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1 | INTRODUC TION

Temperate saltmarshes and tropical mangrove swamps (mangals) are 
important marine- influenced wetlands whose primary producers are 
overwhelmingly angiosperms of terrestrial origin. These highly pro-
ductive ecosystems at the transition between land and sea enrich 
nearby marine habitats with nutrients and facilitate colonization of 
lineages from land to sea or vice versa. Both marine and terrestrial 
animals have become specialized for life on or under mangroves and 
saltmarsh vegetation.

Although comprehensive descriptions of these ecosystems have 
long been available (Chapman, 1960; Greb et al., 2006; Macnae, 1968; 
Saintilan, 2009; Visser et al., 2019; Walsh, 1974), and numerous tax-
onomic and ecological studies of resident taxa have been published, 
differences in the times of origin between mangals and saltmarshes 
have gone unnoticed. These are nonetheless important because they 
might indicate that temperate gains in productivity in coastal vegeta-
tions are much more recent than those in tropical mangals.

Mangals and saltmarshes have in common that both thrive on 
and create muddy or sandy soils in wave- sheltered tidal environ-
ments. Nevertheless, their taxonomic compositions differ strikingly, 
potentially reflecting contrasting times and places of origin. Here, 
I propose the hypothesis that saltmarshes are much younger than 
mangals, that the plant inhabitants of saltmarshes derive from lin-
eages almost entirely different from the lineages of mangrove spe-
cies, and that specialization of molluscs to mangrove swamps and 
saltmarshes mirror these contrasting histories.

2  |  MATERIAL S AND METHODS

Plants were considered to be adapted to mangals or saltmarshes if 
they are regularly or occasionally inundated by seawater. Molluscs 
were considered to be specialized to mangroves or saltmarshes 
if they either routinely climb on vegetation or are attached to 
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vegetation. Many species live on the sediment beneath vegetation 
or are found on hard surfaces in addition to the vegetation; these 
were not considered to be specialized mangal or saltmarsh species.

Phylogenetic and fossil evidence for times of origin were gleaned 
from the published literature. I searched for relevant phylogenetic 
and paleobotanical papers for each family of angiosperms with rep-
resentatives in saltmarshes and then consulted the reference list in 
the papers as well as the papers that cited those I found. Search 
terms other than family names were judged inadequate or too gen-
eral	to	be	useful.	Divergence	times	were	accepted	as	inferred	in	the	
studies cited. Given their consistency among papers, variations in 
the protocols used should have a little effect on the interpretations 
made herein.

3  |  RESULTS

3.1  |  Plants

At the family level, there is almost no overlap between plant line-
ages	in	mangals	and	those	in	saltmarshes.	Among	angiosperms,	15	
families have representatives in mangals: Acanthaceae, Arecaceae, 
Combretaceae,	 Euphorbiaceae,	 Lythraceae,	Malvaceae,	Meliaceae,	
Myrsinaceae, Myrtaceae, Plumbaginaceae, Rhizophoraceae, 
Rubiaceae, Sapotaceae, Stercullaceae, and Tetrameristaceae. 
There are 11 families with species restricted to saltmarshes: 
Amaranthaceae, Asteraceae, Batidaceae, Caryophyllaceae, 
Frankeniaceae, Juncaceae, Juncaginaceae, Plantaginaceae, 
Plumbaginaceae, Poaceae (Chloridoideae and Pooideae), and 
Primulaceae. Specialization to these saline coastal environments has 
occurred more than once in most of these families (Bennett et al., 
2013;	Dassanayake	&	Larkin,	2017;	Ellison	et	al.,	1999;	Flowers	et	al.,	
2010;	Ricklefs	&	Latham,	1993;	 Sahu	et	 al.,	 2016).	Only	one	 fam-
ily (Plumbaginaceae) includes representatives in both habitats, but 
mangal and saltmarsh species belong to separate lineages. There 
is no genus- level overlap between mangrove and saltmarsh plants. 
Three seagrass families, all belonging to Alismatales (Larkum et al., 
2017; Les et al., 1997) contain no species in mangals or saltmarshes. 
In addition to angiosperms, the fern genus Acrostichum (Pteridaceae) 
has adapted to mangals (Wei et al., 2020), and several mosses tol-
erate or even have become restricted to saltmarshes (Adam, 1976; 
Callaghan & Farr, 2018; Garbary et al., 2008). Altogether, then, at 
least 26 family- level groups of vascular plants occur in mangals or 
saltmarsh vegetation.

With the possible exception of the chloridoid grass genera 
Distichils and Sporobolus, which have warm- temperate saltmarsh 
representatives but are otherwise tropical in distribution, saltmarsh 
plant lineages have temperate origins. Moreover, many prominent 
saltmarsh genera contain species or populations that live in other 
habitats, including inland saline areas as well as fully terrestrial set-
tings.	 Examples	 include	 Artemisia and Aster (Asteraceae), Juncus 
(Juncaceae), Plantago (Plantaglnaceae), Puccinellla (Pooideae), 
Spartina (Chlorldoideae), Spergularia (Caryophyllaceae), and Triglochin 

(Juncaginaceae)	(Gillespie	et	al.,	2008;	von	Mering	&	Kadereit,	2015;	
Pimentel et al., 2017). All saltmarsh plants are low- growing and have 
ancestors in open, non- forested areas. Mangrove genera, by con-
trast, comprise mangal specialists and are trees with tropical- forest 
origins (Sahu et al., 2016).

A second striking contrast between angiosperm- dominated 
mangals and saltmarshes is the time of origin of these ecosystems. 
Mangals are first documented for the Maastrichtian (late Cretaceous) 
with the appearance of Nypa (Arecaceae), Palaeowetherellia 
(Euphorbiaceae),	and	the	fern	Welchselia reticulate (Greb et al., 2006; 
Ricklefs & Latham, 1993; Sahu et al., 2016; Shinaq & Bandel, 1998). 
Rhizophora (Rhizophoraceae) and Pelliciera (Tetrameristaceae) are 
known from the Paleocene, followed by Acrostichum and Avicennia 
(Acanthaceae)	 in	 the	Early	Eocene	and	Lumnitzera (Combretaceae) 
in	 the	 Middle	 Eocene,	 Sonneratia (Lythraceae) and Camptostemon 
(Malvaceae)	 in	 the	 Early	Miocene,	 and	Excoecaria	 (Euphorbiaceae)	
in the Middle Miocene (Ricklefs & Latham, 1993; Sahu et al., 2016). 
Mangal ecosystems have expanded and contracted throughout the 
Cenozoic in all parts of the tropics, but their highest diversity of 
plant species is achieved in the inner Indo- West Pacific region of 
southeast	Asia	 (Ellison	et	al.,	1999;	Guo	et	al.,	2017;	Walsh,	1974;	
Woodroffe & Grindrod, 1991).

The history of saltmarsh lineages is less well known, but diver-
gence times inferred from molecular sequences indicate that salt-
marshes	are	no	older	 than	 the	 latest	Eocene	 to	earliest	Oligocene	
(35–	30	 Ma).	 The	 grass	 subfamily	 Chloridoideae,	 which	 have	 C4 
photosynthesis,	 is	 estimated	 to	 have	 originated	 about	 35	 Ma	
(Bouchenak- Khelladi et al., 2014). Saltmarsh members of chloridoid 
genera such as Distichlls, Spartina, and Sporobolus, therefore cannot 
be older and are likely much younger, dating to the Middle or Late 
Miocene (Bouchenak- Khelladi et al., 2014; Greb et al., 2006). The 
Salicornioideae (Amaranthaceae), with about 100 saltmarsh species 
worldwide,	 is	 estimated	 to	 have	 evolved	 in	 the	 Late	Oligocene	 to	
Early	Miocene	(25–	20	Ma)	(Piirainen	et	al.,	2017).	This	clade	belongs	
to the order Caryophyllales, a clade with mid to late Cretaceous or-
igins (Yao et al., 2019) and to which several other saltmarsh groups 
(Caryophyllaceae, Frankeniaceae, and Plumbaginaceae) belong. In 
the Asteraceae, another major clade with late Cretaceous origins 
(Mandel et al., 2019), tribes with representatives in saltmarshes 
began	diversifying	in	the	latest	Eocene	(36	Ma),	indicating	that	this	
is a maximum age of saltmarsh members of the family (Mandel et al., 
2019). The C3- photosynthesizing grass subfamily Pooideae, which 
includes saltmarsh species of Puccinellia, also originated in the Late 
Eocene	 and	 diversified	 explosively	 in	 the	Oligocene	 and	Miocene	
(Pimentel et al., 2017). A similar scenario has been proposed for 
Triglochin (Juncaginaceae), which originated about 36 Ma. The 
saltmarsh T. bublosa and T. marltlma complexes have a crown age 
of	10	Ma	 (Late	Miocene)	 (von	Mering	&	Kadereit,	2015).	 In	 short,	
estimates of divergence times all point to a maximum age of latest 
Eocene	 for	 saltmarsh	 lineages,	 with	 most	 taxa	 likely	 being	 much	
younger. If these inferences are correct, the origin of a terrestrially 
derived saltmarsh vegetation would postdate the origin of mangal 
vegetation	 by	 at	 least	 34	m.y.	 The	 latest	 Eocene	 origin	 coincides	
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with the earliest Antarctic glaciation and with high- latitude cooling 
in both hemispheres.

3.2  |  Marine molluscs

Animals of marine origin are highly diverse in mangals, especially in 
the Indo- West Pacific. Among tree- climbing gastropods, they in-
clude members of Cerithiidae (Clypeomorus pellucida), Littorinidae 
(Littoraria, Littorinopsis, and related genera), Muricidae (species of 
Indothais and Thaisella), Neritidae (Ilynerita and some Cymostyla), 
and Potamididae (Cerithidea and Terebralia) (Claremont et al., 2013; 
Reid et al., 2008, 2010; Vermeij, 1973). Many additional gastro-
pods live on the soil beneath mangroves. Likewise, although many 
bivalves occur in mangrove swamps, most live on a variety of sub-
strata. The only bivalves that appear to be specialized for attach-
ment to mangroves belong to Anomiidae (Enigmonia aenigmatica, on 
leaves) and Isognomonidae (several species of Isognomon) (Tëmkin & 
Printrakoon,	2016;	Yonge,	1957).

Species in at least 10 gastropod families live on or under 
vegetation in saltmarshes, but only one species, the northwest 
Atlantic Littoraria irrorata, occurs on saltmarsh plants (Reid et al., 
2010). Many gastropods have populations in both mangals and 
saltmarshes, but again, most of these do not climb on vegetation. 
Plant- climbing species of Palustorina (Littorinidae) in China and 
Littorinopsis in Australia live in saltmarshes but are primarily as-
sociated	with	tropical	mangroves	(Dong	et	al.,	2015;	Reid,	1986).	
No saltmarsh gastropods that can climb plants have temperate or-
igins. Northern- hemisphere populations of Littorina occur in salt-
marshes, but they belong to species with very broad ecological 
distributions including wave- swept rocky shores (Reid, 1996). The 
only bivalve that appears to be specialized for life in saltmarshes 
is the byssate semi- infaunal mytilid mussel genus Geukensia, with 
two allopatric northwest Atlantic species (Sarver et al., 1992). 
Geukensia in the sister group of the tropical and warm- temperate 
western Atlantic genus Ischadium in the subfamily Brachidontinae, 
which occurs widely in mangals and on other hard substrata in-
cluding	oysters	(Trovant	et	al.,	2015).

Mangrove-	associated	littorinids	and	potamidids	date	to	the	Early	
Eocene	(Dominici	&	Kowalke,	2014;	Reid	et	al.,	2008,	2010),	but	the	
tree- climbing potamidid Cerithidea, Clypeomorus (Cerithiidae), and 
muricids are no older than the Miocene (see also Claremont et al., 
2013;	Houbrick,	1985).	The	 saltmarsh-	specialized	Littoraria irrorata 
is a known fossil from the Late Miocene and Pliocene and diverged 
from its sister species L. varia at about this time (Reid et al., 2010). The 
littorinids with well- established saltmarsh populations in the North 
Atlantic (Littorina littorea and L. saxatilis) arrived from the North Pacific 
during the Pliocene (Reid, 1996). There is no pre- Pleistocene record 
for the mussel genus Geukensia. The meager record of saltmarsh mol-
luscs is therefore consistent with the hypothesis that saltmarsh eco-
systems are much younger than mangals and that specialization to 
saltmarshes is much less common than that to mangroves.

4  |  GENER AL DISCUSSION

If the hypothesis that angiosperm- dominated saltmarshes are much 
younger than mangals is correct, as phylogenetic and fossil evidence 
from plants and molluscs indicate, it would have far- reaching impli-
cations for ecological and evolutionary connections between terres-
trial and nearby coastal marine ecosystems. Both saltmarshes and 
mangals are highly productive ecosystems that facilitate nutrients 
exchange by mobile animals between land and sea. Pre- angiosperm 
halophytes may have existed as well, but these were likely less 
productive and less diverse. Successions of mangal- like communi-
ties might have existed during the Carboniferous, but the evidence 
for specialized tidal saline vegetation during the Paleozoic is sus-
pect	(Falcon-	Lang,	2005;	Greb	et	al.,	2006).	The	peculiar	lycophyte	
Pleuromeia	 from	 the	Early	and	Middle	Triassic	appears	 to	be	halo-
phytic	 (Krassilove	&	Zakharov,	1975;	Retallack,	1975),	as	are	some	
conifers	of	 the	Middle	Jurassic	and	Early	Cretaceous	 in	 the	 family	
Cheirolepidiaceae, the Middle Jurassic conifer Brachyphyllus, and 
the Late Jurassic fern Pachypteris (Alvin, 1982). The taxonomic af-
finities of these taxa indicate low productivity in comparison with 
angiosperms. Before angiosperm mangroves evolved in the Late 
Cretaceous, sheltered shores in warm regions would have been less 
hospitable	 to	both	marine	 and	 terrestrial	 animals.	Once	 these	en-
vironments were vegetated by angiosperms, the transitional tidal 
systems accommodated more animal life and physically less harsh 
conditions. Low- diversity mangrove assemblages extended north to 
Arctic	latitudes	during	the	warmest	phases	of	the	Eocene,	but	man-
groves retreated southward (or northward, depending on the hemi-
sphere) as climates cooled thereafter (Popescu et al., 2021), leaving 
temperate mudflats potentially unvegetated.

High-	latitude	cooling	began	about	35	Ma	and	intensified	about	
13 Ma during the middle Miocene. Habitats available for coloni-
zation by saltmarsh plants therefore expanded from non- forested 
temperate regions. Unlike the plants, the small number of saltmarsh- 
specialized molluscs has tropical origins. Molluscs with broad habi-
tat distributions have opportunistically colonized saltmarshes from 
either tropical or temperate populations.

The hypothesis proposed here can be further tested and elab-
orated by considering other animal groups that have become spe-
cialized to live on mangrove trees or in saltmarshes. These groups 
especially include brachyuran crabs as well as herbivorous insects 
and some terrestrially derived vertebrates. Geographical differences 
in specialization and in diversity of mangal and saltmarsh specialists 
could illuminate aspects of evolution in these habitats. For example, 
Indo- West Pacific mangrove plants, molluscs, and crustaceans are 
more	than	10	times	richer	in	species	than	their	Atlantic-	East	Pacific	
counterparts	(Ellison	et	al.,	1999;	Vermeij,	1973;	Walsh,	1974),	per-
haps reflecting the geographical extents of suitable habitats in the 
past	(Ricklefs	&	Latham,	1993).	Differences	in	saltmarsh	specializa-
tion between regions have not been investigated, but the northwest 
Atlantic and perhaps Australia appear to harbor more specialists 
than other parts of the world.
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These historical and comparative aspects of ecology can be 
fruitfully applied to other ecosystems as well, especially systems 
that develop at major transitions among terrestrial, freshwater, and 
marine environments. Although such studies may not have imme-
diate practical applications, they offer an important historical per-
spective with long- term implications for the health and sustenance 
of systems that have been strongly affected.
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