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Assessing the feasibility of 2030 as a target date for global elimination of trachoma, and identification of districts that may require 
enhanced treatment to meet World Health Organization (WHO) elimination criteria by this date are key challenges in operational 
planning for trachoma programmes. Here we address these challenges by prospectively evaluating forecasting models of 
trachomatous inflammation–follicular (TF) prevalence, leveraging ensemble-based approaches. Seven candidate probabilistic 
models were developed to forecast district-wise TF prevalence in 11 760 districts, trained using district-level data on the 
population prevalence of TF in children aged 1–9 years from 2004 to 2022. Geographical location, history of mass drug 
administration treatment, and previously measured prevalence data were included in these models as key predictors. The best- 
performing models were included in an ensemble, using weights derived from their relative likelihood scores. To incorporate 
the inherent stochasticity of disease transmission and challenges of population-level surveillance, we forecasted probability 
distributions for the TF prevalence in each geographic district, rather than predicting a single value. Based on our probabilistic 
forecasts, 1.46% (95% confidence interval [CI]: 1.43–1.48%) of all districts in trachoma-endemic countries, equivalent to 172 
districts, will exceed the 5% TF control threshold in 2030 with the current interventions. Global elimination of trachoma as a 
public health problem by 2030 may require enhanced intervention and/or surveillance of high-risk districts.
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Trachoma, an ocular disease caused by Chlamydia trachomatis, 
is the leading cause of infection blindness in the world [1]. 
The WHO recommended the SAFE strategy for trachoma con-
trol, which includes surgery to treat trachomatous trichiasis, 
antibiotics to clear active infection, facial cleanliness, and envi-
ronmental improvement [2,3]. Although this strategy has 

empirically been shown to be effective in reducing disease 
burden [4], interventions may need to be intensified in areas 
with persistent infection [5].

The WHO Alliance for the Global Elimination of Trachoma 
by the year 2020 (GET2020) was launched in 1996 [6]. The 
alliance supports and collaborates with the WHO to support 
Ministries of Health and Non-Governmental Development 
Organizations’ programmatic efforts toward eliminating tra-
choma as a public health problem by 2020 [7]. Elimination of 
trachoma as a public health problem (EPHP) requires a preva-
lence of trachomatous inflammation–follicular in children aged 
1–9 years (TF1–9) of <5%, sustained for at least two years in the 
absence of ongoing antibiotic mass treatment, in each formerly 
endemic district [8, 9].
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However, by 2020 only 15% of endemic countries had met 
the EPHP target, and thus global EPHP was not attained. The 
road map for neglected tropical diseases 2021–2030, endorsed 
by the World Health Assembly in 2020, set 2030 as the new tar-
get date for global EPHP [10]. With 22% of endemic countries 
having achieved the target as of 2022 [3], it is still unclear if 
global elimination by 2030 is attainable. Forecasting the preva-
lence of trachoma in endemic countries using statistically ro-
bust methods represents a useful tool for ascertaining the 
feasibility of the 2030 deadline and identifying areas that might 
benefit from enhanced control activities.

Both mechanistic and statistical models have been used to 
forecast the prevalence of infectious diseases, including 
trachoma. Most commonly, mechanistic models such as the 
susceptible, infected, susceptible (SIS) model structure have 
been used in trachoma modeling [11–16]. However, forecasts 
generated by mechanistic models do not necessarily perform 
better than forecasts generated by purely statistical models 
[17]. There has been a recent shift towards probabilistic 
forecasts that provide both a predicted outcome and the 
uncertainty of the prediction [18]. Additionally, several studies 
have demonstrated that ensemble models used to forecast 
disease prevalence may perform better than their constituent 
models [19–21].

In the present study, we use available survey data to build an 
ensemble of probabilistic models to forecast the prevalence of 
TF1–9 in 2030. In addition to evaluating whether 2030 is a rea-
sonable goal for global EPHP, the ensemble can be used to fore-
cast TF1–9 in regions without prior surveys and identify regions 
where enhanced intervention may be required to meet EPHP 
by 2030.

METHODS

Data

Implementation unit (IU) level TF1–9 and trachomatous trichi-
asis (TT) prevalence surveys and mass drug administration 
(MDA) distribution data were accessed through the GET2020 
database for each IU. The GET2020 database is maintained 
by the International Trachoma Initiative (ITI) in partnership 
with WHO. An IU is defined as an administrative unit at which 
trachoma implementation activities, such as surveys and mass 
drug administration take place, and typically contains 100 000– 
250 000 people [9]. Additionally, IU-level geographic informa-
tion was provided by ITI.

The available data were divided longitudinally into 3 parts: a 
training data set (2004–2018), a scoring data set (2019–2021), 
and an evaluation data set (2022–2023). All the candidate mod-
els were trained on the training data set. The scoring and sub-
sequent assignment of weights for our ensemble models was 
based on the scoring data set. The performance of the generated 
ensembles and the candidate models was assessed based on the 
evaluation data set (Figure 1A).

Candidate Models

Seven candidate models were considered for inclusion in the 
ensemble, each of which is an IU-specific probabilistic model 
(Figure 1B). That is, each candidate model predicts a probabil-
ity that TF has a range of specific values for each district for 
each year. Forecasts were provided as probability distribution 
functions (PDFs) for each year of 2019–2030.

We use 2 families of distribution to describe the observed 
frequency distributions. First, the truncated exponential 

Figure 1. A, A schematic of the methodology used to derive IU-wise probabilistic forecasts of trachoma prevalence. The method evaluates the accuracy of a suite of 
candidate models and then combines the highest performing ones to form an ensemble forecast. B, Sample forecast for a sample district for 2030 is represented as the 
probability distribution function defined over the range of 0%–100% TF1–9. The candidate models (light gray lines), that perform better than the uniform model (dotted 
gray line), are included in the ensemble model (black line). By forecasting the distribution of observed TF values, various metrics can be calculated, such as the probability 
of achieving EPHP by 2030. Abbreviations: EPHP, elimination of trachoma as a public health problem; IU, implementation unit; TF, trachomatous inflammation–follicular.
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distribution was used to model TF1–9 observation as a function of 
the most likely value for TF1–9. This distribution was chosen as it 
is the maximum entropy distribution given the prevalence range 
of 0%–100%, and the mean of the distribution [22]. Additionally, 
the exponential distribution is consistent with theoretical models 
of disease elimination [14, 23, 24] and observed trends [25, 26].

Second, a uniform distribution over the range of 0%–100% 
TF1–9 prevalence is used as a simple baseline model to assess 
the predictive accuracy of candidate models. Candidate models 
were included in the ensemble if they performed better than 
this uniform model. This, along with the ensemble weighting 
described below, provides a quantitative evaluation that models 
maintain predictive ability.

Spatial aggregation-based models:
There are many different spatial scales at which we could choose 

to aggregate the data to give a frequency distribution of TF prev-
alence—for example districts within a country, regions or the 
whole continent. For each geographic aggregation, a maximum 
likelihood fit is determined by assuming that the TF1–9 values 
for each year follow an exponential distribution that is truncated 
to allow TF1–9 values of 0% to 100%. The mean of the underlying 
(non-truncated) distribution is modeled to follow an exponential 
decay as a function of year. 

(I) Country-level aggregation: For the country model, the 
unit is a country, except for countries with <50 surveys 
in the training data. All countries that did not meet this 
threshold were considered one cluster.

(II) Region-level aggregation: Analogous to country-level ag-
gregation, the unit here is within-country regions, as de-
fined within the GET 2020 database. Regions with <30 
surveys in the training data\were aggregated at the coun-
try level. Whenever aggregation on a country-level also 
failed to reach the threshold of 30 surveys, the associated 
surveys were included in one catch-all cluster.

(III) Global model: For the global model, no geographic aggre-
gation is performed. This generates an IU-agnostic fore-
cast that has no spatial variation but varies over time.

Regression based models:
As before, the model for the PDF of the observed TF1–9 val-

ues is a truncated exponential distribution. However, for these 
models, the mean of the distribution is obtained by training a 
linear regression model for the log of TF1–9 prevalence. 

(I) Fixed effects model: Previous TF1–9 prevalence, regional av-
erage of TF1–9, Year (as proxy for baseline trend), and the 
number of rounds of MDA previously delivered were used 
to train a district-specific model for TF1–9 on the logarithmic 
scale. Final variable selection for the candidate model was 
achieved via stepwise regression using Bayes Information 
Criterion (BIC).

(II) Mixed effects model: The same method as for the 
fixed-effects model was implemented with an additional 
random intercept term for each country.

(III) Geospatial model: A geostatistical model [27] using a 
Matern spatial covariance function and year as the only 
other covariate was used to model the district-wise TF1– 

9 prevalence on the logarithmic scale.

Naive Exponential model: The average TF1–9 prevalence of all 
surveys in the last year of the training data was used as the mean 
of an exponential fit. The resulting model is a forecasting model 
that is the same for each district and does not change with time.

Scoring

To evaluate probabilistic forecasts, we utilized 2 proper scores, 
the logarithmic score (LogS) and continuous ranked probabil-
ity score (CRPS) [28]. Proper scores incentivize honest fore-
casting—that is, the best score is obtained by reporting the 
true distribution [29]. When scoring a data set for a specific 
model, the individual scores for each TF1–9 prevalence in the 
dataset are summed. Lower scores represent better forecasts.

Sensitivity analysis was performed to look for variation in 
scores based on which score is used and for the years included 
in the scoring dataset.

Ensemble Model

Ensembles were created as weighted averages of candidate 
models. The weight, w, that a candidate model, ci, contributes 
to the ensemble is related to the likelihood of the data for 
each candidate model, given by the exponential of the overall 
LogS score. The weights were tempered by a constant, k, to limit 
the over-contribution of any one model to the ensemble.

w(ci) =
e

−ΣLogS(ci )
k



i
e

−ΣLogS(ci )
k 

Ensembles were generated using 4 values of k (1, 10, 100, 1000).

Model Outputs

The forecast of each candidate model and the resulting ensem-
bles were represented as a probability distribution for each IU 
for each year. This format captures the prediction and the un-
certainty of the forecast. Different summary metrics can then 
be constructed for each district, such as the probability that a 
district will reach the TF1–9 < 5% target for EPHP by 2030.

All analyses were performed using R Statistical Software [30].

RESULTS

Data

Trachoma survey data and MDA distribution data was retrieved 
from the GET2020 database as of February 2023, containing data 
from 1985 to 2023. After excluding any data points that were 
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incomplete for TF1–9 prevalence, survey year or IU, and exclud-
ing data prior to 2004 when TF1–9 diagnosis was less uniform, 
5898 surveys in 2597 IUs across 25 countries were included in 
the study (Table 1). Of these surveys, 74% were included in the 
training data set (2004–2018), 19% in the scoring data set 
(2019–2021), and 7% in the evaluation data set (2022–2023). 
The distribution of TF1–9 prevalence over the years shows an 

increasing density toward the left, that is, an increasing probability 
of TF1–9 < 5% over time (Supplementary Figure 1).

Candidate Model Evaluation

All 7 candidate models described in the methods section were 
eligible to be included in the ensembles because they all outper-
formed the uniform model. Excluded models that performed 
worse than the uniform model included those with a 
Gaussian-shaped probability density function. The poorly per-
forming models presumably did not represent uncertainty in 
TF1–9 measurement adequately. The ranks based on both scoring 
rules were fairly consistent, with regression-based models outper-
forming the aggregation models. The fixed effects model was the 
best performing (lowest scoring) model based on both scoring 
rules. Additionally, while the models performed consistently on 
all years in the scoring data set based on LogS, the models consis-
tently performed worse in 2019 based on CRPS (result not shown).

Ensembles Models and Their Evaluation

When determining the mix of candidate models used in our 
ensemble models, tempering with low values of k effectively 

Table 1. Characteristics of Included Data

Number of surveys 5898

Years 2004–2023

TF Prevalence: Mean % (range) 9.1 (0–80.1)

TF Prevalence: Median % (IQR) 4.1 (1.2–11.7)

TT Prevalence: Mean % (range) 0.9 (0–23.5)

TT Prevalence: Median % (IQR) 0.3 (0.1–1.0)

Countries 25

Total number of implementation units 2597

Rounds of MDA, mean (range) 2.3 (0–16)

Abbreviations: IQR, interquartile range; MDA, Mass Drug Administration; TF, Trachomatous 
inflammation—follicular; TT, Trachomatous trichiasis.

Figure 2. (Top panel): Weight of each candidate model in the ensembles by tempering constant, k. Higher weights indicate more influence in the ensemble model. Higher 
levels of tempering reduce the influence of any one model by reducing the scale of the scores that candidate models can achieve. (Bottom panel): Cumulative log score of the 
ensembles and 7 candidate models based on the evaluation data set (2022–2023). Lower scores represent better agreement with data. The numbers indicate the overall rank 
of each model.
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excluded all but the fixed effects model. Increasing the value of 
k (k = 1000) made the weights more uniform. This decreased 
the maximum contribution of a single model from 100% to 
20% (Figure 2A).

Based on both scoring rules, the ensemble with k = 100 was 
the best performing model on the evaluation dataset. 
Consistent with the use of ensemble models in other applica-
tions, the ensemble model performed better than its constituent 
models. Scores for the candidate models on the evaluation data 
set were consistent with that on the scoring data set, with the 
regression-based models outperforming the clustering-based 
models (Figure 2B).

Global EPHP 2030

Based on the forecast from the ensemble with k = 100, it is ex-
pected that with current treatment, 1.46% [1.43%–1.48%] (172/ 
11 760) IUs in previously endemic countries will not attain 
elimination as a public health problem by 2030 (Figure 3). 

Thus, global EPHP by 2030 will likely require enhanced inter-
vention and/or surveillance in high-risk IUs.

DISCUSSION

According to our forecast, approximately 172 IUs will not at-
tain EPHP by 2030 under current trends. Enhanced interven-
tions, such as biannual MDA, or novel interventions, such as 
a vaccine, could be particularly useful in the IUs not expected 
to reach control under current trends. Such interventions could 
be modeled to assess their adequacy to help these IUs meet the 
target. Additionally, using map information and data from 
other IUs in the region, we can predict TF1–9 in areas where 
no surveys have taken place. This insight could be leveraged 
to plan targeted future surveys in those regions.

Because it informs optimal distribution of treatment and 
other interventions, the value of district-specific forecasting 
in modeling the prevalence of TF1–9 may be most pronounced 

Figure 3 Map of Africa depicting the probability that TF will be <5% in 2030, which would satisfy the WHO requirement for elimination of trachoma as a public health 
problem. Results are based on the ensemble model with k = 100. Darker colors depict a lower probability of TF being controlled by the target date. Yellow areas of the map 
depict areas with a high probability of control. Abbreviations: TF, trachomatous inflammation–follicular; WHO, World Health Organization.

Ensemble Forecast of Trachoma Elimination by 2030 • CID 2024:78 (15 May) • S105



as we approach global EPHP. Meanwhile, forecasting is gener-
ally more accurate in the short term and enhanced interven-
tions could improve outcomes [31, 32]. This warrants 
mid-term goals that can be used to measure progress and revis-
iting the 2030 forecasts periodically with updated data.

A key strength of our modeling approach is its dynamic na-
ture—each model can be re-trained as more survey data be-
comes available, making updated forecasts responsive to 
global and local changes in trachoma prevalence and trends. 
In addition to being able to include new data, additional models 
can also be added to the ensemble to improve the accuracy and 
certainty of the forecast. However, due to the statistical nature 
of the forecasting method, mechanistic conclusions such as in-
tervention efficacy or the secular trend cannot be drawn di-
rectly from the ensemble model.

The ensemble outperformed its constituent models on the 
evaluation dataset, based on both scoring rules used. This effect 
was more pronounced on CRPS, indicating that the ensemble 
reduces the forecasting error. Additionally, tempering the 
weights that each candidate model contributes to the ensemble 
improved the performance as compared to a non-tempered 
(k = 1) model. This indicates that the best performing candi-
date model may vary each year, potentially attributable to a 
non-random sample of IUs being surveyed each year.

IU-specific models performed better than the IU-agnostic 
models (global and naïve exponential models) on both the scor-
ing and evaluation datasets, indicating IU-wise heterogeneity. 
Additionally, the geospatial model was the most consistently 
performing model across years in the scoring dataset, suggest-
ing that smoothing over neighboring IUs adjusts for some of 
the stochasticity of TF1–9.

In the present study we chose TF1–9 as the prevalence marker 
for forecasting due to its integral role in WHO's definition of 
elimination of trachoma as a public health problem. However, 
TF1–9 has a low sensitivity for active infection because the post- 
infectious inflammation can take months to resolve [33]. 
Additionally, TF1–9 factors such as inter-rater variability make 
it a noisy measure. This adds to the complexity of making public 
health decisions based on TF1–9 alone and motivates an 
assessment of bias in TF1–9 measurements. The incorporation 
of other prevalence measures, such as Trachomatous Trichiasis 
and Anti-Pgp3 serology might alleviate some challenges in 
forecasting IU-specific TF1–9 and the relationship to ongoing 
transmission.

The models included a host of predictors, both explicitly and 
implicitly. Factors such as spatial variability [34], MDA inter-
ventions [35, 36], and secular (ie, not dependent on MDA) de-
cline of trachoma prevalence [37] are included explicitly as 
covariates in various candidate models. On the other hand, 
the specific impact of interventions such as facial cleanliness, 
and environmental improvement (F&E) [38] are included by 
proxy as these interventions are primarily implemented 

together with MDA. Additionally, F&E are believed to be a con-
tributor to the secular trend.

Each candidate model has its own limitations—such as the 
global model not accounting for geospatial trends, the non- 
independence of observations for regression-based models, 
and the ad-hoc clustering of IUs in the aggregation models. 
However, the creation of ensemble models draws on the 
strengths of each of the candidate models by weighting them 
based on the accuracy of their predictions.

Although WHO's 2030 goal of global EPHP may seem arbi-
trary, current results suggest that it is achievable in most regions. 
Enhanced intervention may be required to meet the goal in cer-
tain regions, and district-wise forecasts can be used to target IUs 
that might benefit the most from such interventions.
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