
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Encoding Sequential Information in Vector Space Models of Semantics: Comparing 
Holographic Reduced Representation and Random Permutation

Permalink
https://escholarship.org/uc/item/7wc694rn

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Recchia, Gabriel
Jones, Michael
Sahlgren, Magnus
et al.

Publication Date
2010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7wc694rn
https://escholarship.org/uc/item/7wc694rn#author
https://escholarship.org
http://www.cdlib.org/


Encoding Sequential Information in Vector Space Models of Semantics: 
Comparing Holographic Reduced Representation and Random Permutation 

 
Gabriel Recchia (grecchia@indiana.edu) 

Cognitive Science Program, 1910 E 10th St. 
Indiana University, Bloomington, Indiana USA 

 

Michael N. Jones (jonesmn@indiana.edu) 
Department of Psychological and Brain Sciences  
Indiana University, Bloomington, Indiana USA 

 
Magnus Sahlgren (mange@sics.se) 
Swedish Institute of Computer Science 
Box 1263, SE-164 29 Kista, Sweden 

 

Pentti Kanerva (pkanerva@berkeley.edu) 
Redwood Center for Theoretical Neuroscience 

University of California, Berkeley, California, USA 
 

 
Abstract 

Encoding information about the order in which words 
typically appear has been shown to improve the performance 
of high-dimensional semantic space models. This requires an 
encoding operation capable of binding together vectors in an 
order-sensitive way, and efficient enough to scale to large text 
corpora. Although both circular convolution and random 
permutations have been enlisted for this purpose in semantic 
models, these operations have never been systematically 
compared. In Experiment 1 we compare their storage capacity 
and probability of correct retrieval; in Experiments 2 and 3 
we compare their performance on semantic tasks when 
integrated into existing models. We conclude that random 
permutations are a scalable alternative to circular convolution 
with several desirable properties. 

Keywords: semantic representation, semantic space models, 
binding, convolution, permutation, random indexing. 

Introduction 
Vector-space models of lexical semantics have seen 
considerable recent attention in the psychological literature 
both as automated tools to estimate semantic similarity 
between words, and as psychological models of how 
humans learn and represent word meaning from repeated 
contextual co-occurrences. In general, these models build 
semantic representations for words from statistical 
redundancies observed in a large corpus of text (e.g., 
Landauer & Dumais, 1997; Lund & Burgess, 1996). As 
tools, the models have provided invaluable metrics of 
semantic similarity for stimulus selection and control in 
behavioral experiments using words, sentences, and larger 
units of discourse. As psychological models, the vectors 
derived from distributional models serve as useful 
representations in computational models of word 
recognition, priming, and higher-order comprehension 
(Landauer et al., 2007). In addition, the abstraction 
algorithms themselves are often proposed as models of the 
cognitive mechanisms humans use to learn meaning from 
repeated episodic experience. 

A classic example of a vector-space model is Landauer 
and Dumais’ (1997) Latent Semantic Analysis (LSA). LSA 
begins with a word-by-document co-occurrence matrix 
representation of a text corpus. A lexical association 
function is applied to dampen the importance of each word 
proportionate to its entropy over documents. Finally, an 

algorithm is applied to reduce the matrix’s dimensionality; 
words are represented as vectors whose dimensions refer to 
the largest eigenvalues of the reduced representation.  

Despite their successes both as tools and as psychological 
models, vector-space models suffer from several 
shortcomings. Most prominently, the models have been 
criticized as “bag of words” models that encode only the 
contexts in which words co-occur, but ignore word-order 
information. The role of word order was traditionally 
thought to apply only to the rules of word usage (grammar) 
rather than to the lexical meaning of the word itself. 
However, temporal information is now taking a more 
prominent role in the lexical representation of a word’s 
meaning. Recently, Elman (2009) has convincingly argued 
that an inherent part of a word’s lexical representation is 
information about its common temporal context, event 
knowledge, and habits of usage (cf. McKoon & Ratcliff, 
2003; see also Hare et al., 2009).  

A second issue for these models is lack of scalability  
(Recchia & Jones, 2009; Kanerva, Kristofersson, & Holst, 
2000), due to reliance on computationally complex 
decomposition techniques to reveal the latent components in 
a word-by-document matrix (e.g., singular value 
decomposition). Not only is decomposition computationally 
expensive, the entire word-by-document matrix must be 
stored in memory during the operation. The problem is 
exacerbated by the fact that as the size of the corpus 
increases, the number of both rows and columns in the 
matrix increase significantly, the number of columns 
growing linearly with added documents, and the number of 
rows growing approximately in proportion to the square root 
of the number of tokens (Heap’s law). The corpora that 
vector-space models like LSA are most commonly trained 
upon in the literature contain approximately the number of 
tokens that children are estimated to have experienced 
before age 3, not counting words that they produce during 
this time (Riordan & Jones, 2007; Risley & Hart, 2006). 
Recently, Recchia and Jones (2009) demonstrated that 
although simple semantic metrics such as pointwise mutual 
information (PMI) are outperformed by more complex 
models such as LSA on small corpora, PMI is capable of 
much better correspondence to human-derived semantic 
similarity judgments due to its ability to scale to large 
corpora. This led the authors to favor simple and scalable 
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algorithms to more complex non-scalable algorithms, 
concordant with approaches that have met with success in 
the computational linguistics literature (e.g. Banko & Brill, 
2001). 

Encoding Word Order  
Two recent vector-space models that directly address the 

concerns of word order and scalability are Jones and 
Mewhort’s BEAGLE (2007) and the “random permutation” 
model of Sahlgren, Holst, and Kanerva (2008) (henceforth 
referred to as RPM). Rather than starting with a word-by-
document matrix, BEAGLE and RPM maintain static, 
randomly generated signal vectors intended to represent the 
invariant properties of each word (such as its orthography or 
phonology), as well as dynamic memory vectors that store 
information about each word’s semantic representation.  To 
represent statistical information about the word, BEAGLE 
and RPM bind together collections of signal vectors into 
order vectors that are added to memory vectors during 
training. Integrating word-order information has yielded 
greater success at fitting a variety of human semantic data 
than encoding only contextual information (e.g., Jones, 
Kintsch, & Mewhort, 2006; Jones & Mewhort, 2007). 
Because they require neither the overhead of a large word-
by-document matrix nor computationally intensive matrix 
decomposition techniques, both models are significantly 
more scalable than traditional vector-space models.   

Although BEAGLE and RPM differ in several ways, 
arguably the most important difference lies in the nature of 
the binding operation used to create order vectors. BEAGLE 
uses circular convolution, a binary operation (henceforth 
denoted as *) performed on two vectors such that every 
element i of (x * y) is given by: 

 
 

€ 

x jj= 0

D−1
∑ ⋅ y( i− j )modD , 

 

(1) 
 

 

where D is the dimensionality of x and y. Circular 
convolution can be seen as a modulo-n variation of the 
tensor product of two vectors x and y such that (x * y) is of 
the same dimensionality as x and y. Furthermore, although 
(x * y) is dissimilar from both x and y by any distance 
metric, approximations of x and y can be retrieved via the 
inverse operation of correlation.   

In contrast, RPM employs random permutations, 
henceforth referred to as RPs. True to their name, RPs are 
functions that map input vectors to output vectors such that 
the outputs are simply randomly shuffled versions of the 
inputs. Just as (x * y) yields a vector that differs from x and 
y but from which approximations of x and y can be 
retrieved, the sum of two RPs of x and y, Πx + Π2y (where 
Π2y is defined as Π(Πy)) yields a vector dissimilar from x 
and y but from which approximations of the original x and y 
can be retrieved via the inverse permutations  Π-1 and Π-2.  

Both systems offer efficient storage properties, 
compressing order information into a single composite 
vector representation, and both encoding operations are 

reversible. However, RPs are much more efficient to 
compute. In language applications of BEAGLE, the 
computationally expensive convolution operation is what 
limits the size of a text corpus that the model can encode. As 
Recchia and Jones (2009) have demonstrated, scaling a 
semantic model to more data produces much better fits to 
human semantic data. Hence, both order information and 
magnitude of linguistic input have been demonstrated to be 
important factors in human semantic learning. If RPs have 
similar characteristics to convolution, they may afford 
encoding very large-scale order information, and much 
better approximations to human semantic structure.   

This work is further motivated by the cognitive 
implications of circular convolution and RPs. Vector 
representations constructed by means of circular 
convolution have been frequently described as 
psychologically or neurally plausible (Levy, 2007; Jones & 
Mewhort, 2007), due to several features that they share with 
connectionist networks: distributed encoding, robustness to 
noise, affordance of generalization, error correction, pattern 
completion, and easy associative access (Plate, 2003). 
Furthermore, implementing neural networks that instantiate 
convolution-like operations is straightforward (Plate, 2000; 
but compare Pike, 1986). Similarly, RPs possess many 
properties relevant to human cognition. Not only have they 
been proposed as a particularly versatile multiplication 
operator for constructing vector representations that are 
highly distributed, tolerant of noise in the input, robust to 
error and component failure, and mathematically compatible 
with several known properties of neural circuitry (Kanerva, 
2009), RPs are trivially easy to implement in connectionist 
terms; a RP can simply be thought of as a two-layer network 
connected by randomly placed one-to-one copy connections. 
Thus, comparing circular convolution and RPs affords us a 
better understanding of two psychologically plausible 
operations for encoding semantic information that have 
never been systematically compared. 

We conducted three experiments intended to compare 
convolution and RPs as means of encoding word-order 
information with respect to performance and scalability. In 
Experiment 1, we conducted an empirical comparison of the 
storage capacity and the probability of correct decoding 
under each method. In Experiment 2, we compared RPs 
with convolution in the context of a simple vector 
accumulation model equivalent to BEAGLE’s “order space” 
(Jones and Mewhort, 2007) on a small battery of semantic 
evaluation tasks when trained on a Wikipedia corpus. The 
model was trained on both the full corpus and a random 
subset; results improved markedly when RPs are allowed to 
scale up to the full Wikipedia corpus, which proved to be 
intractable for the convolution-based model. Finally, in 
Experiment 3, we specifically compared BEAGLE to RPM, 
which differs from BEAGLE in several important ways 
other than its binding operation, to assess whether using RPs 
in the context of RPM improves their performance further. 
We conclude that random permutations are a promising and 
scalable alternative to circular convolution. 
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Experiment 1 
Plate (2003) made a compelling case for circular 
convolution in the context of holographic reduced 
representation, demonstrating its utility in constructing 
distributed representations with high storage capacity and 
high probability of correct retrieval. However, the storage 
capacity and probability of correct retrieval with RPs has 
not been closely investigated. This experiment compared the 
probability of correct retrieval of RPs with circular 
convolution under varying dimensionality and number of 
vectors stored.  

Method 
As a test of the capacity of convolution-based associative 
memory traces, Plate (2003, Appendix D) describes a 
simple paired-associative retrieval task in which the 
algorithm must select, from set E of m possible random 
vectors, the vector xi that is bound to its associate yi . The 
retrieval algorithm is provided with a trace vector of the 
form t = (x1 * y1) + (x2 * y2) + (x3 * y3) + … that stores a 
total of k vectors. All vectors are of dimensionality D, and 
each xi and yi is a vector with elements independently drawn 
from Ν(0, 1/D). The retrieval algorithm is provided with the 
trace t and the probe yi , and works by first calculating a = 
(yi # t), where # is the correlation operator described in 
detail in Plate (2003, pp. 94-97). It then retrieves the vector 
in the “clean-up memory” set E that is the most similar to a. 
This is accomplished by calculating the cosine between a 
and each vector in the set E, and retrieving the vector from 
E for which the cosine is highest. If this vector is not equal 
to xi , this counts as a retrieval error. We replicated Plate’s 
method to empirically derive retrieval accuracies for a 
variety of choices of k and D, keeping m fixed at 1,000. 

Sahlgren et al. (2008) essentially bind signal vectors to 
positions by means of successive self-composition of a 
permutation function Π, and construct trace vectors by 
superposing the results. Because the signal vectors are 
random, any permutation function that maps each element 
of the input onto a different element of the output will do; 
we adopt Sahlgren et al.’s suggestion of using rotation of a 
vector by one position for Π for the sake of simplicity. We 
also use their notation of Πnx to mean “Π composed with 
itself n times;” thus, Π2x = Π(Πx), Π3(x) = Π(Π2x)), and so 
forth. The notion of a trace vector of paired associations can 
then be recast in RP terms as follows: 

 
t = (Πy1 + Π2x1) + (Π3y2 + Π4x2) + (Π5y3 + Π6x3) + … 

 
where the task again is to retrieve some yi’s associate xi 
when presented only with yi and t. A retrieval algorithm for 
accomplishing this can be described as follows: Given a 
probe vector yi , the algorithm applies the inverse of the 
initial permutation to trace vector t, yielding Π−1t. Next, the 
cosine between Π−1t and the probe vector yi is calculated, 
yielding a value that represents the similarity between yi and 
Π−1t. These steps are then iterated: the algorithm calculates 

the cosine between yi and Π−2t, between yi and Π−3t, etc., 
until this similarity value exceeds some high threshold; this 
indicates that the algorithm has probably “found” yi in the 
trace.  At that point, t is permuted one more time, yielding 
x′, a noisy approximation of yi’s associate xi. This 
approximation x′ can then be compared with clean-up 
memory to retrieve the original associate xi. 

Alternatively, rather than selecting a threshold, t may be 
permuted some finite number of times1 and its cosine 
similarity to yi calculated for each permutation. Let n 
indicate the inverse permutation for which cos(Π−nt, yi) is 
the highest. We can permute one more time to get Π-n-1t, 
that is, our noisy approximation x′. This method is 
appropriate if we always want our algorithm to return an 
answer (rather than, say, timing out before the threshold is 
exceeded), and is the method we used for this experiment. 

The final clean-up memory step is identical to that used 
by Plate (2003): we calculate the cosine between x′ and each 
vector in the clean-up memory E, and retrieve the vector in 
E for which this cosine is highest. As when evaluating 
convolution, we keep m (the number of vectors in E) fixed 
at 1,000 while varying the number of stored vectors k and 
the dimensionality D. 

Results 
Figure 1 reports retrieval accuracies for convolution-based 
associative memory traces, while Figure 2 reports retrieval 
accuracies for the RP formulation of the task. 500 vector 
pairs were sampled randomly from a pool of 1,000 possible 
random vectors with replacement and the proportion of 
correct retrievals was computed. All 1,000 vectors in the 
pool were potential candidates; thus, an accuracy of 0.1% 
would represent chance performance. The horizontal axes of 
all figures indicate the total number of pairs stored in the 
trace (i.e., half the total number of vectors in the trace).  
 
 

 
 

 Figure 1. Retrieval accuracies for convolution-based associative traces. 
 

                                                             
1 In Plate’s (2003, p. 252) demonstration of the capacity of 

convolution-based associative memories, the maximal number of 
pairs stored in a single trace was 14; we likewise restrict the 
maximal number of pairs in a single trace to 14 (28 items total). 
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Figure 2. Retrieval accuracies for RP-based associative traces. 

Discussion 
Circular convolution has an impressive storage capacity and 
excellent probability of correct retrieval at high 
dimensionalities; the results were comparable to those 
reported by Plate (2003, p. 252) in his test of convolution-
based associative memories. However, RPs seem to share 
these desirable properties as well. In fact, the storage 
capacity of RPs seems to drop off significantly more slowly 
than does the storage capacity of convolution as 
dimensionality is reduced.  

This information capacity is particularly interesting given 
that, with respect to basic encoding and decoding 
operations, RP is computationally more efficient than 
convolution. Encoding n-dimensional bindings with circular 
convolution using equation (1) is a very slow O(n2) 
operation. This can be sped to O(n) by means of the Fast 
Fourier transform (Jones, 2007; Plate, 2003). The algorithm 
to bind two vectors a and b in O(n) time involves 
calculating discrete Fourier transforms of a and b, 
multiplying them pointwise to yield a new vector c, and 
calculating the inverse discrete Fourier transform of c. 
Encoding with RPs can also be accomplished in O(n) time, 
but with steps that are not as computationally expensive. To 
bind two vectors a and b, the elements of a are permuted by 
directly copying then into a new vector, but with the 
mapping of their indices determined by the permutation 
function. For example, if the permutation function were 
chosen to be rotation by one position and vectors were of 
dimensionality D, each value at index i in the vector a 
would be copied to index (i + 1) mod D in the new vector. 
The vector b is permuted in the same way, but using a 
different permutation function (e.g., (i + 2) mod D). Finally, 
a and b are added to yield a final binding c.  

Noisy decoding—the retrieval of a noisy version of one or 
more bound associates from a trace (which may then be 
passed to clean-up memory to unambiguously determine the 
identity of the associate)—also operates in O(n) time in both 
representations. As with encoding, the operation is O(n), but 
fewer operations are required (a single permutation decodes 
one associate, rather than an involution + two discrete 
Fourier transforms + an elementwise multiplication +  one 
inverse discrete Fourier transform). 

Experiment 2 
In order to move from the paired-associates problem of 
Experiment 1 to a real language task, we evaluated how a 
simple vector accumulation model akin to Jones & 
Mewhort’s (2007) encoding of order-only information in 
BEAGLE would perform on a set of semantic tasks if RPs 
were used in place of circular convolution. In Experiment 2, 
we replaced the circular convolution component of 
BEAGLE with RPs so that we could quantify the impact 
that the choice of operation alone had on the results. Due to 
the computational efficiency of RPs, we were able to scale 
them to a larger version of the same textbase, and 
simultaneously explore the effect of scalability on order.  

Method 
Order information was trained using both the BEAGLE 
model and a modified implementation of BEAGLE in which 
the circular convolution operation was replaced with RPs as 
they are described in Sahlgren at al. (2008). A brief example 
will illustrate how this replacement changes the algorithm. 
Recall that in BEAGLE, each word w is assigned a static 
“environmental” signal vector ew as well as a dynamic 
memory vector mw that is updated during training. Recall 
also that the memory vector of a word w is updated by 
adding the sum of the convolutions of all n-grams (up to 
some maximum length λ) containing w. Upon encountering 
the phrase “one two three” in a corpus, the memory vector 
for “one” would normally be updated as follows: 
 

mone = mone + (Φ ∗ etwo) + (Φ ∗ etwo * ethree) 
 

where Φ is a placeholder signal vector that represents the 
word whose representation is being updated. In the modified 
BEAGLE implementation used in this experiment, the 
memory vector for “one” would instead be updated as: 
 

mone = mone + Πetwo + Π2ethree 
 

The modified BEAGLE implementation was trained on a 
2.33 GB corpus (418 million tokens) of documents from 
Wikipedia. Training on a corpus this large proved 
intractable for the slower convolution-based approach. 
Hence, we also trained both models on a 35 MB, six-
million-token subset of this corpus constructed by sampling 
random 10-sentence documents from the larger corpus 
without replacement. Accuracy was evaluated on two 
synonymy tests: the English as a Second Language (ESL) 
and the Test of English as a Foreign Language (TOEFL) 
synonymy assessments. Rank correlations to human 
judgments of the semantic similarity of word pairs were 
calculated using the similarity judgments obtained from 
Rubenstein and Goodenough (G, 1965), Miller and Charles 
(M&C, 1991), Resnik (R, 1995), and Finkelstein et al. 
(F&al, 2002). A description of these measures can be found 
in Recchia and Jones (2009).  

Results and Discussion 
Table 3 provides a comparison of two variants of the 
BEAGLE model, each trained on order information only. 
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“Convolution” refers to the original BEAGLE as described 
in Jones & Mewhort, while “Random Permutations” refers 
to a version in which order information is encoded using 
RPs rather than circular convolution. Three points about 
these results merit special attention. First, there are no 
significant differences between the performance of 
convolution and RPs on the small corpus. Both performed 
nigh-identically on F and TOEFL; neither showed any 
significant correlations with human data on R&G, M&C, R, 
nor performed better than chance on ESL.  
 
 
Table 3. Comparisons of variants of BEAGLE that differ by 
binding operation. Accuracy scores are reported for ESL & 
TOEFL; remaining tasks are Spearman rank correlations. 
 

Criterion Wikipedia subset Full Wikipedia 
  

Convolution 
Random 

Permutations 
Random 

Permutations 
ESL .20 .26 .32 

TOEFL .46† .46† .63† 
R&G .07 -.06 .32* 
M&C .08 -.01 .33* 

R .06 -.04 .35* 
F&al .13* .12* .33* 

*Significant correlation, p < .05, one-tailed.  
†Accuracy score differs significantly from chance, p < .05, one-tailed. 
 
 
 

Second, both models performed the best by far on the 
TOEFL synonymy test, supporting Sahlgren’s et al. (2008) 
claim that order information may indeed be more useful for 
synonymy tests than tests of semantic relatedness, as 
paradigmatic rather than syntagmatic information sources 
are most useful for the former. However, it is unclear 
exactly why neither model did particularly well on ESL2, as 
many models have achieved scores on it comparable to their 
scores on TOEFL (Recchia & Jones, 2009). Finally, only 
RPs were able to scale up to the full Wikipedia corpus, and 
doing so yielded extreme benefits for every task. This is a 
very strong point in favor of RPs, and suggests that 
sequential information can even be useful for tasks that 
involve semantic relatedness but not synonymy per se 
(R&G, M&C, R, F), provided that the model is trained at a 
sufficiently large scale.   

Experiment 3 
In Experiment 2 we saw that importing RPs into BEAGLE 
yielded comparable results on a small corpus and 
considerable improvement in scalability. Here we compare 
BEAGLE to the original model of Sahlgren et al., which we 

                                                             
2 Note that the absolute performance of these models is 

irrelevant to the important comparisons. Many factors (e.g., 
frequency thresholding, morphological normalization, corpus 
siz/type) are known to improve performance on synonymy tests; 
we held these constant, which produced poor absolute performance 
(but see Sahlgren et al., 2008). The key comparisons are the 
consistency of the operations on the same textbase, and the relative 
performance boost when data are scaled up. 

have been referring to as RPM. In many ways the two are 
similar: Like BEAGLE, RPM can construct a semantic 
space by (1) adding only order vectors to memory vectors 
during training, yielding an “order space,” and (2) by adding 
order vectors as well as “context vectors,” yielding a 
“composite space.” Besides using RPs in place of circular 
convolution, the specific implementation of RPM reported 
by Sahlgren et al. differs from BEAGLE in several ways 
(signal-vector representation, window size, lexicon size, and 
the stoplist). This experiment aims to assess RPM’s 
performance with another corpus and on other semantic 
tasks besides TOEFL, and to determine if performance 
improves under RPM parameter settings (compared to the 
BEAGLE settings in Experiment 2). 

Method 
The same evaluation method was applied as in Experiment 
2, but with BEAGLE being compared directly to RPM. 
Both models were trained in order and composite space.  

Results and Discussion 
Table 4 reports the results of BEAGLE and RPM trained in 
order space, while Table 5 reports results in composite 
space (context + order information). As in Experiment 2, 
RPs but not convolution proved capable of scaling up to the 
full Wikipedia corpus. We replicated Sahlgren et al.’s 
(2008) performance on TOEFL in order space at this 
dimensionality, but this Wikipedia implementation of RPM 
fell short of the ~.73 accuracy they reported on TOEFL at a 
dimensionality of 2000 in composite space; the difference is 
most likely due to the different corpora used in the two 
evaluations. On the small corpus, switching from order 
space to composite space did not yield significant 
differences for either model when contrasted with the use of 
order space alone. On the large corpus, however, when 
contrasted with RPs in Experiment 2 (Table 3), RPM 
performed far better on several evaluations, most notably 
the correlations to the R&G, M&C, and R similarity 
judgments. It is intriguing that the version of RPM trained 
on the full Wikipedia in order space was able to perform 
well on several tasks that are typically conceived of as tests 
of associative relatedness and not tests of synonymy per 
se—for example, .70 on the Miller & Charles pairs (Table 
4). 
 
 
Table 4. BEAGLE and RPM in order space.  
 

Criterion Wikipedia subset Full Wikipedia 
 BEAGLE RPM RPM 

ESL .20 .27 .38† 
TOEFL .46† .37† .65† 
R&G .07 .15 .50* 
M&C .08 .16 .70* 

R .06 .11 .63* 
F&al .13* .18* .32* 

* Significant correlation, p < .05, one-tailed.  
†Accuracy score differs significantly from chance, p < .05, one-tailed. 
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Table 5. BEAGLE and RPM in composite space.  
 

Criterion Wikipedia subset Full Wikipedia 
 BEAGLE RPM RPM 

ESL .24 .27 .42† 
TOEFL .47† .40† .66† 
R&G .10 .10 .49* 
M&C .09 .12 .70* 

R .09 .03 .60* 
F&al .23* .19* .32* 

* Significant correlation, p < .05, one-tailed.  
†Accuracy score differs significantly from chance, p < .05, one-tailed. 
 

General Discussion 
Experiment 1 demonstrates that RPs are capable of high 

retrieval accuracy even when many paired associates are 
stored in a single trace, and their storage capacity appears to 
be slightly better than that of circular convolution for low 
dimensionalities. Experiments 2 and 3 reveal that both 
methods achieve approximately equal performance on a 
battery of semantic tasks when trained on a small corpus, 
but that RPs are ultimately capable of achieving superior 
performance due to their higher scalability. In all, these 
results suggest that RPs are worthy of further study both as 
encoders of sequential information in word space models 
and as operators capable of storing associative information 
more generally. It should be noted that Sahlgren et al. 
(2008) found better synonymy performance when RPs were 
trained on “direction” vectors rather than order vectors; 
direction vectors simply encode whether words appear 
before or after a word in the temporal stream, but ignore the 
order chain. Given the computational efficiency of this 
approach, future work should explore the effects of scaling 
to large-scale data on RP direction vectors.  

Both convolutions and RPs are naturally derived from 
properties of the human cognitive system, namely groups of 
neurons connected with a certain degree of randomness (see 
Plate, 2003 for convolution and Kanerva, 2009 for RPs; also 
see Howard et al. [in press] for a related model using neural 
properties of temporal context encoding). The current work 
demonstrates that when a model is able to apply these 
associative learning mechanisms across a large amount of 
episodic experience with linguistic structure, it produces 
much better approximations of human semantic structure. 
As Elman (2009) has argued, the encoding of large-scale 
order information is a core component of a word’s lexical 
representation that is often overlooked. Future work needs 
to explore application of large-scale RP encoding to more 
complex semantic and linguistic tasks.   
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