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Abstract
Mutant dynamics in fragmented populations have been studied extensively in evo-
lutionary biology. Yet, open questions remain, both experimentally and theoretically. 
Some of the fundamental properties predicted by models still need to be addressed ex-
perimentally. We contribute to this by using a combination of experiments and theory 
to investigate the role of migration in mutant distribution. In the case of neutral mu-
tants, while the mean frequency of mutants is not influenced by migration, the prob-
ability distribution is. To address this empirically, we performed in vitro experiments, 
where mixtures of GFP- labelled (“mutant”) and non- labelled (“wid- type”) murine cells 
were grown in wells (demes), and migration was mimicked via cell transfer from well 
to well. In the presence of migration, we observed a change in the skewedness of 
the distribution of the mutant frequencies in the wells, consistent with previous and 
our own model predictions. In the presence of de novo mutant production, we used 
modelling to investigate the level at which disadvantageous mutants are predicted 
to exist, which has implications for the adaptive potential of the population in case 
of an environmental change. In panmictic populations, disadvantageous mutants can 
persist around a steady state, determined by the rate of mutant production and the 
selective disadvantage (selection- mutation balance). In a fragmented system that 
consists of demes connected by migration, a steady- state persistence of disadvanta-
geous mutants is also observed, which, however, is fundamentally different from the 
mutation- selection balance and characterized by higher mutant levels. The increase in 
mutant frequencies above the selection- mutation balance can be maintained in small 
(N < Nc) demes as long as the migration rate is sufficiently small. The migration rate 
above which the mutants approach the selection- mutation balance decays exponen-
tially with N∕Nc. The observed increase in the mutant numbers is not explained by 
the change in the effective population size. Implications for evolutionary processes 
in diseases are discussed, where the pre- existence of disadvantageous drug- resistant 
mutant cells or pathogens drives the response of the disease to treatments.
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1  |  INTRODUC TION

Understanding the principles of mutant dynamics has been a major 
focus in evolutionary biology. Generation and spread of mutants is 
central to adaptation, where beneficial mutants tend to fix while del-
eterious mutants are gradually removed from the population. These 
processes depend on the environment and are guided by forces 
of selection, the rate of mutation, genetic drift and the population 
structure.

Population structure is an important determinant of the evolu-
tionary trajectories (Levin, 1974; Levin & Powell, 1993). Evolutionary 
dynamics in fragmented populations are of interest for questions 
connected to ecology and ecological conservation (Earn et al., 2000; 
Kalarus & Nowicki, 2015; Lander et al., 2019; Prugh et al., 2008; 
Rochat et al., 2017; Rubinoff & Powell, 2004; Thomas et al., 2001). 
Human interference as well as natural factors may fragment habitats 
and isolate subpopulations of a species from the rest, thus influenc-
ing genetic variability and species survival. Population genetics in 
structured populations has been applied to studies of island bio-
geography, dynamics of species living in patchy environments, ex-
tinction and recolonization, see for example (Hanski, 1998; Wade & 
McCauley, 1988). Another area where population fragmentation is of 
great importance is host- associated microbiomes. Spatial structures 
are generated by host anatomy and physiology; examples include 
gastrointestinal crypts (Fung et al., 2019) and skin pores (Conwill 
et al., 2022). Understanding the microbial evolution in structured 
populations is critical for modelling community diversity and stabil-
ity, species coexistence, and predicting the response of microbiomes 
to treatments. Further applications to biomedical problems are dis-
cussed below.

Mathematical models have been an important component of re-
search into mutant dynamics. Different types of evolutionary mod-
els have been explored; most relevant for the current paper are the 
Moran process (Moran, 1958; Moran, 1962) and the Wright- Fisher 
model (Wright, 1931) that assume constant population sizes. Various 
evolutionary measures have been considered, including the average 
frequency of mutants at a given time or population size, the fixation 
probability of mutants and the average time to fixation for mutants 
of varying relative fitness (Loewe & Hill, 2010; Kareiva et al., 1990; 
Kimura, 1962; López- Cortegano et al., 2019; Patwa & Wahl, 2008; 
Whitlock, 2003).

Evolution in fragmented populations is described by models that 
are sometimes referred to as structured or subdivided population 
models, as well as patch or deme models (Hanski, 1998; Hanski 
& Gilpin, 1991; Levin, 1974; Levin & Powell, 1993; Levins, 1969; 
Moran, 1962). These models describe a group of distinct, spatially 
separated populations of the same type. Some amount of interaction 
between the separate groups occurs via migration of individuals from 

one group to another, and the dynamics within a single group of indi-
viduals is generally assumed to be non- spatial (Hauert & Imhof, 2012; 
Levins, 1969; Moran, 1962; Wakeley & Takahashi, 2004). Migration 
of individuals can either occur to the nearest neighbouring regions 
(spatially restricted), or individuals can migrate to any region in the 
system. A higher rate of migration decreases population fragmen-
tation because it results in each region's dynamics becoming de-
pendent on a larger portion of the overall population and thus in 
better mixing of individuals (Hanski & Gilpin, 1991; Moran, 1962; 
Wakeley & Takahashi, 2004; Wright, 1931). The term “metapop-
ulation models” is often reserved to describing the dynamics with 
local extinctions and re- colonization, see for example (Cherry, 2003; 
Hanski, 1998; Levin, 1974; Levin & Powell, 1993; Slatkin, 1977; 
Wade & McCauley, 1988).

Mathematical patch models with different assumptions on struc-
ture and migration between groups have been studied in the con-
text of evolutionary dynamics. A number of important results about 
the effect of fragmentation and structure on mutant dynamics have 
been established. Commonly, it is found that the fixation probabil-
ity of a mutant is largely independent of migration (depending on 
the explicit model assumptions) (Maruyama, 1970; Maruyama, 1974; 
Wakeley & Takahashi, 2004), but that other quantities such as the 
time to fixation and effective population size can vary based on 
model structure (Slatkin, 1981; Whitlock, 2003). The distribution of 
mutant numbers in individual demes has been studied in different 
contexts, starting with the seminal paper by Wright (Wright, 1931), 
which gave rise to the shifting balance theory of evolution. Further 
developments include both discrete (Wright- Fisher) and overlapping 
(Moran) models of population dynamics and different assumptions 
on the migration process, see for example (Hanski & Gilpin, 1991; 
Hauert & Imhof, 2012; Moran, 1962; Wakeley & Takahashi, 2004). 
It was found that generally, migration among demes transforms the 
probability distribution of mutant frequency in a deme from bimodal 
to unimodal. Another set of results comes from the diffusion ap-
proximation that describes selection and drift of mutants in subdi-
vided populations. In Cherry & Wakeley (2003) and Wakeley (2003), 
a Wright- Fisher process in a subdivided population with inter- deme 
migrations is considered, while in Wakeley & Takahashi (2004), the 
local dynamics are described by a Moran process. Analytical ex-
pressions for the effective population size are derived. It is shown 
that although the form of the diffusion approximation is equivalent 
between a structured and panmictic population, fragmentation can 
significantly increase the effective population size and the variance 
of allele frequencies.

The interplay between patch dynamics and traits or alleles has 
also been previously studied in multiple experimental contexts 
(Chakraborty et al., 2021; Fusco et al., 2016; Kerr et al., 2006; 
Lavigne et al., 2001). For instance, Kerr et al. (2006) identified 
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path- dependent migration effects in the eco- evolutionary dynam-
ics of E. coli- T4 phage co- cultures. Excitingly, recent work on range 
expansions in asexually reproducing microbes has shown that an ex-
cess of spontaneous mutations (relative to Luria- Delbruck expecta-
tions) is generated during spatial range expansions by allele surfing 
(Fusco et al., 2016).

While several aspects of mutant dynamics in fragmented popu-
lations have been mathematically elucidated, there still remain open 
theoretical questions and experimental gaps, some of which we ad-
dress in this paper. (i) From an experimental point of view, to the best 
of our knowledge, direct tests of model predictions regarding mu-
tant distributions in fragmented asexual populations in the presence 
and absence of migration are lacking. Here, we provide an exper-
imental test of fundamental model predictions about mutant dis-
tributions for neutral mutants, using a system where GFP- labelled 
and unlabelled murine cell lines (“mutant” and “wild- type”) are co- 
cultured in 96- well plates, and migration is mimicked by swapping 
cells between demes (wells) with a pipette. This system does not 
contain de novo mutant production, and the experimental results 
are interpreted with a corresponding Moran process model, which 
reproduces previous theoretical insights and is found to be consis-
tent with the data. (ii) The model is then used to extend this analysis 
assuming de novo mutant production and different mutant fitness. 
In particular, we study the perceived “selection- mutation balance” 
in populations. This refers to the persistence of disadvantageous 
mutants around a steady state in a population of wild- types at equi-
librium, the level of which can be calculated and is determined by 
the mutation rate and the degree of the selective disadvantage. We 
show that for a fragmented habitat, disadvantageous mutants can 
also persist at a steady- state level similar to the selection- mutation 
balance in a panmictic population, but that there is a fundamentally 
different scenario in which the expected number of mutants at the 
steady state can be significantly higher. Our results demonstrate 
that the previously obtained change in the effective population size 
of fragmented populations is not enough to explain the change in the 
level at which the disadvantageous mutants persist. This has impli-
cations for understanding the adaptive potential of a population in 
response to environmental change, with broad applicability ranging 
from ecological systems to biomedical problems, such as the emer-
gence of drug- resistant mutants.

2  |  METHODS

2.1  |  Experiments with neutral mutants

To address the existing gap in the literature concerning studies of 
neutral mutant dynamics in fragmented populations in the presence 
and absence of migration, we performed experiments that represent 
an in vitro comparison to the mathematical model presented in the 
following section. To create a system representing neutral migration 
we mixed GFP labelled mammalian cells with unlabeled cells. This 
suspension of mammalian cells could be propagated in the wells of a 

96 well plate. By systematically transferring small volumes of the cell 
suspension, we experimentally simulated migration between wells. 
Cells were continually maintained at confluent cell population densi-
ties to mimic the Moran process. The proportion of mutants in the 
wells both with and without migration of cells between wells was 
assessed at the end of the experiment. Further details on the in vitro 
experiments are presented below.

2.1.1  |  Experimental details

In total, 96 demes (wells) were filled with cells. Cell types were wild 
type and mutant, which were neutral with respect to one another. To 
create this model, we transduced murine Ba/F3 cells (DSMZ; ACC- 
300) with green fluorescent protein (GFP). GFP+ cells were mixed 
with wild- type Ba/F3 cells into populations of approximately 0.1% 
and 1% GFP+. Ba/F3 populations were maintained in RPMI 1640 
Medium (Sigma Aldrich), supplemented with 10% FBS (Fisher), 
10 ng/ml IL- 3 (PeproTech), 100 U/ml penicillin and 100 μg/ml strep-
tomycin (Life Technologies). The control condition was no migra-
tion and the experimental condition was migration between demes, 
which was performed by swapping cells between demes using a pi-
pette. Four total experiments were performed, with both conditions 
starting at approximately 0.1% initial mutants and also at 1% initial 
mutants in all demes. Wells in each plate were diluted twice daily 
with fresh medium on a 16/8 h time interval to maintain competition 
at high confluence, with one plate from each mixed population sub-
ject to migration events at these intervals. All wells were maintained 
at 200 μl –  dilutions with fresh medium were performed to maintain 
cell confluency at stationary phase and replenish nutrients. This was 
done to approximate a Moran process and allow for continuous cul-
ture, and it was a significant challenge. Throughout the experiment, 
maximum population densities were adjusted based on viability, 
to maintain population density and competition. Migration events 
were performed immediately prior to viability dilutions on one plate 
of each GFP+ population through the duration of the experiment. 
Each well in a row was thoroughly homogenized, and 5 μl of each 
well's 200 μl volume was transferred to the vertically adjacent well. 
Receiving wells were then homogenized and 5 μl was transferred to 
the next adjacent well; this process was repeated until all eight rows 
had received volume from its adjacent upstream row and transferred 
to its downstream adjacent row.

2.2  |  Mathematical modelling

To study the role of population fragmentation and migration in 
evolution, we will consider a population of asexually reproducing 
(haploid) individuals of two types, which we refer to as “wild types” 
and “mutants”, see Figure 1. The total population of NK individuals 
is split into K demes of N individuals each, as in for instance (Hauert 
& Imhof, 2012). We assume a finite island model, where all demes 
are equidistant. Competition is implemented by assuming that 
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(neutral or deleterious) mutants may have relative fitness (denoted 
by r = 1 − s ≤ 1) that is not necessarily equal to the fitness of the wild 
types (assumed to be 1). De novo mutations are included through 
forward mutation (with probability u per division of a wild type cell) 
and back- mutation (with probability ub per division of a mutant cell, 
further details included in Section 2.2.1). Migration is modelled in the 
following way. A single migration event is attempted with probability 
0 ≤ pmigr ≤ 1 and performed by randomly selecting two demes, then 
randomly selecting nind individuals from each and swapping them 
with each other; nswaps migration updates are completed each time.

The dynamics are set up in the following way: First, a migra-
tion update is performed, where individuals have a chance to swap 
demes. This is followed by a birth- death update in all K demes. 
Further details on birth- death updates are given in Section 2.2.1, 
and on migration in Section 2.2.2; Table 1 lists all the model parame-
ters. We run simulations until long- term dynamics have been estab-
lished and (quasi)- stationary states (mutant extinction/fixation or a 
stable average number of mutants within individual demes and the 
overall system) have been reached.

2.2.1  |  The Moran process

Within each deme, we model the stochastic birth- death dynam-
ics by using the well- known Moran process (see e.g. Moran, 1958; 
Moran, 1962). Therefore, the population size of each deme as well as 
the total population size remains constant. The process of de novo 
(forward and/or backward) mutation may be included in our frame-
work. De novo mutation occurs during reproduction, so for instance 

if a wild- type cell is chosen for reproduction, there is a 1 − u chance 
of faithful reproduction and a u chance to create a mutant. If a mu-
tant cell divides, it creates a wild- type offspring with probability ub 
(and a mutant offspring with probability 1 − ub).

In the absence of de novo forward mutation (u = 0), the model 
has only one absorbing state, given by mutant extinction in all 
demes. Similarly, in the absence of de novo back mutation (ub = 0 ), 
mutant fixation in all demes is the only absorbing state. With the 
inclusion of both forward and back mutation, there are no absorb-
ing states (Moran, 1958). In the absence of migration, the stationary 
probability distribution in an individual deme can be calculated. For 
example, in the regime where mutant fixation happens on a much 
faster time- scale than mutant production, a simple expression for 

F I G U R E  1  A schematic illustrating the 
mathematical model. (a) General model 
structure: Each rectangle represents a 
deme, and green (red) circles represent 
wild- type (mutant) individuals. Two- sided 
arrows represent random swap- migration 
events within randomly chosen pairs of 
demes. (b) Details of a swap migration 
event: groups of nind = 3 cells are 
randomly selected within two demes, and 
exchanged. As a result of this particular 
event, the number of mutants in the 
top deme decreased, and the number of 
mutants in the bottom deme increased 
by 2.

TA B L E  1  Description of model parameters

Notation Description

K Number of demes

N Constant number of individuals in each deme

NK Constant total number of individuals in overall 
population

r Fitness of the mutant individuals

u Rate of forward mutation wild type  mutant

ub Rate of back- mutation wild type  mutant

pmigr Migration probability

nind Number of individuals exchanged during a swapping 
event

nswaps Number of swaps that occur during a migration event

jsel−mut Selection mutation balance in each deme
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the stationary probability can be derived. Denoting by yi the proba-
bility to have i  mutants in the deme, we have

with the probability of the other states being of the order of the 
mutation rate, which is described in further detail in Section 2.2.3. 
This is similar to previous approximations of the stationary distribu-
tion for the Moran process with de novo mutation and selection and 
under various conditions, see for instance (Ewens, 2007; Fudenberg 
et al., 2006; Karlin & McGregor, 1962; Moran, 1962; Wakeley & 
Takahashi, 2004). Another useful quantity is the selection- mutation 
balance, which is given (for an individual deme, in the limit of small 
mutation rates) by

this quantity represents the number of (negatively selected, 
r = 1 − s < 1) mutants, in the Moran process with de novo mutations, 
which corresponds to an equal probability to increase and decrease 
this number in a single birth- death update. This quantity is also iden-
tical to the classical expression of the expected number of deleteri-
ous mutations at mutation- selection balance. Section 2.2.3 (see also 
(Ewens, 2007; Fudenberg et al., 2006; Moran, 1962)) provides details 
of the calculations for expressions (1) and (2), as well as higher order 
approximations.

The process of Moran birth- death updates within an individual 
deme is set up as follows: Suppose the number of mutants is given by 
j (and thus the number of wild type individuals is given by N − j). For 
each time step, a cell is chosen randomly to die and a cell is chosen 
based on fitness to reproduce.1 Therefore, the chance that a mutant 
is chosen to reproduce is rj

rj+N− j
, and the chance that a wild type is 

chosen to reproduce is N− j

rj+N− j
. This is a Markov process, where the 

states of the model (the number of mutants in the deme) are integers 
j ∈ {0, 1, … ,N}. This model has a tridiagonal transition matrix. Let 
us define

to be the probabilities to increase and decrease the number of mutants 
starting from j mutants, in one step. Then we have

Let us denote the probability to have m mutants at time t  in a 
deme as �m(t), with 0 ≤ m ≤ N, 

∑N

m=0
�m(t) = 1. The row vector �(t) 

contains this information for each discrete time- step, t . The initial 
condition is

In the absence of migration, we have (in matrix form)

If both populations reproduce faithfully (u = ub = 0), we have two ab-
sorbing states, j = 0 (mutant extinction) and j = N (mutant fixation) 
(Moran, 1962). Let �j denote the probability for mutants to reach fixa-
tion given that we start with j mutants. We have

2.2.2  |  Modelling migration

We assume a migration update is attempted at each step with some 
migration probability 0 ≤ pmigr ≤ 1. We assume that at each migra-
tion update, nind individuals are randomly picked from one deme and 
replaced with nind individuals randomly selected from the second 
deme. In some simulations, to increase the intensity of migration, we 
repeated this procedure nswaps times for each migration update. We 
assume that the probability of migration applies to all swap events 
jointly, and thus that nswaps swap events occur with probability pmigr, 
and no swap events occur with probability 1 − pmigr. nind and nswaps are 
non- negative integers that we set before performing a simulation.

To incorporate migration, let us assume that a migration update 
precedes a Moran update. Then we can write

where Pmigr denotes the transition matrix associated with migra-
tions. In order to formulate this transition matrix, we will need the 
Hypergeometric distribution, which describes the probability of pick-
ing n mutants in nind draws without replacement, if the total number of 
mutants is j out of N individuals:

The probability to change the number of mutants from m1 to m2 in a 
population characterized by vector �(t) is given by

(1)y0 =
ub

rN−1u + ub
, yN = 1 − y0,

(2)jsel−mut =
Nu

1 − r
,

(3)P
↑

j
=

(N − j)

N

rj
(
1 − ub

)
+ (N − j)u

rj + N − j
, P

↓

j
=

j

N

rjub + (N − j)(1 − u)

rj + N − j

PMoran
jk

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

P
↑

j
, k= j+1,

P
↓

j
, k= j−1,

1−
�
P
↑

j
+P

↓

j

�
k= j,

0 otherwise.

0 ≤ j ≤ N.

�m(0) =

⎧
⎪⎨⎪⎩

1, m=m0,

0, otherwise.

�(t + 1) = �(t)PMoran, t ≥ 0.

�j =

⎧⎪⎨⎪⎩

1−(1∕r)j

1−(1∕r)N
, r≠1,

j∕N, r=1.

(4)�(t + 1∕2) = �(t)Pmigr, �(t + 1) = �(t + 1∕2)PMoran,

�j(n) =

⎛
⎜⎜⎝
nind

n

⎞
⎟⎟⎠

⎛
⎜⎜⎝
N−nind

j−n

⎞
⎟⎟⎠

⎛
⎜⎜⎝
N

j

⎞
⎟⎟⎠

�m1,m2
=

a∑
n1=0

�m1
(
n1
) N∑
m=1

�m(t)�
m
(
m2 − m1 + n1

)
.
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Here, we assume that the population containing m1 mutants loses n1 
mutants to another deme and gains n2 mutants from the other deme; 
we sum over all possible values of n1, and note that

m1 − n1 + n2 = m2, which gives us the expression for 
n2 = m2 − m1 + n1. The probability to lose n1 individuals is �m1

(
n1
)
 . 

The probability to gain n2 individuals is calculated as follows: the 
donor deme is assumed to contain m mutants (probability �m(t)), 
because all individuals are assumed to obey the same laws and the 
number of mutants in the deme at time t are drawn from the same 
probability distribution, �(t). The probability to gain n2 mutants from 
a deme containing m mutants is �m(t)�

m
(
n2
)
, and to get the total 

probability of gaining n2 individuals, we sum over all m.
Finally, the transition matrix for the migration step is given by

where �ij is the Kronecker delta.
The steady state, �, satisfies the following equation:

where

2.2.3  |  The stationary probability 
distribution and the selection- mutation balance in the 
absence of migration

In the presence of de novo forward and back mutations, let us deter-
mine the stationary probability distribution for the number of mu-
tants. Let us suppose the stationary probability distribution is given 
by 

(
x0, x1, … , xN

)
 with

The components xj satisfy the following equation

where x−1 = xN+1 = 0 and the transition probabilities are given by 
Equation 3. Let us suppose that the mutation rates are small compared 
with 1 − r and the inverse of the deme size 1

N
, and denote

𝜀 ≪ 1 − r, 𝜀 ≪ 1∕N. Solving Equation 7 in the zeroth order (i.e. 
under the assumption of no de novo mutations, setting � = 0), we 
obtain xi = 0 for 1 ≤ i ≤ N − 1, with probabilities x0 and xN undefined. 
To find the approximate solution under the assumption of small mu-
tation rates, we go to the first order in �. Let us set

Taking into account only the terms of order � in Equation 7, we obtain 
a degenerate system of N + 1 equations for N + 1 unknowns yi. The 
additional condition in given by Equation 6 and in the lowest order 
in � reduces to yN = 1 − y0. The solution is similar to what is found by 
(Ewens, 2007; Fudenberg et al., 2006) in similar models, and is given by

In particular, in the absence of de novo back mutations, the system 
converges to the j = N state (mutant fixation), and in the absence of 
de novo forward mutations, we have y0 = 1 (mutant extinction). If we 
include higher order terms, then the stationary distribution for the in-
termediate states is given by

Approximation (8)– (9) can also be obtained from the following sim-
ple consideration. Let us assume that the system spends most of the 
time in “pure” states (i.e. in state j = 0 or in state j = N), which is the 
consequence of the time- scale separation: the waiting time to obtain 
a de novo mutation must be much longer than the typical time of mu-
tant fixation. Then we can establish the balance of the following two 
processes: (1) If the system is in state j = 0 (denote this probability by 
y0), then the transition to state j = N happens at rate Nu × �1, which 
is the product of the mutant production rate, Nu, and the probability 
of a single mutant fixation given by �j with j = 1. (2) On the other 
hand, the probability of finding the system in state i = N is 1 − y0, and 
the rate at which the system leaves and gets fixed at i = 0 is given by 
multiplying the rate of wild type production (Nub) by the probability 
of a wild- type fixation (�j), where we replace r with 1∕ r, which is the 
relative fitness of the wild type compared to that of mutants. We 
obtain the equation

whose solution y0 is given by Equation 8.
To calculate the selection- mutation balance, we solve the equa-

tion P↑

j
= P

↓

j
 for j and obtain Equation 2, where we used the largest 

contribution in � (this is also the exact solution for the selection- 
mutation balance in the case of only forward mutation). We also 
note that back mutation does not effect the selection- mutation 
balance as long as 𝜀 ≪ (1 − r). The exact solution for the selection- 
mutation balance is given by

P
migr

ij
= pmigr�ij +

(
1 − pmigr

)
�ij,

(5)�j =
∑
k

PMoran
kj

(
pmigr

∑
i

∑
m

�i�mhimk +
(
1 − pmigr

)
�k

)
,

himk =
∑
n

�i(n)�m(k − i + n).

(6)
N∑
j=0

xj = 1.

(7)xj−1P
↑

j−1
+ xj+1P

↓

j+1
− xj

(
P
↑

j
+ P

↓

j

)
= 0, 0 ≤ j ≤ N,

u = �U, ub = �Ub ,
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.
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In the case that the two types are neutral with respect to each other 
(r = 1), we again solve the equation P↑

j
= P

↓

j
 for j and as in (Moran, 1962) 

obtain

3  |  RESULTS

3.1  |  Population fragmentation changes mutant 
distribution for neutral mutants

To motivate this study, we performed some simple experiments that 
examined the role of fragmentation and migration in neutral mutant 
dynamics. Ninety- six wells were filled with cells such that each well 
contained 1% of (neutral) mutants. The process of cell migration was 
implemented by swapping a small percentage of cells between demes 
by using a pipette (which is described in more detail in Section 2.1 and 
in Appendix S2 Section 1). The number of mutants in the wells was 
assessed at the end of the experiment and compared with the control 
condition with no migration. The resulting experimentally obtained 
distribution of the mutant numbers is shown in Figure 2 and Figure S1, 
where we plot the percent mutant contents in the ninety- six demes in 
the form of histograms. Figure 2 shows experimental results for the 1% 
mutants initial condition and Figure S1 shows experimental results for 
both the 0.1% and 1% mutants initial conditions.

We observed that while the mean number of mutants in the ab-
sence and in the presence of migration was the same, the distribution 
was significantly different; in particular, the distribution without mi-
gration had a much larger skewness, while in the presence of migra-
tion, it was more symmetric (Figure 2). Specifically, the average percent 
of mutants without migration is 1.03%, and with migration is 1.13%, 
which is not significantly different using the T test (p > 0.1). However, 
the Kolmogorov– Smirnov test between the two distributions gives a 
p- value of about 10−3, which suggests that the distributions are signifi-
cantly different. The skewness for the experiment without migration is 
0.89, and with migration it is much smaller at 0.07.

To explain these observations and extend the results to other 
conditions, we began by analysing the dynamics of neutral mutants 
(r = 1).

3.1.1  |  Unimodal versus bimodal mutant distribution 
in the absence of de novo mutations

To reproduce the experimental set- up, we assumed that there is no 
de novo mutation, and started with some small initial number of 
mutants in each deme (m0). In order to analyse the effect of migra-
tion/population fragmentation, we ran simulations with and without 
migration of cells between the distinct demes, a description of the 
mathematical model can be found in Section 2.

As in the experimental results, in both the model simulations 
and analysis, we found that the mean percent of neutral mutants 

is independent of migration, and is equal to the initial ratio of mu-
tants in the system. This is because the transition probabilities are 
symmetric, see Equation 3 and Section 2 in the Appendix S2 for 
details. Furthermore, as the wild type and mutant are neutral, the 
probability for the mutant to fix within the system (assuming a non- 
zero migration rate) is equal to the initial frequency of mutants in 
the system (although the time to such fixation depends on migra-
tion (Slatkin, 1981; Whitlock, 2003)). This is because in the context 
of a symmetric random walk, the fixation (i.e. absorption at the 
upper boundary) probability is proportional to the initial condition, 
see Appendix S2 Section 2 and (Maruyama, 1970; Moran, 1958; 
Moran, 1962).

On the other hand, the distribution of the frequency of mu-
tants in the system and the dynamics within individual demes are 
significantly influenced by the presence of migration (Figure 3). 
Starting from a delta- like distribution (as initially all demes contain 
m0 mutants), the distributions get wider with time and eventually 
reach a quasi- stationary distribution. In the absence of migration 
(Figure 3a), the dynamics of each deme are independent from one 
another. Since the probability of fixation is simply the initial frac-
tion of mutants (m0 ∕N), there is a large chance (given by 1 − m0 ∕N ) 
of mutant extinction in each deme. Therefore, the probability dis-
tribution of the number of mutants in each deme becomes flatter 
and develops a skew to the right, as most demes will trend towards 
mutant extinction, while a few will trend towards mutant fixation 
(i.e. a bimodal distribution, with modes at mutant extinction ( j = 0) 
and fixation ( j = N)). Eventually, as time → ∞, all demes will be fixed 
at either mutant extinction or fixation. In the presence of migration 

(12)jsel−mut = N
ub

u + ub
.

F I G U R E  2  Effect of migration on neutral mutant distribution, 
experimental results. The blue bars represent the control condition 
without migration between the wells, the yellow bars represent the 
experimental condition with migration, and the grey colour denotes 
the overlap. The initial condition was 1% mutants in each well. 
The average percent of mutants in each well without migration is 
1.03%, and with migration is 1.13% (not significantly different using 
the T test, p > 0.1). The Kolmogorov– Smirnov test between the two 
distributions gives a p- value of about 10−3, which suggests that 
the distributions are significantly different. The skewness without 
migration is 0.89, and with migration, it is much smaller at 0.07. Full 
experimental results are shown in Figure S1.
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(panel (b)), the dynamics of each deme are no longer independent 
from one another. As was similarly found in (Hanski & Gilpin, 1991; 
Hauert & Imhof, 2012; Moran, 1962; Wakeley & Takahashi, 2004; 
Wright, 1931), migration makes all the demes look more similar to 
each other, resulting in a one- humped (unimodal) distribution. These 
results match well with in vitro experimental simulations of the com-
putational model, which are shown in Figure 2 (see also Appendix S2 
Section 1). Note that while the figure shows a long- term state, this 
is not an equilibrium, and the only outcomes as time → ∞ is mu-
tant fixation or mutant extinction in the whole system (individual 
demes, if pmigr = 0) because there is no de novo mutation (Hauert & 
Imhof, 2012; Moran, 1962).

In addition to the extremes of no migration or a large amount 
of migration (where the system is well- mixed), we also investigate 
other regimes where there is some intermediate level of migration 
of individuals between the demes in the system. Figure S4 shows 

the timeevolution of the mutant probability distributions obtained 
by iterating Equation 4 (see panels (a– c) for three different values of 
pmigr), and then by plotting the resulting quasi- stationary probability 
distributions (panel (d)). Here we see that the effect of the Moran 
process is to “make” the probability distribution bimodal, and the ef-
fect of migration is to “make” it unimodal. The result is a trade- off of 
the two tendencies, and depending on the amount of migration, the 
distribution shape changes accordingly.

3.1.2  |  Quasi- stationary distributions become 
stationary in the presence of de novo mutation

Next, we expand the theory beyond the experimental conditions of 
Figure 2 to include the effect of de novo mutations. Since mutants 
are now generated stochastically, we alter the initial conditions to 

F I G U R E  3  Stochastic simulations (histograms) and iterations of Equation 4 (blue lines). Panel (a) represents the absence 
(pmigr = 0) and panel (b) represents the presence (pmigr = 1) of migration. The probability distributions are presented at 
several moments of time (t in each plot corresponds to the number of discrete Moran steps). The rest of the parameters are 
N = 20, m0 = 4, nswaps = 750, nind = 5, r = 1, u = ub = 0, and K = 1.5 × 103.
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start with the wild type fixed in all demes (m0 = 0). In the case of only 
forward mutation, the mutant will be created via mutation more often 
than the wild type. This mutational bias results in the neutral mutant 
(r = 1) fixing quickly in the entire population (see Figure S6a,b). On 
average, the time to fixation decreases with increasing migration, as 
faster migration results in more frequent introduction of the mutant 
into all of the demes, see (Hanski, 1998; Slatkin, 1981; Wakeley & 
Takahashi, 2004; Whitlock, 2003).

In the case of both forward and back de novo mutation, the dy-
namics are more complex. Figure 4a shows simulations representing 
2 × 103 demes of 20 individuals each, after 105 iterations with varying 
rates of migration. The histograms represent the number of neutral 
mutants per deme. In the absence of migration (left), the number of 
mutants will drift around, becoming extinct or fixed within a deme. 
In a highly fragmented population, this will happen more often, and 
the mutant will be at the extinction/fixation long- term state most 
of the time. Increasing migration (and/or decreasing population 
fragmentation by increasing the size of the demes, not shown) will 
result in fluctuation around the equilibrium value (Equation 12) in 
each deme (Figure 4a, right). As in the simulations without de novo 
mutation, if the rate of forward and back mutation is equal (u = ub

), then migration does not change the expected mean number of 

neutral mutants (as the stationary distribution is symmetric around 
the selection- mutation balance of 50% mutants, see Figures S5 and 
S6c,d). If the rate of forward and back mutation is not equal (u = ub), 
then the expected level of mutants is given by ub

u+ ub
 (see Equation 12 

and Moran, 1962 for details of this calculation).
Note also that the presence of mutations changes the nature of 

the long- term system behaviour: the quasi- stationary distribution 
observed in the absence of de novo mutations (Figure 3b, bottom 
graph) becomes a stationary distribution in the presence of forward 
and back mutation, as absorbing states no longer exist (Hauert & 
Imhof, 2012).

3.2  |  Population fragmentation changes 
mutant frequencies and distribution for 
disadvantageous mutants

Next, we turn to the dynamics of disadvantageous mutants. While 
this scenario is highly biologically realistic for many populations, it is 
often more difficult to study experimentally due in part to the lower 
probability of mutant growth. In the absence of de novo mutation, 
a small initial number of disadvantageous mutants will likely decay 

F I G U R E  4  Histograms for the number 
of mutants per deme in the absence 
(pmigr = 0) and presence (pmigr = 1) of 
migration, after 105 Moran iterations. (a) 
Neutral mutant (r = 1) with both forward 
and back mutation (u = ub = 0.005), see 
Figure S5 for intermediate migration 
cases; (b) disadvantageous mutant (r = 0.9

) with forward mutation only (u = 0.005

, ub = 0), see Figure S12 for intermediate 
migration cases; (c) disadvantageous 
mutant (r = 0.9), with forward and 
backward mutation (u = ub = 0.005), see 
Figure S13 for intermediate migration 
cases. The horizontal axis is the number 
of mutants and the vertical axis is the 
number of demes at that number of 
mutants. The vertical lines in the right 
panels represent the theoretical mutant 
equilibria, Equation 12 for (a) and the 
selection- mutation balance Equation 2 
for panels (b,c). Other parameters are 
N = 20, m0 = 0, nswaps = 100, nind = 10, 
and K = 2 × 103.
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quickly and go extinct. Therefore, we focus on mathematical models 
that include de novo mutation processes. We will show that while 
migration changes the distribution of demes in a similar manner for 
both disadvantageous and neutral mutants, in the disadvantageous 
case migration also changes the expected number of mutants at the 
(quasi)- stationary state in fragmented populations. This is related to 
the concept of “drift load” (Lynch et al., 1995; Lynch & Gabriel, 1990; 
Willi et al., 2013), which describes how the accumulation of dele-
terious mutations can cause a gradual reduction in population size 
(and in small populations random genetic drift will progressively 
overpower selection making it easier to fix future mutations). As we 
assume constant population sizes, size fluctuation cannot occur; in-
stead, we observe elevated fractions of disadvantageous mutants 
depending on migration and population structure.

3.2.1  |  Fragmentation increases mutant 
numbers and decreases time to fixation

In the absence of de novo back mutations, mutant fixation in all 
demes is the only absorbing/stationary state, which will again even-
tually be reached with 100% probability. However, when there is 
a large amount of migration and/or a large, well- mixed population, 
then fixation will take a very long time and quasi- stationary states 
are possible (Hauert & Imhof, 2012; Slatkin, 1981).

Figure 4b shows a system of small patches in histogram form in 
the absence and presence of migration, for disadvantageous mu-
tants with only forward mutation. When the overall population is 
highly fragmented (no migration, left), fixation will occur quickly in 
each of the individual demes, and thus in the overall population as 
well. However, if the overall population is well- mixed, then fluctua-
tion around a quasi- stationary state that is equal to the selection- 
mutation balance in each deme is observed (panel b, right): the 
equilibrium value from Equation 2 is shown by the vertical line; see 
also time- series in Figure 5. Between these extreme scenarios, we 
observe that the overall system fluctuates around a quasi- stationary 
equilibrium that is between selection- mutation balance in each 
deme and complete fixation in the overall system (see Figure S12). 
We can see that in the case of disadvantageous mutants, population 
fragmentation does not only change the distribution of mutants, but 
also increases the expected number of disadvantageous mutants. 
To further illustrate this, Figure 5a,b shows the time course of the 
number of disadvantageous mutants for different rates of migration. 
Here, we can see the (quasi)- stationary number of mutants in the 
system (as we run simulations over 2 × 105 discrete Moran steps), 
and that there are on average more mutants expected with lower 
migration rates (higher levels of population fragmentation), because 
fixation in each deme is more easily reached for fragmented (small) 
populations (Lynch & Gabriel, 1990; Michael, 2004). In particular, in 
Figure 5b, the (quasi)- stationary level of mutants goes from com-
plete mutant fixation (blue line) under no migration to fluctuation 
around the selection- mutation balance (purple line, see Equation 2) 
under a high migration regime.

3.2.2  |  Fragmentation increases mutant frequencies 
even when fixation is not an absorbing state

In the case of both de novo forward and back mutations, there are 
no longer any absorbing states.

Figure 4c shows histograms for the number of disadvantageous 
mutants in the absence and presence of migration, with the inclu-
sion of back mutation. The dynamics are similar to the forward mu-
tation only case (panel b), except the quasi- stationary distributions 
described in the preceding paragraph are now stationary distribu-
tions, as demes will not all eventually trend towards fixation (left 
panel). In particular, depending on the level of population fragmen-
tation, demes will either fluctuate around a stationary value, or will 
individually bounce back and forth between mutant extinction and 
mutant fixation. In the latter case (high fragmentation), the system 
is characterized by a higher expected number of mutants com-
pared to the well- mixed (or high migration rate) system. As seen in 
Figure 5c,d, since mutant fixation is no longer an absorbing state, 
we expect a smaller number of mutants compared to when there 
is only forward mutation (panels a,b). The expected number of mu-
tants in the absence of migration can be computed in the case of 
a small mutation rate, according to Equation 1. As the amount of 
migration increases, the expected number of mutants converges to 
the selection- mutation balance given by Equation 2. In particular, in 
Figure 5d the number of mutants goes from an elevated predictable 
number (blue line, see Equation 1) under no migration to fluctuation 
around the selection- mutation balance (purple line, see Equation 2) 
under a high migration regime. The overall dynamics for different 
cases are summarized schematically in Figure 6.

3.2.3  |  The role of the effective population size, Ne

The effective population size (Ne) is the number of individuals in an 
“idealized” (panmictic) population that would be characterized by a 
specified quantity (measuring the strength of genetic drift such as 
variance, coalescence, etc.) that is equal to that in the real population. 
Population fragmentation into subdivided demes can increase (Nei & 
Takahata, 1993; Wakeley & Takahashi, 2004) or decrease (Whitlock 
& Barton, 1997) the effective population size. As shown in (Nei & 
Takahata, 1993) (Wright- Fisher type island model), and (Wakeley & 
Takahashi, 2004) (Moran type island model), in the case where the 
overall population structure does not change for a long evolutionary 
time (as is the case in our model), the effective population size of a 
subdivided population can be much larger than the total population 
size (and is larger with lower levels of migration). At the same time, 
the effective selection coefficient (se) becomes smaller. A natural 
question is then: is the change in Ne and se sufficient to explain the 
observed differences in mutant dynamics between non- fragmented 
and fragmented populations, including a higher frequency of delete-
rious mutations?

In Appendix S2 Section 3.1, we discuss the diffusion approx-
imation for our fragmented model with migration, and obtain the 
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following approximations for the effective population size and ef-
fective selection coefficient:

Figure S7 illustrates the validity of the diffusion approximation and 
motivates the definition of the “variance” effective population size, 
Equation 13, see also Figure S8 that compares this approximation with 
numerically obtained values for Ne.

In order to obtain the predicted average number of mutants in a 
fragmented system, based on the effective population size, we can 
apply Equation 11, where the system size is given by Ne and mutant 
fitness r = 1 − se. The results are presented in Figure S9. While the 

general trend is qualitatively captured (higher degrees of fragmenta-
tion result in a larger number of disadvantageous mutants), the size 
of the effect predicted by this substitution is not quantified correctly.

This suggests that, as noted in (Wakeley & Takahashi, 2004), it 
is not only a change in effective population size that distinguishes 
the subdivided population with many demes and migration from the 
singular panmictic one. In other words, a rescaling of population size 
(and adjusting the selection coefficient) does not make the two pop-
ulations equivalent. If a fragmented population with effective popu-
lation size Ne is replaced with a well- mixed population of size Ne, the 
number of mutants will increase compared to a well- mixed population 
of size NK. In addition, the frequency of mutants in each individual 
deme will be very different: a single large deme at selection- mutation 
balance (well- mixed population) versus many demes that are either 
completely wild type or completely mutant (fragmented population). 
As a consequence, the mutant dynamics in a fragmented system will 
proceed in a qualitatively different way, and the expected number of 

(13)Ne = NK

(
1 +

K

2Npmigrnswapsnind

)
,

(14)se = s

(
1+

K

2Npmigrnswapsnind

)−1

.

F I G U R E  5  Number of mutants over time for varying rates of migration with a disadvantageous mutant (r = 0.9). Panels (a, b) 
include forward mutation only, and panels (c, d) include both forward and back mutation. Other parameters are N = 10, m0 = 0, 
and K = 100. Selection- mutation balance is approximately 10 mutants in the system and mutant fixation is 10 mutants in each 
deme. Blue lines, no migration. The approximate expected number of mutants can be calculated using Equation 1. Yellow lines, low 
migration: pmigr =

1

3
, nswaps = 1, and nind = 1. Green lines, medium migration: pmigr = 1, nswaps = 1, and nind = 1. Red lines, high migration: 

pmigr = 1, nswaps = 5, and nind = 1. Purple lines, very high migration: pmigr = 1, nswaps = 10, and nind = 5. The approximate expected number 
of mutants is the selection- mutation balance. (a) Forward mutation only (u = 10−3, ub = 0), number of mutants in the system at each time 
step (typical runs). (b) Forward mutation only (u = 10−3, ub = 0), temporal average of the number of mutants in the system at each time 
step. Dashed lines represent the selection- mutation balance and mutant fixation. (c) Forward and back mutation (u = ub = 10−3), number 
of mutants in the system at each time step (typical runs). (d) Forward and back mutation (u = ub = 10−3), temporal average of the number 
of mutants in the system at each time step. Dashed lines represent the selection- mutation balance (Equation 2) and the predicted average 
number of mutants under no migration (Equation 1).
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mutants will not be governed by a simple balance between produc-
tion and selection, as it is in a panmictic system.

3.2.4  |  When can we expect to see more mutants 
than predicted by selection- mutation balance?

The number of disadvantageous mutants is amplified relative to a 
well- mixed population when the population is highly fragmented (i.e. 
the individual patches are sufficiently small) and the migration rate is 
not too high, see Figure 6.

Even in the absence of migration, if each deme size is too large, 
then fixation will almost never be reached and fluctuation around 
the selection- mutation balance in each deme will be observed in-
stead. On the other hand, if the deme size is very small (N = 2), then 
the expected number of mutants is approximately 50% of the sys-
tem, as each deme will spend about 50% of the time at mutant ex-
tinction and 50% of the time at mutant fixation because of the small 
mutation rate (not shown). As the number of individuals per deme 
increases, this effect of fixation continues to elevate the number of 
mutants, but contributes less and less as the fixation probability de-
creases. Therefore, as the deme size grows, the expected number 
of mutants (the blue line in Figure 7) will extrapolate between two 
regimes: (i) the fast fixation regime, where the mean number of mu-
tants in a deme is given by NyN (Equation 1, green line in Figure 7) and 
drift dominates, and (ii) the selection- mutation balance (Equation 2, 
yellow line in Figure 7) where selection dominates. To estimate the 
threshold deme size, Nc, above which the expected frequency of 
mutants becomes close to selection- mutation balance, we find the 
intersection of the fast- fixation (green) and selection- mutation bal-
ance (yellow) lines by solving the equation NyN = jsel−mut for N:

As Nc represents the threshold value for which drift can overpower 
selection if N < Nc and selection (of the disadvantageous mutant) 
overpowers drift for N > Nc, we have that Nc can be thought of as 
an approximation of the “selection effective population size” for our 
model in the absence of migration (Gravel, 2016; Lynch, 2007; Wang 
et al., 2016). For more details on these calculations, see Appendix S2 
Section 3. If the deme size is smaller than Nc, a significantly larger 
number of mutants compared to the selection- mutation balance is 
expected. However, if demes are connected to each other and mi-
gration is present, this may weaken the effect. Under intense mi-
gration, the expected number of mutants tends to that predicted by 

(15)Nc =
log

(
1− r − u

rub

)

− logr
.

F I G U R E  6  Summary of results: de 
novo forward and back mutation with 
varying migration (columns) and deme 
size (rows), assuming a constant total 
population. There are no absorbing states. 
Individual demes are represented as green 
rectangles, and the level of mutants in 
each is shown in red. Total frequency 
of mutants panels schematically show 
the percent of mutants as a function of 
time; the black dashed lines represent the 
selection- mutation balance, jsel−mut, and 
100% fixation.

F I G U R E  7  Estimating Nc. The expected number of mutants in 
a single deme in the absence of migration is shown as a function 
of N; it is computed numerically (blue circles) by determining the 
principal eigenvector of the transition matrix, see Equation 3, and 
also by using approximations (8) and (10) (blue line). The green line 
represents the fast fixation regime (NyN, Equation 1); the yellow 
line is the selection- mutation balance, jsel−mut (Equation 2). The 
parameters are u = ub = 10−4 and r = 0.95. The threshold value Nc is 
shown by the dashed vertical line.
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selection- mutation balance. Therefore, an important question is: what 
is the level of migration that is sufficient to lower the mutant levels 
back to that of selection- mutation balance?

In this model, the overall intensity of migration (monotonically) 
depends on several parameters (see Table 1): the probability of a mi-
gration event per update (pmigr), the number of swaps during a migra-
tion event (nswaps), and the number of individuals exchanged during 
a swapping event (nind). To simplify the discussion, we will fix two 
of these to nswaps = K ∕5 and nind = N∕5, focusing on the parameter 
pmigr as the one parameter determining the rate of migration.

Figure 8a demonstrates how a threshold value of the migration 
probability can be calculated. Fixing the values of u, ub, and r , simu-
lations were run for different choices of the deme size, N < Nc , and 
the mean frequency of mutants (i.e. the mutant number divided 
by the total population size, NK) was determined for each pmigr. As 
anticipated, the expected mutant frequencies are higher than the 
level predicted by the selection- mutation balance; also, they de-
crease with the deme size, N, and migration probability, pmigr. To 
quantify the migration probability that, for each N, corresponds to 
a significant decay in the mutant population, we defined pc as the 
value of pmigr that leads the frequency of mutants to fall to twice 
the selection- mutation balance. In Figure 8a, intersections of the 
mutant frequencies with 2jsel−mut are marked with coloured symbols 
and their horizontal coordinate gives pc. This quantity decreases 
with N.

Figure 8b shows the threshold migration rate as a function of 
N∕Nc for several different values of Nc. We observe that the depen-
dence is exponential, and propose the empirical law:

where the constants A and B do not depend on N. The value of the ex-
ponent, B, can be found by fitting (see Figure 8); it is difficult to derive 
analytically because it falls in the intermediate migration rate regime 
(where our approximations of no migration or strong migration do not 
apply). Therefore, we use numerical approximations to calculate it, as 
shown in Figure 8. Overall, Figure 8b shows that the threshold migra-
tion rate (pc) decays exponentially with N∕Nc, which is the deme size 
divided by the threshold deme size (Nc). This implies that even for small 
increases in deme size N < Nc, drastic decreases in the migration rate 
pmigr < pc are needed to maintain the inflated number of mutants in the 
fragmented population compared to the expected number of mutants 
at selection- mutation balance. Section 3.2 of the Appendix S2 pres-
ents similar results obtained in the case of the Wright- Fisher model.

4  |  DISCUSSION AND CONCLUSION

Divided and fragmented habitats are common in nature. Some 
examples are naturally occurring habitats such as islands (in the 
context of biogeography), aquatic habitats separated by land (such 
as ponds or lakes), different parts of a plant that can be inhabited 
by lower organisms, or hosts that are inhabited by ecto-  and 
endoparasites. Human activities may lead to further fragmentation 
of natural environments, which has implications for conservation 
biology. In general, most natural habitats are spatially structured, 
and are likely to be characterized by demes or microdemes, with 

(16)pc = Ae−BN∕Nc ,

F I G U R E  8  The role of migration in the level of mutants. (a) the mean frequency of mutants as a function of pmigr, calculated as a 
temporal average over 108.5 time- steps; the bars represent the standard error. Different curves correspond to different values of N. The 
horizontal lines are jsel−mut and 2jsel−mut. The parameters are u = ub = 10−3.5, r = 0.98, and Nc = 205.48. (b) the threshold values, pc, are 
plotted against the corresponding N∕Nc, for several values of Nc. The exponent B (Equation 16) is 10.7 ± 0.9. The rest of the parameters are 
K = 20, nswaps = K ∕5, and nind = N∕5.
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population movement between them, such as patches of high 
moisture or nutrient availability across a larger habitat. Given the 
ubiquity of fragmented and deme- structured habitats in nature, it is 
important to obtain a better understanding of how such structures 
impact evolutionary dynamics. As mentioned in the introduction, 
several aspects of evolution in fragmented populations have 
been explored in the literature. Importantly, it has been shown 
that mutant fixation times can be significantly increased in deme- 
structured habitats, even though the probability of mutant fixation 
remains unaltered. Other aspects of evolution in deme- structured 
and fragmented habitats, however, remain to be explored in more 
detail from an evolutionary theory point of view, but also from an 
experimental point of view to verify model predictions. A more 
complete understanding of these dynamics is crucial for better 
understanding evolutionary processes in natural populations.

Experimentally testing the validity of evolutionary mathemat-
ical models of fragmented and deme- structured populations can 
be challenging, yet is an important component of this work. We 
set up experiments in which murine cell colonies were grown in 
ninety- six wells, with migration implemented as swapping small 
numbers of cells between randomly chosen wells with a pipette. 
We used this system to quantify the distribution of neutral mu-
tants across the demes/wells. The experimental findings con-
firmed that while the mean number of mutants is not influenced 
by migration, the probability distribution is, consistent with the-
oretical predictions. We used the same model to also investigate 
the distribution of disadvantageous mutants across the demes, 
which was not feasible to follow experimentally. Furthermore, we 
extended the model to include de novo mutations and examined 
the average level at which the mutants were expected to persist, 
and compare this to the level that is expected due to the balance 
between mutation and negative selection. We showed that the 
mutant numbers experience an increase in frequency compared 
to that of the selection- mutation balance of a non- fragmented 
system. We investigated this phenomenon; using the diffusion 
approximation, we found that this increase cannot be simply 
explained by an elevation in the effective population size and a 
decrease in the selection coefficient, which are consequences of 
fragmentation. In fact, an increase in the effective population size 
does not capture a profound change in mutant dynamics brought 
about by fragmentation and expressed in a shift from selection- 
mutation balance to the dynamics of intermittent mutant fixa-
tion and extinction events. In a single deme, we found that the 
increase (compared to the selection- mutation level) is observed 
when the deme size is lower than the critical size, Nc, given by 
Equation 15. In a fragmented system that consists of connected 
demes with a probability of migration, the increase in mutant 
numbers above the selection- mutation balance can be observed 
in small (N < Nc) demes as long as the migration rate is sufficiently 
small. The migration rate above which the mutants approach the 
selection- mutation balance decays exponentially with N∕Nc, see 
Equation 16.

4.1  |  Implications for evolutionary biology

This work has important implications for issues surrounding stand-
ing genetic variation in populations. Our mathematical modelling 
results indicate that the pool of deleterious mutants that persist in 
a population can be significantly higher in a deme- structured or frag-
mented population compared to the predictions made by models 
without such population structure. This means that in many natural 
settings, populations will carry a larger mutational load and show 
greater genetic variance for fitness than expected in a panmictic 
population. An important factor that determines whether these ef-
fects occur is the population size within individual demes relative 
to the migration rate, as mentioned above. Deleterious mutants are 
more likely to persist at higher frequencies if the within- deme popu-
lation size is relatively small, as defined mathematically in our model-
ling framework.

While our model makes direct predictions about the dynamics 
of deleterious mutations, our results could also have implications 
for adaptive evolution in structured populations. This is particularly 
true if alleles that are mildly deleterious in current environmental 
conditions can become advantageous later on, when the environ-
ment changes to their favour. Such changes in the environment can 
arise naturally, or can be induced by xenobiotics, such as drugs, pes-
ticides or pollutants. Resistance evolution (such as against pesticides 
or antibiotics) is of particular applied relevance in this respect, be-
cause resistant mutants often suffer a fitness cost in the absence 
of the treatment and only become advantageous once treatment is 
initiated. The pre- existence of resistant mutants at the selection- 
mutation balance is an important determinant of outcome in such 
cases and our model would predict that the presence of potential 
variants would be more likely in structured populations. Besides a 
change in environment, the higher level at which disadvantageous 
mutants might persist can also speed up the crossing of fitness val-
leys, where a first mutation can lead to a selective disadvantage, but 
an additional mutation results in an overall advantage.

4.2  |  Somatic evolutionary processes

In addition, and on a more speculative level, there are also bio-
medical implications of our findings, if cell populations in vivo are 
viewed as a kind of ecosystem in which cells evolve over time. 
Clonal evolution takes place within tissues as individuals age. This 
has been clearly documented in the haematopoietic system (Lee- 
Six et al., 2018), where a variety of mutant clones with different 
characteristics emerge over time. These mutant clones can po-
tentially lead to a functional deterioration of the healthy tissue, 
and also in the longer term to the development of malignancies. 
These mutants can be disadvantageous, neutral or advantageous, 
and can form the basis for further mutation accumulation. These 
evolutionary processes take place in the bone marrow, where 
stem cells exist in niches, with traffic between different parts of 
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the bone marrow via the blood (Wasnik et al., 2017). There is cur-
rently no detailed data that quantifies the rate at which cell popu-
lations across the individual niches/demes communicate and the 
rate at which they migrate. Given the intricate anatomical struc-
tures in the haematopoietic system, and given the tendency for 
cells to home to their specific microenvironments (Suárez- Álvarez 
et al., 2012), it is likely that cell dynamics are largely governed by 
local processes, with a relatively low rate at which cells move from 
one location to another. If this is true, then according to our model, 
the deme structure can influence the exact spatial genetic compo-
sition of the cell population, with mutants being dominant in some 
parts of the bone marrow but not others, especially for disadvan-
tageous and neutral mutants. This in turn can have implications for 
bone marrow biopsies when trying to assess or monitor the clonal 
composition of the haematopoietic system.

4.3  |  Tumour evolution

Similar considerations can apply to tumours in the haematopoietic 
system once they have started to expand. Although tumours grow 
over time and we have considered the evolutionary dynamics in 
constant populations, tumours can be characterized by periods of 
slow growth or temporary stasis until further mutants are gener-
ated that allow the cells to overcome specific selective barriers. 
In the haematopoietic system, an example could be slowly grow-
ing/indolent cases of chronic lymphocytic leukaemia (CLL), where 
cells grow in spatially separated lymph nodes, the spleen, and the 
bone marrow. The evolution of drug- resistant mutants is a major 
problem that results in the eventual failure of therapies, and the 
level at which resistant mutants exist before the start of treat-
ment tends to be an important determinant of the time to disease 
relapse (Burger et al., 2016; Komarova et al., 2014). Mathematical 
models have been used to calculate the number of drug- 
resistant mutants, for example in chronic lymphocytic leukaemia 
(Komarova et al., 2014) or chronic myeloid leukaemia (Komarova 
& Wodarz, 2005), and these models assumed a spatially homoge-
neous growing tumour cell population. If drug- resistant mutants 
carry a fitness cost and are therefore disadvantageous before the 
start of therapy, the models analysed here indicate that the organ-
ization of cells into demes can have a significant influence on the 
abundance of pre- existing mutants. Depending on the deme size 
and the migration rate, the number of resistant cells can be sig-
nificantly larger than predicted by the selection- mutation balance, 
which could dramatically speed up the rate at which the tumour 
relapses during therapy. If the drug- resistant mutants are advanta-
geous, which happens in the presence of treatment, then the spa-
tial structure could also result in a significant effect on quantities 
such as the timing of mutant expansion (and therefore treatment 
failure). Advantageous mutant dynamics, however, are beyond 
the scope of this study. There are also implications for sampling 
strategies when attempting to assess the burden of drug- resistant 

mutants before therapy such that the true genetic diversity across 
the different locations is determined, rather than a skewed pic-
ture arising from the analysis of one or just a few locations. This 
concept of optimal sampling of tumours has also been explored 
with spatially explicit computational models in a different context 
(Opasic et al., 2019; Zhao et al., 2014). Our analysis particularly 
highlights the need to experimentally measure the rate at which 
lymphocytes redistribute from one lymph node compartment to 
another, which would allow a more accurate prediction about how 
the deme structures in the haematopoietic system influence the 
evolution of CLL cells.

4.4  |  Spatial migration

Finally, we note that in our model analysis, migration is assumed to 
be among randomly (uniformly) chosen demes. For migration that is 
spatially restricted, disadvantageous mutant levels will be elevated 
compared to non- spatially restricted migration because once a re-
gion of demes becomes fixed with the mutant, it is less likely that the 
wild type will be reintroduced (for geometric reasons). Therefore, 
spatially restricted migration increases population fragmentation 
compared to mixed migration, which increases the number of mu-
tants. Including different spatially restricted patterns of migration 
could be an interesting extension of our current work.
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ENDNOTE
 1 Note that in this formulation we do not distinguish between a birth- 

death or a death- birth process (Kaveh et al., 2015). Assume r = 1. 
In a true death- birth process, if a mutant dies, the probability of 
mutant division would be given by (j − 1) ∕N (assuming that a cell that 
just dies cannot divide). Similarly, in a true birth- death process, the 
probability of mutant death following a mutant division would be 
(j − 1) ∕N (assuming that an individual that just divided does not im-
mediately die). In the present model formulation we do not include 
these considerations.
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