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1 Introduction

Gravitational inferences of dark matter distributions are increasing in number and reaching
an unprecedented level of precision. Even early on, comparisons of data to those from
simulations [1–4] hinted that dark matter might not be as cold and collisionless as assumed
in ΛCDM. Over the past two decades, some of these hints have persisted and been elevated
to the level of “problems.” The core-vs-cusp problem, for instance, refers to the cored
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density profiles observed in both dwarf [5–7] and low surface brightness galaxies [8–12]
which have less of a cusp than those from simulations (see e.g. [13] for details). Other
examples include the too-big-to-fail [14] and diversity [15] problems.

These observations have motivated models of self-interacting dark matter (SIDM) as
possible resolutions.1 Indeed, given that the dark matter accounts for over 80% of all
known matter in the Universe [18], it seems a credible possibility that it belongs to a dark
sector as rich as that of the visible. Various realizations of SIDM have used long-range
forces [19–22], self-heating [23–25], and inelastic scatters [26, 27] to address the small-scale
issues. In recent years, models of SIDM have even started attempting to explain a possible
velocity dependence in the dark matter self-interaction cross section. Data from dwarf
galaxies to galaxy clusters hint that dark matter self interactions may be larger at smaller
velocities [28]. Resonant self-interacting dark matter is particularly adept at fitting the
inferred velocity-dependent cross section [29, 30].

Dark matter self interactions have traditionally been discussed using explicit models
of interactions, such as Yukawa (e.g. [31]) or contact interactions (e.g. [19]). While this
method serves the purpose of identifying viable models, many models in fact end up produc-
ing similar self interactions. This is because the kinematics of dark matter self-scattering
in the present-day universe are limited to very low velocities v . 10−2c. Historically, the
same problem arose when people tried to understand the anomalously large, low-energy
nucleon-nucleon scattering cross sections. Instead of an explicit model, Hans Bethe pro-
posed a parameterization of the low-energy scattering amplitudes called effective range
theory (ERT) [32] to avoid redundant discussion. Bethe showed that low-energy scattering
amplitudes for any two-body potential could be described by just two parameters for s-
wave interactions: the scattering length, a, and the effective range, re. ERT was revisited
recently in the context of self-interacting dark matter [33] and parameters consistent with
explaining the small-scale discrepancies in various galaxies and clusters of galaxies were
identified.

In this paper, we explore a framework for SIDM in which dark matter particles are the
pions of a QCD-like theory, focusing on regions of parameter space that can explain the
small-scale observations. We find that these regions correspond to resonant dark matter
self interactions, providing an explanation for the anomalously large scattering length that
an ERT analysis points towards. This is similar to the approach taken in [30], where a non-
linear sigma model (chiral Lagrangian) is used to analyze the pion scattering. However, in
the current treatment, we instead use a linear sigma model (LσM) to describe the particle
spectrum of the strongly coupled theory. This is inspired by the proximity of a0(980± 20)
to the KK̄(990) threshold — a proof of principle that the universe can entertain the sort
of resonances we are proposing in the dark sector — and the fact that the LσM provides
a qualitatively good description of QCD, a point perhaps under-appreciated until recently.
A depiction of all these ingredients is given in figure 1.

1Baryonic feedback may reconcile collisionless cold dark matter with the observed mass distributions in
galaxies [16]; future surveys such as the Prime Focus Spectrograph (PFS) on the Subaru telescope [17] may
shed light on these different possibilities.
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Figure 1. Depiction of the conceptual ingredients which make up linear σ dark matter.

Via the introduction of a kinetically mixed dark photon, we study the cosmological
production of dark matter within such theories, focusing on explicit cases of SO(Nc) and
Sp(2Nc) gauge theories. We find viable parameter space in which the dark pions freeze-out
or -in to the correct abundance, and we consider possible signals of the models in both
indirect and direct detection searches, as well as at colliders and beam dump experiments.
In constructing such realistic models, we note an additional feature of LσMs that is not
available in the non-linear models studied previously [30], namely the existence of s-wave
resonances (as opposed to just p-wave). This allows for much heavier dark matter which
in turn relaxes some phenomenological constraints.

The remainder of the paper is organised as follows. In section 2, we review ERT and
perform a scan of ERT parameters that describe dark matter self-interactions to find a
best fit to the galaxy data. Section 3 outlines the framework of the LσM and its mapping
to the scattering length and effective range parameters of ERT. Section 4 considers explicit
models that reproduce the dark matter relic abundance, as well as various constraints
and future experimental sensitivities to the parameter space. We conclude in section 5.
Appendix A reviews details of LσMs that are associated with vector-like gauge theories,
and includes a review of the current status of the LσM as applied to QCD. Appendix B
collects the Boltzmann equations and the formalism that accounts for thermal effects on
the dark photon, while appendix C lists cross sections that are used in the calculations
throughout the paper.

2 Effective range theory

In this section, we review ERT and perform χ2 fits to data, leaving the interpretation of
the fit parameters within the LσM and QCD-like theories to later sections. ERT is an
expansion of the phase shift in a power series of the momentum k. Since l-wave phase
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shifts are known to be proportional to k2l+1 at low momenta, we expand k2l+1 cot δl which
is regular as k → 0,

k2l+1 cot δl(k) = − 1
a2l+1
l

+ k2

2r2l−1
e,l

+O(k4). (2.1)

In fact, Hans Bethe proved that this expansion is always possible for any two-body poten-
tial [32] for the s-wave at low momenta. Solving for the phase shift δl, we can identify the
scattering amplitude,

1
k

sin δleiδl = k2l

− 1
a2l+1
l

+ k2

2r2l−1
e,l

− ik2l+1
, (2.2)

and the partial-wave cross section

σl(k) = 4π(2l + 1) 1
k2 sin2 δl = 4π(2l + 1)

∣∣∣∣∣∣∣
k2l

− 1
a2l+1
l

+ k2

2r2l−1
e,l

− ik2l+1

∣∣∣∣∣∣∣
2

. (2.3)

In particular, the s-wave amplitude is given by

1
k

sin δ0e
iδ0 = 1

−1
a + rek2

2 − ik
, (2.4)

with the partial-wave cross section

σ0(k) = 4π 1
k2 sin2 δ0 = 4πa2∣∣∣1− 1

2arek
2 + ika

∣∣∣2 . (2.5)

The thermally averaged cross section for dark matter self scattering (times velocity), 〈σ0v〉,
can be computed assuming the Maxwell-Boltzmann distribution for relative velocities be-
tween dark matter particles in galaxies and clusters of galaxies:

P (~v) = 1
(πv2

0)3/2 e
−~v2/v2

0 , (2.6)

with 〈v〉 = 2v0/
√
π.

With this ERT cross section, we can determine what values of a and re best fit the
“data” of dark matter self interactions inferred from dwarf galaxies, galaxies, and clusters
of galaxies in [28]. This extraction is based on semi-analytic approximations which are the
subject of further discussion (see, e.g., [34, 35]). We use the data points for illustrative
purposes assuming no correlations. We perform a scan over (mDM, a, re), computing the
χ2 fit to the data points. The results are shown in figure 2. The best-fit parameters are

a = 22.2 fm,
re = −2.59× 10−3 fm, (2.7)

mDM = 16.7 GeV ,
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Figure 2. χ2 fit to the data points. The red dot is the best fit point eq. (2.7). Green (yellow)
regions correspond to 68.27% (95.45%) confidence levels for d.o.f.= 3. The axes are the scattering
length a [fm], effective range re [fm], and dark matter massmDM [GeV]. The top-right plot shows the
3D regions within the specific confidence levels, while the other three panes show two-dimensional
projections. Note that the cross section and fit are insensitive to the simultaneous sign change of a
and re.

with a value of χ2 per degree of freedom of 2.01; the resulting fit to the data for these
particular values is shown in figure 3. This result is consistent with the existing literature,
e.g., the point S2 in [29] and the point S1 in [33]. There is a long tail of reasonable fits
down to smaller re in figure 2. We confirmed analytically that the tail persists indefinitely
with the scaling mDM ∝ |re|−2/5, a ∝ |re|−1/5. We will comment on the tail later in the
context of a LσM.

We naively expect the scattering length a to be about the Compton wavelength of
dark matter– ~

mDMc
∼ 0.015 fm for the best-fit mass that was found-while the actual best-

fit value is about 20 fm. An interesting question is why it is so large, about 1000 times the
Compton wavelength. In fact, a similar phenomenon is observed for the iso-singlet channel
for np scattering: a = −23.712± 0.013 fm [36], more than a hundred times larger than the
Compton wavelength. This is understood as a consequence of the near-threshold bound
state of deuteron, a pole in the scattering amplitude for k along the positive imaginary axis
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Figure 3. The best fit curve to the data points from [28] with the parameters given in eq. (2.7).
Here v is the relative velocity, and the dashed lines correspond to constant velocity-independent
cross sections.

k = iκ. Similarly, the scattering length for the iso-triplet channel of nn scattering, a '
−17 fm, is also anomalously large. This is understood as a pole in the scattering amplitude
for a complex k corresponding to a “virtual state.” We discuss a physical interpretation
of the large enhancement in the scattering length a� ~

mDMc
for the best-fit parameters in

eq. (2.7) within a LσM as an effective description of dark, QCD-like gauge theories in the
next section.

3 Linear sigma model

We use the LσM to study the self interactions of dark matter for two reasons. First,
we would like to understand what the ERT parameters from the previous section mean
physically. For phenomenological purposes, the ERT parameters are all we need for a
perfectly unitary and self-consistent description of the self interaction. However, we would
like to gain insight into the underlying dynamics that leads to such parameters. As we will
see, the necessary ERT parameters actually correspond to a σ-like resonance just above
threshold or a bound state just below threshold in ππ-like scattering. The second reason is
because the LσM actually serves as a qualitatively correct description of QCD. This point
has perhaps been underappreciated in the community. In fact, the SU(3) LσM predicts
a nonet of 0+ states which are all now considered well established experimentally (see
appendix A). Therefore, the LσM allows us to believe that the necessary ERT parameters
actually correspond to a 0+ resonance or bound state in ππ scattering in QCD-like theories.
In the next section, we demonstrate that Sp(2Nc) or SO(Nc) QCD-like theories indeed lead
to phenomenologically attractive models of self-interacting dark matter.
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Admittedly, the LσM should not be regarded as a quantitatively accurate description
of QCD dynamics since the expected self-coupling, λ, is large:

λ ≈ (4π)2

Nc
, (3.1)

based on naive dimensional analysis (NDA) and the 1/Nc expansion. For modest Nc, this
invalidates perturbative calculations and the LσM description cannot be trusted quanti-
tatively. Yet, the LσM does allow us to qualitatively identify the physical meaning of the
ERT parameters in terms of the s-channel σ exchange in ππ scattering, as we show in this
section.

We start with the Lagrangian

L = 1
2(∂µφi)(∂µφi)− V (φ) , V (φ) = −bφN −

µ2

2 φiφi + λ

4 (φiφi)2, (3.2)

where i = 1, . . . , N . This is the SO(N)/SO(N−1) LσM plus an explicit symmetry breaking
term −bφN which physically corresponds to finite quark mass in QCD-like theories. Writing
φi = (π1, . . . , πN−1, v + σ) and requiring the σ tadpole to vanish, we have

L = 1
2(∂µ~π) · (∂µ~π) + 1

2(∂µσ)(∂µσ)− V (~π, σ) , (3.3)

V (~π, σ) = 1
2m

2
π~π

2 + λ

4 (~π2)2 + 1
2m

2
σσ

2 + λvσ3 + λ

4σ
4 + λv~π2σ + λ

2~π
2σ2 , (3.4)

where

m2
σ = 3λv2 − µ2, m2

π = λv2 − µ2. (3.5)

Calculating the πiπj → πkπl scattering amplitude at tree level, we find

Mtree
(
πiπj → πkπl

)
=− 4λ2v2

(
δijδkl
s−m2

σ

+ δikδjl
t−m2

σ

+ δilδjk
u−m2

σ

)
− 2λ (δijδkl + δikδjl + δilδjk) . (3.6)

In the non-relativistic limit, we can separate the center-of-mass motion and discuss only
the relative motion between two particles. In the center-of-mass frame of two identical
particles, the relative momentum ~p is given by

~p = 1
2(~p1 − ~p2) = ~p1 = −~p2, (3.7)

s = 4m2
π + 4~p2, (3.8)

while t, u ∼ O(p2). We will be interested in the situation where

mσ = (2 + ε)mπ
(
|ε| � 1

)
. (3.9)

In this case, the tree level amplitude is dominated by s-channel σ exchange. Moreover,
loop corrections are generically suppressed by powers of p

mπ
in the non-relativistic limit,
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and are only significant when accompanied by factors of 1
ε from s-channel σ propagators.

These loop corrections are re-summed into a momentum-dependent width:

M
(
πiπj → πkπl

)
' −δijδkl

4λ2v2

s−m2
σ + imσΓ(p) ' δijδkl

λ2v2

εm2
π − p2 − i

4mσΓ(p)
, (3.10)

where
mσΓ(p) = (N − 1) λ

2v2

4π
p

mπ
. (3.11)

When all (N−1) pions are present in the halo, the total scattering rate via s-channel σ
exchange is determined by the SO(N − 1) singlet channel, (ππ)σ → (ππ)σ, with |(ππ)σ〉 =

1√
N−1

∑N−1
i=1 |πiπi〉. We have

M
(
(ππ)σ → (ππ)σ

)
' − 4(N − 1)λ2v2

4m2
π + 4p2 −m2

σ + imσΓ(p) '
(N − 1)λ2v2

εm2
π − p2 − i

4mσΓ(p)
(3.12)

and the s-wave elastic cross section is

σ0 = 1
2s

1
8π |M|

2 . (3.13)

Comparing to the ERT cross section eq. (2.5), we identify

M = 16πmπa

1− 1
2arek

2 + ika
. (3.14)

With the parameter relations from eq. (3.5), we find the “dictionary,”

a = −(N − 1)λ2v2

16πm3
πε

' −3(N − 1)λ
32πmπε

, re = − 32πmπ

(N − 1)λ2v2 ' −
64π

3(N − 1)λmπ
. (3.15)

We see that the scattering length a is parametrically enhanced by 1
ε . As expected, the σ

particle with mass mσ = (2 + ε)mπ is a near-threshold resonance (a < 0, re < 0) when
ε > 0, or a bound state (a > 0, re < 0) when ε < 0.

It is clear from the expression of a in eq. (3.15) that two factors can enhance the
scattering length: a strong coupling, λ� 1, or a near-threshold mass, ε� 1. For example,
if we choose the NDA estimate λ = (4π)2/Nc eq. (3.1) with Nc = 2, mπ = 16.7GeV, and
N = 6, as expected in the minimal Sp(2) model with Nf = 2 (see appendix A.4), we
reproduce a near-best fit eq. (2.7) with re = −0.0020 fm and ε = 0.0063. The small ε seems
incidental (i.e. requiring fine tuning), but this percent-level coincidence does occur in QCD
(see appendix A.2).

There is an SU(3) nonet of light 0+ resonances [37] that can be identified with the scalar
bosons in the SU(3) LσM (see appendix A.2). They can be interpreted as qqq̄q̄ states or
molecules of pseudoscalar mesons. Among them, f0(980) and a0(980) are basically kaon
molecules. Within the experimental uncertainties, m(f0) ≈ m(a0) ≈ 2mK with percent-
level accuracy; see figure 8. A lattice QCD simulation also shows such a near-threshold
behavior is possible [38] (see [39, 40] also).

– 8 –
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The long tail to larger |re| in the χ2 fit corresponds to fixed ε and weaker coupling such
that mπ ∼ λ2/3 and a ∼ λ1/3. This may be achieved for large Nc. For Strongly Interacting
Massive Particle (SIMP) dark matter with dark pions freezing-out via 3→ 2 annihilations
due to the Wess-Zumino term in the chiral Lagrangian [41], this tail provides the desired
velocity dependence even for the mπ ∼ 300MeV required for the scenario.

4 Explicit models

Having established that the LσM fits the dark matter self interaction data well, we now
detail two explicit LσMs which successfully reproduce the dark matter relic abundance.
In the first, we gauge a dark Sp(2Nc) and include Nf = 2 fermions in the fundamental
representation in the dark sector. In the second, we instead gauge a dark SO(Nc) and
include Nf = 2 fermions in the vector representation. In both models, we additionally
introduce a U(1)′ and its corresponding dark photon, γ′, which kinetically mixes with the
Standard Model (SM) photon via

L ⊃ ε

2F
µνF ′µν , (4.1)

where Fµν and F ′µν are the SM and dark photon field strengths. This vector portal allows
dark matter to freeze-out (or -in) and effectively decouples the origin of the relic abundance
from the origin of the sizeable dark matter self interactions.2 As we shall see, we are able
to achieve the relic abundance via either freeze-out or freeze-in mechanisms in the Sp(2Nc)
model. The more minimal SO(Nc) model, however, only permits the latter mechanism.

4.1 Sp(2Nc)

The first model we consider is a gauged Sp(2Nc) with Nf = 2 dark quarks (i.e., four Weyl
fermions) in the fundamental representation. The size of the gauge group Nc determines
the strong coupling λ in the LσM; see eq. (3.1) for the NDA estimate. In the massless
quark limit, it has an SU(4) ' SO(6) flavor symmetry, which spontaneously breaks to
Sp(4) ' SO(5) by the quark bi-linear condensate 〈qiqj〉 ∝ Jij (i, j = 1, · · · , 4). The
low-energy physics is thus described by the SO(6)/SO(5) LσM (see appendix A.4). We
introduce a degenerate mass for both flavors, reducing the original symmetry to Sp(4).
Additionally, we charge the four dark quarks under U(1)′ as +1

2 ,+
1
2 ,−

1
2 ,−

1
2 , leaving an

exact U(2) symmetry.3

Among the 4C2 = 6 quark pairs, we identify one as σ and the remaining five as πs (here
and throughout, π will refer to dark pions). Two of the five πs have charge +1 and −1 and
the remaining three are neutral as an isotriplet of SU(2). Since they are the lightest states
with non-trivial quantum numbers under the exact SU(2), they are stable. Depending on
the mass splitting between the charged and neutral pions, dark matter may therefore be
comprised of all five states or just the lightest neutral three. This mass splitting, as in the

2Please note the notation for the kinetic mixing ε as opposed to the degree of degeneracy ε in eq. (3.9).
3There is a conjecture that a theory of quantum gravity would not allow for an exact global symmetry,

see e.g., [42–46]. The exact U(2) symmetry here can be justified by gauging U(2) and breaking SU(2) by a
doublet Higgs, leaving an exact custodial SU(2) together with the unbroken gauged U(1)′.
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SM, is due to QED corrections and is of the order ∆m2
π ' 4πα′f2

π ≈ 22.2α′ GeV2, since
fπ ≈ mπ

4π .
Whether or not direct detection can detect this dark matter depends on whether or

not (a subset of) it is charged under U(1)′. To understand the final relative abundances
of the charged and neutral dark pions, we first estimate the temperature at which the
pion-changing process π+π− → π0

i π
0
i decouples, Td. The cross section for this process is

roughly:

σ(π+π− → π0
i π

0
i ) '

1
32πf2

π

. (4.2)

This process decouples when its rate becomes comparable to Hubble, i.e. 〈σv〉nπ+ ∼ H.
Since this happens after the relic abundance is set and the dark matter is non-relativistic,
v ∼

√
T/mπ and nπ+ = 1/5YDMs. Solving for Td, we find

Td ≈
(

120
√

10
√
g∗

g∗sYDM

f2
π
√
mπ

MPl

)2/3

= 6.2× 10−4 GeV. (4.3)

In the second equality, we have set the dark matter mass to the best fit value from
eq. (2.7).With the decoupling temperature in hand, it is simple enough to estimate the
final relative abundances of the different pion species. If Td . ∆m2

π/2mπ, then the forward
process π+π− → π0

i π
0
i dominates over the backward before decoupling and we can expect

all pions to be neutral. Since we have set the dark matter mass to the best-fit value, we
find that dark matter is comprised entirely of neutral pions as long as

α′ & 9.3× 10−4 (4.4)

As we will see in the following sections, dark matter in this model is comprised of all neutral
pions when freeze-out sets the relic abundance, but comprised of both charged and neutral
pions when its relic abundance is instead set by freeze-in.

4.1.1 Relic abundance from freeze-out

In the freeze-out scenario, the early-Universe abundances of the dark πs evolve as follows.
At temperatures above their mass, all five πs are in thermal equilibrium with the SM bath
thanks to the vector portal and a not-too-small kinetic mixing. When the bath temperature
drops belowmπ = 16.7 GeV, the slightly heavier charged pions start annihilating to pairs of
charged SM particles, π+π− → ff̄ . Once the temperature drops below roughly T . mπ/20,
these annihilations slow sufficiently for the πs to freeze-out from the SM bath. However,
the strong self interactions among the πs allow them to continue annihilating amongst each
other. This causes a down-scattering of charged dark matter states to neutral ones, so that
the remaining relic abundance is entirely comprised of the lighter, stable neutral πs. This
allows the dark matter to evade both direct and indirect detection bounds.

The only viable freeze-out parameter space occurs for mγ′ > 2mπ.4 Thus, the freeze-
out process is π+π− → f̄f , where f is a SM charged fermion. These annihilations are

4There is viable parameter space slightly below this threshold, but the experimental bounds dramatically
change since the dark photon becomes visibly decaying. Thus, there is only a sliver of mγ′ < 2mπ before
the required ε is ruled out by LHCb A′ → µ+µ− visible searches [49, 50].
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Figure 4. Contours of α′ on the invisibly-decaying dark photon plane (mγ′ , ε) which predict
the observed relic abundance via freeze-out in the Sp(2Nc) model with neutral pion dark matter.
Also shown in gray is the bound from LEP [47] as well as the projected sensitivity from precision
electroweak limits at ILC/GigaZ [48] (dashed).

p-wave and the resulting relic abundance is [51]

ΩDMh
2 = 8.53× 10−11

GeV2
2x2

f

g∗1/2
1

〈σv〉eff
, (4.5)

where h is the Hubble constant in units of 100 km sec−1 Mpc−1 and 〈σv〉eff is the thermally
averaged cross section for charged pion annihilations summed over all SM final states.5 For
numerical evaluations, we use xf = 20, where xf = mDM/Tf and Tf is the freeze-out
temperature, and g∗ = 75.

Figure 4 shows the resulting values of (mγ′ , ε) for different fixed α′ which correctly
reproduce the observed dark matter relic abundance. Since we only consider α′ ≥ 0.01,
the mass splitting between the charged and neutral pions is large enough to guarantee
that dark matter is only comprised of the neutral ones. Since the dark photons in this
part of parameter space are invisibly decaying, the most stringent bound on the kinetic
mixing comes from LEP [47], as shown in gray. Also shown with a dashed gray line is the
projected sensitivity of ILC/GigaZ [48] using future precision electroweak limits and it is
exciting that the ILC will be able to probe most of the freeze-out regime.

5Since the charged dark pions are only 2 out of the 5 dark pions, the probability that 2 dark pions
encountering one another in a π+ and π− pair is only 2/25. Thus, the effective cross section 〈σv〉eff that
enters eq. (4.5) is smaller than the actual cross section by this same factor, 〈σv〉eff = (2/25) 〈σv〉.
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4.1.2 Relic abundance from freeze-in

Since freeze-out is only possible over a narrow range of mγ′ , we also consider using the next-
simplest mechanism to set the relic abundance: freeze-in [52, 53]. Freeze-in scenarios are
characterized by a dark sector that is initially unpopulated and remains out of equilibrium
with the SM bath at all times. In such a situation, SM bath particles slowly and steadily
produce dark matter (and perhaps other dark-sector particles) through feeble couplings.

Which freeze-in processes matter most depends on mγ′/mπ, ε, and α′. When mγ′ ≥
2mπ and γ′ may decay to pairs of charged dark pions, the dominant freeze-in produc-
tion process is inverse decays of SM fermion pairs into dark photons, followed by their
subsequent decay into dark pions.6 For lighter γ′, direct production f̄f → π+π− (direct
freeze-in), or f̄f → γγ′ and fγ → fγ′ followed by γ′γ′ → π+π− (sequential freeze-in) are
the dominant processes. For smaller values of α′, the first process is the most important
while for larger values, the latter two dictate the relic abundance [54]. Regardless, all
values of α′ relevant for freeze-in are less than the estimate in (4.4). Thus, both charged
and neutral pions make up dark matter and 2

5 of dark matter may be directly detected as
we discuss below.

We turn first to the freeze-in production when mγ′ ≥ 2mπ. The calculation is brief
and well known and the resulting yield of the dark photons is [21]

Yγ′ ≈
3m2

γ′

2π2
(45)3/2MPl√

2π3

∑
f

Γγ′→f̄f
∫ ∞

0

K1(mγ′/T )
√
g∗g∗sT 5 , (4.6)

where

Γγ′→f̄f = αε2
m2
γ′ + 2m2

f

3mγ′

√√√√1−
4m2

f

m2
γ′

(4.7)

is the partial decay rate of γ′ to a SM fermion pair. In eq. (4.6), Yγ′ = nγ′/srad where
srad = 2π2

45 g∗sT
3 is the entropy density of the SM bath; MPl is the reduced Planck mass;

the sum over f includes all charged SM fermions lighter than the top quark; and g∗ is the
relativistic degrees of freedom in the bath. To arrive at this estimate, it is assumed that
∂T g∗s/g∗s � 1/T over the interval of integration, which is a reasonable approximation.
Additionally, the integral bounds are well approximated by the interval mγ′/20 to 20mγ′ .

After the dark photons freeze-in, they decay to pairs of dark charged pions which
then quickly annihilate to pairs of dark neutral pions. Since two dark pions are produced
for every dark photon, the value of ε which results in the observed dark matter relic
abundance is

ε =
√

ΩDMh2ρcrit/h2

2mπỸγ′s0
, (4.8)

where ΩDMh
2 = 0.120, ρcrit/h2 = 1.05 × 10−5 GeV/cm3, Ỹγ′ = Yγ′/ε

2 (with Yγ′ given
in eq. (4.6)), and s0 = 2890/cm3 [37]. The resulting feeble kinetic mixing is shown in

6Contributions from SM Z decays to pairs of charged dark pions is non-negligible if mγ′ & 54 GeV; for
simplicity, we focus on the parameter space for lighter dark photons.
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Figure 5. The ε required to achieve the observed relic abundance via freeze-in in both models,
for mγ′ > 2mπ. While this is an α′-independent result, the assumed range of α′ are similar to
the values taken in figures 6 and 7 to avoid indirect detection bounds. The dark matter mass is
assumed to be the best fit value of 16.7GeV.

figure 5. There are no existing constraints anywhere near the tiny requisite mixings, and
no immediate hopes to probe them.

On the other hand, the phenomenology is richer when mγ′ < 2mπ. In this case, the
dark photon decays into visible states γ′ → ff̄ where f is a SM fermion, and hence is
subject to a variety of limits from accelerator experiments and astrophysics. In addition,
for not-too-small values of α′ & 10−13, production of dark matter may proceed primarily
through the freeze-in of dark photons followed by their subsequent annihilation to dark
pions. At the same time, dark photon production from the SM thermal bath may have a
resonant effect when the plasma mass of the photon crosses the mass of the dark photon,
ωp(Tres) = mγ′ (see appendix B.2 for details). Thus, unlike the simple freeze-in story for
mγ′ ≥ 2mπ discussed above, the freeze-in in this parameter space depends on α′ in subtle
ways which we detail fully in appendix B.

In addition, all such values of α′ are below the condition in eq. (4.4). Thus, 2/5 of dark
matter is charged and 3/5 is neutral and the possibility of directly detecting dark matter
opens up. The cross section for charged pion dark matter to scatter off a xenon nucleus at
non-relativistic speeds is

σπ±Xe ≈ 16πZ2ε2αα′
µ2

m4
γ′
, (4.9)

where Z = 54 is the atomic number of xenon and µ is the reduced mass of a xenon nucleus
and dark pion. The most stringent limit on 16.7 GeV dark matter, χ, scattering directly
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off nucleons is σχn . 8.6× 10−47 cm2 [55]. This upper limit on the spin-independent cross
section is really an upper limit on the dark matter-xenon nucleus cross section, which is
related via

σχXe = A2 µ
2

µ2
χn

σχn . A2 µ
2

µ2
χn

8.6× 10−47 cm2, (4.10)

where A is the atomic mass number of the target xenon isotope, µχn is the reduced mass of
dark matter and a single nucleon, and we have used the current PandaX-4T constraint in
the final inequality. We find an upper bound on ε as a function of mγ′ (for different fixed
α′) by saturating the bound in eq. (4.10) using the cross section for dark pion scattering in
eq. (4.9) and accounting for only 2/5 of dark matter being charged. The resulting upper
bounds on ε are shown as dashed contours for various α′ in figure 7 and intersect the
requisite ε contours which explain the relic abundance at mγ′ ≈ 50 MeV.

Figure 6 shows contours of α′ which result in the observed dark matter relic abundance
for mγ′ < 2mπ. Region (1) corresponds to α′ contours for which ff̄ → π+π− is the domi-
nant freeze-in process, while Region (2) corresponds to α′ values for which the sequential
freeze-in of dark photons followed by their annihilation to dark pions matters most. Region
(3) transitions between the two (see appendix B for details). Also shown are the current
constraints on visibly-decaying dark photons in gray [49, 56–63] and a variety of projected
sensitivities in purples and greens [56, 63–75]. In addition to the projections shown, there
have been studies of the sensitivity of MUonE [76] and future TeV-scale muon beam dumps
to visibly-decaying dark photons [77]. Thus, despite dark matter being mostly neutral, this
part of parameter space is testable at near-future experiments probing the visible decays
of dark photons.

4.2 SO(Nc) model

The second model we consider is a gauged SO(Nc) with Nf = 2 dark quarks (i.e., two Weyl
fermions) in the vector representation. In the massless limit, it has an SU(2) ' SO(3) flavor
symmetry, which is broken to SO(2) by the quark bi-linear condensate 〈qiqj〉 ∝ δij (i, j =
1, 2). The low-energy physics is described by the SO(3)/SO(2) LσM (see appendix A.3).
We charge the two dark quarks under a U(1)′ as +1

2 ,−
1
2 , leaving an exact SO(2) ' U(1)′

symmetry. Among 2+1C2 = 3 pairs, one is identified as σ and the other two as π±. Since
the π± are the lightest states with non-trivial quantum numbers under the exact U(1)′,
they are stable.

The main difference between this model and the previous one is that all of the dark
matter is charged instead of neutral. While the previous model was able to accommodate
freeze-out for a range ofmγ′ , this model cannot since the charged dark matter would scatter
too much in direct detection experiments for the necessary values of ε ∼ 10−3 [55, 78]. Thus,
we focus only on the freeze-in mechanism for this model to demonstrate a viable parameter
space in which the relic abundance is explained.

In fact, the freeze-in calculations in all regimes of the parameter space are the same as
for the previous model and we need not repeat any calculations here. The only distinction
we need make is in what values of α′ are permitted for this model since direct and indirect
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Figure 6. Contours of α′ on the visibly-decaying dark photon plane (mγ′ , ε) which predict the
observed relic abundance via freeze-in in the Sp(2Nc) model with 2/5 charged and 3/5 neutral pion
dark matter. Constraints are gray [49, 56–63] and projected sensitivities are a variety of purples
and greens [56, 63–75]. In addition, the latest direct detection bound from PandaX-4T [55] is
shown as dashed contours with matching colors for each α′. (Note the direct detection contours
for α′ = 10−12.248 and 10−12.24 are overlapping.) The latter results in the light-gray shaded region
ruled out by PandaX-4T for mγ′ . 40 MeV. Regions labeled (1), (2), (3a) and (3b) are defined in
appendix B. The dark matter mass is assumed to be the best fit value of 16.7GeV.

detection bounds may apply. For the small values of α′ we consider in figure 7, we find
that indirect detection constraints [79, 80] are evaded by orders of magnitude. We likewise
assume similarly small values of α′ when considering the viable parameter space in figure 5
since the heavy-γ′ freeze-in mechanism does not depend on α′. On the other hand, we find
that light dark photon masses, mγ′ . 50 MeV, are ruled out by the latest direct-detection
results from PandaX-4T [55].

5 Conclusion

Over the past two decades, observations of galaxies have revealed a number of persistent
and curious features of the gravitationally inferred dark matter distributions. Together,
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Figure 7. Contours of α′ on the visibly-decaying dark photon plane (mγ′ , ε) which predict the
observed relic abundance via freeze-in in the SO(Nc) model with charged pion dark matter. The
constraints and projected sensitivities are the same as in figure 6, with a slight change in direct-
detection bounds due to all of dark matter being charged in this model (instead of 2/5). Regions
labeled (1), (2), (3a) and (3b) are defined in appendix B. The dark matter mass is assumed to be
the best fit value of 16.7GeV.

these features could be interpreted as pointing towards a scenario where dark matter self
interacts, just like the matter of the visible universe. And, just like the early exploration
of the visible universe via nucleon scattering that occurred over seventy years ago, the low-
energy kinematics of the dark matter in galaxies means their self interaction is captured
extremely (and all too) well by two parameters, making elucidation of the microscopic
theory highly challenging. This is explained by Bethe’s pioneering work on effective range
theory, where the two parameters are identified as the scattering length and the effective
range of the interaction.

Applying ERT to dark matter scattering and performing a best-fit scan of ERT param-
eters and dark matter mass to the currently available galaxy data, we find best-fit values
where the dark matter scattering length is anomalously large compared with its Compton
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wavelength.7 Such large values can occur near poles in the scattering amplitudes, corre-
sponding to bound or virtual states. There is another curiosity that arises: the small-scale
structure data prefer nucleon-sized dark matter cross sections. Could it be that the dark
sector mirrors the visible and contains a QCD-like theory?

Strongly coupled theories similar to QCD can qualitatively be described by linear
sigma models. Indeed, the LσM as applied to QCD itself is currently undergoing a revival
given recent experimental and lattice data. QCD also provides plenty of inspiration for
anomalously large scattering lengths via a number of “accidents,” a prominent example
being the mass of the σ resonance just above the ππ scattering threshold. We have explored
LσMs as theories for describing self interactions of dark matter. Here, dark matter particles
are pions of a dark gauge group - we consider SO(Nc) and Sp(2Nc) theories. We have
translated the LσM parameters into the ERT language, quantifying the “accidents” that
need to occur in the microscopic theory to give rise to the necessary ERT parameters to
fit the galaxy data.

While it is true that many different LσMs are indistinguishable by the ERT scattering
parameters describing the low-energy self interactions, the dark matter of the universe
must satisfy a host of other criteria which are sensitive to the microscopic parameters. We
have studied explicit models with the dark pions of SO(Nc) and Sp(2Nc) gauge theories
and mapped out various cosmological constraints as well as those coming from terrestrial
experiments. We have discovered viable parameter space in both theories that fits the
small-scale structure hints, obtains the correct dark matter abundance via freeze-out or
-in, and will be probed at near-future collider and beam dump experiments.
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A Linear sigma models (LσMs)

LσMs are renormalizable field theory models that demonstrate specific patterns of sponta-
neous symmetry breaking where the symmetries are realized linearly. Here we review those
associated with vector-like gauge theories, where LσMs are generally strongly coupled and
non-renormalizable. While we expect that at tree-level, renormalizable theories qualita-
tively capture the nature of the dynamics, in some cases we need non-renormalizable terms
to correctly represent the symmetry.

A.1 SU(Nc)

Here we consider SU(Nc) gauge theories with Nf quarks in the fundamental representation
of both chiralities qL and qR (Dirac fermions). In the absence of quark masses, the theory
has an SU(Nf )L × SU(Nf )R ×U(1)B global symmetry. For low Nf , it is believed that the
dynamics develops a quark bi-linear condensate 〈qiLqRj〉 ∝ δij , dynamically breaking the
global symmetry to the diagonal subgroup SU(Nf )V × U(1)B. Even though this cannot
be shown analytically, the supersymmetric versions of the theories with anomaly-mediated
supersymmetry breaking suggest this symmetry breaking pattern persists at least up to
Nf = 3Nc − 1, see [81, 82].

To realize the symmetries linearly, we need a field Σ as an Nf × Nf matrix that
transforms as the bi-fundamental representation

Σ→ ULΣU †R , (A.1)

for UL ∈ SU(Nf )L and UR ∈ SU(Nf )R. Σ is neutral under U(1)B. The general renormal-
izable Lagrangian is

L0 = Tr∂µΣ†∂µΣ + µ2TrΣ†Σ− λ1TrΣ†ΣΣ†Σ− λ2
(
TrΣ†Σ

)2
. (A.2)

With µ2 > 0, the potential has the minimum Σ ∝ 1 with the spontaneous symmetry
breaking SU(Nf )L × SU(Nf )R → SU(Nf )V .

However, this Lagrangian has an accidental U(Nf )L × U(Nf )R global symmetry. To
avoid the anomalous U(1)A symmetry, we need to add

∆L = −µ4−Nf
0 (detΣ + c.c.) . (A.3)

This term is expected to be generated by instantons that break U(1)A due to the anomaly
(i.e., η′).

In general, Σ = 1
2(σ + iπ) is a complex field with 2N2

f degrees of freedom. Among
them, N2

f − 1 are massless pseudo-scalar Nambu-Goldstone bosons. On the other hand,
there are N2

f massive scalars, and one massive pseudoscalar. It is interesting to note that
this is exactly the bosonic content when supersymmetric SU(Nc) is perturbed by anomaly
mediation [81].

A special case is when Nf = 2, where the global SU(2)L × SU(2)R ' SO(4) symmetry
is a real group. Then we can impose the reality condition on Σ

Σ∗ = (iτ2)Σ(−iτ2), τ2 =
(

0 −i
i 0

)
. (A.4)
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As a result, we can write

Σ = σ + iπiτi. (A.5)

There are only N2
f = 4 degrees of freedom (namely half as many as other cases), with three

massless pseudo-scalar Nambu-Goldstone bosons πi (i = 1, 2, 3) and one massive scalar
boson σ. This is indeed the situation of SO(4)/SO(3) LσM with φi (i = 1, 2, 3, 4) with

L = 1
2∂µφi∂

µφi −
λ

4 (φiφi − v2)2. (A.6)

This is the minimal model because the case for Nf = 1 has no non-anomalous chiral
symmetry.

A.2 Return of the LσM for hadrons

Following Nambu and Jona-Lasinio’s [83, 84] idea of spontaneous chiral symmetry break-
ing to explain the properties of pions, Gell-Mann and Lévy wrote down the LσM [85] with
Nf = 2 discussed in the previous subsection. However, the existence of the σ state re-
mained controversial throughout the 20th century and the community mostly decided to
take the LσM as a toy renormalizable model of the correct symmetry-breaking pattern.
Consequently, the dynamics of pions have been described by the non-linear sigma model
without the σ field [86] (i.e., the chiral Lagrangian). But recently, experimental evidence
for the σ = f0(500) is established [87] together with the rest of the nonet, and hence the
LσM has returned as a qualitatively correct description of low-energy QCD.

For QCD with the gauge group SU(3) and Nf = 3, we should have eight Nambu-
Goldstone bosons and one massive pseudo-scalar η′,

π =


1
2π

0 + 1
2
√

3η + 1√
6η
′ 1√

2π
+ 1√

2K
+

1√
2π
− −1

2π
0 + 1

2
√

3η + 1√
6η
′ 1√

2K
0

1√
2K
− 1√

2K
0 − 1√

3η + 1√
6η
′

 , (A.7)

together with a nonet of scalars

σ =


1
2a

0 + 1
2
√

3σ + 1√
6f0

1√
2a

+ 1√
2κ

+

1√
2a
− −1

2a
0 + 1

2
√

3σ + 1√
6f0

1√
2κ

0

1√
2κ
− 1√

2κ
0 − 1√

3σ + 1√
6f0

 . (A.8)

All of these states are now experimentally well-established with the spectrum in figure 8, as
listed in the Review of Particle Physics [37] and the review “Spectroscopy of Light Meson
Resonances”,

σ = f0(500), (A.9)
(a±, a0) = a0(980), (A.10)

f0 = f0(980), (A.11)
(κ±, κ0, κ̄0) = K∗0 (700). (A.12)
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Figure 8. Mass spectra of light pseudoscalar 0−, vector 1−, and scalar 0+ hadrons. The bands
indicate the mass range determined in [37]. Here, I refers to isospin, and S to strangeness. Pseu-
doscalar and vector states are qualitatively similar in that the lightest states (π, ρ) form iso-triplets
and the heaviest (η′, φ) iso-singlets with zero strangeness, factoring that pseudoscalar spectrum
is more spread out because pions are particularly light as pseudo-Goldstone bosons and the η′ is
heavy due to the chiral anomaly. Scalar states have a qualitatively different mass spectrum, with
the iso-triplets a0 at the top and the iso-singlet f0(500) at the bottom, yet form an SU(3) nonet as
evidenced by the Gell-Mann-Okubo relation eqs. (A.13), (A.14). In particular, f0(980) and a0(980)
are right at the KK̄ threshold, pointing to the interpretation as kaon molecules.

They satisfy the Gell-Mann-Okubo relation (in GeV2):

4m2
κ = 4× 0.7002 = 1.960, (A.13)

m2
a0 + 3m2

σ = 0.9802 + 3× 0.5002 = 1.710, (A.14)

which agree within 13%, suggesting that they indeed form an SU(3) octet.
The scalar states are unlikely to be understood as qq̄ mesons. First of all, the isotriplet

states of qq̄ mesons would be ud̄, 1√
2(uū − dd̄), and dū with no strange quark content,

and hence are expected to be the lightest in the nonet. This is indeed the case for both
pseudoscalars (π) and vectors (ρ), while it is not the case for scalars (a0). Second, there are
issues with decay modes as well that a0 decays to KK̄ despite being just at the threshold
with a minuscule phase space, but not seen in ππ. It should be dominated by ss̄ content.
Third, qq̄ mesons have quantum numbers P = (−1)L+1, C = (−1)L+S , where L is the
orbital angular momentum between q and q̄ and S = 0, 1 the sum of the spins. Therefore,
the JPC = 0++ states are required be p-wave (L = 1, S = 1), which are expected to be
heavier than s-wave (L = 0) states. Then we expect closely placed J = 0, 1, 2 states similar
to χc0 < χc1 < χc2 (see figure 9) split by spin-orbit coupling and heavier than the s-wave
J/ψ. Instead, we observe both that f0(500) < ω(782) (i.e. the ω with L = 0, S = 1, is
heavier than the σ with L = 1, S = 1) and that f0(500) < f2(1270) < f1(1285) (i.e. the
J = 2 state is lighter than the J = 1 state).

A possible interpretation of scalar states is tetraquark bound states (qq)(q̄q̄), where
diquarks qq are spin zero and color anti-triplet and bound to their counterparts anti-
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Figure 9. Mass spectra of experimentally well-established states in the Summary Table of “cc̄
mesons (including possibly non-qq̄ states)” from Particle Data Group [37]. States shown in black
are cc̄ charmonium states with configurations indicated by (L, S). On the other hand, states shown
in colors are candidates of exotics either as tetraquarks or meson molecules. Those in red are clearly
not cc̄ as they have charged partners in I = 1 multiplets, likely (cc̄ud̄, cc̄(uū+dd̄)/

√
2, cc̄dū). Those

in blue are I = 0 yet their properties do not match up with expectations of charmonium states likely
cc̄(uū + dd̄)/

√
2. Those labeled X have their JPC quantum numbers not completely established

experimentally.

diquarks q̄q̄ [88, 89]. Another possibility is meson molecules ππ, πK, KK̄ etc [90]. These
do not seem so exotic these days given the observation of hybrids in charm and bottom
systems (see figure 9 and also the review “Non-qq̄ Mesons” in [37]). Both interpretations
require two quarks and two anti-quarks, and cannot be clearly distinguished; the two
interpretations are smoothly connected akin to the BCS-BEC crossover.

Note that f0(980) has quantum numbers IG(JPC) = 0+(0++) and a0(980) 1−(0++),
where the G-parity is (−1)L+S+I for qq̄ states. The assignment as qq̄ states can thus in
principle be consistent. However, both states live right on the KK̄ threshold; if they were
indeed qq̄ states, there is no reason why f0(980) as an SU(3) singlet should have the same
mass as a0(980). The molecules of K(I = 1

2) and K̄(I = 1
2) in the s-wave yield the same

quantum numbers and similar masses for I = 0 and I = 1, and hence this interpretation
makes sense. In summary, these states are likely a case of qqq̄q̄.

Finally, the fact that the two-flavor case reduces to a triplet of pions and σ, corre-
sponding to the special case Nf = 2 with half as many degrees of freedom, is additional
evidence for the qualitative correctness of the LσM.
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A.3 SO(Nc)

Here we consider SO(Nc) gauge theories with Nf quarks in the vector representation of
fixed chirality (Weyl fermions) qi, i = 1, · · · , Nf . In the absence of quark masses, the theory
has an SU(Nf ) global symmetry. For low Nf , it is believed that the dynamics causes a
quark bi-linear condensate 〈qiqj〉 ∝ δij , dynamically breaking the global symmetry to the
subgroup SO(Nf ). Even though this cannot be shown analytically, their supersymmetric
versions with anomaly-mediated supersymmetry breaking suggest this symmetry breaking
pattern persists at least up to Nf = 3(Nc − 2)− 1, see [81, 91, 92].

To realize the symmetries linearly, we need a field Σ = ΣT as an Nf ×Nf matrix that
transforms as the symmetric tensor representation

Σ→ UΣUT (A.15)

for U ∈ SU(Nf ). The general renormalizable Lagrangian is

L0 = Tr∂µΣ†∂µΣ + µ2TrΣ†Σ− λ1TrΣ†ΣΣ†Σ− λ2
(
TrΣ†Σ

)2
. (A.16)

With µ2 > 0, the potential has the minimum Σ ∝ 1 with the spontaneous symmetry
breaking SU(Nf )→ SO(Nf ).

However, this Lagrangian has an accidental U(Nf ) global symmetry. To avoid the
anomalous U(1) symmetry, we need to add

−µ4−Nf
0 (detΣ + c.c.) . (A.17)

This term is expected to be generated by instantons that break U(1)A due to the anomaly.
In general, Σ is a complex field in the symmetric tensor representation of SU(Nf ) with

Nf (Nf + 1) degrees of freedom. Among them, 1
2Nf (Nf + 1)− 1 are massless pseudo-scalar

Nambu-Goldstone bosons. On the other hand, there are 1
2Nf (Nf+1) massive pseudoscalars

and one massive scalar. It is interesting to note that this is exactly the bosonic content
when supersymmetric SU(Nc) is perturbed by anomaly mediation [81].

A special case is when Nf = 2, where the symmetric tensor of the global SU(2)L ×
SU(2)R ' SO(4) symmetry is real (2, 2) = 4, namely, the vector representation of SO(4).
Then we can impose the reality condition on Σ:

Σ∗ = (iτ2)Σ(−iτ2), τ2 =
(

0 −i
i 0

)
. (A.18)

As a result, we can write (remember Σ = ΣT )

Σ = σ + i(π1τ1 + π2τ3). (A.19)

There are only three degrees of freedom (half as many as other cases), with two massless
pseudo-scalar Nambu-Goldstone bosons πi (i = 1, 2) and one massive scalar boson σ. This
is indeed the situation of SO(3)/SO(2) LσM with φi (i = 1, 2, 3) with

L = 1
2∂µφi∂

µφi −
λ

4 (φiφi − v2)2. (A.20)

This is the minimal model because the case for Nf = 1 has no non-anomalous chiral
symmetry.

– 22 –



J
H
E
P
0
9
(
2
0
2
2
)
0
4
1

A.4 Sp(2Nc)

Here we consider Sp(2Nc) gauge theories with 2Nf quarks in the fundamental representa-
tion of fixed chirality (Weyl fermions) qi, i = 1, · · · 2Nf . In the absence of quark masses, the
theory has an SU(2Nf )L global symmetry. For low Nf , it is believed that the dynamics de-
velops a quark bi-linear condensate 〈qiqj〉 ∝ J ij , dynamically breaking the global symmetry
to the subgroup Sp(2Nf ). Even though this cannot be shown analytically, their supersym-
metric versions with anomaly-mediated supersymmetry breaking suggest this symmetry
breaking pattern persists at least up to Nf = 3(Nc + 1)− 1, see [81].

To realize the symmetries linearly, we need a field Σ = −ΣT as a 2Nf × 2Nf matrix
that transforms as the anti-symmetric tensor representation

Σ→ UΣUT (A.21)

for U ∈ SU(2Nf ) symmetry. The general renormalizable Lagrangian is

L0 = Tr∂µΣ†∂µΣ + µ2TrΣ†Σ− λ1TrΣ†ΣΣ†Σ− λ2
(
TrΣ†Σ

)2
. (A.22)

With µ2 > 0, the potential has the minimum Σ ∝ J with the spontaneous symmetry
breaking SU(2Nf )→ Sp(2Nf ), where J is the Sp(2Nf ) group invariant.

However, this Lagrangian has an accidental U(2Nf ) global symmetry. To avoid the
anomalous U(1) symmetry, we need to add

−µ4−Nf
0 (PfΣ + c.c.) . (A.23)

This term is expected to be generated by instantons that break U(1) due to the anomaly.
In general, Σ is a complex field with 2Nf (2Nf − 1) degrees of freedom. Among them,

Nf (2Nf − 1)− 1 are massless pseudo-scalar Nambu-Goldstone bosons. On the other hand,
there are Nf (2Nf − 1) massive scalars and one massive pseudo-scalar. It is interesting to
note that this is exactly the bosonic content when supersymmetric SU(Nc) is perturbed by
anomaly mediation [81].

A special case is when Nf = 2, where the anti-symmetric tensor of the global SU(4) '
SO(6) symmetry is real, namely, the vector representation of SO(6). Then we can impose
the reality condition on Σ

Σ∗ = −JΣJ−1, J =


0 0 +1 0
0 0 0 +1
−1 0 0 0
0 −1 0 0

 . (A.24)

As a result, we can write (remember Σ = −ΣT )

Σ =


0 π1

1
2(iσ + π5) π2

−π1 0 π3
1
2(iσ + π6)

−1
2(iσ + π5) −π3 0 π4
−π2 −1

2(iσ + π6) −π4 0

 . (A.25)
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There are only six degrees of freedom (half as many as other cases), with five massless
pseudo-scalar Nambu-Goldstone bosons πi (i = 1, · · · , 5) and one massive scalar boson σ.
This is indeed the situation of SO(6)/SO(5) LσM with φi (i = 1, · · · , 6) with

L = 1
2∂µφi∂

µφi −
λ

4 (φiφi − v2)2, (A.26)

because the unbroken group is Sp(4) ' SO(5). This is the minimal model because the case
for Nf = 1 has no symmetry breaking as SU(2)/Sp(2) = {e} is trivial.

B Freeze-in when mγ′ < 2mπ

B.1 Boltzmann equations for freeze-in

In this appendix, we detail the Boltzmann equations relevant for freeze-in when mγ′ < 2mπ.
For parameters shown in figures 6 and 7, the dark matter does not reach equilibrium with
the SM bath. Therefore, the Boltzmann equations are

ṅDM + 3HnDM = 2
(
〈σSM→DMv〉n2

SM + 〈σγ′→DMv〉n2
γ′

)
, (B.1)

ṅγ′ + 3Hnγ′ = 〈σγ′→SMv〉neqSMn
eq
γ′ + 〈Γγ′→SM〉neqγ′ − 〈σγ′→DMv〉n2

γ′ , (B.2)

and the inverse reactions can be ignored [54]. The former equation contains the freeze-in
production processes for dark matter, ff̄ → π+π− and γ′γ′ → π+π−. The latter contains
the production of dark photons from fγ → fγ′, f̄γ → f̄γ′, and ff̄ → γγ′ in 〈σγ′→SMv〉
and f̄f → γ′ in 〈Γγ′→SM 〉. The last term contains the depletion of dark photons by their
annihilation into dark matter; for the parameters we consider below, this is negligible. Here
and below, f refers to SM fermions, and srad the entropy density.

The thermally averaged cross sections in the Boltzmann equations can be written
as [93]

〈σ1 2→3 4v〉neq1 n
eq
2 = 1

g1g2S

∫
dp̃1dp̃2dp̃3dp̃4|M|2e−

E1
T e−

E2
T (2π)4δ(p1 + p2 − p3 − p4)

= 1
g1g2S

∫
ds

64π4T β̄iK2

(√
s

T

)
s

3
2σ(s)v, (B.3)

where gi are the number of spin degrees of freedom in the initial states, S is a symmetry
factor to account for cases of identical particles, s = (p1 + p2)2, v is the relative velocity,
and the Lorentz-invariant phase space integral is given by

dp̃ ≡ d3p

(2π)32E , (B.4)

and

β̄i =

√
1− 2(m2

1 +m2
2)

s
+ (m2

1 −m2
2)2

s2 . (B.5)
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Switching to the yield Y = n/srad, we have Ẏ = ṅ+3Hn
srad

, and further changing the
variable from time to z = mDM/T , we obtain

d

dz
Y =

(
g∗
π2

90

)− 1
2 MPl
m2

DM
z Ẏ ,

where MPl is the reduced Planck mass. We list the ingredients for the various sσv = 2sσβi
in appendix C.

Since the r.h.s. of the equation that sets Yγ′ depends only on SM particles (neglecting
the final term in eq. (B.2) as discussed above), we simply numerically integrate it to obtain
Yγ′(z). Then we use eq. (B.1) for YDM and integrate the r.h.s. using the obtained Yγ′(z) to
obtain YDM(∞).

B.2 Thermal effect

Thermal effects can significantly affect dark photon production throughout freeze-in. Fol-
lowing [54], they can be accounted for via a replacement of the kinetic mixing:

ε2 → ε2eff =
ε2m4

γ′

(m2
γ′ − ReΠγ)2 + ω2(e

ω
T − 1)2Γ2

γ

. (B.6)

In the above, Πγ denotes the in-medium photon self-energy. Regarding this as a ther-
mal mass for the photon, we set it equal to the plasma frequency, ωp, given by ω2

p =
4
9παT

2∑
f Q

2
f ' (0.26T )2, where the sum runs over light fermion species lighter than

mγ′/2. The second term in the denominator is known as the emission rate, and can be
evaluated as in [94],

ω2(e
ω
T − 1)2Γ2

γ =
∑
f

α4T 4

π2

(
log 4Tω

m2
f

)2

, (B.7)

where the sum runs over all fermions below mDM. For the production of dark photons
through the freeze-in process ff̄ → γ′, the dark photon energy is ω ∼ mγ′ , and we use this
value in our evaluations.

For the best fit mDM ∼ 16.7GeV, we have ωp ∼ 1GeV at T ∼ 1
3mDM. Therefore, for

mγ′ & 1GeV, εeff undergoes a resonance at the temperature mγ′ = ωp(Tres). This resonant
behaviour is visible in the differential dark photon yields, as shown in figure 10. The dark
photon yield Yγ′ reaches its asymptotic value quickly after Tres, as clearly seen in figure 11.
Yγ′ then receives an additional contribution from the inverse decay ff̄ → γ′ when T < mγ′ ;
figure 11 indeed shows a slight rise in Yγ′ . After the resonance, the enhanced Yγ′ enables
the freeze-in of dark matter through γ′γ′ → π+π−, which is also seen in figure 11. This
corresponds to Region II in [54] where the sequential freeze-in of dark photons followed by
γ′γ′ → π+π− dominates the dark matter production.

On the other hand for mγ′ . 0.3GeV, the resonance does not occur and the dark
matter production is dominated by the process ff̄ → π+π−. This part of parameter space
corresponds to Region Ia in [54] and explains the different plateaus in figures 6 and 7. For
mγ′ ' 0.3–1GeV, we see a transition between two plateaus.

– 25 –



J
H
E
P
0
9
(
2
0
2
2
)
0
4
1

Figure 10. Contributions to the differential yield dYγ′/d (mπ/T ) as a function of mπ/T for
the benchmark mγ′ = 10 GeV and α′ = ε = 10−9. The corresponding dashed lines show the
contributions when no thermal effects are included.

Figure 11. The yields of dark photons and pions as a function of mπ/T for the benchmark
mγ′ = 10 GeV and α′ = ε = 10−9. Also shown are the same yields if no thermal effects are included
(dashed).
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Figure 12. Required values of ε for various choices of α′ and mγ′ due to a competition of direct
and sequential freeze-in. Above the dashed curve εth, the dark photon attains a thermal abundance
Y eq
γ′ early enough for the dark matter freeze-in. (1) When α′ < 10−12.5, dark photon annihilation

is too small and direct freeze-in dominates. (2) For α′ > 10−12, direct freeze-in dominates for
mγ′ . 0.1mDM where εeff does not have a resonance, and the required ε is large (left plateau). For
larger mγ′ , the resonance leads to a large Yγ′ and hence dark photon annihilation dominates with
smaller ε (middle plateau). (3) For the intermediate α′, Yγ′ gets Boltzmann suppressed for large
mγ′ , requiring the direct freeze-in process and hence ε to rise sharply. See text for more details.

B.3 Recipe for the mγ′ − ε curves

Here, we describe how to calculate the mγ′ − ε curves that give the observed dark matter
relic abundance. Let us consider YDM when α′ = ε = 10−9 as a benchmark. We calculate
the values of Y dir

DM from direct freeze-in, and Y seq
DM from sequential freeze-in. We define Y max

DM
as the yield YDM produced from Y eq

γ′ ; this is the maximum yield that can be produced from
the sequential freeze-in process. We require two things. First, the observed abundance
must come from the two contributions combined, namely the direct and sequential freeze-
in yields. Second, the sequential freeze-in contribution must be smaller than Y max

DM because
the dark photon yield is at most Y eq

γ′ . Thus, we can determine ε for different α′ by using
the various yields:

(
α′ε2

10−27

)
Y dir
DM + min

( α′ε2

10−27

)2

Y seq
DM,

(
α′

10−9

)2
Y max
DM

 = Y obs
DM = 4.09× 10−10 GeV

mDM
.

(B.8)

We define the quantity εth as the value of ε that sets equal the arguments of the min
function in the above equation. This is roughly the value of ε at which the dark photon
thermalizes before the dark matter freeze-in.

We are now able to discuss the behavior of the fixed α′ contours in figures 6 and 7,
which is different in three regions, denoted (1), (2), (3a), and (3b) in figure 12:
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(1) Dark photon annihilation to create dark matter pairs is too small, suppressed by α′2,
and the freeze-in process is dominated by the direct freeze-in contribution ∝ ε2α′;
hence, ε ∝ (α′)−1/2. As mγ′ approaches 2mDM, the off-shell propagator is nearly
resonant and ε goes down slightly. This corresponds to Region Ia in [54].

(2) α′ & 10−12. This case is practically made of two plateaus. For light dark photons,
mγ′ . 0.10GeV, the dark photon resonance does not occur until after dark matter has
frozen in; hence, the freeze-in is dominated by direct freeze-in, requiring a relatively
large ε. On the other hand, for mγ′ & 1GeV, εeff fully undergoes the resonance and
dark photon production is greatly enhanced. Therefore, freeze-in is dominated by
dark photon annihilations. Given the relatively large α′, the dark photon yield does
not need to reach Y eq

γ′ , requiring a relatively small ε < εth, which corresponds to
region II in [54]. In between, there is a transition.

(3) When 10−13 . α′ . 10−12, the situation is very interesting. Similar to regions (1)
and (2), the region mγ′ . 0.10GeV is dominated by direct freeze-in. For larger mγ′ ,
the resonance starts to kick in and dark photon annihilations become relevant. Then,
the region is further subdivided into two cases. (3a) When 10−12.248 . α′ . 10−13,
dark photon annihilations become limited by the thermal dark photon yield, Y eq

γ′ ,
independent of ε as long as ε > εth. The rest is made up by the direct freeze-in
process, which fixes the required value of ε and there are plateaus. However, for
larger mγ′ , the thermal abundance of Y eq

γ′ gets Boltzmann suppressed. Thus, there is
a greater need for the direct freeze-in contribution and the required ε goes up. (3b)
When 10−12 . α′ . 10−12.247, α′ is large enough to produce sufficient dark matter
even slightly below εth for an intermediate range of mγ′ . However, for larger mγ′ ,
even Y eq

γ′ is not sufficient to produce dark matter. This is shown in figure 13, which
plots Y max

DM as a function of mγ′ . When Y max
DM falls below Y obs

DM , a much larger ε is
suddenly required to utilize the direct freeze-in contribution, resulting in a sharp rise
in ε.

C Cross sections

In this appendix, we list some of the cross sections used in the paper for completeness.
They always appear in the combination

sσv = β̄f
8π

∫
dΩ
4π

1
g1g2

∑
helicities

|M|2, (C.1)

β̄f =

√
1− 2(m2

1 +m2
2)

s
+ (m2

1 −m2
2)2

s2 (C.2)

for final state particles of mass m1 and m2. Here, v is the relative velocity.
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Figure 13. Y max
DM (freeze-in of dark matter from thermal dark photon γ′γ′ → π+π−) for various

α′ as a function of mγ′ . For α′ & 10−12.1, Y max
DM > YDM for the entire range of mγ′ , and hence

requires ε < εth. For smaller α′, however, Y eq
DM cannot attain YDM (black dashed line) when Yγ′ is

Boltzmann suppressed for larger mγ′ , and requires the direct freezein contribution once the curve
crosses YDM. This explains the sharp rise in ε as seen in figure 12. For even smaller α′ < 10−12.25,
Y max
DM is never sufficient and always requires the direct freezein contribution, and ε is much larger

than εth.

C.1 DM + DM→ f + f̄ (for freeze-out)

∑
helicities

|M|2 =
(4π)2Q2ε2fαα

′

(s−m2
AD)2 +m2

ADΓ2

[
−2(t− u)2 + 2s(s− 4m2

DM )
]
, (C.3)

mγ′Γ(s) = 1
3

∑
f

Q2
f ε

2
fα(s+2m2

f )

√
1−

4m2
f

s
+α′(s−4m2

DM)

√
1− 4m2

DM
s

 , (C.4)

where fermion and dark matter should be included only when it is kinematically allowed,
i.e., when the argument of the square root is positive. The width is given as a running
width as a function of the dark photon four-momentum squared s.

C.2 Decay γ′ → f + f̄

mγ′Γ = 1
3βfQ

2
f ε

2
fα(s+ 2m2

f ) . (C.5)

C.3 γ′ + γ′ → DM + DM

1
9

∑
helicities

|M|2 = 1
9(4π)2α′2

[
(4m2

DM −m2
γ′)2

(t−m2
DM)2 +

(4m2
DM −m2

γ′)2

(u−m2
DM)2

+ 8 + s

t−m2
DM

+ s

u−m2
DM

+
(s− 4m2

DM +m2
γ′)2

(t−m2
DM)(u−m2

DM)

]
. (C.6)
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C.4 γ + f → γ′ + f

1
4

∑
helicities

|M|2 =
2(4π)2Q4

f ε
2α2

(s−m2
f )2 (2m2

γ′m
2
f +m4

f − su+m2
f (3s+ u))

+
4(4π)2Q4

f ε
2α2

(s−m2
f )(u−m2

f )
(−m4

γ′ +m2
γ′(−2m2

f + s+ u) +m2
f (2m2

f + s+ u))

+
2(4π)2Q4

f ε
2α2

(u−m2
f )2 (2m2

γ′m
2
f +m4

f − su+m2
f (s+ 3u)). (C.7)

C.5 f + f̄ → γ + γ′

1
4

∑
helicities

|M|2 =
2(4π)2Q4

f ε
2α2

(t−m2
f )2 (−2m2

γ′m
2
f −m4

f + tu−m2
f (3t+ u))

+
4(4π)2Q4

f ε
2α2

(t−m2
f )(u−m2

f )
(m4

γ′ −m2
γ′(−2m2

f + t+ u)−m2
f (2m2

f + t+ u))

+
2(4π)2Q4

f ε
2α2

(u−m2
f )2 (−2m2

γ′m
2
f −m4

f + tu−m2
f (t+ 3u)). (C.8)
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