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OLIVE QUICK DECLINE SYNDROME (OQDS)

Xylella fastidiosa subsp. pauca (Xfp) is a gram-negative pathogenic bacteria responsible for serious
diseases (Purcell, 2013) that inflicts considerable economic loss (Li et al., 2007; Luvisi et al., 2017).
The pathogen has been linked to olive quick decline syndrome (OQDS). This devastating olive
disease was first observed in Salento (Apulia, southeastern Italy) in 2009. Infected trees respond
to Xfp infection with scattered desiccation of twigs and small branches in the upper crown, which
extend to the rest of the canopy, showing the characteristic blight effect. The disease causes tree
death within a few years from the onset of symptoms (Martelli, 2016). The primary agronomic
procedure for counteracting the infection is by heavy pruning to stimulate new growth (Martelli
et al., 2016). However, this does not prevent the withering and desiccation of upper vegetation in the
infected tree. Lignin deposition increases the tolerance of some hosts to Xylella fastidiosa. Elevated
concentration of quinic acid, a lignin precursor, less concentration of hydroxytyrosolglucoside and
the up-regulation of cinnamoyl-CoA reductase and polyphenol oxidase were observed in the most
tolerant olive cultivar, Leccino (Sabella et al., 2018).

In this opinion article, we explore the use of a portable instrument to detect OQDS, based
on the host responses at the transcript level. This approach was proposed previously to detect
Huanglongbing, a severe disease affecting Citrus worldwide (Dandekar et al., 2010; Martinelli et al.,
2014b). These innovative methods of plant disease detection had been reviewed recently (Martinelli
et al., 2014a).

A PORTABLE INSTRUMENT TO DETECT EARLY OLIVE QUICK
DECLINE SYNDROME

Molecular tools for early in-field detection of Xylella fastidiosa infections have been developed
(Baldi and La Porta, 2017; Chiriacò et al., 2018). A new portable instrument, the bCUBE, marketed
by Hyris, Ltd., can effectively detect plant diseases. We believe that this instrument could also be
used to detect olive responses to Xylella fastidiosa infections. The portable instrument analyzes
mRNA using in-field qRT-PCR (Figure 1). Analysis of expression could be conducted on leaf,
fruit, or bark tissues, targeting genes linked with OQDS syndrome. RNA can be extracted in the
field with a quick procedure developed to detect other plant pathogens with bCUBE. Results are
provided in ∼ 45min. The already-developed software and hardware can be used to optimize
the instrument to detect expression of host Xfp-regulated genes. A bioinformatics analysis can be
conducted through meta-analysis of published gene expression data related to Xf-host interactions.
There is already a wide analysis of transcriptomic responses to this pathogen in different crops.
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FIGURE 1 | Multi-omic approach to detect early olive quick decline syndrome

with portable instruments in the field. RNA-seq and proteomic iTRAQ

approaches can identify host and pathogen biomarkers that can be analyzed

directly in the field by a portable instrument for rapid in-field diagnosis of Xylella

fastidiosa infections.

Raw data deposited in public databases can be re-analyzed using
the same pipeline to determine which differentially regulated
genes are most commonly expressed. This analysis would show
how much currently available information can be used to
develop a portable instrument that detects these Xfp-regulated
biomarkers. Implementation and validation tests would analyze
the same tissues simultaneously in the field (with the portable
instrument) and in the lab (traditional qRT-PCR) to verify
the consistency of the field results provided by the instrument
and to validate and optimize its use. We believe that this
instrument should be tested in an olive grove where OQDS
syndrome is already present by analyzing trees at different disease
stages: healthy, apparently healthy, and both asymptomatic and
symptomatic tissues of symptomatic trees.

A TRANSDISCIPLINARY APPROACH TO
IDENTIFY OLIVE Xfp-RESPONSIVE GENES
AS BIOMARKERS FOR IN-FIELD
DETECTION

A broad range of environmental stress biomarkers (transcripts,
miRNAs, proteins, or metabolites) have been identified through
integrated omic approaches (Natali et al., 2007; Martinelli and
Tonutti, 2012; Tosetti et al., 2012). As the pathogen is not
evenly distributed in an infected plant’s tissues, identifying
specific genes induced by the pathogen in a range of tissues is
necessary to discover tissue-specific host biomarkers (Giovino
et al., 2015). The pathogen’s presence is perceived by the infected
plant before the pathogen DNA concentration exceeds the
detection limit of traditional real-time systems. Such analyses
will clarify pathogenetic disease mechanisms by clarifying the
relationships between cause and effect. It is still unclear how
the pathogen contributes to disease manifestation and how other
environmental factors contribute. The proposed approach would
also provide molecular targets to develop resistant genotypes as
it refines existing technology into a novel portable instrument
for real-time disease detection in orchards. It links genomics

to technology that enhances the discovery of disease-specific
biomarkers and closes the gaps in conventional disease scouting
and molecular diagnostic methods. Disease-specific biomarkers
will be discovered through genomic and network analysis of host
and pathogen responses. Close integration of different activities
will combine technology and research. Graft-infected olive plants
should be inoculated. Five to ten plants should be sampled in each
category and tissues should be collected from the top branches at
7, 21, 35, and 60 days after infection. When symptoms appear,
infection status should be verified by PCR. In addition to the
longitudinal experiment, a transcriptomic analysis of naturally
infected trees at different disease stages should be performed. The
first category of trees (healthy) might be available in a nearby
olive grove where the pathogen has not yet been detected. If
it is subjected to similar climatic, agronomic and pedological
conditions to infected trees, these trees can represent control
uninfected conditions. The second category of trees is present
in the infected field, but is apparently healthy and without
detectable pathogen. Since we cannot exclude the presence of
the pathogen, these trees provide a different control because later
diagnostic analysis might detect infection. The third category of
trees is clearly symptomatic, PCR-positive or ELISA-positive. The
discovery of potential markers linked with early olive response to
Xfd infection may be performed using RNA-seq approaches and
Illumina technology (Hiseq 2000). Some transcriptomic studies
at different symptomatic stages have been conducted in Vitis and
Citrus crops infected by Xylella fastidiosa (Rodrigues et al., 2013;
Zaini et al., 2018). Some genes are commonly expressed in Vitis
and Citrus responses to Xylella fastidiosa (Table 1). Interestingly,
some of these genes are differentially regulated by Xylella
fastidiosa in susceptible and tolerant genotypes, highlighting their
possible use as biomarkers for tolerance. These data provide a
good starting point to test the instrument’s ability to identify
olive orthologs of these Xf-regulated genes. Our meta-analysis
identified some good candidate genes: a leucine-rich repeat
protein kinase family protein, MYB66, chitinase A, a trypsin
inhibitor family protein, expansin A4 and some auxin-responsive
and gibberellin-regulated genes (Table 1). Xf-regulated genes
commonly present in the two transcriptomic works conducted in
Vitis and olive might be also of interest (Giampetruzzi et al., 2016;
Zaini et al., 2018; Table 2). Some key cell wall modification genes
that are potentially involved in pathogen signaling responses
were observed: a pectin-lyase, a laccase and a poligalacturonase.
This latter gene was commonly regulated in transcriptomic
data obtained from all three species (Citrus, Vitis, and olive).
This preliminary meta-analysis does not replace a longitudinal
RNA-seq analysis focusing on early asymptomatic stages of
infection, required to render the instrument highly sensitive
and reliable. RNA-seq analysis cannot be exploited fully unless
the quality of the olive genome sequence is improved. At the
moment, only a draft version of the Farga genotype is available
(Cruz et al., 2016). However, a more advanced version of the
olive genome is expected soon due to ongoing international
initiatives by an Italian-Spanish consortium that began in
2009. With the progressive reduction of sequencing costs, an
improved olive genome is expected soon, allowing improved
RNA-seq approaches. Indeed, we believe that the concept of
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TABLE 1 | Common Citrus and Vitis differentially-expressed genes in response to Xylella fastidiosa infection (Rodrigues et al., 2013; Zaini et al., 2018).

Gene

symbol

Gene id Citrus

clementina

Gene id Vitis Arabidopsis best

match

Gene description

LRR-RLK Ciclev10014130m VIT_12s0028g01950 AT3G47570 Leucine-rich repeat

protein kinase family

protein

MYB66 Ciclev10017556m VIT_17s0000g08480 AT5G14750 myb domain protein

66; transcription factor

CHIA Ciclev10005491m VIT_14s0066g00610 AT5G24090 chitinase A

TRYPSIN Ciclev10022001m VIT_17s0119g00280 AT1G17860 Kunitz family trypsin

and protease inhibitor

family protein

HSP17 Ciclev10009756m VIT_04s0008g01520 AT5G12020 17.6 kda class II heat

shock protein

PAL Ciclev10030821m VIT_16s0039g01300 AT2G37040 Phenylalanineammonia-

lyase

ATFXG1** Ciclev10030947m VIT_01s0127g00870 AT1G70370 Polygalacturonase 2

UDP-

glycosyltransferase

Ciclev10025462m VIT_18s0001g12040 AT3G50740 udp-

glucosyltransferase

72E1

ATEXPA4 Ciclev10012518m VIT_06s0004g04860 AT2G39700 Expansin A4

CML37 Ciclev10002523m VIT_18s0122g00180 AT5G42380 Calmodulin like 37

Auxin-

responsive

family

protein

Ciclev10015492m VIT_12s0057g00420 AT5G35735 Auxin-responsive family

protein

Gibberellin-

regulated

family

protein

Ciclev10013200m VIT_08s0007g05860 AT1G74670 Gibberellin-regulated

family protein

** also in common with Citrus.

an in-field device to detect host transcriptomic responses to
Xfp will push efforts to obtain a high-quality olive genome
sequence.

Proteomics may be conducted in parallel with transcriptomics
using the iTRAQ method. This approach has been used in
Vitis (Chakraborty et al., 2016). The use of proteomics is
important to validate transcriptomic markers considering that
genes may be regulated by post-transcriptional mechanisms.
Proteins can be extracted from powdered olive leaf and bark
tissues using a highly efficient phenol extraction procedure
(Schuster and Davies, 1983). This protocol can extract protein
from tissues that contain highly reactive compounds. The
extracted proteins can be precipitated using the ProteoExtractTM
Protein Precipitation kit (Calbiochem), dehydrated overnight,
then re-suspended and subjected to tryptic digestion. The
digested peptides can be analyzed using a QExactive mass
spectrometer (Thermo Fisher Scientific) coupled with an Easy-
LC (Thermo Fisher Scientific) and a nanospray ionization
source. The peptides are loaded onto a trap (100 micron,
C18 100Å 5U) and desalted online before separation using a
reverse-phased column (75 micron, C18 200Å 3U). Data are
acquired using data-dependent ms/ms, which has a full scan
range of 300–1600 Da and a resolution of 70,000. Raw data
are analyzed using X!Tandem and visualized using Scaffold
Proteome Software (Version 3.01). Samples are compared to

Uniprot databases appended with the cRAP database, which
contains common laboratory contaminants. Reverse decoy
databases are also applied to the database prior to the X!Tandem
searches. This procedure should identify the secreted virulence
factor of Xylella fastidiosa in olive. Some identified pathogen
virulence proteins will be selected for in planta expression to
validate their virulence phenotype. Synthetic virulence genes
should be designed to insure greater in-plant expression.
Codons might be optimized by replacing codons that are less
frequently used in Citrus by DNAworks software (http://mcl1.
ncifcrf.gov/dnaworks/). Signal peptides could be analyzed by
SignalP 4.0 server (http://www.cbs.dtu.dk/services/SignalP/). N-
Glycosylation sites may be predicted using NetNglyc1.0. More
than 4,500 proteins, including several pathogen targets, have
been identified in Citrus leaf tissues infected by Huanglongbing
disease, comparing tolerant and susceptible genotypes (Martinelli
et al., 2016).

CONCLUSIONS

Efficient pre-symptomatic diagnosis of OQDS relies on the
ability to (i) obtain informative biomarkers from Xylella
fastidiosa and host (olive), and then (ii) detect the biomarkers
in a rapid, sensitive, and cost-effective manner. Before the onset
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TABLE 2 | Common differentially expressed genes in Vitis (Zaini et al., 2018) and Olea in response to X. fastidiosa infection (Giampetruzzi et al., 2016).

Gene symbol Gene ID Vitis Sequence ID in olive Arabidopsis best

match

Gene description

PR proteins VIT_09s0018g01670 og_xylem_263402 AT1G79720 Eukaryotic aspartyl protease family protein

PR proteins VIT_00s0510g00030 og_xylem_275149 AT5G42180 Peroxidasesuperfamilyprotein

NADP-binding Rossmann fold VIT_08s0007g07520 og_xylem_274898 AT4G13180 NAD(P)-binding Rossmann-fold superfamily protein

og_xylem_282761

og_xylem_353110

Calcium signaling VIT_01s0010g03010 og_xylem_182510 AT1G76650 Calmodulin-like 38

Cell wall remodeling VIT_13s0067g01970 og_xylem_303721 AT5G05390 Laccase 12

Cell wall remodeling VIT_01s0127g00870 og_xylem_288909 AT1G70370 Polygalacturonase 2**

Cell wall remodeling VIT_01s0127g00400 og_xylem_299947 AT1G60590 Pectinlyase-like superfamily protein

og_xylem_304420

Cell wall remodeling VIT_08s0040g02070 og_xylem_275695 AT5G03170 FASCICLIN-likearabinogalactan-protein 11

og_xylem_283555

** also in common with Citrus.

of disease symptoms, the expression pattern of these biomarkers
and their interplay changes at the early stages of infection. A
deep transcriptomic analysis using multiple genotypes is highly
desirable to define thresholds of biomarker expression and
optimize efficiency. Once biomarkers (genes) are determined,
the goal is to design a device that integrates sample preparation,
nucleic acid enrichment, and final detection. This translational
genomic approach will permit the following impacts: (1)
develop and deploy inexpensive electronic instruments to
identify Xfp infections at early, pre-symptomatic stages, (2)
clarify vector-pathogen-plant interaction to monitor the

efficacy of field interventions or treatments, (3) enhance
disease scouting through new disease detection and diagnosis
tools and improved stakeholder outreach, and (4) adapt the
detection and diagnostic tools to different specialty crop
diseases.
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