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Abstract—In this paper, we discuss the use of fine-pitch 
integration technologies to build and scale-out cognitive systems 
up to the scale of a human brain (1010 neurons, 1013 synapses). 
Simulation result of cognitive systems based on different system 
scaling technologies is reported to evaluate the impact of system 
scaling. Fine-pitch integration technology based on three-
dimensional wafer-scale integration (3D-WSI) shows promising 
advantage over the traditional integration scheme using printed 
circuit boards. To the extent of human brain scale system, the 3D-
WSI system reduces the communication latency by about 10X, 
while consuming at least 100X less communication power. 

Keywords—system scaling, fine-pitch integration, ultra-large 
scale system, cognitive system. 

I. INTRODUCTION  
Artificial intelligence based on cognitive functionalities, 

such as image recognition, has attracted enormous attention due 
to recent advancement of the performance of the neural network 
with its derivatives. However, neural network is inspired by the 
biological brain, whose architecture is distributed, parallel while 
running slowly – very different from the centralized and fast 
traditional computing. As a result, corresponding paradigm shift 
in the hosting hardware is needed to optimize performance and 

energy efficiency. One example is the IBM TrueNorth [1] chip, 
which imitates the brain architecture using a spike-based 
distributed design. However, scale of a single system on chip 
(SoC) is still limited. While being a gigantic and expensive SoC, 
one TrueNorth chip contains one million neurons and 256 
millions of synapses, which is at least 10,00X away from the 
human brain. A scaled-out version (NS16e) based on 16 
TrueNorth chips has been design and implemented [2] on a 
printed circuit board (PCB), but it results in tremendous 
overhead in energy. More than 70% of the power in the NS16e 
system is consumed by the supporting peripheral for 
communication. Therefore, novel integration schemes are 
needed to reduce the communication power consumption to 
pave the way for large-scale cognitive systems to make them 
practical and affordable. 

In this paper, we explore various system integration 
technologies, model the communication events based on each 
technology, and simulate the respective systems. The simulation 
results show the advantage of the fine-pitch integration 
technologies for ultra-large scale system integration. 

II. COGNITIVE SYSTEM SCALING  
Many of the cognitive applications today are enabled by 

neural networks, whose performance depend on the scale. In 
general, a larger neural network, properly trained, tends to be 
able to achieve lower error rate for a classification problem. 
Although the issue of overfitting kicks in when one tries to use 
a very large network for a simple problem, a problem with 
greater complexity would nevertheless require a larger network. 
Such trait of neural networks can be seen from the performance 
of ResNet[11] (Fig. 1) which is one of the state-of-the-art neural 
networks on image recognition benchmarks. Naively, a brute-
force solution to such problems is an enormously large network 
which simply maps every possible input to the correct answer.  

A larger neural network means not only more neurons 
(processing element) but also more synapses, which are the 
interconnect links among the neurons. The best cognitive 
machine we know, the brain, has a highly-interconnected and 
distributed architecture. The brain is also very energy efficient. 
It consumes only around 20W of power and performs better than 
the supercomputers in various challenges. The goal of this work 
is to explore the methods to scale the cognitive system up to the 
“size” of the human-brain in terms of the number of neurons and 
synapses. At the meantime, the system built by this method 
should also be energy-efficient. 

 
Fig. 1. Error rate of different sized ResNets against two 
image recognition benchmarks CIFAR-10 (classification 
among 10 classes of objects) and ImageNet (classification 
among 1,000 classes of objects). For the same ResNet 
architecture, a larger ResNet performs better. In the 
meanwhile, a more complex problem would require a 
larger network as well  
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To scale out the cognitive systems, a straightforward 
approach is to make very large SoCs. One example is the IBM 
TrueNorth neuromorphic chip [1], which is a huge and 
expensive SoC. But the 1 million neurons contained in this SoC 
is far from enough comparing with the brain, which has tens of 
billions of neurons. As a result, such chips are integrated on 
circuit boards for system scaling. Unfortunately, the circuit 
board integration is also costly in terms of energy efficiency. 
The high-speed Serializer/Deserializer (SerDes) links on the 
circuit board are power-hungry and slow. In an event when two 
neurons try to communicate, neuron1 sends a package or a spike 
to neurons2. The energy and latency associated with this event 
depend on the spatial locations of neuron1 and neuron2. Such 
cost increases tremendously when these two neurons are on 
different chips.  

The performance and energy efficiency of a scaled cognitive 
system based on the TrueNorth chip [2] is shown in Fig. 2. In 
this case, neural networks are designed for the CIFAR-100 
dataset to classify 100 classes of objects. As the network 
contains more chips and grows larger, the classification 
accuracy increases, but the energy efficiency of such system, 
defined by frames per second per Watt (equivalent to 
frames/Joule), decreases because now more communication 
events are out-of-chip and cost more energy. 

III.  ULTRA-LARGE-SCALE COGNITIVE SYSTEM 
INTEGRATION 

A. Two-Dimensional Printed Circuit Board Integration (2DI) 
Most state-of-the-art cognitive systems utilize PCB(s) and 

backplane(s) to integrate multi-chip systems [2,3]. A model of 
such (2DI) system is shown in Fig. 3. This model is a graph, 
where the chips and the chip-to-chip interconnects are 
represented by the nodes and the edges, respectively. Chips on 

the same board are interconnected by high-speed 
Serializer/Deserializer (SerDes) links. Board-to-board 
interconnect is supported by SerDes links and FPGA chips. The 
boards are arranged in a cubic 3D-mesh.  

The latency of communication (spiking events) has three 
components, namely the time spent in the router (tr), in the 
SerDes circuit (tSD), and in the physical channel (tphy), as 
summarized in Table 1. The power consumption due to 
communication is the sum of the intra-board power (mainly due 

 

 
Fig. 3. 2DI System integrated on the PCBs. Top: on-board 
chip-to-chip connection is via SerDes (yellow arrows). 
Bottom: board-to-board connection is via the FPGA (purple 
chip) and SerDes (black arrows). 

Table 1. Components of communication latency in 2DI 
and 3D-WSI systems. 

 𝑡𝑡𝑟𝑟 𝑡𝑡𝑆𝑆𝑆𝑆 𝑡𝑡𝑝𝑝ℎ𝑦𝑦 
2DI 20ns 130ns 1ns (on-board),  5ns (inter-

board) 
3D-
WSI 

20ns 0ns 1ns (one TSV),  
1ns*# of repeaters (VEL) 

Table 2. Comparison between SerDes in 2DI systems and 
FPI in 3D-WSI systems. 

 SerDes (2DI) [6] Fine pitch 
interconnect (3D-

WSI)  
Wire pitch 400𝜇𝜇𝜇𝜇 (chip-board) 2𝜇𝜇𝜇𝜇 
Area/link > 1𝑚𝑚𝑚𝑚2 2𝜇𝜇𝑚𝑚2 

Data 
rate/link 

30𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 1𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

Energy 
efficiency 

20𝑝𝑝𝑝𝑝/𝑏𝑏𝑏𝑏𝑏𝑏 (high 
speed), 

136𝑝𝑝𝑝𝑝/𝑏𝑏𝑏𝑏𝑏𝑏 (low 
speed) 

< 0.2𝑝𝑝𝑝𝑝/𝑏𝑏𝑏𝑏𝑏𝑏 
@1V (with ESD 

capacitors) 

 

 
Fig. 2. Energy-efficiency and image recognition accuracy 
of a scaled cognitive system based on the IBM TrueNorth 
chip. As the neural network becomes larger and use more 
chips, the image recognition accuracy increases, but the 
energy-efficiency decreases due to the inefficient chip-to-
chip communication events.  

 

 



to the logic) and the inter-board power (due to the SerDes links), 
as summarized in Table 2. 

B. Fine-Pitch Wafer-Scale Integration  
Intensive chip-to-chip communication within the cognitive 

system requires massive chip-to-chip bandwidth, which is not 
energy-efficient when realized by the SerDes links. Wafer-scale 
integration emerges as a promising candidate to provide energy-
efficient bandwidth, by utilizing the fine pitch interconnect 
(FPI). One example of wafer-scale integration is the FACETS 
project [4] in which FBEOL process is used to make 10μm-
pitch FPI among the reticles. Another approach is to use the Si 
interconnect fabric (Si-IF) to integrate known good dies 
(KGDs), which addresses yield challenge on the wafer and 
grants heterogeneity for the system. We have demonstrated 
10μm-pitch FPI on the Si-IF (Fig. 4) at UCLA CHIPS, which 
can be further reduced to 2μm pitch [5].  

To build a multi-wafer system that provides energy-efficient 
bandwidth between wafers, three-dimensional wafer-scale 
integration (3D-WSI) is a viable solution [7]. In 3D-WSI 
technology, wafers are bonded through fusion bonding; through 
silicon vias (TSVs) are then made to connect wafers. State-of-
the-art 3D-WSI technology has achieved 2μm fine pitch TSVs 
[8]. A simplified process flow of 3D-WSI is presented in Fig. 5. 
The silicon wafer strata1 is first processed at the front-side. 
Then, the wafer is bonded to a handle wafer at the same side. 
Afterwards, the strata1 is thinned from the backside by grinding 
from around 700μm (300mm wafer thickness) to about 7μm to 
accommodate 1μm diameter (2μm pitch) through-silicon-vias 
(TSVs) with proper aspect ratio (7μm: 1μm) for the Cu plating 
process. The thinning is followed by a backside oxide/dielectric 
deposition and CMP. Strata1 is then bonded (using the back 
side) to the front-side of the strata0. Finally, the handle wafer of 
strata1 is removed prior to further fabrication of the metal layer 
and TSVs at the front-side. The top of this stacked wafer pair is 
similar to the top of strata0, and therefore additional wafers can 
be bonded to this stack in series.  



A schematic of the interconnect within a 3D-WSI based 
system is shown in Fig. 6. SerDes links used in the PCBs are 
replaced by the horizontal metal wires or TSVs. Also, FPGA is 
not needed in the 3D-WSI systems. Consequently, in 3D-WSI 
systems, tSD = 0 (Table 1). Since FPI provides abundant wires, 
they can run at a lower frequency (1Gbps) to improve energy 

efficiency (<0.2pJ/bit), while supporting high aggregate 
bandwidth [9], as summarized in Table 2. 

 

 
Fig. 6. A schematic of the interconnect within a 3D-WSI 
system. 

 
Fig. 7. Vertical Express Lanes (VEL) in the 3D-WSI 
system. 

 
 

 

 

Fig. 5. A brief process flow of the three-dimensional wafer-
scale integration (3D-WSI). It is a via-last technology 
which can be used for face-to-face, and face-to-back wafer 
bonding. By doing a rigorous thinning on the wafer to less 
than  10𝜇𝜇𝜇𝜇 thickness before making the TSVs, TSVs of 
1𝜇𝜇𝜇𝜇 diameter can be fabricated in FBEOL process. 

 

 

 
Fig. 4.  CHIPS Si interconnect fabric (Si-IF) based on 
100mm wafer made in UCLA.  

 

 

 
Fig. 4. CHIPS Si interconnect fabric (Si-IF) based on 100mm 
wafer made at UCLA CHIPS. 

 

 
 

 



C. Vertical Express Lanes (VEL) in 3D-WSI 
Due to the short distance in the vertical direction in the 

stacked wafers, concatenating multiple TSVs will still end up 
with rather short channels. Therefore, vertical express lanes 
(VEL) can be made to accelerated long-distance 
communications in the 3D-WSI systems. Fig. 7 shows the VEL 
with a comparison to the normal TSVs. A VEL (in green) is 
made from concatenated TSVs, which goes across intermediate 
node(s) by connecting to a repeater and skipping the router of 
that node(s). Because the physical transit time (tphy from Table 
2) is a small part of the total latency, VEL works as a long-link 
in the system without significant latency penalty. Thanks to the 
small on-wafer area consumed by the TSVs, dedicated VELs 
can be designed between for every two wafers..   

IV. RESULTS AND CONCLUSION 
Experimentally measured neural connectivity in the 

Macaque monkey brain [10] is used to simulate the systems of 
different sizes using different integration technologies as listed 
in Table 3. During the simulation, each node of the system is 
assigned a part of the Macaque monkey brain region. 
Communication events are triggered by the probability 
distribution equivalent to the measured connectivity data. The 
average latency and longest-path communication latency are 
shown in Fig. 8, showing that 3D-WSI systems improve the 
latency by a factor of 4 to 10. Fig.9 shows the communication 
power consumption extracted from the same simulations, where 
3D-WSI systems reduce the communication power 
consumption by a factor of 100 to 1,000.  

We have demonstrated that fine-pitch integration technology 
provides fast and energy-efficient interconnects, and 
significantly enhances the performance and energy-efficiency of 
ultra-large-scale cognitive systems.  
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Table 3. Scales of the simulated cognitive systems. 

Integrati
on Tech.  

1% brain  
(432 nodes) 

10% brain  
(4,256 nodes) 

90% brain  
(34,048 nodes) 

PCB 27 boards 266 boards 2,128 boards 
3D-WSI 4 wafers 32 wafers 266 wafers 

 

Fig. 8. Simulated average and longest-path communication 
latency. 

 
Fig. 9. Simulated communication power consumption. 
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