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Abstract

People make logically inconsistent probability judgments.
The “Linda” problem is a well-known example, which often
elicits a conjunction/disjunction fallacy: probability of con-
stituent event A (B) judged more/less likely than their con-
junction/disjunction. The Quantum Judgment model (QJM,
Busemeyer et al 2011) explains such errors, which are not ex-
plainable within classical probability theory. We propose an
alternative axiomatic approach in the framework of quantum
probability theory that employs positive operators represent-
ing the set of general queries, in constast to QJM which uses
projection operators. Like QJM, our model accounts for con-
junction/disjunction fallacies, averaging type errors, and un-
packing effects, suggesting that it provides a viable model of
judgement error. Further differences between our model and
QJM are also discussed.
Keywords: Probability judgment; Quantum Probability the-
ory; conjunction/disjunction fallacy; “Linda” problem.

Introduction
People make probability judgments that are logically incon-
sistent with classical probability theory. The “Linda” problem
is a well-known example: Participants are told that Linda was
a philosophy student and an anti-nuclear supporter, and asked
to judge her most likely current situation as either (a) femi-
nist supporter, (b) bank teller, (c) feminist and bank teller—
conjunction, (d) feminist, but not bank teller, or (e) feminist
or bank teller—disjunction. Judging (b) as more likely than
(c) is a conjunction error (fallacy), since by classical proba-
bility Prob(A and B) ≤ Prob(B); judging (a) as more likely
than (e) is a disjunction error, since Prob(A)≤ Prob(A or B).
These fallacies are well-known (Tversky & Kahneman, 1983;
Bar-Hillel & Neter, 1993), but they are not explained by
classical models (Busemeyer, Pothos, Franco, & Trueblood,
2011).

Busemeyer et al. (2011) proposed an alternative model
based on quantum probability theory (QPT) (Peres, 1993).
Their quantum judgment model (QJM) uses the properties of
quantum coherence and quantum interference to explain con-
junction and disjunction errors, respectively. An explanation
of QJM follows (Appendix A summarizes QPT).

Using the Linda problem as an example, QJM assumes that
beliefs about states of the world (e.g., Linda is a feminist)
are represented as vectors Ψ in a Hilbert space H where,
e.g., the basis vectors represent feature combinations (e.g.,
non-/feminist, young/old, gay/straight). An event E (e.g.,
corresponding to the proposition Linda is a bank-teller) is

a projection operator, which projects the belief vector onto
a subspace representing a possible outcome: e.g., Yes is a
possible outcome (subspace) for Linda is a bank-teller. A
projection operator E applied to Ψ, written EΨ (i.e. vec-
tor/matrix multiplication), returns the probability of belief
in that outcome, computed as Prob(E) = 〈Ψ|EΨ〉, where
〈·|·〉 is Dirac notation for the inner product. For events cor-
responding to conjunctions of propositions “E and F” (e.g.,
Linda is a feminist and Linda is a bank-teller), the belief
in an outcome is computed as: if Prob(E) > Prob(F), then
Prob(E and F) = 〈Ψ|EFEΨ〉, else if Prob(E) < Prob(F),
then 〈Ψ|FEFΨ〉.1

In this paper, we provide an alternative formulation of hu-
man probability judgment within the framework of quantum
probability theory. The most general class of queries is repre-
sented by the space of positive operators, which includes pro-
jection operators. Motivated by this observation, we propose
a set of axioms to define a positive operator corresponding to
the conjunction of a pair of general propositions. We provide
an example that is consistent with this set of axioms. More-
over, we also show how this reformulation accounts for the
conjunction and disjunction fallacies, averaging type errors,
and unpacking effects.

Quantum formulation using positive operators
A quantum system is described by a Hilbert space (see Ap-
pendix A). In quantum theory, a general query (or event) is
represented by an operator A satisfying 0 ≤ A ≤ 1. It should
be noted that a projection operator also satisfies this condi-
tion. Thus an observable which takes a value in a set Ω is
represented by a positive-operator-valued measure (POVM)
{Aa}a∈Ω on Ω. Roughly, a POVM can be regarded as a
“fuzzy” version of projection-valued measure (PVM). Thus
a POVM is often called an unsharp observable.
Assumption 1 A person’s belief state is described by a state
of a quantum system.
We denote a Hilbert space by H .
Assumption 2 An event that has a family of possible out-
comes Ω is described by a family of positive operators E =
{Ei}i∈Ω on H that satisfies ∑i∈Ω Ei = 1. (Such a family of
positive operators is called a positive-operator-valued mea-
sure (POVM).)

1Prob(E and F) is undefined when Prob(E) = Prob(F).
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In the above formulation, an operator corresponding to a
proposition “A and B” is not specified. To give quantita-
tive predictions, however, this operator needs to be specified.
We take an axiomatic approach to identify a suitable oper-
ator. Let us denote the operator corresponding to “A and
B” by Λ(A,B). We assume that for a pair of POVMs {Aa}
and {Bb}, an operator corresponding to “Aa and Bb” does
not depend on Ac’s (c 6= a) and Bd’s (d 6= b). That is, Λ

is defined as a map Λ : E+(H )×E+(H )→ E+(H ), where
E+(H ) := {A| 0 ≤ A ≤ 1}. It is natural to suppose that this
Λ satisfies the following conditions:

(o.b) Λ(A,B) satisfies 0 ≤ Λ(A,B) ≤ 1 for any A,B ∈
E+(H ).

(i.b) For any POVMs {Aa} and {Bb}, it holds that
∑a,b Λ(Aa,Bb) = 1. (Thus, {Λ(Aa,Bb)} becomes a
POVM.)

(ii.b) Λ(A,A) = A for any projection A.

(iii.b) Λ(A,1) = A for any A ∈ E+(H ).

(iv.b) Λ(UAU∗,UBU∗)=UΛ(A,B)U∗ for any A,B∈E+(H )
and any unitary operator U .

Some comments are helpful to understand each condition.
Condition (o.b) is necessary to guarantee that the framework
is closed under conjunction and well-defined. Condition (i.b)
means that summation of the probabilities “Aa and Bb” for
running a and b is 1. Condition (ii.b) represents a trivial
requirement. A proposition “Linda is a feminist and Linda
is a feminist” is equivalent to “Linda is a feminist”. A re-
striction of A in condition (ii.b) may seem strange. However,
even in a classical system, confirming that a fuzzy query is
true does not guarantee that the same query is true. There-
fore we impose a weaker condition than the one above. 1
in condition (iii.b) represents a trivial proposition such as
“Linda is Linda”. This condition implies that the proposi-
tion “Linda is a feminist and Linda is Linda” is equivalent
to “Linda is a feminist”. Condition (iv.b) may need a de-
tailed explanation. It means that an operator correspond-
ing to “A and B” should be determined only by the inter-
relationship between A and B. In quantum theory, the rela-
tionship between A and B is exactly the same as that between
UAU∗ and UBU∗ because unitary operation U can be inter-
preted as something like a “coordinate transformation”. Thus
Λ(UAU∗,UBU∗) should be written as a function of Λ(A,B)
and U . This function f (Λ(A,B),U) := Λ(UAU∗,UBU∗)
must satisfy f (Λ(A,B),UV ) = f ( f (Λ(A,B),V ),U). Now we
have f (Λ(U∗AU,1),U) =Λ(UU∗AU∗U,1) =Λ(A,1). Using
condition (iii.b), we obtain for any A and U , f (U∗AU,U)=A.
Setting U∗AU = B for an arbitrary B, we obtain

f (B,U) =UBU∗.

Thus it holds that Λ(UAU∗,UBU∗) = f (Λ(A,B),U) =
UΛ(A,B)U∗. Note that these conditions are rather weak. For

instance, we do not require “A and B” to be equivalent with
“B and A”.

Before showing the existence of a Λ satisfying these re-
quirements, we show a proposition easily derived from them.
Proposition 1 Suppose Λ satisfies the requirements (o.b) -
(iv.b). It holds that for any projections P and Q satisfying P+
Q≤ 1, Λ(P,Q) = 0, and for any A with 0≤ A≤ 1, Λ(A,0) =
0.

Proof: Let us begin with Λ(P,Q) = 0 for projections P and
Q with P+Q ≤ 1. We can define a PVM {A0,A1,A2} :=
{P,Q,1−P−Q}, Considering ∑a,b Λ(Aa,Ab) = 1, we obtain

P+Q+(1−P−Q)+Λ(P,Q)+Λ(Q,P)

+Λ(P,1−P−Q)+Λ(1−P−Q,P)

+Λ(Q,1−P−Q)+Λ(1−P−Q,Q) = 1,

where we used Conditions (i.b) and (ii.b). It concludes
Λ(P,Q) = 0.

Consider a POVM {A,1−A} and {1,0}. Condition (i.b)
and (iii.b) are used to show

Λ(A,1)+Λ(A′,1)+Λ(A,0)+Λ(A′,0)
= A+A′+Λ(A,0)+Λ(A′,0) = 1.

It concludes Λ(A,0) = 0.

To illustrate the existence of Λ, let us consider the following
example.
Example 1 Fix 0≤ p≤ 1. For any A,B satisfying 0≤ A≤ 1
and 0≤ B≤ 1, we define Λp(A,B) by

Λp(A,B) = pA1/2BA1/2 +(1− p)B1/2AB1/2.

Using 0 ≤ B ≤ 1, one can show 0 ≤ A1/2BA1/2 ≤ 1. Thus
0 ≤ Λp(A,B) ≤ 1 holds and condition (o.b) is satisfied. Let
us examine condition (i.b). Consider a pair of POVM {Aa}
and {Bb}. We obtain

∑
a,b

Λp(Aa,Bb)

= ∑
a,b

(
pA1/2

a BbA1/2
a +(1− p)B1/2

b AaB1/2
b

)
= p∑

a
A1/2

a ∑
b

BbA1/2
a +(1− p)∑

b
B1/2

b ∑
a

AaB1/2
b

= p∑
a

Aa +(1− p)∑
b

Bb = 1.

Condition (ii.b) is satisfied because P1/2PP1/2 = P holds for
a projection P. Condition (iii.b) also follows immediately. In
addition , it holds that

Λp(UAU∗,UBU∗)

= pUA1/2U∗UBU∗UA1/2U∗

+(1− p)UB1/2U∗UAU∗UB1/2U∗

=UΛp(A,B)U∗,

where we used U∗U = 1. Thus condition (iv.b) is satisfied. .
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Thus we proved the following theorem.
Theorem 1 There exists Λ satisfying Conditions (o.b) -
(iv.b). (This Λ is not uniquely determined.)

Conjunction and Disjunction Fallacies
The remaining task is to show that there exists a Λ that ac-
counts for the conjunction and disjunction fallacies. We take
Λ1/2 introduced in Example 1.

Let us consider a model described by a two-dimensional
Hilbert space H = C2 which has an orthonormalized basis e0
and e1. A pair of PVMs A = {A0,A1} and B = {B0,B1} are
defined as An = |en〉〈en| and Bn = | fn〉〈 fn| for n = 0,1, where
f0 and f1 are defined by

f0 :=
1√
2
(e0 + e1)

f1 :=
1√
2
(e0− e1).

Let us consider a pure state described by a vector

Ψ :=

√
9

10
e1−

√
1

10
e0.

The probability for each proposition is calculated as,
Prob(A1) =

9
10 , Prob(A1 or B0) = 1−Prob(Λ1/2(A0,B1)) =

31
40 , Prob(A1 and B0) = Prob(Λ1/2(A1,B0)) = 11

40 , and
Prob(B0) =

1
5 . They satisfy

Prob(A1)> Prob(A1 or B0)> Prob(A1 and B0)> Prob(B0).

Thus this example shows both conjunction and disjunction
fallacies. Note that conjunction and disjunction fallacies are
supported by other choices of Ψ. It is an important future
work to identify the relevant states.

In addition, Λp (0 < p < 1) given by Example 1 is consis-
tent with an observation of averaging type errors (Fantino,
Kulik, & Stolarz-Fantino, 1997). Consider two general
propositions A and B. Suppose that a state Ψ satisfies
Prob(A) = 〈Ψ|AΨ〉 > 〈Ψ|BΨ〉 = Prob(B). Then Prob(A) >
Prob(A and B) must follow. In fact, in our model it holds that

Prob(A and B)

= 〈Ψ|Λp(A,B)Ψ〉
= p〈Ψ|A1/2BA1/2

Ψ〉+(1− p)〈Ψ|B1/2AB1/2
Ψ〉

≤ p〈Ψ|AΨ〉+(1− p)〈Ψ|BΨ〉
< 〈Ψ|AΨ〉= Prob(A).

where we used B≤ 1 and A≤ 1.
Unpacking effect, in its broad sense, is interpreted as

a difference between Prob(A and B) + Prob(A and B′) and
Prob(A) (Rottenstreich & Tversky, 1997). That is, the law
of classical (Kolmogorov) probability,

Prob(A and B)+Prob(A and B′) = Prob(A)

is violated. We can show that this effect inevitably occurs
between noncommutative sharp propositions no matter how
we set Λ.

Theorem 2 Let P and Q be propositions represented by pro-
jection operators. If there is no state violating

Prob(P and Q)+Prob(P and Q′) = Prob(P)

Prob(P and Q)+Prob(P′ and Q) = Prob(Q),

P and Q commute with each other.

Proof: If the above equations hold for arbitrary states, Λ

satisfies

Λ(P,Q)+Λ(P,Q′) = 1
Λ(P,Q)+Λ(P′,Q) = 1

and vice versa. These equations mean that PVMs {P,1−P}
and {Q,1−Q} are jointly measurable. Hence, P and Q com-
mute with each other (Miyadera, 2011).

Moreover, for general propositions, we have the following
theorem.

Theorem 3 Let A and B be general propositions. If there is
no state violating

Prob(A and B)+Prob(A and B′) = Prob(A)

Prob(A and B)+Prob(A′ and B) = Prob(B),

their intrinsic ambiguities defined by V (A) = ‖A−A2‖ satisfy

V (A)1/2V (B)1/2 ≥ 1
2
‖[A,B]‖,

where an operator norm ‖ · ‖ is defined by ‖A‖ :=
supψ6=0

‖Aψ‖
‖ψ‖ .

This theorem was proved in Miyadera and Imai (2008).

Discussion
In this paper, we provided an axiomatic formulation of human
probability judgment within the general framework of quan-
tum probability theory. A concrete instantiation was found
that satisfies the axioms while accounting for the conjunc-
tive/disjunctive fallacies, averaging type errors, and unpack-
ing effects. We note, though, that QJM accounts for other
effects that we have not yet addressed, e.g., order effect.

Here, we comment on some differences between our ap-
proach and QJM. In contrast to Busemeyer’s model, our
POVM formalism does not require computing Pr(A) (nor
Pr(B)) to obtain Pr(A and B) because Λ(A,B) does not de-
pend on a state. Also, in Busemeyer’s formalism an exhaus-
tive set of conjunctions may not sum to 1 (see Appendix B),
whereas in our formalism the summation of probabilities is
set to 1 (see Axiom (i.b)). Finally, our formulation can be
naturally generalized to use mixed states. Further work is
needed to explore the implications of these differences.

Proponents of QPT-based approaches divorce themselves
from a commitment to the brain as a quantum device
(Busemeyer et al., 2011). As a descriptive theory of human
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judgment, one need not be committed to a quantum mechan-
ical implementation. However, if a causal theory is sought—
ultimately so for a science of cognition, then a theory based
on QPT must be reconciled against the (lack of) evidence
showing that the brain is indeed a quantum device (but, see
Hameroff, 2002). An alternative to this predicament is to seek
yet a further generalization of the quantum framework, which
does not depend on quantum mechanics. General operational
probability theory (Dvurecenskij & Pulmannova, 2000) and
category theory (MacLane, 2000) are two possibilities for fu-
ture investigation.

Acknowledgments: We would like to thank anonymous
reviewers for valuable comments.

Appendix
Appendix A: Quantum Probability theory
A quantum system is described by a Hilbert space H , which
is a vector space (which we assume to be finite dimen-
sional, i.e., dimH < ∞) over the complex field C that is
equipped with an inner product. The inner product 〈·|·〉 de-
fines a map H ×H → C satisfying: (i) 〈φ|c1ψ1 + c2ψ2〉 =
c1〈φ|ψ1〉+ c2〈φ|ψ2〉 for all c1,c2 ∈ C and φ,ψ1,ψ2 ∈H ; (ii)
〈φ|ψ〉 = 〈ψ|φ〉∗ for all φ,ψ ∈ H ; and (iii) 〈φ|φ〉 ≥ 0, and
〈φ|φ〉 = 0 ⇔ φ = 0. A family of vectors {ei}dimH

i=1 is called
an orthonormalized basis of H , if it satisfies 〈ei|e j〉 = 0 for
i 6= j and 〈ei|ei〉 = 1 for all i. A linear map A : H → H is
called an operator. Every operator A is associated with a
unique operator A∗ satisfying 〈A∗ψ|φ〉 = 〈ψ|Aφ〉 (Riesz the-
orem); A∗ is called a conjugate operator of A. An operator
U satisfying UU∗ = U∗U = 1 is called a unitary operator.
An operator A satisfying A = A∗ is called a self-adjoint op-
erator. A self-adjoint operator P satisfying P = P∗ = P2 is
called a projection operator. A self-adjoint operator A satis-
fying 〈ψ|Aψ〉 ≥ 0 for all ψ ∈H is called a positive operator,
written as A≥ 0, where 0 denotes a null operator. Every pro-
jection operator is a positive operator. For a positive opera-
tor A, A1/2 is defined as a unique positive operator satisfying
A1/2A1/2 = A.

State and observable are central notions in any physical
theory. In quantum theory, a state is represented by a self-
adjoint operator ρ, called a density operator, satisfying: (i)
ρ ≥ 0; and (ii) tr(ρ) = ∑i〈ei|ρei〉 = 1 for any orthonormal
basis—tr is called trace. The set of all states is convex: i.e.,
any combination of two states pρ+(1− p)σ (for 0 ≤ p ≤ 1
and states ρ,σ) is also a state. A state ρ that does not have a
nontrivial decomposition is called a pure state. A pure state
is represented by a projection operator whose rank is 1, i.e.,
there exists a unit vector ψ (‖ψ‖= 1) satisfying Pφ=ψ〈ψ|φ〉.
(P is also written |ψ〉〈ψ|.) This correspondence allows one to
identify a unit vector with a pure state. A state that is not pure
is called mixed.

An observable which takes a value in a set Ω (assumed
to be discrete set in this paper) is described by a family of
positive operators {Aa}a∈Ω satisfying ∑a∈Ω Aa = 1. This
is called a positive-operator-valued measure (POVM). The

probability of an outcome a ∈ Ω in a state ρ is given by
Prob(Aa) = tr(ρAa). A POVM {Aa} is called a projection-
valued measure (PVM) if Aa is a projection operator for each
a. PVMs are often treated as more fundamental objects be-
cause each POVM can be represented as a PVM in an en-
larged space (Naimark extension theorem). In fact, the space
of projection operators can be regarded as a generalization of
the Boolean algebra.

Appendix B: Summation of the probabilities may
not agree with one in Busemeyer et al. (2011).
Suppose that E and F (and their negations E ′ = 1 − E
and F ′ = 1 − F) satisfy for a state ψ, 〈ψ|Fψ〉 >
〈ψ|Eψ〉 > 〈ψ|E ′ψ〉 > 〈ψ|F ′ψ〉. Then we obtain
Prob(E and F) = 〈ψ|FEFψ〉, Prob(E ′ and F) =
〈ψ|FE ′Fψ〉, Prob(E and F ′) = (ψ,EF ′Eψ),
Prob(E ′ and F ′) = (ψ,E ′F ′E ′ψ). Their summation may
not agree with 1. In fact, let us consider H = C2 with an
orthonormalized bases {e0,e1} and projection operators E
and F defined by E = |e1〉〈e1| and F = | f0〉〈 f0|, where f0 is

defined by f0 :=
√

1
2 e1 +

√
1
2 e0. It can be shown that a state

ψ =
√

1
4 e1−

√
3
4 e0 satisfies the above inequality, giving

〈ψ|FEFψ〉+ 〈ψ|FE ′Fψ〉+ 〈ψ|EF ′Eψ〉+ 〈ψ|E ′F ′E ′ψ〉

= 1+

√
3

4
.
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