal quality of aircraft 

observations can be further improved.37, 38, 39 Dedicated flights over power plant facilities 

over an extended period of time can further reveal the frequency and probability of fugitive 

emission occurrence. Limitations on sustained observations hamper the potential to 

investigate fugitive emissions, which require a more committed platform to overcome these 
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issues.27 Facilities performing their own leak surveys on site periodically can be one way 

to address this. Additionally, ground-based surveys can also detect power plant CH4 

emissions, which are likely to be fugitive since a ground measurement would likely not be 

able to measure CH4 coming from the stacks. 

Multi-temporal focused flights using mass-balance methods or targeted/persistent 

aerial spectroscopy through high-resolution satellites is one way to overcome these data 

limitations and confidently answer critical questions about CH4 emission dynamics. 

Current satellite instruments that provide capability for detecting GHG’s such as CH4 at 

higher resolutions include Greenhouse Gas Satellite (GHGSat), Precursore Iperspettrale 

della Missione Applicativa (PRISMA), and Environmental Monitoring and Analysis 

Program (EnMAP).40, 41, 42, 43 Additionally, CH4 dedicated high-resolution instrumentation 

is currently being developed in NASA’s Geostationary Carbon Observatory (GeoCARB) 

and private ventures such as MethaneSAT.44, 45 These instruments will potentially offer 

dedicated coverage of CH4 producing infrastructure like power plants. 

Modeled emissions using even IPCC Tier 2 specifics are still not complete as 

evidenced here by the discrepancy in relating emitter influence and fuel type from both the 

bottom-up and top-down perspectives. To improve bottom-up estimates, Tier 3 methods 

can be employed by incorporating specifics on combustion technology, control technology, 

quality of maintenance and the age of equipment utilized at each power plants.32 Data at 

this level of detail is not only publicly inaccessible, but the quality of data is completely 

dependent on a per facility basis. Not every facility contains timely records or accurate 

records and data restrictions further complicated very detailed emissions assessment. IPCC 
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also recommends utilizing Tier 3 methodologies but also acknowledges the difficulty in 

collecting very detailed facility data.32 Power plants should have facility CH4 leak surveys 

as part of their emissions reporting protocol as no IPCC method will be able to account for 

fugitive CH4 emissions. Those measurements can be incorporated into new improved 

regulatory products that keep track of actual emissions (not just calculated process 

emissions). 

We analyzed California’s power plants through the context of top-down 

observations and bottom-up modeling techniques. Differences among datasets can yield 

uncertainty in designing actionable applications for CH4 mitigation. Future work should 

implement persistent measurements to completely capture power plant CH4 fugitive 

emissions throughout their operational cycle. As shown here, a complementary approach 

can be ideal for accurate constraining of emissions to benefit policy informing, especially 

as they relate to power plants.  
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Figure 4.2 A) Power plant CH4 emissions derived from AVIRIS-NG surveys (kg CH4 h
-

1). Circles represent plants with observed CH4 emissions, with the size indicating 

emission magnitude, pink triangles indicate flown power plants with no observed 

emissions and grey triangles indicate power plants not flown by AVIRIS-NG) and B.) 

Power plant CH4 observations from HyTES surveys.  
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Figure 4.3 Vista-CA (blue) and AVIRIS-NG (orange) power plant cumulative 

distribution comparison for each of the 16 matched power plant facilities from each 

dataset. For all the power plants where CH4 plumes were quantified by AVIRIS-NG, we 

totaled up the contribution of all power plants and divided the emissions from each power 

plant by that total to get the fractional contribution of each facility to the observed 

emissions as a percentage (orange bar). We chose the identical power plants from the 

Vista-CA Bottom-Up dataset and performed the same procedure (blue bar) and calculated 

the uncertainty for AVIRIS-NG using Duren et al.’s data.  
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Figure 4.4 Power plant AVIRIS-NG CH4 survey images illustrating process-based 

emissions emanating from flaring stacks. Images on the left show the AVIRIS-NG plume 

image overlaid on NAIP high-resolution imagery. Images on the right show the Google 

Earth aerial imagery/street-view. The color scales show the CH4 concentration 

enhancement (the mass of CH4 in a plume relative to background air) in each pixel.  

A. 9/1/2017 B. 

 

 

C. 9/1/2017 D. 

 

 

E. 9/10/2017 F. 
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Figure 4.5 Power plant AVIRIS-NG CH4 survey images showing fugitive emissions 

emanating from leaks in pipelines, storage tanks, and possibly ancillary components 

located in power plants. Images on the left show the AVIRIS-NG plume image overlaid 

on NAIP high-resolution imagery. Images on the right show the Google Earth aerial 

imagery/street-view. The color scales show the CH4 concentration enhancement (the 

mass of CH4 in a plume relative to background air) in each pixel.

  

A. 10/23/2017 B. 

 
 

C. 10/24/2017 D. 

 
 

E. 6/17/2017 F. 
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   V. Supplementary 

 

   S4.1. Introduction 

 

    This document outlines the specific steps and procedures taken to develop and 

construct the data, methods, and analysis summarized in the main paper. The Vista-CA 

dataset is available at https://doi.org/10.3334/ORNLDAAC/1726. Attribution products 

from the Geospatial Source Attribution Automated Model (GSAAM) are available by 

request (https://doi.org/10.1088/1748-9326/ab9af8). The AVIRIS-NG dataset is available 

at https://data.carbonmapper.org. California Air Resources Board Pollution Mapping Tool 

(CARB PMT) dataset and information can be found at 

https://ww3.arb.ca.gov/ei/tools/pollution_map/.  U.S. Environmental Protection Agency’s 

Facility Level GreenHouse gas Tool (EPA FLIGHT) dataset and information can be found 

at https://ghgdata.epa.gov/ghgp/main.do#.  

   S4.1.1 Bottom-Up Data Collection and Generation 

 

• CARB PMT geospatial data downloaded from 

https://ww3.arb.ca.gov/ei/tools/pollution_map/pollution_map.htm 

o Extracted 122 power plant records from this dataset 

• EPA FLIGHT geospatial data downloaded from https:// 

ghgdata.epa.gov/ghgp/main.do 

o Extracted 78 power plant records from this dataset 

• Vista-CA power plants dataset (Hopkins et al. 2019, Rafiq et al. 2020) 

o Use IPCC 2006 Stationary Combustion Tier 2 methodology for 

calculation 

o Match fuel consumption emissions data with vista-ca power plant data 

o Matched 321 power plants total 

• Bottom-up emissions generation 

o Fuel consumption values from EIA multiplied by custom emission factors 

for IPCC 2006 Stationary Combustion Tier 2 Emissions 

1. Found fuel consumption data from EIA (2018) 
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a. Matched fuel consumption data from EIA to existing Vista-CA 

power plant dataset 

b. Of the 433 power plants in Vista-CA, able to match 321 power 

plants with EIA fuel consumption data 

c. Converted Fuel consumption units from MMBTU to TJ 

2. Use default emission factors from IPCC tier 2 Stationary Combustion 

information, using the “PrimSource” field in Vista-CA to target and 

assign values (e.g. Biomass, Wood, Municipal Waste, Petroleum Coke, 

Petroleum Liquid, Coal, Natural Gas) in units of Kg CH4/TJ 

3. Multiplied fuel consumption data with emission factor to generate 

unique power plant emissions 

   S4.1.2 Airborne Dataset Collection and Processing 

 

NASA JPL Next Generation Airborne Visible Infrared Imaging Spectrometer (AVIRIS-

NG): 

• AVIRIS-NG/Vista-CA GSAAM (Rafiq et al. 2020 and Rafiq et al. 2021 in prep) 

o Used attribution data to identify 8 power plants from 71 detected CH4 

plumes 

o Utilized source data development methods from previous paper to get 

facility emissions 

▪ The direct observational data method utilizes the sum of all fugitive 

and hotspot plume emissions from a given facility and multiplies it 

by a persistence measurement which is the ratio of the observed 

plumes to the total number of overflights. Normalizing by the 

persistence allows for us to potentially account for various temporal 

characteristics in facility observations.  

▪ Equation 1. 

𝑸𝑻𝑼 = ∑(𝑸̅𝒏 × 𝑷𝒏), 𝒘𝒉𝒆𝒓𝒆  𝑷 = (
𝑶

𝑻
) 

▪ Where QTU is the total facility emissions estimate, Q is the 

individual plume estimated by AVIRIS-NG (Duren et al. 2019), P 

is the persistence, n is the source number, O is the total number of 

observed plumes, and T is the total number of overflights for a given 

facility.  
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NASA JPL’s Hyperspectral Thermal Emissions Spectrometer:  

• HyTES Emissions Extraction/Isolation 

o Collected data for 295**(252 operational) flight-lines starting from July 

2014 – June 2017 (43 flight lines contained empty/broken data) 

o Downloaded 295 flight line data as KMZ’s from JPL HyTES website: 

https://hytes.jpl.nasa.gov/order 

1. Kmz to tiff batch conversion using “Translate” function in QGIS 

2. Developed custom remote sensing model to automate radiometric 

isolation of emissions from TIFF into polygons using ArcGIS Model 

Builder/Python/SQL 

a. Parse tiffs into individual bands  

b. Convert individual bands to GeoTIFF’s 

c. Re-classify individual band tiffs accordingly 

i. Band 1 reflectance values < 100 

1. SQL code: {0-99} = 1, {100-255, No Data} 

= 2 

ii. Band 2 reflectance values > 100 

1. SQL code: {0-99, No Data} = 2, {100-255} 

= 1 

iii. Band 3 reflectance values < 100 

1. SQL code: {0-99} = 1, {100-255, No Data} 

= 2 

d. Sum Bands 1-3 

i. SQL code: {Band 1 + Band 2 + Band 3} 

e. Extract cells 

i. SQL code: {value = 3}  

3. Batch process Tiff to polygon conversion using the “Polygonise” 

function in QGIS 

4. Merge all polygons in QGIS using “Merge Vector Layer” function 

5. Final vector polygon data contains footprints for 22,739 emissions 

6. Calculate centroid of polygons and converted into points using 

“polygon to points” function  

7. Run through GSAAM for source attribution 

8. Extract HyTES footprints (batch automated processing): 

a. GDAL Batch polygonise function using the Alpha Band 

(Band 4) 

b. QGIS Batch Extract by attributes DN > 0 

c. GDAL Batch Dissolve function 
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d. QGIS Batch Delete Holes function  

e. QGIS Batch Merge Function 

   S4.2. Analysis Methods 

 

   S4.2.1 Spatial Analysis 

 

Spatial analysis between AVIRIS, HyTES, Vista-CA, EPA FLIGHT, CARB PMT for 

power plants using geospatial methods: spatial overlap, clip, intersect, and select by 

location 

• Vista-CA IPCC Tier 2 compared with EPA FLIGHT data 

o Matched 77 Vista-CA power plants to EPA FLIGHT  

▪ All are Natural Gas 

• Vista-CA IPCC Tier 2 compared with CARB PMT data 

o Matched 122 Vista-CA power plants to CARB PMT 

▪ 26 Biomass, 96 Natural Gas 

• 253 Total Power Plants surveyed by AVIRIS (66 Biomass, 170, Natural Gas, 14 

are other, 3 petroleum) 

o 8 Power plants attributed to AVIRIS plumes using GSAAM 

▪ All 8 are natural gas power plants 

• At least 30 Total power Plants surveyed by HyTES 

o At least 9 Vista-CA power plants attributed to HyTES plumes using 

GSAAM 

▪ 7 are natural gas power plants, 1 is coal power plant, 1 is other type 

power plant 

o At least 7 Vista-CA Power Plants sub-facility attribution to HyTES using 

GSAAM 

▪ (All are originally attributed to refineries) 4 are natural gas power 

plants, 3 are other type power plant 

o At least 16 Vista-CA power plants attributed to HyTES plumes (100m 

buffer) 

▪ Power plants in Bakersfield, Long beach and El Segundo 

• At least 188 AVIRIS point plumes spatially match with HyTES polygon plumes 

(100m buffer) 

o 5 “Sub-facility” power plants 

• At least 552 HyTES polygon plumes spatially match with AVIRIS point plumes 

(100m buffer) 
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• At least 571 HyTES polygon plumes spatially match with Vista-CA Power Plants 

(100m buffer) 

• No direct match in power plant data between AVIRIS attributed power plants and 

HyTES attributed power plants (El Segundo exception through sub-facility power 

plant in refinery) 

• 64 Power plants have Vista-CA IPCC Tier 2 data, EPA FLIGHT data, CARB 

PMT data 

o 45/64 were flown by AVIRIS-NG (All are natural gas) 

▪ 5/64 observed to be emitting by AVIRIS-NG (All are natural Gas) 

o At least 4/64 were flown by HyTES (All are Natural gas) 

▪ 2/4 were seen to be emitting by HyTES (All are Natural gas) 

  S4.2.2 Statistical Analysis 

 

All histograms show what we have seen with AVIRIS-NG that only a select number 

of power plants are strong emitters; the rest are smaller or even negligible. There is a clear 

systemic relationship happening when looking at the CO2/CH4 ratios for EPA FLIGHT and 

CARB PMT.  

(SPWP vs CPWP: Big enough leak to detect by AVIRIS-NG, CPWP smaller than SPWP 

via histogram) 

   S4.3. Power Plant Results 

 

   S4.3.1 Power Plant Emitters and Fuel Consumption Type 

 

• Vista-CA Bottom Up Emissions (316 facilities): Total 2,761,807.42 kg CH4 a
-1 

o Biomass: 2,039,297.41 kg CH4 a
-1 (73.84%) (10.45% power generated) 

o Natural Gas: 703,131.16 kg CH4 a
-1 (25.46%) (87.80% power generated) 

o Petroleum: 457.43 kg CH4 a
-1 (0.02%) (0.000027% power generated) 

o Other: 6,368.82 kg CH4 a
-1 (0.23%) (1.22% power generated) 

o Coal: 12,552.60 kg CH4 a
-1 (0.45%) (0.53% power generated) 

• AVIRIS-NG Source Data (normalized by amount of times flown) 

o 24 SPWP and CPWP: 1073.31 kg of CH4 hr-1 

▪ 13 Natural Gas: 796.77 kg of CH4 hr-1 (74.23%) (87.80% power 

generated) 

▪ 6 Biomass: 190.75 kg of CH4 hr-1 (17.78%) (10.45% power 

generated) 
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▪ 5 Other: 84.78 kg of CH4 hr-1 (7.89%) (1.22% power generated) 

 

   S4.3.2 Net Electricity Generation/Vista-CA Survey Context 

 

• Total Vista-CA Bottom-Up Plants: 321 

o We have NETGEN info for 316 plants (The other 5 were Natural Gas 

Plants also) 

• Total Power generated in 2019 from the 316 plants: 44,676,229.71 MWh 

o 237 Natural Gas Plants: 39,226,566.83 MWh (87.8%) 

o 73 Biomass Plants: 4,668,389.274 MWh (10.45%) 

o 1 Petroleum: 12 MWh (0.000027%)  

▪ (Children’s Hospital) Natural Gas and Distillate Fuel Oil. 

Including diesel, No. 1, No. 2, and No. 4 fuel oils. 

o 4 Other: 544,770.39 MWh (1.22%) 

o 1 Coal: 236,501.21 MWh (0.53%) 

• Comparison to Total In-State System Generation: 194,842,000 MWh (CEC 2018) 

o Natural Gas: 90,691,000 MWh (46.5%) 

o Biomass: 5,909,000 MWh (3.03%) 

o Petroleum: 430,000 MWh (0.22%) 

o Coal: 294,000 MWh (0.15%) 

 

   S4.3.3 HyTES Power Plant Detection Breakdown 

 

• HyTES observations have come from plants that are completely natural gas-firing 

or partially natural gas fueled 

• SPWP: 

o 1 Coal: PWP000029 Argus Cogen Plant (Conventional Steam Coal), 

concluded operations in 2014 (CEC), HyTES flew and saw emissions 

observed on July 8, 2014 

o 1 Other: PWP000046 BP Carson Refinery (Natural Gas and Other Gases)  

▪ Is also a co-located power plant as well 

• CPWP:  

o HyTES surveyed 13 total power plants (All 13 have all or some Natural 

Gas usage) 

▪ 6 of 13 were not observed emitting by HyTES (using GSAAM): 

• 5 Natural Gas 

• 1 Other:  

o PWP000458 Wilmington Hydrogen Plant (natural 

gas, Waste Heat not directly attributed to a fuel 

source) 

▪ 7 of 13 HyTES observed emitting facilities (using GSAAM) (All 

co-located with refineries) 

• 4 Natural Gas: 
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o PWP000121 Dominguez Plant, (Natural Gas), co-

located with SHELL OIL PRODUCTS 

o PWP000132 El Segundo Cogen, (Natural Gas), co-

located with CHEVRON USA INC 

o PWP000178 Harbor Cogen, (Natural Gas), co-

located with VALERO REFINING CO 

CALIFORNIA 

o PWP000285 Oildale Energy LLC, (Natural Gas), 

co-located with Tricor Refining LLC 

• 3 Other:  

o PWP000046 BP Carson Refinery (Natural Gas and 

Other Gases), co-located within TESORO 

REFINING & MARKETING CO  

o PWP000141 Equilon Los Angeles Refining (Other 

Gas), Secondary fuels: natural gas, Type: Burner, 

turbine 

o PWP000420 Tesoro Wilmington Calciner (Other 

primary fuel), Natural Gas, Petroleum Coke, Waste 

Heat (not attributed to fuel source) 

 

   S4.3.4 AVIRIS-NG Power Plant Detection Breakdown 

 

AVIRIS-NG SPWP: 

• Total flown: 168 stand-alone power plants 

o 160 non-emitting as determined by GSAAM 

o 8 emitting as determined by GSAAM 

▪ All 8 are natural gas plants 

AVIRIS-NG CPWP: 

• Total flown: 85 co-located power plants 

o 68 not observed to be emitting by AVIRIS-NG 

o 17 were observed to be emitting by AVIRIS-NG (9/17 have all or some 

Natural Gas usage) 

▪ 6 Biomass 

• 3 co-located with Landfills 

o PWP000015 Altamont Gas Recovery, Biomass, co-

located with Altamont Landfill & Resource Recovery, 

(Landfill Gas) 

o PWP000021 Ameresco Johnson Canyon, Biomass, co-

located with Johnson Canyon Sanitary Landfill, 

(Landfill Gas) 

o PWP000154 G2 Energy Hay Rd, (Biomass) co-located 

with Recology Hay Road Landfill, (Landfill Gas) 

• 1 co-located with Dairy 
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o PWP000305 Pacific Rim Dairy Digester, (Biomass, 

Other Waste Biomass), co-located with Pacific Rim 

Dairy 

• 2 co-located with WWTP 

o PWP000323 Plant No 2 Orange County, (Biomass), co-

located with ORANGE COUNTY S.D. #2 WWTP 

o PWP000424 Total Energy Facilities, (Biomass, Other 

Waste Biomass, Other Biomass Gas. Including digester 

gas, methane, and other biomass gases.), co-located 

with LACSD Joint WPCP WWTP 

▪ 6 Natural Gas 

• 4 co-located with Refineries 

o PWP000121 Dominguez Plant, (Natural Gas), co-

located with SHELL OIL PRODUCTS 

o PWP000132 El Segundo Cogen, (Natural Gas), co-

located with CHEVRON USA INC 

o PWP000242 Martinez Refining, (Natural Gas, Oil and 

Gas), co-located with Shell Oil Products US – Martinez 

o PWP000285 Oildale Energy LLC, (Natural Gas), co-

located with Tricor Refining LLC 

• 2 co-located with Oil and Gas Facilities 

o PWP000037 Berry Placerita Cogen, (Natural Gas), co-

located with Central Facilities Oil and Gas Facility, 

(Combo Gas/Oil) 

o PWP000135 Elk Hills Power LLC, (Natural Gas), co-

located with Occidental of Elk Hills, Inc.  

▪ 5 Other 

• 4 co-located with Refineries 

o PWP000046 BP Carson Refinery, (Natural Gas and 

Other Gases), co-located with TESORO REFINING & 

MARKETING CO 

o PWP000229 Los Angeles Refinery Wilmington, 

(Natural Gas, Oil and Gas), co-located with Philips 66 

COMPANY 

o PWP000420 Tesoro Wilmington Calciner, (Other, 

Natural Gas, Petroleum Coke, Waste Heat (not 

attributed to fuel source), co-located with VALERO 

REFINING CO CALIFORNIA  

o PWP000145 ExxonMobil Oil Torrance Refinery, 

(Other), co-located with EXXONMOBIL REFINING 

& SUPPLY CO 

• 1 co-located with NG Processing Plant 

o PWP000388 Signal Hill West Unit, (Other, Other 

Gases), co-located with West Unit Oil and Gas Facility 
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and SIGNAL HILL WEST UNIT GAS PLANT NG 

Processing Plant  

 

   S4.3.5 Super Emitter Characteristics 

 

Roughly 10% of sources produce 60% of emissions; “Where typically fewer than 

20% of sources (so-called super-emitters) contribute more than 60% of total emissions 

from that sector (Duren et al. 2019)”, As we can see, power plants, both observationally 

and based on modeling, follow the super-emitter concept to a higher degree.  

o AVIRIS-NG Source Data (253) 

▪ 1.2% (3) of power plants responsible for 60% of all observed 

power plant emissions 

• 3 Natural Gas 

o Vista-CA IPCC (321) 

▪ 4.9% (16) of power plants responsible for 60% of all calculated 

power plant emissions 

• 15 Biomass, 1 Natural Gas 

o CARB PMT (122) 

▪ 10.7% (13) of power plants responsible for 60% of all reported 

power plant emissions 

• 6 Biomass, 7 Natural Gas 

o EPA FLIGHT (77) 

▪ 18.2% (14) power plants responsible for 60% of all reported power 

plant emissions 

• 14 Natural Gas 

 

   S4.3.6 Fugitive vs Process-Based Analysis/Determination 

 

HyTES: 

• Looked at all the time series for all 13 SPWP and CPWP with HyTES 

Flights/Observations 

o 9/13 are Natural Gas (2 CPWP and 7 SPWP) 

o 3/13 are Other (2 SPWP and 1 CPWP) 

o 1/13 are Coal (1 SPWP) 

• More Flights = More Plumes 

o Same as AVIRIS-NG 

• 9/13 were flown more than 10 times 

• 4/13 were flown 4 – 8 times 
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AVIRIS-NG: 

• Looked at all the time series for all 24 SPWP and CPWP with AVIRIS-NG 

Flights/Observations 

o 13/24 are Natural Gas 

o 6/24 are Biomass 

o 5/24 are Other 

• Top 3/24 AVIRIS-NG power plant (also happen to be natural gas plants SPWP) 

emitters have been flown 1 time each and been observed to be emitting that single 

time at a very significantly high rate (80+kg/hr), we can at the very least say those 

3 observations were fugitive or one-off emissions but are unable to confidently 

determine if they were persistent or consistent since repeat flights were not 

conducted over those three facilities. All three are natural gas SPWP.  

o PWP000051 (Natural Gas)  

o PWP000247 (Natural Gas) 

o PWP000126 (Natural Gas) 

• 4/24 (16%) show persistent process-based emission behavior. 1 SPWP and 3 

CPWP’s have shown consistent/persistent emissions with more than 12 plus flights 

conducted on each facility. This is indicative of process-based emissions most 

likely at the component level rather than fugitive leaks since these observations are 

months/years apart and were still evident and persisted. At the very least, these are 

fugitive leaks with the potential of looking more like process-based persistent 

emissions. All except one have some sort of natural gas influence/component. We 

can target these plants for mitigation by making sure their process-based leaks are 

plugged. 

o SPWP 

▪ PWP000135 (Natural Gas) Flown 21 times, 15 plumes 

o CPWP 

▪ PWP000046 (Natural Gas/Other), flown 17 times, 8 plumes 

▪ PWP000229 (Natural Gas/Other), flown 12 times, 14 plumes 

▪ PWP000305 (Dairy Biogas), flown 15 times, 10 plumes 

o Based on this data, CPWP are more likely to exhibit persistent process-

based behavior than SPWP.  

• The other 17 SPWP’s and CPWP’s  

o 7 have been flown 10+ times and have only been showing 1 - 6 plumes 

which is more indicative of possible fugitive leaks rather than persistent 

process-based leaks. (The one showing 6 plumes flown 12 times is more 

indicative of a process-based emission than fugitive).  

▪ 2 Biomass (All CPWP) 

▪ 2 Natural Gas (All CPWP) 

▪ 3 Other (All CPWP) 

o 9 have been flown 4 – 9 times at most only showing between 1- 3 plumes 

which is more indicative of possible fugitive leaks rather than persistent 

process-based leaks but it is difficult to say with confidence because we 
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need additional flight observations in order to determine this with more 

certainty. 

▪ 2 Biomass (All CPWP) 

▪ 6 Natural Gas (4 SPWP and 2 CPWP) 

▪ 1 Other (CPWP) 

o 1 has been flown 1 time and was observed with 1 plume, which we cannot 

say if it is because of a persistence process-based or isolated fugitive 

instance with confidence 

▪ PWP000021, high emission estimate (52 kg hr-1) Biomass Landfill 

gas (CPWP) 

 

   S4.3.7 Analysis of CO2:CH4 Ratios 

 

Ratios for kg CO2 a
-1:kg CH4 a

-1 were generated for CARB PMT and EPA FLIGHT 

facilities to determine whether a systemic relationship exists within each dataset. Currently, 

there is no CO2 data available for Vista-CA or AVIRIS-NG, thus we utilized EPA’s Air 

Markets Program Data (https://ampd.epa.gov/ampd/) that collects information from 

facilities via continuous emissions monitoring systems (CEMS) to generate comparable kg 

CO2 a
-1:kg CH4 a-1 ratios. Both CO2:CH4 ratios for CEMS to Vista-CA and CEMS to 

AVIRIS-NG show no correlation (Figure S4.3).31 

Analysis of kg CO2 a
-1:kg CH4 a

-1 ratios suggests that bottom-up CH4 emissions 

from EPA FLIGHT and CARB PMT, which are described as reported, display a systemic 

relationship possibly due to a process-based equation or underlying assumption of CH4 

being emitted with CO2 (Figure S4.3). Rather than collecting actual data for CH4 emissions 

from reporting facilities which could be due to a wide variety of reasons, CARB and EPA 

could be using CO2 data as a proxy for CH4 emissions on a per facility basis.20, 35 One 

reason for this is that fugitive emissions are potentially unaccounted as part of a power 

plant facility and are rather associated to the natural gas supply system.36 Another reason 

is the methods used to calculate emissions from power plants. For example, EPA assumes 
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that CH4 is emitted as a byproduct of incomplete fuel combustion in power plants and is 

eventually oxidized to CO2, which is not completely valid as our bottom-up and top-down 

data show.31, 35 Both the ratio of the modeled CH4 emissions in Vista-CA bottom-up to the 

EPA AMPD CEMS CO2 data and the ratio of observed CH4 emissions from the AVIRIS-

NG source data to the CO2 EPA AMPD CEMS data showed no systematic relationship as 

identified in the CARB and EPA datasets (Figure S4.3). These results suggest that most 

power plant CH4 emissions are fugitive which are underestimated in these reporting 

programs.   
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Figure S4.2 A) and B) Ratios kg CO2 a
-1:kg CH4 a

-1 for A) EPA FLIGHT kg CO2 a
-1:kg 

CH4 a
-1, B) CARB PMT kg CO2 a

-1:kg CH4 a
-1. Systemic assumptions are evident with 

the trends focusing on the 45,000 mark in A and 50,000 mark in B. Each power plant is 

listed in its own column along the horizontal axis.  
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Figure S4.2 C) and D) Ratios kg CO2 a
-1:kg CH4 a

-1 for C) CEMS kg CO2 a
-1:Vista-CA 

Bottom-Up kg CH4 a
-1. D) CEMS CO2: AVIRIS-NG kg CH4 a

-1. There is no relationship 

between CO2 and CH4 in both Vista-CA in C and AVIRIS-NG in D. Each power plant is 

listed in its own column along the horizontal axis.  
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Figure S4.3 AVIRIS-NG power plant super-emitter distribution, where CH4 emissions 

for the 24 power plants with 75 observed plumes are organized from largest to smallest 

emissions. A) shows distribution by facilities and B) shows distribution by CH4 plumes. 

The orange line signifies the cumulative percentage of CH4 emissions. The blue bars 

indicate the magnitude of emissions in kg CH4 hr-1 for each of the matched facilities from 

each dataset. The red dashed line indicates the 60% super-emitter definition mark. The 

60% cumulation mark is achieved with 3 SPWP natural gas facilities and 19 plumes.  
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Figure S4.4 Super-emitter influence distribution comparison among the 64 power plants 

that are matched across all three datasets. The orange line signifies the cumulative 

percentage of CH4 emissions. The blue bars indicate the magnitude of emissions in kg 

CH4 a
-1 for each of the matched facilities from each dataset. The red dashed line indicates 

the 60% super-emitter definition mark. For Vista-CA Bottom Up, the super-emitter mark 

is reached with the preceding 11 power plants. For CARB PMT, this mark is reached 

with the preceding 12 power plants. For EPA FLIGHT, this mark is reached with the 

preceding 12 power plants.  
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Figure S4.5 Vista-CA and AVIRIS-NG power plant super-emitter distribution 

comparison. The blue and yellow bars indicate the magnitude of emissions for each of the 

16 matched power plant facilities from each dataset in kg CH4 a
-1 and kg CH4 h

-1 for 

Vista-CA (kg CH4 a
-1) and AVIRIS-NG (kg CH4 h

-1), respectively. The red dashed line 

indicates the 60% super-emitter definition mark in the Vista-CA Bottom-Up dataset. The 

60% cumulation mark is achieved with 2 SPWP’s and 1 CPWP in the Vista-CA 

emissions dataset while this mark is obtained with 1 SPWP natural gas facility in the 

AVIRIS-NG detected emissions. The sensitivity of the AVIRIS-NG instrument of around 

2 – 10 kg h-1 is indicated by the green dotted bar and the error bars signify the percentage 

error at 3%.  
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Figure S4.6 B) Vista-CA – CARB PMT power plant emission correlation (units in kg 

Ch4 a
-1) (red line indicates the 1:1 line); C.) Vista-CA – EPA FLIGHT power plant 

emission correlation (units in kg CH4 a
-1) (red line indicates the 1:1 line).  
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Figure S4.7 Time series plot of A.) CPWP (collocated with a refinery) Emissions are 

scaled logarithmically for clarity. Dashed line outline Vista-CA emissions for each power 

plant based on concentrated hours of assumed operation. Red dashed line indicates 175.2 

hours, yellow dashed line indicates 876 hours, and green dashed line indicates 8,760 

hours.  
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Figure S4.7 Time series plot of B.) SPWP. Emissions are scaled logarithmically for 

clarity. Dashed line outline Vista-CA emissions for each power plant based on 

concentrated hours of assumed operation. Red dashed line indicates 175.2 hours, yellow 

dashed line indicates 876 hours, and green dashed line indicates 8,760 hours.  

1

2

4

8

16

32

64

128

256

512

k
g

 C
H

4
h

-1

PWP000135

0 

B 



 181 

  

V
is

ta
-I

D
A

V
IR

IS
-N

G
 

(k
g

 C
H

4
 h

-1
)

V
is

ta
-C

A
 

(k
g

 C
H

4
 a

-1
)

T
o
ta

l 

A
V

IR
IS

-N
G

 

F
li

g
h

ts

S
o

u
rc

e
s 

(N
u

m
b
e
r 

o
f 

lo
ca

ti
o

n
s)

T
o
ta

l 

A
V

IR
IS

-N
G

 

A
tt

ri
b
u

te
d

P
lu

m
e
s 

T
y
p
e

P
e
rs

is
te

n
cy

E
m

is
si

o
n

 

T
y
p
e

P
W

P
0

0
0

0
0

6
1

.0
3

2
7

2
.9

9
1

1
SP

W
P

o
n

e-
ti

m
e

fu
gi

ti
v

e
E

le
ct

ri
c 

Sw
it

ch
y

ar
d

1

P
W

P
0

0
0

0
1

5
0

.4
7

6
6

.7
1

1
1

1
C

P
W

P
o

n
e-

ti
m

e
fu

gi
ti

v
e

B
ui

ld
in

g
1

P
W

P
0

0
0

0
2

1
5

2
.0

1
1

7
.6

1
1

1
C

P
W

P
o

n
e-

ti
m

e
fu

gi
ti

v
e

R
ef

us
e 

P
il

e
1

P
W

P
0

0
0

0
3

7
3

.3
3

5
3

6
.6

8
2

2
C

P
W

P
p

er
si

st
en

t 
2

x
fu

gi
ti

v
e

St
o

ra
ge

 T
an

k
1

St
o

ra
ge

 T
an

k
1

P
W

P
0

0
0

0
4

6
1

1
.0

1
7

4
8

C
P

W
P

p
er

si
st

en
t 

3
x

p
ro

ce
ss

-b
as

ed
In

fr
as

tr
uc

tu
re

1
O

p
en

 F
ie

ld
3

O
p

en
 F

ie
ld

2
In

fr
as

tr
uc

tu
re

2

P
W

P
0

0
0

0
5

1
5

1
5

.0
1

1
9

4
.5

1
1

1
SP

W
P

o
n

e-
ti

m
e

fu
gi

ti
v

e
B

ui
ld

in
g

1

P
W

P
0

0
0

1
2

1
4

.6
1

4
2

2
C

P
W

P
o

n
e-

ti
m

e
p

ro
ce

ss
-b

as
ed

St
o

ra
ge

 T
an

k
1

O
p

en
 F

ie
ld

1

P
W

P
0

0
0

1
2

6
8

5
.0

3
8

9
1

2
.8

1
1

1
SP

W
P

o
n

e-
ti

m
e

p
ro

ce
ss

-b
as

ed
In

fr
as

tr
uc

tu
re

/S
ta

ck
1

P
W

P
0

0
0

1
3

2
8

.5
1

5
1

5
2

.7
1

2
4

6
C

P
W

P
p

er
si

se
n

t 
5

x
p

ro
ce

ss
-b

as
ed

In
fr

as
tr

uc
tu

re
1

In
fr

as
tr

uc
tu

re
1

In
fr

as
tr

uc
tu

re
2

In
fr

as
tr

uc
tu

re
2

P
W

P
0

0
0

1
3

5
1

9
.6

2
8

3
7

0
.8

2
1

1
1

SP
W

P
o

n
e-

ti
m

e
p

ro
ce

ss
-b

as
ed

In
fr

as
tr

uc
tu

re
1

P
W

P
0

0
0

1
4

5
1

.9
1

5
1

3
C

P
W

P
p

er
si

st
en

t 
3

x
fu

gi
ti

v
e

In
fr

as
tr

uc
tu

re
3

P
W

P
0

0
0

1
5

4
6

0
.1

1
4

1
.4

4
1

1
C

P
W

P
o

n
e-

ti
m

e
fu

gi
ti

v
e

O
p

en
 F

ie
ld

1

P
W

P
0

0
0

1
7

9
7

.3
1

8
1

3
1

.0
7

1
2

SP
W

P
p

er
si

st
en

t 
2

x
fu

gi
ti

v
e

In
fr

as
tr

uc
tu

re
/S

ta
ck

2

P
W

P
0

0
0

2
1

5
1

4
.3

8
1

4
8

.6
6

1
1

SP
W

P
o

n
e-

ti
m

e
fu

gi
ti

v
e

N
G

 i
n

fr
as

tr
uc

tu
re

1

P
W

P
0

0
0

2
2

9
4

8
.5

2
1

4
5

.4
1

2
6

1
4

C
P

W
P

p
er

si
st

en
t 

3
x

fu
gi

ti
v

e
St

o
ra

ge
 T

an
k

1
St

o
ra

ge
 T

an
k

2
St

o
ra

ge
 T

an
k

6
In

fr
as

tr
uc

tu
re

1
In

fr
as

tr
uc

tu
re

3
In

fr
as

tr
uc

tu
re

1

P
W

P
0

0
0

2
3

0
1

5
.5

1
6

6
4

.0
8

1
3

SP
W

P
p

er
si

st
en

t 
3

x
fu

gi
ti

v
e

In
fr

as
tr

uc
tu

re
3

P
W

P
0

0
0

2
4

2
0

.1
8

7
6

6
.4

7
1

1
C

P
W

P
o

n
e-

ti
m

e
p

ro
ce

ss
-b

as
ed

In
fr

as
tr

uc
tu

re
/S

ta
ck

1

P
W

P
0

0
0

2
4

7
1

1
3

.0
2

3
.9

1
1

1
SP

W
P

o
n

e-
ti

m
e

fu
gi

ti
v

e
O

p
en

 F
ie

ld
1

P
W

P
0

0
0

2
8

5
8

.5
1

3
1

3
C

P
W

P
p

er
si

st
en

t 
3

x
p

ro
ce

ss
-b

as
ed

O
p

en
 F

ie
ld

3

P
W

P
0

0
0

3
0

5
5

8
.4

1
5

2
1

0
C

P
W

P
p

er
si

st
en

t 
5

x
fu

gi
ti

v
e

L
ag

o
o

n
3

L
ag

o
o

n
7

P
W

P
0

0
0

3
2

3
2

.3
7

2
2

C
P

W
P

p
er

si
st

en
t 

2
x

fu
gi

ti
v

e
In

fr
as

tr
uc

tu
re

1
In

fr
as

tr
uc

tu
re

1

P
W

P
0

0
0

3
8

8
2

1
.1

5
1

1
C

P
W

P
o

n
e-

ti
m

e
fu

gi
ti

v
e

In
fr

as
tr

uc
tu

re
1

P
W

P
0

0
0

4
2

0
2

.3
1

4
1

2
C

P
W

P
p

er
si

st
en

t 
2

x
fu

gi
ti

v
e

In
fr

as
tr

uc
tu

re
/R

o
ad

2

P
W

P
0

0
0

4
2

4
1

7
.5

5
1

4
9

2
.4

1
3

1
3

C
P

W
P

p
er

si
st

en
t 

3
x

fu
gi

ti
v

e
St

o
ra

ge
 T

an
k

3

L
o

ca
ti

o
n

 6
L

o
ca

ti
o

n
 1

L
o

ca
ti

o
n

 2
L

o
ca

ti
o

n
 3

L
o

ca
ti

o
n

 4
L

o
ca

ti
o

n
 5

T
a
b

le
 S

4
.1

 A
.)

 A
V

IR
IS

-N
G

 a
tt

ri
b
u
te

d
 o

b
se

rv
at

io
n
 b

re
ak

d
o
w

n
 b

y
 V

is
ta

-C
A

 p
o
w

er
 p

la
n
t.

 T
h
is

 t
ab

le
 s

u
m

m
ar

iz
es

 t
h
e 

p
o
w

er
 

p
la

n
ts

 f
lo

w
n
 b

y
 A

V
IR

IS
-N

G
 t

h
at

 w
er

e 
d
et

ec
te

d
 a

s 
em

it
ti

n
g
 C

H
4
. 

T
h
e 

ta
b
le

s 
d
et

ai
l 

th
e 

n
u
m

b
er

 o
f 

fl
ig

h
ts

 c
o

n
d

u
ct

ed
 o

v
er

 a
 

g
iv

en
 p

la
n
t,

 t
h
e 

to
ta

l 
n
u
m

b
er

 o
f 

p
lu

m
es

 f
o
u
n
d
 a

lo
n
g
 w

it
h
 s

o
u
rc

es
 i

d
en

ti
fi

ed
, 
an

d
 t

h
e 

lo
ca

ti
o
n
 a

n
d
 d

es
cr

ip
ti

o
n
 o

f 
th

o
se

 

so
u
rc

es
. 

A
 



 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4.1 B.) HyTES attributed observation breakdown by Vista-CA power plant. 

This table summarizes the power plants flown by HyTES that were detected as emitting 

CH4. The tables detail the number of flights conducted over a given plant, the total 

number of plumes found along with sources identified, and the location and description 

of those sources 

Vista-ID Fuel Source 
Total HyTES  

Attributed Plumes 

Total HyTES  

Flights 
Type 

PWP000029 Coal 35 35 SPWP 

PWP000033 Natural Gas 3 12 SPWP 

PWP000046 Other 13 13 SPWP 

PWP000046 Other 17 17 CPWP 

PWP000121 Natural Gas 3 3 CPWP 

PWP000121 Natural Gas 11 11 SPWP 

PWP000132 Natural Gas 45 45 CPWP 

PWP000133 Natural Gas 35 101 SPWP 

PWP000141 Other 4 4 CPWP 

PWP000178 Natural Gas 5 5 CPWP 

PWP000207 Natural Gas 2 8 SPWP 

PWP000285 Natural Gas 3 11 SPWP 

PWP000285 Natural Gas 66 256 CPWP 

PWP000414 Natural Gas 7 30 SPWP 

PWP000420 Other 16 16 CPWP 

PWP000454 Natural Gas 1 4 SPWP 

B 
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Table S4.2 Power plants observed by AVIRIS-NG with no emissions. This table 

provides a list of all Vista-CA power plants that were flown by AVIRIS-NG but were not 

observed to be emitting any CH4 at the time of observation. For each power plant, 

coordinates are provided, the power plant type, and the total number of flights AVIRIS-

NG conducted over that power plant. 

 

Vista-ID Latitude Longitude Power Plant Type 

Total Number of  

AVIRIS-NG Flights 

Flown 

PWP000001 35.16598177 -119.1065063 SPWP 41 

PWP000003 35.95333604 -120.8591409 Oil and Gas Facility 2 

PWP000004 33.76919138 -118.100978 SPWP 7 

PWP000005 33.64444727 -117.978604 SPWP 8 

PWP000008 34.04156467 -117.3605156 SPWP 1 

PWP000012 37.57466407 -120.9852294 SPWP 1 

PWP000014 37.73257081 -121.1162515 SPWP 3 

PWP000016 34.08840491 -117.2460224 SPWP 2 

PWP000019 34.43174678 -118.6428042 Landfill 8 

PWP000020 37.88328896 -121.1851666 Landfill 6 

PWP000022 38.00385809 -121.934572 Landfill 19 

PWP000023 37.50428975 -122.4060061 Landfill 11 

PWP000026 37.75474775 -121.7289581 Landfill 17 

PWP000027 37.10679609 -120.248717 SPWP 1 

PWP000030 33.68859501 -117.8362438 SPWP 3 

PWP000031 35.4837382 -119.0298414 SPWP 8 

PWP000035 35.08989853 -119.4408423 SPWP 2 

PWP000036 35.09247043 -119.4440113 SPWP 2 

PWP000039 33.90696733 -118.0130896 SPWP 1 

PWP000040 33.93306841 -117.8555642 Processing Plant 6 

PWP000045 33.71859723 -117.7097901 Landfill 9 

PWP000047 33.93331675 -117.841892 Landfill 7 

PWP000052 38.05704044 -122.219354 SPWP 3 

PWP000053 34.15108169 -118.7237674 Landfill 5 

PWP000054 36.29519703 -119.4135159 Digester 2 

PWP000055 34.138467 -118.1256 SPWP 1 

PWP000062 34.1358 -118.1267 SPWP 1 

PWP000065 33.87595065 -118.2493429 SPWP 3 

PWP000067 34.14484951 -118.390888 SPWP 1 

PWP000068 37.99785803 -122.0678511 SPWP 2 

PWP000071 33.92881392 -118.1056538 SPWP 2 

PWP000072 33.94399661 -118.4042446 SPWP 8 

PWP000073 37.71941136 -120.8986107 Digester 4 
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PWP000075 34.38065567 -118.5001697 SPWP 9 

PWP000076 35.09685309 -119.4298422 SPWP 3 

PWP000078 37.10728307 -120.2484327 SPWP 1 

PWP000081 36.18340393 -119.3706909 WWTP 6 

PWP000083 33.89182264 -117.609994 WWTP 2 

PWP000085 36.15546196 -120.3970692 Oil and Gas Facility 2 

PWP000086 36.18063357 -120.3883361 Oil and Gas Facility 2 

PWP000087 36.19043147 -120.356759 SPWP 2 

PWP000088 36.23737202 -120.3687594 Oil and Gas Facility 2 

PWP000090 35.18792459 -120.5936678 Landfill 1 

PWP000092 39.3657123 -122.2667333 SPWP 1 

PWP000093 38.08817785 -121.3867402 WWTP 4 

PWP000094 33.99476406 -118.1536306 SPWP 2 

PWP000095 33.88182147 -117.5562357 SPWP 1 

PWP000102 37.38537357 -121.1405388 Landfill 1 

PWP000104 38.05694827 -122.2161522 SPWP 4 

PWP000108 33.88008675 -117.886809 SPWP 2 

PWP000109 32.79617582 -116.9720526 SPWP 1 

PWP000110 35.36382092 -119.659227 SPWP 7 

PWP000111 35.36363747 -119.6753619 Oil and Gas Facility 3 

PWP000112 35.346222 -119.643367 SPWP 3 

PWP000115 38.0176174 -121.8456398 WWTP 8 

PWP000120 35.22080301 -119.5833602 SPWP 4 

PWP000123 35.50064167 -119.0460671 SPWP 8 

PWP000124 34.06059843 -117.3536386 SPWP 2 

PWP000129 32.79716174 -116.9717 SPWP 1 

PWP000130 32.80251713 -115.5399568 SPWP 1 

PWP000131 37.18686141 -120.4898912 SPWP 2 

PWP000133 33.91051879 -118.4248717 SPWP 9 

PWP000134 35.28067457 -119.4726655 Oil and Gas Facility 21 

PWP000136 34.43131338 -119.8999995 SPWP 2 

PWP000138 33.13633825 -117.3365974 SPWP 2 

PWP000141 33.78891903 -118.2350521 Refinery 17 

PWP000144 34.09137009 -117.5273129 SPWP 3 

PWP000146 34.48368246 -120.042768 Processing Plant 3 

PWP000149 38.02054544 -122.0668446 Refinery 8 

PWP000151 36.61720142 -120.0993512 SPWP 2 

PWP000157 38.01640767 -121.7585409 SPWP 2 

PWP000158 34.4753001 -120.2052162 Oil and Gas Facility 2 

PWP000164 37.40122666 -121.9687148 SPWP 4 
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PWP000165 36.99991773 -121.5365424 SPWP 3 

PWP000166 36.99991773 -121.5365424 SPWP 3 

PWP000167 34.1264471 -118.1493235 SPWP 3 

PWP000169 38.225635 -121.8410688 SPWP 1 

PWP000170 34.08837591 -117.5336764 SPWP 2 

PWP000171 34.15533313 -118.2783729 SPWP 3 

PWP000174 33.61307454 -117.8219577 SPWP 3 

PWP000175 33.99880407 -118.2210221 SPWP 1 

PWP000176 36.27186138 -119.6493912 SPWP 2 

PWP000177 33.76985496 -118.2654672 SPWP 12 

PWP000178 33.78027449 -118.240243 SPWP 15 

PWP000184 35.51563618 -119.0401032 SPWP 8 

PWP000187 33.62279418 -117.9363657 SPWP 6 

PWP000188 33.838056 -118.315 SPWP 12 

PWP000192 37.91187939 -121.261534 SPWP 2 

PWP000193 33.73848806 -117.1694656 SPWP 2 

PWP000194 37.38505206 -121.9637212 SPWP 3 

PWP000196 37.80767675 -121.2776377 SPWP 1 

PWP000199 37.40834129 -122.0292213 SPWP 1 

PWP000200 33.91958435 -118.1277963 SPWP 1 

PWP000201 34.03201335 -117.608654 SPWP 1 

PWP000202 36.32784195 -119.2950532 SPWP 1 

PWP000205 35.50907382 -119.0305462 SPWP 8 

PWP000206 35.29478185 -118.917208 Refinery 5 

PWP000207 35.45217504 -118.9850804 SPWP 8 

PWP000208 35.44066983 -118.9612838 Oil and Gas Facility 7 

PWP000209 38.51478672 -121.1925225 Landfill 6 

PWP000213 36.53936956 -119.5800086 SPWP 1 

PWP000216 34.177215 -118.3148342 SPWP 1 

PWP000220 33.13879807 -117.2859613 SPWP 2 

PWP000222 33.79425401 -118.2344901 Refinery 17 

PWP000223 35.49619334 -119.0088773 SPWP 8 

PWP000224 37.41324482 -122.0275584 SPWP 2 

PWP000226 38.08819 -121.3876678 WWTP 4 

PWP000228 33.7643334 -118.2245818 SPWP 11 

PWP000231 38.03011767 -121.8730424 SPWP 6 

PWP000232 35.66570458 -119.76715 SPWP 4 

PWP000233 34.1784842 -118.3145726 SPWP 1 

PWP000234 36.68981123 -119.7404372 SPWP 1 

PWP000235 33.99880389 -118.2210404 SPWP 1 
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PWP000238 34.20664618 -119.2508625 SPWP 1 

PWP000239 36.71366151 -121.7679346 Landfill 5 

PWP000240 37.78925525 -121.6016694 SPWP 3 

PWP000241 38.01695601 -121.7651433 SPWP 2 

PWP000243 38.03382935 -122.1147804 SPWP 6 

PWP000244 37.40510421 -121.9496625 SPWP 10 

PWP000248 34.20559028 -119.2477508 SPWP 1 

PWP000249 35.3159958 -119.659614 SPWP 10 

PWP000250 35.31950142 -119.6619932 SPWP 11 

PWP000251 32.90404402 -115.5127812 SPWP 1 

PWP000252 32.90690576 -115.5131102 SPWP 1 

PWP000253 37.22084792 -121.7463284 SPWP 1 

PWP000254 34.14251679 -117.4273534 Landfill 1 

PWP000255 35.19423877 -119.5709163 SPWP 3 

PWP000259 33.69102641 -117.8332073 SPWP 3 

PWP000260 34.0065835 -117.5608291 SPWP 1 

PWP000261 34.00797005 -117.5638959 SPWP 1 

PWP000263 34.29275664 -118.3898236 Landfill 1 

PWP000266 34.0336783 -117.9063581 Landfill 3 

PWP000267 38.59633008 -121.6874324 Landfill 1 

PWP000268 36.70610913 -121.769885 SPWP 5 

PWP000269 34.08192792 -117.2419178 SPWP 2 

PWP000274 32.72624134 -117.1464282 SPWP 1 

PWP000276 34.04539506 -117.5404486 SPWP 2 

PWP000281 35.27621644 -119.5987218 Oil and Gas Facility 8 

PWP000282 37.96764791 -122.3820398 SPWP 2 

PWP000283 32.71489 -117.1689257 SPWP 1 

PWP000286 33.93272724 -117.841073 Landfill 7 

PWP000287 34.17657158 -118.314606 SPWP 1 

PWP000288 34.32613964 -118.4457053 SPWP 2 

PWP000289 33.98962307 -117.6807993 SPWP 5 

PWP000290 37.79351982 -122.3944033 SPWP 1 

PWP000295 34.12922477 -119.168989 SPWP 1 

PWP000299 32.57360796 -116.9129016 SPWP 1 

PWP000301 34.14252422 -119.1830268 SPWP 1 

PWP000302 34.14265913 -119.1853777 WWTP 1 

PWP000311 33.8985072 -118.1465443 Refinery 3 

PWP000312 37.76123569 -122.4562531 SPWP 2 

PWP000313 34.9558962 -118.8438908 SPWP 5 

PWP000316 38.01935915 -122.2372043 SPWP 8 
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PWP000317 38.04171931 -122.2587992 Refinery 16 

PWP000318 32.57384457 -116.9179962 SPWP 1 

PWP000319 34.46375025 -118.5940217 SPWP 7 

PWP000320 38.03965331 -121.8947702 SPWP 11 

PWP000321 37.83294563 -122.2840369 SPWP 1 

PWP000322 33.69225904 -117.9385917 WWTP 3 

PWP000325 38.21096121 -121.9756483 Landfill 13 

PWP000326 37.82507966 -122.2949887 WWTP 2 

PWP000328 33.4948786 -117.6145805 Landfill 2 

PWP000329 34.02380591 -118.0244314 SPWP 4 

PWP000334 40.50893206 -122.4243657 SPWP 1 

PWP000336 32.58465953 -116.9334152 SPWP 1 

PWP000337 37.94220567 -122.3907159 Refinery 14 

PWP000338 36.68760204 -119.7238598 SPWP 1 

PWP000341 37.73151447 -121.1157188 SPWP 3 

PWP000342 33.96329657 -117.4529501 WWTP 4 

PWP000343 33.96218265 -117.4563154 WWTP 4 

PWP000344 38.0145574 -121.7902232 SPWP 2 

PWP000345 32.95554941 -115.5362425 SPWP 1 

PWP000353 34.02838792 -117.6016931 WWTP 1 

PWP000355 36.83536987 -119.7657915 SPWP 1 

PWP000356 34.03061227 -118.4790875 SPWP 6 

PWP000357 35.95172421 -120.867681 Oil and Gas Facility 2 

PWP000364 32.77510993 -117.0722459 SPWP 1 

PWP000369 34.95032041 -120.4139746 SPWP 1 

PWP000372 35.93590589 -120.8407364 SPWP 2 

PWP000374 38.53103907 -121.4003776 SPWP 1 

PWP000375 33.91892022 -118.4277905 WWTP 15 

PWP000379 37.73963536 -122.392852 SPWP 1 

PWP000390 37.43425287 -121.9463887 WWTP 16 

PWP000393 38.301503 -122.7477293 Landfill 1 

PWP000394 38.30153643 -122.7476187 Landfill 1 

PWP000395 38.30155854 -122.7478301 Landfill 1 

PWP000398 35.44906859 -119.7336306 SPWP 3 

PWP000399 35.42062374 -118.9644113 Oil and Gas Facility 7 

PWP000400 33.75948422 -118.2403321 SPWP 9 

PWP000402 34.04092588 -117.8216762 Landfill 1 

PWP000404 32.91015415 -115.5677162 SPWP 2 

PWP000407 34.09374347 -117.5510332 SPWP 2 

PWP000409 38.36920173 -122.7655283 WWTP 1 
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PWP000410 37.41930675 -122.0164343 WWTP 1 

PWP000411 35.2105525 -119.583845 SPWP 3 

PWP000412 34.33553923 -118.5191747 Landfill 49 

PWP000414 35.45490271 -119.0023395 SPWP 8 

PWP000416 35.11568183 -119.4755737 Oil and Gas Facility 2 

PWP000417 34.47718375 -120.1284169 Landfill 3 

PWP000421 37.71993038 -121.4885787 SPWP 4 

PWP000422 35.18609114 -120.6225691 Oil and Gas Facility 1 

PWP000423 33.76838208 -118.2141644 SPWP 13 

PWP000425 34.1462098 -118.3050836 Landfill 1 

PWP000426 37.71113988 -121.4918966 SPWP 3 

PWP000427 37.7951745 -122.4027941 SPWP 1 

PWP000428 33.64795032 -117.8465695 SPWP 4 

PWP000429 33.66541927 -117.8538333 WWTP 2 

PWP000433 37.77808905 -122.4505274 SPWP 1 

PWP000436 37.43291853 -121.9420547 WWTP 15 

PWP000438 38.07393312 -122.1409403 Refinery 5 

PWP000439 34.2444572 -118.3924221 SPWP 2 

PWP000440 33.85087334 -118.3040667 SPWP 12 

PWP000441 33.99883579 -118.2210433 SPWP 1 

PWP000442 36.1822643 -119.6779722 Digester 7 

PWP000443 36.68689381 -119.720451 SPWP 1 

PWP000447 37.49000085 -120.9045045 SPWP 1 

PWP000449 37.48736482 -120.8958021 SPWP 1 

PWP000451 33.81645336 -118.2442377 Refinery 17 

PWP000452 35.35458045 -119.6618228 SPWP 7 

PWP000454 35.44075378 -119.0129252 SPWP 8 

PWP000455 33.92475584 -118.0678113 SPWP 2 

PWP000457 33.9706 -118.0472 SPWP 2 

PWP000458 33.7789072 -118.2341079 Refinery 10 

PWP000460 37.65261119 -121.0197748 SPWP 1 

PWP000461 38.68879537 -121.7374604 SPWP 1 

PWP000462 37.82507966 -122.2949887 WWTP 2 

PWP000464 37.41569896 -122.0256478 SPWP 2 

PWP000468 37.43232419 -121.955533 Landfill 16 
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Table S4.3 Vista-CA Level 2 Power Plants CH4 Emissions Dataset. This table provides 

the emissions for Vista-CA Bottom Up, CARB PMT, EPA FLIGHT, and AVIRIS-NG 

along with the number of plumes that were attributed to HyTES observations for each 

power plant in the Vista-CA dataset. 

 

Vista ID Type Fuel Source 
Vista CA  

kg CH4 a
-1 

CARB PMT  

kg CH4 a
-1 

EPA FLIGHT  

kg CH4 a
-1 

AVIRIS-NG  

kg CH4 h
-1 

Number of 

plumes  

observed by 

HyTES  

(via GSAAM) 

PWP000001 SPWP biomass 5434.30 0 0 0 2 

PWP000002 SPWP natural gas 78.75 0 0 0 0 

PWP000003 OGF natural gas 730.37 0 8375 0 0 

PWP000004 SPWP natural gas 8516.52 10970 11416.67 0 0 

PWP000005 SPWP natural gas 2978.13 4750 4958.33 0 0 

PWP000006 SPWP natural gas 3272.93 6530 6791.67 1 0 

PWP000007 SPWP natural gas 60.67 0 0 0 0 

PWP000008 SPWP natural gas 4.74 0 125 0 0 

PWP000010 SPWP natural gas 128.33 0 0 0 0 

PWP000011 SPWP natural gas 585.32 740 791.67 0 0 

PWP000012 SPWP natural gas 3226.92 1950 1958.33 0 0 

PWP000013 SPWP natural gas 0.00 0 0 0 0 

PWP000014 SPWP natural gas 58.86 190 208.33 0 0 

PWP000015 Landfill biomass 766.74 2450 0 1 0 

PWP000016 SPWP natural gas 59.06 0 0 0 0 

PWP000018 Landfill biomass 34.73 0 0 0 0 

PWP000019 Landfill biomass 643.23 0 0 0 0 

PWP000020 Landfill biomass 334.00 1050 0 0 0 

PWP000021 Landfill biomass 117.63 0 0 52 0 

PWP000022 Landfill biomass 322.19 980 0 0 0 

PWP000023 Landfill biomass 938.62 0 0 0 0 

PWP000024 Landfill biomass 321.47 0 0 0 0 

PWP000025 SPWP biomass 241.00 570 0 0 0 

PWP000026 Landfill biomass 346.48 1030 0 0 0 

PWP000027 SPWP biomass 44976.76 0 0 0 0 

PWP000028 SPWP natural gas 222.05 0 833.33 0 0 

PWP000029 SPWP coal 12552.60 0 0 0 1 

PWP000030 SPWP natural gas 547.10 0 916.67 0 0 

PWP000031 SPWP natural gas 142.46 150 166.67 0 0 

PWP000032 SPWP natural gas 206.24 330 0 0 0 

PWP000033 SPWP natural gas 322.78 320 333.33 0 1 

PWP000034 SPWP natural gas 8.00 0 0 0 0 

PWP000035 SPWP natural gas 4070.46 0 0 0 0 
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PWP000036 SPWP natural gas 1626.65 0 0 0 0 

PWP000037 OGF natural gas 3536.55 0 0 3 0 

PWP000038 SPWP biomass 0.00 0 0 0 0 

PWP000039 SPWP natural gas 158.53 0 0 0 0 

PWP000040 

Processing  

Plant other 0.00 0 0 0 0 

PWP000041 SPWP biomass 0.00 0 0 0 0 

PWP000042 SPWP natural gas 11555.52 12770 13333.33 0 0 

PWP000043 SPWP other 0.00 0 0 0 0 

PWP000045 Landfill biomass 1736.80 4850 0 0 0 

PWP000046 Refinery other 0.00 0 0 11 1 

PWP000047 Landfill biomass 2460.69 0 0 0 0 

PWP000048 SPWP biomass 0.00 0 0 0 0 

PWP000049 SPWP biomass 131827.63 98030 0 0 0 

PWP000050 SPWP biomass 0.00 0 0 0 0 

PWP000051 SPWP natural gas 1194.51 0 0 515 0 

PWP000052 SPWP other 0.00 0 0 0 0 

PWP000053 Landfill biomass 511.37 1860 0 0 0 

PWP000054 Digester biomass 0.00 0 0 0 0 

PWP000055 SPWP natural gas 1050.73 0 1166.67 0 0 

PWP000056 SPWP natural gas 90.86 0 0 0 0 

PWP000058 SPWP natural gas 92.85 140 0 0 0 

PWP000059 SPWP natural gas 64.40 130 0 0 0 

PWP000060 SPWP natural gas 80.23 170 0 0 0 

PWP000061 SPWP natural gas 92.08 100 0 0 0 

PWP000062 SPWP biomass 58.09 0 0 0 0 

PWP000063 SPWP other 0.00 0 0 0 0 

PWP000064 SPWP natural gas 1403.24 1690 1750 0 0 

PWP000065 SPWP natural gas 0.00 0 0 0 2 

PWP000066 WWTP natural gas 6098.23 2940 3083.33 0 0 

PWP000067 SPWP natural gas 83.62 0 0 0 0 

PWP000068 SPWP natural gas 358.13 0 0 0 0 

PWP000071 SPWP natural gas 134.92 250 0 0 0 

PWP000072 SPWP natural gas 474.66 0 0 0 0 

PWP000073 Digester biomass 0.00 0 0 0 0 

PWP000074 SPWP natural gas 7.91 0 0 0 0 

PWP000075 SPWP natural gas 0.00 0 0 0 0 

PWP000076 SPWP natural gas 99.45 200 0 0 0 

PWP000077 SPWP petroleum 457.43 0 0 0 0 

PWP000078 SPWP natural gas 137.14 0 0 0 0 

PWP000079 SPWP natural gas 67.71 70 0 0 0 
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PWP000080 Landfill natural gas 0.12 0 0 0 0 

PWP000081 WWTP biomass 0.00 0 0 0 0 

PWP000082 SPWP natural gas 1159.91 0 0 0 0 

PWP000083 WWTP natural gas 79.30 230 0 0 0 

PWP000084 SPWP natural gas 85.44 0 0 0 0 

PWP000085 OGF natural gas 1156.09 0 0 0 0 

PWP000086 OGF natural gas 0.00 0 0 0 0 

PWP000087 SPWP natural gas 0.00 0 0 0 0 

PWP000088 OGF natural gas 776.57 0 0 0 0 

PWP000089 SPWP natural gas 4.81 0 0 0 0 

PWP000090 Landfill biomass 148.00 0 0 0 0 

PWP000091 SPWP biomass 0.00 0 0 0 0 

PWP000092 SPWP natural gas 20672.81 0 0 0 0 

PWP000093 WWTP natural gas 127.97 0 0 0 0 

PWP000094 SPWP biomass 0.00 0 0 0 0 

PWP000095 SPWP natural gas 0.00 0 0 0 0 

PWP000099 SPWP natural gas 19400.02 24310 25333.33 0 0 

PWP000100 SPWP biomass 0.00 0 0 0 0 

PWP000101 SPWP biomass 0.00 0 0 0 0 

PWP000102 Landfill biomass 41107.65 840 0 0 0 

PWP000103 SPWP natural gas 145.46 0 0 0 0 

PWP000104 SPWP natural gas 14611.16 12550 13083.33 0 0 

PWP000105 SPWP natural gas 52.91 0 0 0 0 

PWP000106 SPWP natural gas 0.00 0 0 0 0 

PWP000107 SPWP natural gas 22.86 0 0 0 0 

PWP000108 SPWP natural gas 361.37 0 0 0 0 

PWP000109 SPWP natural gas 86.24 100 0 0 0 

PWP000110 SPWP natural gas 691.41 0 0 0 2 

PWP000111 OGF natural gas 1282.97 0 0 0 2 

PWP000112 SPWP natural gas 693.99 0 0 0 2 

PWP000114 SPWP natural gas 81.28 220 0 0 0 

PWP000115 WWTP natural gas 27300.45 3970 4125 0 0 

PWP000116 SPWP biomass 171442.92 0 0 0 0 

PWP000117 SPWP natural gas 0.00 0 0 0 0 

PWP000118 SPWP nuclear 0.00 0 0 0 0 

PWP000119 SPWP biomass 0.00 0 0 0 0 

PWP000120 SPWP natural gas 1196.65 0 0 0 0 

PWP000121 Refinery natural gas 0.00 0 0 5 1 

PWP000122 SPWP natural gas 5935.47 0 0 0 0 

PWP000123 SPWP natural gas 185.97 240 0 0 0 
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PWP000124 SPWP natural gas 6.62 0 0 0 0 

PWP000125 SPWP natural gas 0.00 0 0 0 0 

PWP000126 SPWP natural gas 38912.84 17320 0 85 0 

PWP000127 SPWP petroleum 0.00 0 0 0 0 

PWP000128 SPWP natural gas 1521.21 1500 0 0 0 

PWP000129 SPWP natural gas 104.36 150 0 0 0 

PWP000130 SPWP natural gas 5407.43 8820 9166.67 0 0 

PWP000131 SPWP biomass 31489.36 0 0 0 0 

PWP000132 Refinery natural gas 15152.74 11000 11458.33 9 1 

PWP000133 SPWP natural gas 4870.79 0 0 0 1 

PWP000134 OGF natural gas 0.00 0 0 0 0 

PWP000135 SPWP natural gas 28370.85 0 0 20 0 

PWP000136 SPWP natural gas 55.71 0 0 0 0 

PWP000138 SPWP natural gas 0.00 0 0 0 0 

PWP000139 WWTP biomass 4325.38 6320 0 0 0 

PWP000140 SPWP natural gas 68.54 0 0 0 0 

PWP000141 Refinery other 2000.05 0 0 0 1 

PWP000142 SPWP natural gas 64.89 0 0 0 0 

PWP000143 SPWP natural gas 191.22 470 500 0 0 

PWP000144 SPWP natural gas 0.00 0 0 0 0 

PWP000145 Refinery other 0.00 0 0 2 0 

PWP000146 

Processing  

Plant natural gas 0.00 0 0 0 0 

PWP000147 SPWP biomass 45998.42 0 0 0 0 

PWP000148 SPWP natural gas 154.08 0 0 0 0 

PWP000149 Refinery natural gas 7774.81 0 0 0 0 

PWP000150 SPWP natural gas 57.41 0 0 0 0 

PWP000151 SPWP natural gas 68.78 270 0 0 0 

PWP000152 SPWP natural gas 347.91 0 1125 0 0 

PWP000153 SPWP natural gas 909.88 0 0 0 0 

PWP000154 Landfill biomass 141.41 0 0 60 0 

PWP000155 Landfill biomass 308.09 1430 0 0 0 

PWP000156 WWTP biomass 9250.33 0 0 0 0 

PWP000157 SPWP natural gas 20632.77 0 0 0 0 

PWP000158 OGF natural gas 0.00 0 0 0 0 

PWP000164 SPWP natural gas 8.26 0 0 0 0 

PWP000165 SPWP natural gas 333.36 290 375 0 0 

PWP000166 SPWP natural gas 848.24 0 0 0 0 

PWP000167 SPWP natural gas 409.01 860 916.67 0 2 

PWP000168 SPWP natural gas 83.17 320 333.33 0 0 

PWP000169 SPWP natural gas 140.42 0 0 0 0 
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PWP000170 SPWP natural gas 101.70 250 0 0 0 

PWP000171 SPWP natural gas 915.19 3490 0 0 0 

PWP000172 SPWP natural gas 77.04 230 250 0 0 

PWP000173 SPWP natural gas 2273.08 2290 2375 0 0 

PWP000174 SPWP biomass 0.00 0 0 0 0 

PWP000175 SPWP natural gas 50.17 0 0 0 0 

PWP000176 SPWP natural gas 137.02 220 250 0 0 

PWP000177 SPWP natural gas 996.04 1000 1083.33 0 0 

PWP000178 SPWP natural gas 0.00 0 0 0 1 

PWP000179 SPWP natural gas 18130.95 21630 26000 7 0 

PWP000181 SPWP natural gas 357.93 430 458.33 0 0 

PWP000182 SPWP petroleum 0.00 0 0 0 0 

PWP000183 SPWP natural gas 24915.31 16540 17250 0 0 

PWP000184 SPWP natural gas 184.36 220 250 0 0 

PWP000185 SPWP natural gas 359.23 0 0 0 0 

PWP000186 SPWP biomass 88654.54 0 0 0 0 

PWP000187 SPWP natural gas 360.86 0 0 0 0 

PWP000188 SPWP natural gas 52.88 0 0 0 0 

PWP000189 SPWP natural gas 461.06 0 791.67 0 0 

PWP000190 SPWP natural gas 3726.27 0 0 0 0 

PWP000191 SPWP natural gas 105.25 740 0 0 0 

PWP000192 SPWP natural gas 0.00 0 0 0 0 

PWP000193 SPWP natural gas 264.67 2680 2791.67 0 0 

PWP000194 SPWP natural gas 64.55 0 0 0 0 

PWP000195 Landfill biomass 0.00 0 0 0 0 

PWP000196 SPWP other 0.00 0 0 0 0 

PWP000197 SPWP natural gas 0.00 0 0 0 0 

PWP000199 SPWP natural gas 61.40 0 0 0 0 

PWP000200 SPWP biomass 44.51 0 0 0 0 

PWP000201 SPWP biomass 60.81 0 0 0 0 

PWP000202 SPWP natural gas 349.60 0 0 0 0 

PWP000203 SPWP natural gas 0.00 0 0 0 0 

PWP000204 SPWP natural gas 61.10 0 0 0 0 

PWP000205 SPWP natural gas 152.57 0 0 0 0 

PWP000206 Refinery natural gas 519.75 0 0 0 0 

PWP000207 SPWP natural gas 8278.89 8690 9041.67 0 1 

PWP000208 OGF natural gas 3240.35 0 0 0 2 

PWP000209 Landfill biomass 906.85 7780 0 0 0 

PWP000210 SPWP natural gas 71.62 0 0 0 0 

PWP000211 SPWP natural gas 1449.85 0 0 0 0 
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PWP000212 SPWP petroleum 0.00 0 0 0 0 

PWP000213 SPWP natural gas 32.04 150 166.67 0 0 

PWP000214 SPWP natural gas 155.21 0 0 0 0 

PWP000215 SPWP natural gas 8148.59 21950 22875 14 0 

PWP000216 SPWP natural gas 178.35 0 0 0 0 

PWP000217 SPWP natural gas 153.41 0 0 0 0 

PWP000218 SPWP natural gas 585.50 510 0 0 0 

PWP000219 SPWP natural gas 66.24 0 0 0 0 

PWP000220 SPWP natural gas 62.98 0 0 0 0 

PWP000221 Landfill biomass 313.97 0 0 0 0 

PWP000222 Refinery natural gas 0.00 0 0 0 2 

PWP000223 SPWP natural gas 146.26 230 250 0 0 

PWP000224 SPWP natural gas 56.21 0 0 0 0 

PWP000225 SPWP natural gas 8.74 0 0 0 0 

PWP000226 WWTP natural gas 8921.11 5380 0 0 0 

PWP000227 SPWP natural gas 1035.24 0 1041.67 0 0 

PWP000228 SPWP natural gas 264.54 540 0 0 2 

PWP000229 Refinery other 2145.41 0 0 48 0 

PWP000230 SPWP natural gas 1664.03 1910 2000 15 0 

PWP000231 SPWP natural gas 20797.50 23820 24791.67 0 0 

PWP000232 SPWP natural gas 778.75 0 0 0 2 

PWP000233 SPWP natural gas 12163.67 0 10791.67 0 0 

PWP000234 SPWP natural gas 185.70 220 250 0 0 

PWP000235 SPWP natural gas 5267.29 5610 5833.33 0 0 

PWP000238 SPWP natural gas 0.00 0 0 0 0 

PWP000239 Landfill biomass 0.00 0 0 0 0 

PWP000240 SPWP natural gas 1056.91 1480 1541.67 0 0 

PWP000241 SPWP natural gas 856.24 2030 2125 0 0 

PWP000242 Refinery natural gas 8766.37 7660 8000 0 0 

PWP000243 SPWP other 0.00 0 0 0 0 

PWP000244 SPWP natural gas 64.95 0 0 0 0 

PWP000245 SPWP natural gas 0.00 0 0 0 0 

PWP000246 SPWP natural gas 29.38 0 0 0 0 

PWP000247 SPWP natural gas 23.90 0 0 113 0 

PWP000248 SPWP natural gas 209.75 450 0 0 0 

PWP000249 SPWP natural gas 989.37 0 0 0 0 

PWP000250 SPWP natural gas 0.00 0 0 0 0 

PWP000251 SPWP biomass 0.00 0 0 0 0 

PWP000252 SPWP biomass 0.00 0 0 0 0 

PWP000253 SPWP natural gas 19986.63 15360 16000 0 0 
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PWP000254 Landfill biomass 0.00 0 0 0 0 

PWP000255 SPWP natural gas 0.00 0 0 0 0 

PWP000256 SPWP natural gas 615.13 750 791.67 0 0 

PWP000257 SPWP natural gas 10176.30 9960 10375 0 0 

PWP000258 SPWP natural gas 0.00 0 0 0 0 

PWP000259 SPWP other 0.00 0 0 0 0 

PWP000260 SPWP other 0.00 0 0 0 0 

PWP000261 SPWP natural gas 180.93 250 0 0 0 

PWP000262 SPWP natural gas 790.02 1130 1125 0 0 

PWP000263 Landfill biomass 218.20 710 0 0 0 

PWP000264 Landfill biomass 2222.02 960 0 0 0 

PWP000265 SPWP biomass 0.00 0 0 0 0 

PWP000266 Landfill biomass 0.00 0 0 0 0 

PWP000267 Landfill biomass 276.25 280 0 0 0 

PWP000268 SPWP biomass 2435.04 0 0 0 0 

PWP000269 SPWP natural gas 24493.58 30190 31458.33 0 0 

PWP000270 SPWP biomass 0.00 0 0 0 0 

PWP000271 SPWP biomass 145832.95 83340 0 0 0 

PWP000272 SPWP natural gas 46.11 0 0 0 0 

PWP000273 SPWP natural gas 0.00 0 0 0 0 

PWP000274 SPWP natural gas 278.07 0 500 0 0 

PWP000275 SPWP natural gas 0.00 0 0 0 0 

PWP000276 SPWP natural gas 2973.24 0 4458.33 0 0 

PWP000277 SPWP natural gas 848.37 690 708.33 0 0 

PWP000279 SPWP biomass 284.94 0 0 0 0 

PWP000280 SPWP natural gas 0.00 0 0 0 0 

PWP000281 OGF natural gas 0.00 0 0 0 2 

PWP000282 SPWP biomass 0.00 0 0 0 0 

PWP000283 SPWP natural gas 0.00 0 0 0 0 

PWP000284 SPWP natural gas 0.00 0 0 0 0 

PWP000285 Refinery natural gas 0.00 0 0 9 1 

PWP000286 Landfill biomass 0.00 0 0 0 0 

PWP000287 SPWP natural gas 0.00 0 0 0 0 

PWP000288 SPWP natural gas 315.81 0 0 0 0 

PWP000289 SPWP natural gas 36.31 200 2000 0 0 

PWP000290 SPWP natural gas 0.00 0 0 0 0 

PWP000291 SPWP natural gas 224.77 470 500 0 0 

PWP000295 SPWP natural gas 2090.14 2860 3000 0 0 

PWP000296 SPWP natural gas 2.29 0 0 0 0 

PWP000297 SPWP other 0.00 0 0 0 0 
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PWP000298 Landfill biomass 373.74 1560 0 0 0 

PWP000299 SPWP natural gas 5497.42 15610 0 0 0 

PWP000300 SPWP natural gas 5591.83 0 0 0 0 

PWP000301 SPWP natural gas 2164.74 0 0 0 0 

PWP000302 WWTP biomass 1975.67 0 0 0 0 

PWP000303 SPWP natural gas 403.62 0 0 0 0 

PWP000304 SPWP biomass 0.00 0 0 0 0 

PWP000305 Digester biomass 0.00 0 0 58 0 

PWP000306 SPWP biomass 68112.96 45290 0 0 0 

PWP000307 SPWP other 0.00 0 0 0 0 

PWP000308 SPWP natural gas 8817.72 18190 0 0 0 

PWP000309 SPWP natural gas 6247.76 0 0 0 0 

PWP000310 SPWP natural gas 38.56 0 0 0 0 

PWP000311 Refinery natural gas 0.00 0 0 0 0 

PWP000312 SPWP natural gas 942.39 0 0 0 0 

PWP000313 SPWP natural gas 30190.18 27570 28708.33 0 0 

PWP000314 SPWP natural gas 1952.97 0 0 0 0 

PWP000315 SPWP petroleum 0.00 0 0 0 0 

PWP000316 SPWP petroleum 0.00 0 0 0 0 

PWP000317 Refinery other 2137.61 0 0 0 0 

PWP000318 SPWP natural gas 1122.87 1700 1750 0 0 

PWP000319 SPWP natural gas 0.00 0 0 0 0 

PWP000320 SPWP natural gas 0.00 0 0 0 0 

PWP000321 SPWP natural gas 64.50 0 0 0 0 

PWP000322 WWTP biomass 0.00 0 0 0 0 

PWP000323 WWTP biomass 0.00 0 0 2 0 

PWP000325 Landfill biomass 688.59 2170 0 0 0 

PWP000326 WWTP biomass 9498.04 0 0 0 0 

PWP000327 SPWP petroleum 0.00 0 0 0 0 

PWP000328 Landfill biomass 538.27 0 0 0 0 

PWP000329 SPWP biomass 2534.67 9040 0 0 0 

PWP000330 SPWP biomass 0.00 0 0 0 0 

PWP000331 SPWP natural gas 379.91 0 0 0 0 

PWP000332 Landfill biomass 0.00 0 0 0 0 

PWP000333 SPWP natural gas 130.48 0 0 0 0 

PWP000334 SPWP natural gas 2045.53 1660 1750 0 0 

PWP000335 WWTP natural gas 4959.96 0 0 0 0 

PWP000336 SPWP natural gas 110.81 0 0 0 0 

PWP000337 Refinery natural gas 10038.46 0 0 0 0 

PWP000338 SPWP biomass 86804.62 59190 0 0 0 
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PWP000339 SPWP coal 0.00 0 0 0 0 

PWP000340 SPWP biomass 81905.14 68000 0 0 0 

PWP000341 SPWP natural gas 160.24 930 958.33 0 0 

PWP000342 WWTP natural gas 886.69 1010 1041.67 0 0 

PWP000343 WWTP biomass 3104.25 0 0 0 0 

PWP000344 SPWP natural gas 234.29 0 0 0 0 

PWP000345 SPWP natural gas 9.75 0 0 0 0 

PWP000346 SPWP natural gas 0.00 0 0 0 0 

PWP000349 SPWP natural gas 48.04 0 0 0 0 

PWP000350 SPWP biomass 0.00 0 0 0 0 

PWP000351 SPWP natural gas 28.94 0 0 0 0 

PWP000352 SPWP natural gas 2424.20 290 0 0 0 

PWP000353 WWTP biomass 0.00 0 0 0 0 

PWP000354 WWTP natural gas 7000.60 5780 6000 0 0 

PWP000355 SPWP natural gas 453.95 0 0 0 0 

PWP000356 SPWP natural gas 0.00 0 0 0 0 

PWP000357 OGF natural gas 4130.17 1240 0 0 0 

PWP000363 SPWP natural gas 63.51 0 0 0 0 

PWP000364 SPWP natural gas 712.76 0 791.67 0 0 

PWP000365 SPWP natural gas 556.92 0 0 0 0 

PWP000366 SPWP natural gas 792.96 0 0 0 0 

PWP000367 SPWP biomass 123.92 400 0 0 0 

PWP000368 Refinery other 0.00 0 0 0 0 

PWP000369 SPWP biomass 0.00 0 0 0 0 

PWP000370 Landfill other 85.75 0 0 0 0 

PWP000371 Landfill natural gas 92.32 0 0 0 0 

PWP000372 SPWP natural gas 0.00 0 0 0 0 

PWP000373 SPWP petroleum 0.00 0 0 0 0 

PWP000374 SPWP natural gas 6392.04 5700 5916.67 0 0 

PWP000375 WWTP natural gas 7581.77 15410 16083.33 0 2 

PWP000376 SPWP biomass 0.00 0 0 0 0 

PWP000378 SPWP natural gas 5984.40 4810 0 0 0 

PWP000379 SPWP biomass 1220.30 0 0 0 0 

PWP000380 SPWP natural gas 90.92 0 0 0 0 

PWP000381 SPWP biomass 0.00 0 0 0 0 

PWP000382 SPWP natural gas 103.53 0 0 0 0 

PWP000383 SPWP biomass 0.00 0 0 0 0 

PWP000384 SPWP biomass 54954.68 0 0 0 0 

PWP000385 SPWP biomass 77237.48 0 0 0 0 

PWP000386 SPWP biomass 119414.20 0 0 0 0 
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PWP000387 SPWP biomass 42427.40 0 0 0 0 

PWP000388 

Processing  

Plant other 0.00 0 0 21 0 

PWP000389 WWTP biomass 2358.19 750 0 0 0 

PWP000390 WWTP natural gas 11035.81 0 0 0 0 

PWP000391 SPWP natural gas 0.00 0 0 0 0 

PWP000393 Landfill biomass 206.08 0 0 0 0 

PWP000394 Landfill biomass 191.44 0 0 0 0 

PWP000395 Landfill biomass 12.94 0 0 0 0 

PWP000396 SPWP natural gas 27.03 0 0 0 0 

PWP000397 SPWP biomass 2100.92 0 0 0 0 

PWP000398 SPWP natural gas 5360.67 0 0 0 2 

PWP000399 OGF natural gas 1396.60 0 0 0 2 

PWP000400 SPWP biomass 48332.24 0 0 0 0 

PWP000401 SPWP natural gas 5509.26 0 0 0 0 

PWP000402 Landfill biomass 0.00 0 0 0 0 

PWP000403 SPWP biomass 98438.36 0 0 0 0 

PWP000404 SPWP natural gas 1286.55 0 0 0 0 

PWP000405 SPWP natural gas 11.60 0 0 0 0 

PWP000406 SPWP natural gas 503.40 460 0 0 0 

PWP000407 SPWP natural gas 61.06 0 0 0 0 

PWP000408 SPWP biomass 187108.22 0 0 0 0 

PWP000409 WWTP biomass 0.00 0 0 0 0 

PWP000410 WWTP biomass 1203.34 0 0 0 0 

PWP000411 SPWP natural gas 15060.77 20350 21208 0 0 

PWP000412 Landfill biomass 1928.93 5780 0 0 0 

PWP000413 SPWP natural gas 5263.41 0 0 0 0 

PWP000414 SPWP natural gas 7436.58 0 0 0 1 

PWP000415 SPWP biomass 454.81 0 0 0 0 

PWP000416 OGF natural gas 1289.64 0 0 0 0 

PWP000417 Landfill biomass 288.13 0 0 0 0 

PWP000418 SPWP natural gas 32.86 0 0 0 0 

PWP000419 SPWP other 0.00 0 0 0 0 

PWP000420 Refinery other 0.00 0 0 2 1 

PWP000421 SPWP biomass 0.00 0 0 0 0 

PWP000422 OGF natural gas 0.00 0 0 0 0 

PWP000423 SPWP natural gas 3401.88 0 0 0 2 

PWP000424 WWTP biomass 51492.35 0 0 18 0 

PWP000425 Landfill biomass 0.00 0 0 0 0 

PWP000426 SPWP natural gas 7142.18 7100 7416.67 0 0 

PWP000427 SPWP natural gas 346.09 0 0 0 0 
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PWP000428 SPWP natural gas 1280.76 0 0 0 0 

PWP000429 WWTP natural gas 75.53 0 0 0 0 

PWP000430 SPWP natural gas 2570.02 0 4500 0 0 

PWP000431 SPWP biomass 4936.92 0 0 0 0 

PWP000432 SPWP natural gas 363.74 0 0 0 0 

PWP000433 SPWP natural gas 125.87 0 0 0 0 

PWP000434 SPWP natural gas 2688.59 0 0 0 0 

PWP000435 Landfill natural gas 4235.74 0 0 0 0 

PWP000436 WWTP biomass 0.00 0 0 0 0 

PWP000437 SPWP other 0.00 0 0 0 0 

PWP000438 Refinery natural gas 3107.75 0 0 0 0 

PWP000439 SPWP natural gas 17182.13 11140 12500 0 0 

PWP000440 SPWP natural gas 60.99 0 0 0 0 

PWP000441 SPWP petroleum 0.00 0 0 0 0 

PWP000442 Digester biomass 0.00 0 0 0 0 

PWP000443 SPWP petroleum 0.00 0 0 0 0 

PWP000445 SPWP natural gas 378.61 0 0 0 0 

PWP000446 SPWP biomass 10.39 0 0 0 0 

PWP000447 SPWP natural gas 4.68 0 0 0 0 

PWP000448 SPWP natural gas 4717.60 3390 3416.67 0 0 

PWP000449 SPWP natural gas 8578.38 9340 9750 0 0 

PWP000450 SPWP natural gas 52.47 0 0 0 0 

PWP000451 Refinery natural gas 29648.63 0 0 0 0 

PWP000452 SPWP natural gas 608.11 0 0 0 2 

PWP000453 SPWP natural gas 0.00 0 0 0 0 

PWP000454 SPWP natural gas 1973.07 0 0 0 1 

PWP000455 SPWP natural gas 0.00 0 0 0 2 

PWP000456 SPWP biomass 162871.08 25160 0 0 0 

PWP000457 SPWP biomass 0.00 0 0 0 0 

PWP000458 Refinery other 0.00 0 0 0 2 

PWP000459 SPWP natural gas 88.46 0 0 0 0 

PWP000460 SPWP natural gas 3148.52 0 0 0 0 

PWP000461 SPWP biomass 98929.85 0 0 0 0 

PWP000462 WWTP biomass 8089.63 0 0 0 0 

PWP000463 SPWP natural gas 67.18 0 0 0 0 

PWP000464 SPWP natural gas 61.13 0 0 0 0 

PWP000465 SPWP other 0.00 0 0 0 0 

PWP000466 SPWP natural gas 355.93 280 0 0 0 

PWP000467 SPWP natural gas 344.88 460 500 0 0 

PWP000468 Landfill biomass 0.00 0 0 0 0 
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Table S4.4 HyTES Power Plant GSAAM attributed raw data. This table provides the 

emissions for plumes that were observed by HyTES that were attributed to each power 

plant in the Vista-CA dataset. 

 

Facility  

Vista-ID 

Sub-Facility  

Vista-ID 
Year Month Day Time Area Latitude Longitude 

PWP000029   2014 7 8 165610 Trona 35.765495 -117.38161 

PWP000029   2014 7 8 165610 Trona 35.765466 -117.38433 

PWP000029   2014 7 8 165610 Trona 35.76546 -117.38167 

PWP000029   2014 7 8 165610 Trona 35.765408 -117.38427 

PWP000029   2014 7 8 165610 Trona 35.765318 -117.38421 

PWP000029   2014 7 8 165610 Trona 35.765392 -117.38454 

PWP000029   2014 7 8 165610 Trona 35.765338 -117.38406 

PWP000029   2014 7 8 165610 Trona 35.765297 -117.38402 

PWP000029   2014 7 8 165610 Trona 35.765263 -117.38398 

PWP000029   2014 7 8 165610 Trona 35.765246 -117.38336 

PWP000029   2014 7 8 165610 Trona 35.765234 -117.38402 

PWP000029   2014 7 8 165610 Trona 35.765223 -117.3841 

PWP000029   2014 7 8 165610 Trona 35.765164 -117.38398 

PWP000029   2014 7 8 165610 Trona 35.765164 -117.38331 

PWP000029   2014 7 8 165610 Trona 35.765142 -117.38318 

PWP000029   2014 7 8 165610 Trona 35.76506 -117.38368 

PWP000029   2014 7 8 165610 Trona 35.765042 -117.38322 

PWP000029   2014 7 8 165610 Trona 35.765038 -117.3831 

PWP000029   2014 7 8 165610 Trona 35.765018 -117.38375 

PWP000029   2014 7 8 165610 Trona 35.76499 -117.3838 

PWP000029   2014 7 8 165610 Trona 35.764955 -117.38342 

PWP000029   2014 7 8 165610 Trona 35.764955 -117.38337 

PWP000029   2014 7 8 165610 Trona 35.764076 -117.38371 

PWP000029   2014 7 8 165610 Trona 35.764039 -117.38374 

PWP000029   2014 7 8 165610 Trona 35.763998 -117.38378 

PWP000029   2014 7 8 165610 Trona 35.763981 -117.38331 

PWP000029   2014 7 8 165610 Trona 35.764025 -117.38571 

PWP000029   2014 7 8 165610 Trona 35.763949 -117.38335 

PWP000029   2014 7 8 165610 Trona 35.763902 -117.38333 

PWP000029   2014 7 8 165610 Trona 35.763746 -117.38496 

PWP000029   2014 7 8 165610 Trona 35.76372 -117.38498 

PWP000029   2014 7 8 165610 Trona 35.763702 -117.38502 

PWP000029   2014 7 8 165610 Trona 35.763702 -117.38397 

PWP000029   2014 7 8 165610 Trona 35.763654 -117.3839 

PWP000029   2014 7 8 165610 Trona 35.76278 -117.38401 
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PWP000033   2015 2 5 202724 KernRiverOil 35.418996 -118.92632 

PWP000033   2015 2 8 234132 KernRiverOil 35.418918 -118.9263 

PWP000033   2015 2 9 193430 KernRiverOil 35.418937 -118.9263 

PWP000046   2014 7 5 193259 LongBeachNG 33.82409 -118.24108 

PWP000046   2014 7 5 193259 LongBeachNG 33.823808 -118.23866 

PWP000046   2014 7 5 193259 LongBeachNG 33.823307 -118.23982 

PWP000046   2014 7 5 193259 LongBeachNG 33.823024 -118.23948 

PWP000046   2014 7 5 193259 LongBeachNG 33.822949 -118.23964 

PWP000046   2014 7 5 193259 LongBeachNG 33.822953 -118.23948 

PWP000046   2014 7 5 193259 LongBeachNG 33.822543 -118.24091 

PWP000046   2014 7 5 193259 LongBeachNG 33.822454 -118.24084 

PWP000046   2014 7 5 193259 LongBeachNG 33.822418 -118.24076 

PWP000046   2014 7 5 193259 LongBeachNG 33.822129 -118.23943 

PWP000046   2014 7 5 193259 LongBeachNG 33.822062 -118.23977 

PWP000046   2014 7 5 193259 LongBeachNG 33.821813 -118.23952 

PWP000046   2014 7 5 193259 LongBeachNG 33.816279 -118.23306 

PWP000121   2014 7 5 192352 LongBeachNG 33.845847 -118.23337 

PWP000121   2014 7 5 192352 LongBeachNG 33.845606 -118.23336 

PWP000121   2014 7 5 192352 LongBeachNG 33.845259 -118.2333 

PWP000121   2014 7 5 192352 LongBeachNG 33.843416 -118.23418 

PWP000121   2014 7 5 192352 LongBeachNG 33.843382 -118.233 

PWP000121   2014 7 5 192352 LongBeachNG 33.843246 -118.23314 

PWP000121   2014 7 5 192352 LongBeachNG 33.843165 -118.23343 

PWP000121   2014 7 5 192352 LongBeachNG 33.843164 -118.23368 

PWP000121   2014 7 5 192352 LongBeachNG 33.8428 -118.23218 

PWP000121   2014 7 5 192352 LongBeachNG 33.841767 -118.23535 

PWP000121   2014 7 5 192352 LongBeachNG 33.841387 -118.23568 

PWP000133   2014 7 5 194225 ElSegundo 33.910636 -118.42559 

PWP000133   2014 7 5 194225 ElSegundo 33.910652 -118.42544 

PWP000133   2014 7 5 194225 ElSegundo 33.910396 -118.42421 

PWP000133   2014 7 5 194225 ElSegundo 33.910369 -118.42417 

PWP000133   2014 7 5 194225 ElSegundo 33.910425 -118.42556 

PWP000133   2014 7 5 194225 ElSegundo 33.910401 -118.42405 

PWP000133   2014 7 5 194225 ElSegundo 33.910464 -118.4251 

PWP000133   2014 7 5 194225 ElSegundo 33.910239 -118.42474 

PWP000133   2014 7 5 194225 ElSegundo 33.910173 -118.4245 

PWP000133   2014 7 5 194225 ElSegundo 33.910084 -118.42448 

PWP000133   2014 7 5 194225 ElSegundo 33.910122 -118.4239 

PWP000133   2014 7 5 194225 ElSegundo 33.909549 -118.42395 

PWP000133   2014 7 5 194225 ElSegundo 33.909731 -118.42472 
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PWP000133   2014 7 5 194225 ElSegundo 33.909507 -118.42403 

PWP000133   2014 7 5 194225 ElSegundo 33.909443 -118.4242 

PWP000133   2014 7 5 194225 ElSegundo 33.909399 -118.42404 

PWP000133   2014 7 5 194225 ElSegundo 33.90931 -118.42403 

PWP000133   2014 7 5 194225 ElSegundo 33.909628 -118.42502 

PWP000133   2014 7 5 194225 ElSegundo 33.909265 -118.42382 

PWP000133   2014 7 5 194225 ElSegundo 33.909219 -118.42419 

PWP000133   2014 7 5 194225 ElSegundo 33.909236 -118.42451 

PWP000133   2014 7 5 195005 ElSegundo 33.911085 -118.42567 

PWP000133   2014 7 5 195005 ElSegundo 33.910489 -118.42471 

PWP000133   2014 7 5 195005 ElSegundo 33.910434 -118.42526 

PWP000133   2014 7 5 195005 ElSegundo 33.909997 -118.42437 

PWP000133   2014 7 5 195005 ElSegundo 33.909281 -118.42413 

PWP000133   2014 7 5 195005 ElSegundo 33.909278 -118.42435 

PWP000133   2014 7 5 195005 ElSegundo 33.909184 -118.42467 

PWP000133   2014 7 5 195005 ElSegundo 33.909012 -118.42401 

PWP000133   2014 7 5 195005 ElSegundo 33.909016 -118.42394 

PWP000133   2016 1 25 202848 Hyperion 33.911758 -118.42568 

PWP000133   2016 1 25 202848 Hyperion 33.911246 -118.42574 

PWP000133   2016 1 25 202848 Hyperion 33.911126 -118.4259 

PWP000133   2016 1 25 202848 Hyperion 33.910708 -118.42558 

PWP000133   2016 1 25 202848 Hyperion 33.910368 -118.42404 

PWP000207   2015 2 8 231927 KernRiverOil 35.453538 -118.98505 

PWP000207   2015 2 8 231927 KernRiverOil 35.453551 -118.98467 

PWP000285   2015 2 8 222449 KernRiverOil 35.419493 -119.01029 

PWP000285   2015 2 8 222449 KernRiverOil 35.419456 -119.01189 

PWP000285   2015 2 8 222449 KernRiverOil 35.419344 -119.01104 

PWP000414   2014 7 8 191611 KernRiverOil 35.454987 -119.00159 

PWP000414   2014 7 8 191611 KernRiverOil 35.454918 -119.00167 

PWP000414   2015 2 8 225750 KernRiverOil 35.454887 -119.00167 

PWP000414   2015 2 8 225750 KernRiverOil 35.454549 -119.00096 

PWP000414   2015 2 8 225750 KernRiverOil 35.454506 -119.00169 

PWP000414   2015 2 8 225750 KernRiverOil 35.454453 -119.00364 

PWP000414   2015 2 9 185105 KernRiverOil 35.454784 -119.00197 

PWP000454   2015 2 8 223542 KernRiverOil 35.440369 -119.01285 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906979 -118.40322 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906856 -118.40402 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906852 -118.40312 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906759 -118.40357 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906538 -118.40369 
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REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906574 -118.40407 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906437 -118.40542 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906444 -118.40316 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906238 -118.40331 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906188 -118.40527 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906193 -118.40329 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906146 -118.40475 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.90605 -118.40653 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906077 -118.40607 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906024 -118.40621 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906197 -118.40448 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.906009 -118.40507 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905931 -118.40496 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905942 -118.4028 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905819 -118.4022 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905801 -118.4021 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905703 -118.40294 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905689 -118.40707 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905703 -118.4045 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905719 -118.40305 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905668 -118.40519 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905679 -118.40669 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.90565 -118.40703 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905645 -118.40296 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905617 -118.40439 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905618 -118.40479 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905602 -118.4039 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905534 -118.40386 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905506 -118.40363 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.905668 -118.40569 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.90528 -118.40346 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904679 -118.40259 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904717 -118.40606 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904606 -118.40363 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904582 -118.40262 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904382 -118.40348 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904308 -118.40443 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.90435 -118.40351 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904225 -118.4044 

REF000005 PWP000132 2014 7 5 194225 ElSegundo 33.904146 -118.40418 
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REF000018 PWP000121 2014 7 5 192352 LongBeachNG 33.843834 -118.23635 

REF000018 PWP000121 2014 7 5 192352 LongBeachNG 33.842466 -118.23693 

REF000018 PWP000121 2014 7 5 192352 LongBeachNG 33.842301 -118.23695 

REF000020 PWP000141 2014 7 5 193259 LongBeachNG 33.791326 -118.2325 

REF000020 PWP000141 2014 7 5 193259 LongBeachNG 33.791185 -118.23374 

REF000020 PWP000141 2014 7 5 193259 LongBeachNG 33.790135 -118.23412 

REF000020 PWP000141 2014 7 5 193259 LongBeachNG 33.790135 -118.23374 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.820655 -118.23982 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.820343 -118.23968 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.81961 -118.23982 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.819232 -118.23997 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.819039 -118.23514 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.818745 -118.23532 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.818463 -118.23663 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.818 -118.23875 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.817997 -118.23539 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.817893 -118.23569 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.817655 -118.23543 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.817589 -118.23581 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.817455 -118.23535 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.817451 -118.23559 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.816748 -118.2355 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.816413 -118.23381 

REF000021 PWP000046 2014 7 5 193259 LongBeachNG 33.816396 -118.23642 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.419166 -119.01179 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.419033 -119.01179 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.419061 -119.01167 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418984 -119.01129 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418903 -119.01172 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418892 -119.01164 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418483 -119.01106 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.41844 -119.01115 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418325 -119.00902 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418299 -119.00904 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418296 -119.01201 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418273 -119.00951 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418267 -119.00901 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418255 -119.00896 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.41815 -119.01197 

REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.418187 -119.00958 
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REF000023 PWP000285 2015 2 5 190531 KernRiverOil 35.416974 -119.00959 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.419218 -119.01149 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.419175 -119.01144 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.419087 -119.01144 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.419061 -119.01147 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418967 -119.01147 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418885 -119.0111 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418875 -119.01126 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418845 -119.01122 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418816 -119.01109 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418748 -119.01116 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.41871 -119.0114 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418719 -119.01132 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418608 -119.01135 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.41836 -119.01118 

REF000023 PWP000285 2015 2 8 221409 KernRiverOil 35.418343 -119.01053 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.419043 -119.00829 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.419008 -119.01099 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.419136 -119.01121 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418921 -119.01118 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.41892 -119.01074 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418886 -119.01023 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418772 -119.01099 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418731 -119.00884 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418599 -119.00983 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418528 -119.0104 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.4187 -119.01109 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418274 -119.01017 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418267 -119.01093 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418115 -119.00892 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418116 -119.00817 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.418091 -119.00883 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417835 -119.00903 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417685 -119.01126 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417494 -119.01177 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417459 -119.01179 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417483 -119.00896 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417423 -119.00932 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417332 -119.00923 

REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.417344 -119.01147 
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REF000023 PWP000285 2015 2 8 222449 KernRiverOil 35.416728 -119.01174 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.419143 -119.01068 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.419061 -119.01106 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.419038 -119.01079 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.419061 -119.01073 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.418912 -119.01121 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.418746 -119.01093 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.418644 -119.01103 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.418607 -119.01096 

REF000023 PWP000285 2015 2 9 181750 KernRiverOil 35.418401 -119.01095 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.778626 -118.22838 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.778523 -118.22874 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.778299 -118.22869 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.778293 -118.22835 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.77794 -118.22903 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.777345 -118.22782 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.777236 -118.22776 

REF000025 PWP000178 2014 7 5 193259 LongBeachNG 33.777037 -118.22991 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.776951 -118.22876 

REF000025 PWP000178 2014 7 5 193259 LongBeachNG 33.776967 -118.22975 

REF000025 PWP000178 2014 7 5 193259 LongBeachNG 33.776452 -118.23054 

REF000025 PWP000178 2014 7 5 193259 LongBeachNG 33.776417 -118.23061 

REF000025 PWP000178 2014 7 5 193259 LongBeachNG 33.776381 -118.23072 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.776265 -118.22862 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.775979 -118.22809 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.776067 -118.22858 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.775953 -118.2287 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.775708 -118.22807 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.775704 -118.22827 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.77549 -118.22833 

REF000025 PWP000420 2014 7 5 193259 LongBeachNG 33.775455 -118.22838 
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Table S4.5. AVIRIS-NG Power Plant GSAAM attributed emissions raw data. This table 

provides the emissions for each plume observed by AVIRIS-NG along with where and 

when it was captured for each power plant in the Vista-CA dataset. 

 
Facility  

Vista-ID 

Sub-Facility  

Vista-ID 
Plume-ID Latitude Longitude Year Month Day Time 

Emission  

kg CH4 h-1 

DAF001287 PWP000305 _000136 36.032425 -119.510296 2016 9 13 213245 234 

DAF001287 PWP000305 _000137 36.032425 -119.510296 2016 10 26 173255 0 

DAF001287 PWP000305 _000138 36.032425 -119.510296 2016 10 26 180214 0 

DAF001287 PWP000305 _000443 36.032425 -119.510296 2017 6 16 212046 272 

DAF001287 PWP000305 _000444 36.032425 -119.510296 2017 9 20 193250 183 

DAF001287 PWP000305 _000445 36.032425 -119.510296 2017 9 20 194154 235 

DAF001287 PWP000305 _000446 36.032425 -119.510296 2017 9 28 195131 0 

FAB002088 PWP000037 _000065 34.385725 -118.496705 2016 9 15 180022 78 

FAB002088 PWP000037 _000083 34.385157 

-

118.4963171 2016 10 3 193609 136 

FAB002249 PWP000135 _000544 35.280734 

-

119.4726061 2017 9 6 210217 868 

LNF000022 PWP000015 _001094 37.749203 -121.650146 2017 6 18 183142 45 

LNF000516 PWP000154 _000584 38.314634 

-

121.8337761 2017 6 17 185116 962 

LNF000714 PWP000021 _001125 36.53149 -121.406066 2017 10 7 204208 52 

NPP000023 PWP000388 _000898 33.811204 -118.174816 2017 9 1 221701 528 

PWP000006   _000887 33.851096 -118.394712 2017 9 1 214553 81 

PWP000051   _000895 32.694343 -117.146467 2017 9 25 212203 515 

PWP000126   _000877 36.804618 -121.777183 2017 10 7 201538 85 

PWP000135   _000228 35.280645 

-

119.4783614 2016 10 29 205722 146 

PWP000135   _000285 35.281571 

-

119.4808156 2016 10 29 205722 253 

PWP000135   _000478 35.280645 

-

119.4783614 2017 6 15 233419 0 

PWP000135   _000479 35.280645 

-

119.4783614 2017 6 20 164237 27 

PWP000135   _000480 35.280645 

-

119.4783614 2017 6 20 164926 24 

PWP000135   _000481 35.280645 

-

119.4783614 2017 6 20 165600 0 

PWP000135   _000503 35.281571 

-

119.4808156 2017 6 15 230609 199 

PWP000135   _000504 35.281571 

-

119.4808156 2017 6 20 164237 43 

PWP000135   _000505 35.281571 

-

119.4808156 2017 6 20 164926 65 

PWP000135   _000506 35.281571 

-

119.4808156 2017 6 20 165600 47 

PWP000135   _000545 35.279019 

-

119.4760295 2017 6 20 164237 50 

PWP000135   _000546 35.279019 

-

119.4760295 2017 9 6 210217 476 

PWP000135   _001246 35.279259 -119.476386 2018 9 19 204226 0 

PWP000135   _001247 35.279259 -119.476386 2018 9 19 204827 0 

PWP000179   _000595 33.765019 

-

118.0992873 2017 8 30 191500 75 

PWP000179   _000596 33.765019 

-

118.0992873 2017 9 1 221701 105 

PWP000215   _000699 35.295576 

-

119.5921516 2017 9 26 224352 515 
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PWP000230   _000714 37.424368 -121.932121 2017 10 5 191421 50 

PWP000230   _000715 37.424368 -121.932121 2017 10 5 194644 194 

PWP000230   _000716 37.424368 -121.932121 2017 10 5 195334 86 

PWP000247   _000876 37.627517 -120.93185 2017 9 30 214843 113 

REF000005 PWP000132 _000018 33.905431 -118.406435 2016 9 10 193531 49 

REF000005 PWP000132 _000019 33.905983 -118.403489 2016 9 10 193531 0 

REF000005 PWP000132 _000368 33.906 -118.4063 2017 3 9 221021 248 

REF000005 PWP000132 _000369 33.906 -118.4063 2017 6 16 183155 88 

REF000005 PWP000132 _000370 33.905431 -118.406435 2017 9 1 212236 166 

REF000005 PWP000132 _000792 33.905751 -118.406747 2017 10 24 182513 0 

REF000006 PWP000145 _000879 33.851301 -118.331618 2017 10 24 184733 36 

REF000006 PWP000145 _000880 33.851301 -118.331618 2017 10 24 210834 76 

REF000006 PWP000145 _000881 33.851301 -118.331618 2017 10 24 213114 32 

REF000013 PWP000229 _000020 33.776957 -118.28704 2016 9 10 201644 54 

REF000013 PWP000229 _000371 33.772601 -118.286431 2017 9 1 211100 77 

REF000013 PWP000229 _000608 33.7751 -118.288828 2017 10 23 202450 314 

REF000013 PWP000229 _000609 33.7751 -118.288828 2017 10 24 203615 180 

REF000013 PWP000229 _000610 33.774404 -118.282011 2017 9 1 211100 37 

REF000013 PWP000229 _000919 33.774727 -118.290496 2017 10 24 183630 783 

REF000013 PWP000229 _001182 33.772601 -118.286431 2018 10 1 183753 0 

REF000013 PWP000229 _001183 33.772601 -118.286431 2018 10 1 184401 0 

REF000013 PWP000229 _001274 33.775293 -118.288664 2018 9 16 204323 0 

REF000013 PWP000229 _001275 33.775224 -118.288657 2018 9 16 212943 0 

REF000013 PWP000229 _001596 33.775195 -118.289656 2018 10 1 183753 0 

REF000013 PWP000229 _001597 33.775195 -118.289656 2018 10 1 184401 0 

REF000013 PWP000229 _001598 33.775385 -118.288712 2018 10 1 183753 0 

REF000013 PWP000229 _001599 33.775385 -118.288712 2018 10 1 184401 0 

REF000018 PWP000121 _000778 33.842039 -118.237465 2017 9 1 201246 52 

REF000018 PWP000121 _000839 33.845592 -118.238142 2017 9 1 221701 856 

REF000019 PWP000242 _001083 38.014542 -122.11423 2017 9 10 200709 0 

REF000021 PWP000046 _000122 33.816222 -118.235695 2016 9 10 205021 0 

REF000021 PWP000046 _000432 33.816222 -118.235695 2017 3 9 221021 220 

REF000021 PWP000046 _000781 33.817154 -118.235458 2017 9 1 202358 84 

REF000021 PWP000046 _000782 33.817154 -118.235458 2017 10 23 210905 0 

REF000021 PWP000046 _000783 33.817154 -118.235458 2017 10 24 192146 162 

REF000021 PWP000046 _000945 33.818714 -118.236133 2017 3 9 221021 257 

REF000021 PWP000046 _001360 33.81682 -118.23507 2018 9 16 211358 0 

REF000021 PWP000046 _001361 33.816777 -118.234973 2018 9 16 215953 0 

REF000023 PWP000285 _000679 35.419299 

-

119.0083383 2017 3 9 195546 135 

REF000023 PWP000285 _000680 35.419299 

-

119.0083383 2017 9 8 205824 223 
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REF000023 PWP000285 _000681 35.419299 

-

119.0083383 2017 9 26 205517 123 

REF000025 PWP000420 _000925 33.776328 -118.22919 2017 3 9 222247 173 

REF000025 PWP000420 _000926 33.776328 -118.22919 2017 10 23 205826 51 

WWT000059 PWP000424 _000930 33.803642 -118.284674 2017 9 1 205911 480 

WWT000059 PWP000424 _000931 33.803642 -118.284674 2017 10 24 204657 358 

WWT000059 PWP000424 _000932 33.803642 -118.284674 2017 10 24 215215 148 

WWT000087 PWP000323 _000597 33.639371 

-

117.9565514 2017 8 30 192655 115 

WWT000087 PWP000323 _000805 33.638199 -117.956988 2017 9 22 224720 0 
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The research presented here provides a foundation for which geospatial emissions 

development and analysis can be built upon for further studies of CH4 emissions in 

California and beyond. This research enables critical application of geospatial datasets 

leveraging bottom-up and top-down estimation methods and utilizing high resolution 

spatial data to constrain emissions at both the facility and sub-facility scale. The three 

chapters outlined here improve methodologies for developing high-resolution, spatially 

resolved datasets for major CH4 contributors, provide novel geospatial techniques and 

complimentary algorithms for source attribution, offer robust geospatial techniques for top-

down source and facility emission estimation, and offer industry and sector specific 

emissions insight for optimizing potential mitigation strategies and policies. 

In Chapter 2, this work provided a novel method for automated geospatial 

identification and attribution of CH4 source emitters at close to 99% accuracy across the 

entire state of California using a facility and infrastructure database of close to 1 million 

individual features in Vista-CA. This approach systematically accounts for all 

anthropogenic CH4 infrastructure within California and attempts to represent all potential 

sources of CH4 emissions (except rice cultivation or other anthropogenic CH4 emissions 

from soils) regardless of the expected size of emissions. Combining this detailed dataset 

with new, high resolution observational data of CH4 emissions from airborne remote 

sensing enables a more thorough accounting of CH4 based on actual observations that is 

potentially more robust than activity/emission factor methods that do not capture fugitive 

or anomalously large sources that are common for CH4. Using this approach, over 500 

point-source emitters collected via AVIRIS-NG were identified and attributed to 
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infrastructure and facilities throughout California. These constituted around 40% of the 

total statewide CH4 inventory and this was accomplished with low latency and high 

confidence outputs which ultimately has the potential to be extended to other areas as well. 

The advantage of this technique allows for a rapid facility-level emissions assessment that 

can be scalable for any given area, while the disadvantages lie in the temporal quality of 

data collected which is not satisfactory due to the economic and hardware constraints of 

performing airborne surveys. Moreover, it could potentially be difficult to replicate the 

Vista-CA CH4 database in international regions as the underlying data used to engineer it 

might not exist in other countries. 

In Chapter 3, this research developed, analyzed, and scaled both top-down and 

bottom-up emission estimates for Kern County and investigated their differences among 

publicly available bottom-up inventories. This section also confirmed the hypothesis of a 

larger impact on CH4 emissions in Kern County emanating from the oil and gas sector than 

has been previously accounted for in publicly available CH4 emissions inventories. In fact, 

the AVIRIS-NG Source Data top-down estimates from fossil sources calculated in this 

chapter were between 2-4 times greater than both Vista-CA bottom-up and CALGEM 

modeled inventories. AVIRIS-NG top-down observations also revealed potential 

overestimation in biogenic emissions in Kern County by a factor of 7 when compared to 

bottom-up inventories. Furthermore, comparing the AVIRIS-NG Source Data and Vista-

CA Bottom-Up datasets to state and federal data clearly shows the stark contrast in 

magnitudes with the both the state and federal repositories accounting for less than 5% of 

the total CH4 budget of Kern County. These clear gaps in accounting in these inventories 
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along with differences in the modeled data compared to the observed data lends credence 

to the need for geospatial derived facility-scale data for optimum  

In Chapter 4, this work explored process-based and fugitive CH4 emissions from 

the power plant sector of California using both top-down and bottom-up measurements and 

characterized their super-emitter activity. With the rise in both demand for electricity and 

expanse of natural gas usage as an energy resource, both AVIRIS-NG top-down data and 

Vista-CA Bottom-Up data calculated CH4 emissions for over 250 power plants across 

California and exemplified super-emitter behavior likely due to fugitive activities. Top-

down estimates revealed that fugitive CH4 emissions constituted 90% of total observed 

power plant emissions while modeled emissions were 30-50 times smaller than top-down 

observations. Furthermore, geospatial and aerial imagery analysis visibly demonstrated 

fugitive and process-based CH4 emissions from individual components and infrastructure 

located within these power plants. State and federal repositories significantly 

underestimated power plant fugitive emissions when compared to the top-down 

observations. This chapters serves to show the evident discrepancy in public CH4 emissions 

accounting in a specific sector while also necessitating further utilization in onsite 

emissions tracking technologies such as continuous emissions monitoring devices (CEMs) 

with a combination of persistent facility-level airborne emission surveys for effective and 

actionable mitigation of both process-based and fugitive emissions. 

The associated deliverables from this research are as follows: Vista-CA CH4 

Sectoral Dataset (L1C) (shapefile, kmz),1, 2 Vista GSAAM algorithm (python code/model 

builder),1 AVIRIS-NG GSAAM attributed dataset (shapefile, kmz), AVIRIS-NG source 
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data emission estimation methodology, AVIRIS-NG attributed facility emissions dataset 

(shapefile, kmz), Kern County Vista-CA facility emissions dataset (L2) (shapefile, kmz), 

IPCC Tier 2 Vista-CA power plant emissions dataset (L2) (shapefile, kmz), HyTES 

emission isolation algorithm (python code/model builder), HyTES GSAAM attributed 

facility dataset (shapefile, kmz). 

Overall, this work provides the first step towards large-scale geospatial CH4 

emissions accounting resolved at a facility-level and can lead to enhancements in potential 

real time facility emissions monitoring down the line. Idealistically, a real-time or near-

real time geospatial facility-scale map product could provide significant information and 

will undoubtedly require further development in automation and machine learning 

technologies.3, 4, 5, 6 While this research offers some improvement which under a global 

context might not hold as much significance, the potential implications this research has is 

greater within a local context. For example, having quantified CH4 emissions at sub-meter 

to facility-level scales enables policy makers and enforcement agencies to conduct more 

efficient evaluations and audits of potential violators that greatly affect local residing 

populations through co-emitted pollutants that may be emitted alongside CH4. This is 

especially the case as CH4 emissions from nearby facilities have significant potential health 

impacts as seen with the Aliso Canyon CH4 leak in late 2015.7 Having state-level data that 

can scale down to the facility level supports increased local awareness of GHG emissions 

and enables easier investigation. This research has demonstrated that various sectors of 

California’s CH4 budget have been under accounted which potentially signifies that there 

are facilities that are producing more than what publicly available data is stating. This could 
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negatively impact California’s evaluation metrics and further delay necessary climate 

change mitigation milestones and implementations. Depending on the area, sector, and 

facility, this work has provided estimates that are 20-60% greater than current estimates in 

modeled inventories especially as they relate to more intensive CH4 producing facilities 

such as power plants and oil and gas infrastructure. The techniques presented here could 

ideally be implemented by a third-party or independent environmental auditors at scale 

meaning the “self-reporting” abilities of facilities that produce CH4 and other GHG’s 

would be removed in order to curb the skirting and inaccurate reporting of emissions. This 

is important as these datasets are communicated, consumed, and published by state and 

federal modeled inventories to be used in critical policy decision making to curb CH4 

emissions and combat climate change. 
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