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Abstract . 

In "slow" nucleus-nucleus colliSions .the single particle states will adjust con-

tinuously to an instantaneous two center potential. Transfer reactions will occur 

between polarized rather than between asymptotic states. 

In order to employ two center states in reaction calculations, an expansion in . 

terms of asymptotic states with good angular momentum is required. This expansion 

is formulated, and equations for the expansion coefficients are derived. Model 

calculations for the system 40Ca + 160 indicate that the polarization of unoccupied 

proton states. in 40Ca is strong, while it is very weak for the tightly bound 

. 16 
IP1/2 - proton in . 0. The dependence of the polarization effect on several rele-

vant parameters is discussed . 



r. Introduction. 

Two center shell models, using either pre-given or self-consistent (constrained 

Hartree-Fock) potentials, have been applied to problems of nuclear fission and 

1-10 
nucleus-nucleus collisions for quite some time. More specifically, these 

models have been used for the microscopic calculation of total energies of 

nuclear configurations, which depend upon a number of collective geometrical 

parameters (such as shape, fragmentation, length or nucleus-nucleus separation). 

The resulting potential energy surfaces (PES) were taken as potentials governing 

collective modes of motion, such as the elongation and necking in of a fissioning 

nucleus, or the relative motion of two colliding nuclei. 

Underlying these models is an adiabatic picture, with the single particle motion 

considered to be fast compared to the collective motion. If this is to be taken 

seriously, and consistently, then not only the single particle energies would 

adjust to the collective motion. Also, single particle wave functions should be 

taken to depend upon collective variables as parameters. E.g. in nucleus-nucleus 

collisions the internal motion should not be described with the asymptotic states 

of the free separated nu,;! le i. If art adiabatic picture applies, all single particle 

states would adjust continuously to the approaching shell model potential 

of the other nuc leus'~ At any nucleus-nucleus distance the nucleons would occupy-

instantaneous two center states.rather than asymptotic states. Rearrangement 

reactions will occur between instantaneous polarized (two center) single particle 

states, with form factors presumably rather different than for asymptotic states. 

~henomenological 
The7 des,;!riptwn of elastic scattering is not affected, of course, becausenll 
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internal.degrees of freedom can be integrated out . 

- In an actual scattering experiment, the polarization of single particle states 

will be less than predicted for the adiabatic limit. It depends upon the 

-ratio of transit time to nuclear period, which can be estimated as (~erm/(EIA))1/2. 

For .E- . "-'30 MeV and the collision _energy per projectile nucleon E/A typically 
~erml 

of the order 01'5 MeV,this ratio will be Y6, which is large but not very large 

compared to 1. Qualitatively, we expect that the polarization effect 

will increase both the interaction radius .and the diffuseness of the -interaction 

-region~ This effect will become stronger with increasing excitation of the pert-

iCipating states. It will shift grazing peaks in transfer angular distributions 

forward, and will enhance transfer at forward ane;les. 

Experimental evidence for this, and actual reaction calculations employing polar-

-ized single particle states, are 
II _ 

reported elsewhere. In this paper we shall 

discuss the technique through which parameter dependent channel functions, 

calculated within the two center shell model, may be employed in reaction calcul-

ations .. The essential step' lS to expand two center states in terms of asymptotic 

states of free nucleLFornlulas for :the coefficients of the 'asymptotic expans ion' 

are giver,t in ch. III. We also present some model calculations and discuss system-

atics of the polarization effect. 

Although our method is generally applicable to any two center models,including 

self--consistentones, the actual discussion will be based on the model as 

developped by Maruhn and Greiner.6 
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II. The Model. 

We use the asYmmetric two center shell model (TCSM) in the form as developped 

6 
by Maruhn and Greiner. For the definition of the Hamiltonian and the calcul-

ation of the eigenstates we refer the reader to their paper. The potential is 

a modified asymmetric two center oscillator ,including the usual l·s and t2._ ...... -
forces. To avoid the unphysical sharp cusp appearing in the two center oscillator, 

the potential between the centers is represented by a polynomial of fourth degree • 

. The height of the potential barrier between the nuclei may be chosen freely. 

While from a physical point of view it would be preferable to use a two-center 

Woods-Saxon potential, the Maruhn/Greiner model has the advantage that all pot-

ential matrix elements can be evaluated analytically in a suitably chosen basis 

(see below). Also, the shape of the barrier region can be made to quite closely 

resemble that of a two center Woods-Saxon potential (see fig. I ). 

The TCSM-eigenstates are obtained by numerically diagonalizing the two center 

Hamiltonian on the basis of theeigenstates of· the two center oscillator. The 

only integrals of motion are energy E and, for collisions of spherical nuclei, 

projection 11 of the angular momentum on the z-axis (intrinsic symmetry axis). 

The TCSM-states may be either specified with the quantum numbers E and Jl, or 

with the (asymptotic) quantum numbers nljJl. of eigenstates of the spherical 

harmonic oscillator including {·S-force, which they approach as the two center - ... 
separation parameter R ~CIO. 

, 
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Thus we have two center single 'particle states in the form 

IEJl) 

CI) 

where we have introduced an obvious notation for spin-up and spin-down components. 

X,.,.. is a spin function. The Inznrm) ~e eigenstates of the two center oscillator 

(see appendix A). 

It is not obvious how single particle states of the form eq. (n should be used 

in the calculation of rearrangement reactions. They depend upon the nucleus-nucleus 

distance as a paranieter, thereby abandoning the rigorous separation of internal 

and relative motion. Additional kinetic energy terms would arise from the para-

metric deperidence. However, the variation of the state eq. (I) as a function of R 

will be small in the region where quasielastic reactions proceed, so that for 

these the additional kinetic terms may well be negligible in comparison with 

the kinetic terms from the radial motion proper. A more basic difficulty concerns 

the connection between the TCSM separation parameter R and a relative motion 

coordinate for the nucleus-nucleus system. The usual description of relative 

motion employs the vector ~ connecting the mass centers of a particular (arbitrary 
,." 

but fixed) partition c( = (A., ,B.,) of the A = AJ + B J, nucleon system, "t.t' = 1: r~l A 
.... .... "'" - '€A; e( , 

'Strictly speaking, it should not be the length rei. of this vector 
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upon which the polarization of single particle states should be considered to 

depend. If two nuclei could be placed next to each other at e.g. a distance 

typical of grazing collisions ,all single particle states would be polaJ:'ized in 

a certain way. The Pauli principle would require all partitions to be present, 

not just the one distinguiShed in the definitiori of ro(o Each partition would 
IV 

correspond to a different value of rIC for a fixed nucleus-nucleus configura.tion. 

The separation parameter R,which determines the radial dependence of the polar-

ization in our model, should rather be connected with a symmetrical distance 

coordinate, which is· invariant with respect to nucleon permutations and depends 

only upon the geometry of the riucleus-nucleus system. 
. . 

A description of nucleus-nucleus collisions in terms of symmetrical relative 

motion coordinates, including Euler angles for the relative angular motion, has 

been formulated in ref. 1:1., . However, a solution to the equations of motion which 

would allow actual reaction calculations has not yet been accomplished. 

For the time being one may use reaction theories such as the DWBA or coupled· 

channel formalisms, and identify RC:!ro(in the spirit of a particle-core picture. 

In order to take the polarization effect into account all asymptotic single particle 

states have to be replaced according to 

(2) 
",tt) where I" is the function; of relative motion (e .g. distorted wave) .. 

The usual reaction theories require angular momentum coupling of internal and 

relative motion. As the polarized state, eq. (I) , contains a superposition of 

.. 
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many states with different angular momenta, it must be decomposed in terms of 

asymptotic states with good angular momentum. 

The asymptotic states In't'j'Jl) may be either those of nucleus lor, at a 

distanceR apart, those of nucleus 2 (see below). 

We shall refer to eq. (3) as an 'asymptotic expans ion'. The actualcalculo. tion 

of this for a two center state of the form eg. (/)1s the main objective of this 

paper. 

" -The polarization coefficients have the following asymptotic behaviour 

(tr) 
Taking polarization into account amounts to having a very large number of virtual 

cha~nels (n't'j') present (of the order of 100 in typical cases, as we shall see). 

These channels are off the energy shell, and hence are confined to the interaction 

region, cf. eq. (4-) . In principle, all virtual channels have to be treated explicitly 

by means of coupled equations, very much like" strong inelastic channels. Transfer" 

between polarized single particle states would appear as indirect processes 

with a large nuniber (-100) of virtual channels as intermediaries. Usually, 

indirect contributions-to transfer via a large number of weak states are neglected 

on the basis of a rando:n phaseargu;nent. Such an argument is not applicable "In 

the case of nucleus-nucleus polarization, however, because the coherence is. strong 
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(see below). The TCSM may be regarded as a natural way to approximately para-

meterize the distance-dependent admixture of virtual states, thereby avoiding 

a very large coupled channels problem in the. subspace of closed channels. 

If a description of relative motion in terms of symmetrical coordinates would· 

actually be feasible, no asymptotic expansion eq. (3) 
reaction calculations 

would be needed for 1 with 

polarized particle states . The TCSM-states as given by eg. (I) could be used 

directly in the evaluation of transfer form factors, without explicit recourse 

to virtual channels. This desirable simplification would occur because the Euler 

angles would carry not just· the relative, but tile total angular momentum. 

An expansion in terms of asymptotic states remains useful, however, because it 

provides insight into the polarization effect (cf. ch. IV). 

III. The Asyrnptotic Expansion. 

To obtain the two center state eq. (I) in the form. of an asymptotic expansion, 

eq. (3) , the states I nZn$m) Xp. (m + p. =..n.) must. be 'expanded in terms of states 

I n'l' j 'Jl.). This is done in three steps. First, the z-part of the two center 

oscillator states is eXpanded in terms of harmonic oscillator states (see append-

ix A): 

'Tl~ ) (5) 

Then the states I~ njm) are expanded in terms of eigenstates of !:,2.. In order 
\. . 

to facilitate this expansion, we choose the 5 -frequ.::!ncy "'j of the two ceJlter 

oscillator basis functions to be equal to the z-frequency~ or<A>2' dependihg 

• 
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upon whether we want to expand· OTt. 'asymptotic states of nucleus 1 or nucleus 

2 (see appendix B) • With the indicated choice of (Us ' the l'ii n~m> are eigertstates 

of the spherically symrnetricharmoni"c oscillator,written in a cylindrical basis. 

tI~ I 
The ~ -expansion is written 

where 

= 

,.. 
:n. 

is the phonon number. The calculation of the coefficients C(' is d~scussed in 

appendix B. 

Finally, we expand in terms of total angular momentum eigenstates: . 

·(7) 

Usirig the explicit forms for the Clebsch-Gordon coefficients we find for the 

polarization amplitudes in eq.l3) (for Jl. >0) 

Alltj.n.CRJ ') .1~t'+.n.. Y2 )V2. l\.(jn. t ~""t . N'-l'"r-A+~..· 
ll''''.l.''> - L 2!'~1 . Q..1LlL,(R) "tt , .G , (N' 11.-'1a,) 

'\. q . ~". .~ '1 N-cy-.n.1.( ) 

~'-Jl.'" 11t)".t 1leJ.'.ll~ . -h Yl~ . M·.2"r-.n.-~ . 1 
+ ".'+ I .a.n 1l. t'R) , Ie, (N', .J2. f !f:z.) 

.. ~ to 5 N -l"l-A- i e 

where 
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(8&) 

where 

As the two center oscillator basis states themselves depend upon the two center 
. 1l~ 

separation parameter R, the coefficients.ft" are also· functions of R (which we 
"-

have not indicated through ~n explicit notation). 

Matrix elements of the TCSM-Hamiltonianare independent of the sign, ofJl. . 

Therefore, 

'Yl tj. -Jl. 
A. , .l" 

T\'\.~ 

(8 c) 

For purposes of discussing systematics of the polarization effect it is con-

venient to also cons ider a first order perturbation express ion for the amplitudes 
"'(l.n. 13 A ., lR). We have 

"'I .~ 
"~ct 

<I"\J -
E lD)'1 

lL'\.d-
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Here VR is the shell model potential of the polariZing nucleus. at a distance 

R. Taking only the momentum-independent parts of VR into account and using 

eq. (17 we have 

IV." Results and Discussion. 

leThe Calculation. 

We have prograrmned the calculation of eqs. (8) on a CDC 7600 computer. Table. I 

gives a summary of the steps and times involved. The computational procedure has 
not been optimized yet • 

. The lengthiest part of the calculation is seen to be the numerical integration 
. ~ , . 

(ii) to obtain then... , eq. (A.12). This could be avoided altogether,' if the 
~ . 

diagonalization (i) of the TCSM were made with harmonic oscillator rather than 

two center oscillator states. Thereby the dimension of the eigenvalue problem 

(i) would increase by more thana factor of 3, and the required calculation time 

would increase by a factor of 10 approximately. Thus it appears not to be advant­

ageous to avoid step (ii). It would certainly become a disadvantage if at a' fixed 

R several calculations for different TCSM-barriers were made, requiring several 
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calculations (i) and only one calculation (ii). 

If a different TCSM were considered,e.g. a more realistic two center Woods-

Saxon or a self-consistent potential, only calculation (1) would be affected. 

The a(R) in eq.(1) would be numerically different. All equations given in chs. 

II, III and in appendices A, B remain valid. 
A 

Calculation (iii) has to be made just once and for a 1.1 , as the coefficients ~,(NJmJ. 
, eq. (6) , do not depend upon any parameters. 

We have restricted ourselves so far to collisions of spherical nuclei. The 
·r 

blO center model we use has the following adjustable parameters .• 

R, the separation between the potential centers; 

e., 1<Jhich measures the barrier height in units of the barrier for a 

two center oscillator at the same separationj 

(.Ji (1 = 1,2), the frequency parameters of the underlying two center 

oscillatorj 

~i' Pi (i = 1,2), strength parameters of the!·! and !2. -forces, respect­

ively. 

We have adjusted the 

the asymptotic values 

Wi to the rms-radii of the colliding nuclei~ For the Xi' P 
. i 

1If-
applying to the free separated nuclei were taken. € was 

taken to get as close a resemblance to a two center Woods-Saxon potential as 

pOl3sible (see fig. I ). 

As it is advantageous for certain systematic explorations we have also made caleul-

. ations with the unmodified two center oscillator form of the barrier region. 
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To check the accuracy of the calculation, we have numerically compared both sides 

of eq. (A.10). Using the first fifty oscillator shells we found that the difference 

between the (one dimensional) two center oscillator function and its harmonic 

oscillator expansion for 40Ca + 160 at R = 10 fm never exceeded 10-4 whenever 

th~ function (absolute value) exceeded 10-1 . ~lis holds for the first 13 two 

center oscillator states, with the agreement improving for the lower states. 

Another check was made with respect to the normalization of the full 3-dimensional 

polarized state in the form of an asymptotic expansion, eq. (3] . Including the 

first 40 osCillator shells (N' = 2n' +.t' ~ 39) we found that 

1- L (II) 

40 16 ... 
for single particle states up to E := 50 MeV (fp - shell) in Ga + 0 (rounded 

barrier, E = 0.8). Even this small difference appears to be "real", Le. due 

to the N' - cutoff, as it decreases continuously with decreasingE to below 10-9 

. 40 
for the lSl/2 Ca - state at 16.4 MeV. 

A more sensitive check can be made from the normalization of a polarized state, 

which is expanded .on the basis of the polarizing rather than that of the polarized 

nucleus; the check being more sensitive because the center of the expansion 

states is displaced by R with respect 

component is strong in this case. For 

to the to-be-expanded state. Hence no single 

the lPl/2 -state in 160 e. g., polarized 
40 . 

from a Ca -nucleus at R = 10 fm distance (rounded barrier, E = 0.8), no single 
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I p'f""h A· exceeds 0.14 ",' <' j.' . 
40 when the expansion is made in terms of asymptotic Ca - states. 

And yet we find the -8 normalization to be 1 - 3xlO . 

The accuracy of the calculation can also be checked from the asymptotic behaviour 

ttll(J12. (u..) 40 16 
of the coefficients n . (RJ, eq. \-. .. For Ca + 0 and an unrriodified two center 

~(,., 

d . 
oscillator barrier we find at R = 14 fm, which is "large", 

I -

for 40Ca .;. states with E ~ 41 MeV. (For higher states there is still some polar­

ization present at R = 14 fm, which diminishes the amplitude of the parent state 

to e.g. 1 - 5xlO-5 at E = 50 MeV.) 

In what follows we 
. . .t . .a.. shall give a survey of properties of the polarization coef-

ficients A ~ (R) . 
1L'~'iJ 

40 16 The discussion will mainly focus on the system Ca·+ 0, 

with rather obvious generalizations t06ther systems. 

2~ General Behaviour of Polarization Amplitudes. 

Among the outstanding features of the polarization effect is that it admixes a 
number· 

large 7 of states with appreciable amplitudes. The lf7/2 1/2 -proton state. in 

which is populated in proton transfer to 40Ca, has admixed about 130 

16 states with amplitudes (absolut value) in excess of 0.02 due to a polarizing 0 

41 
Sc ,e.g., 

-nucleus at grazing distance R == 10 fm. 

The polarization amplitudes· show marked systematics. More specifically, the 
l\.(JJl. . 
A . (R) are slowly and smoothly varying .functions of n I and t', which attriin 
l\l('., . 

j 
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a number of extrema in different n't' -regions. This suggests a convenient way 

to, present and discuss the large amount of data characterizing the polarization 

effect. Interpolating between neighbouring values of n' and ,f' we extend the 
'Yl.t·n. 
A I (R) to a continuous range of n' t', and display them in the form of contour 
It'ol'l J 

maps iuthe n'./,' - plane (figs. 2,- 8 ). 

For each single particle state (asymptotic quantum numbers ntjJl.),and each nucleus-

nucleus distance R, there are two such maps; One forthej~ ~ i' + 1/2 -states, 

and one for the j.< ': t' - 1/2 -states. If the polarization coefficients are eval­

uated up to a certain N' ~ 2n' + l', each map is confined to a triangle. It -is 

,convenient to combine both into a single figure, and to choose the scale of the 

.t.' -axis half that of the n' -axis. The second main 'diagonal divides thej' -> 
from the j' - map. Parallels to this diagonal correspond to states of the same 

< 
oscillator shell N' ~2n' + .t', hence the same rms:-radius <T~>:: (N'''''/z)1i.lmc.v. 

The contour maps give a pictorial representation of what a single particle state 

including polarization effects looks like (figs. ;). - 8 ). 

A general understanding of the polarization effect may be obtained from an in-

spection of the polarized wave function in 3-dimensional space. Figs. q -/2 

show contour maps of the probability density "t""t, calculated from eq. (I) . 
,~ 

It is seen that the single particle states are slightly distorted from their 

asymptotic appearance ~ithin the polarized nucleus, and, more important, have 

attained a whole new region of appreciable amplitudes near the center of the 

polarizing nucleus. 
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The smooth and slow variation of the A.'A'Il.'.l as a function of n'.(,' assures a 
J-

coherence of the participating states, eq. (3) in a limited region of space near '. 

the center of the polarizing nucleus. Each extremum region in then't' -plane 

represents a collection of states which interfer with nearly equal amplitudes, 

to give a non-zero wave function in some limited region of space. This, can be 

explicitly seen from fig. 8 which displays the coefficients' for the expansion 

of thelsl / 2 1/2 - state in a 160 - nucleus on the basis of a 40ca - nucleus 

atR = 12 fm distance. 

To further clarify this coherence it is convenient to expand a polarized state, 

which asymptotically belongs to a 40Ca - nucleus, Ol'l eigenstates of the polar-

izing 160 - nucleus. Table 1- shows that the polarization essentially consists 

of admixing a small number of 160 - states with neighbouring single particle 

energies into the 40Ca - states. It is the representation of these components 

on a. 40Ca - basis at a distance R of the order of 10 fm, which requires expansion 
, ",t·.n 

coefficients A~!1j' varying slowly and smoothly with n't', as shown in figs. Q.~S. 

3. Specific Effects. 

1.1 R -dependence. 

The polarization effect decreases, and ultimately vanishes, ,with increasing distance 

R (see eqs. C'tlpO». As a natural measure of the overall strength of the polarization 

'we introduce the total probability accounted for by the admixed states 
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The prime at the sum indicates that (n' e'j') f (n~j). From fig.' 13 it is seen 

that P(R) typically decrec:j.ses by an order of magnitude for an increase in the 

40Ca _ 160 distance by 1 fm. 

In fig. 14- we have depicted a number of polarization amplitudes as a function of 

R. While asymptotically they all approach zero, their radial dependence appears 

to be rather different in the grazing region (around R = 10 fm). Looking at the 

polarized wave function in 3-dimensional space we see (fig. 9 ) that the admixtures 

are localized near the center of the polarizing nucleus. They move with this 

nucleus when R varies. At the same time they decrease with increasing R, while 

preserving their general shape. It is' this interplay of two effects, which makes 

the R-dependence of the A appear complicated, which in fact it is not. 

i'JZ. 
Firstly, upon letting R increase all contours of A"tl J CR) in the, 'n' e' - plune 

w('i 
move outward, towards greater n' {, (see fig. _d. and table 3 ). This merely 

reflects the fact that states with larger rms - radius <-r"l)NJ-vN' are needed' to 

represent the-admixtures near the center of the polarizing nucleus when the latter 

moves away. Secondly, all coefficients in an extremum region decrease in a 

similar fashion when R increases, so that the shape of tbe polarization contour 

map and of the interference pattern in space persist. This property suggests 

useful approximations for practical applications (reaction calculations), so that 

we will explore it in some detail. 

Accounting explicitly for the R - dependent shift in extrema. locations we pOGtul:-

ate an R - dependence of the polarization amplitudes which is independent of the 
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admixed states. Labelling the latter with n.l.j. 
.. . ~ ~ ~ 

instead of n't'j' we write 

"'(JJl. (R "'" "p'Y\~J.n. . '\'l(j,J2. (R ) . 
A J... ) -.J -,.~ (R1ATl'IR).f:(~9.(RJ 

1\~'\.,4\ . ''0 .,,~, 

We adopt the convention, once and for all, to take R = 10 fm as a reference, o 

and will henceforth drop it notationally. 

We shall now show that eq. (Itt) , to a good approximation, indeed gives a consistent 

represent~tion of. the R - dependence. { may be determined from normalization 

arguments, in the following way. Introducing the abbreviation 

we have, usirig eq. 04-) 

I..' A.(R12. . , 
1. 

= I 

so that 

= 

= 

== Ao(RJ'l. +. {(~)'t ~' Ai(R=IO~)2. 

. 1- AoCR1'L 
1- AoU01'l. 

= 

1. 

-pllejJ2CR) 

'P"ll~l.n.. (10) 

(Is) 

.. 
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Table 3 

0 0 ;j a ..:j 5 0 f.~ 7 9 9 

I~-' 

. '{'/z. ~2. 
gives as an example values of { (~1 

. . 

.'. 40 16 
for the system . Ca+ 0; 

In order to check the hypothesis of "persistent shape" of the polarization contour 

niap, which we have formulated in eq. (lit) ,we may directly calculate -t from eq. 

0'+) , comparing "corresponding" polarization amplitudes at different1 R. "Cor-

responding" amplitudes may be found at "corresponding".extrema. We have listed 

. the pertinent quantities in table 3 . It is seen that the ratios of A's for 

different extrema are fairly close. Part of the,deviations may be attributed to 

the fact that the 
.~~ 0 A . are confined to integral values of ni~i' which may 
~ . .t. i.. 

, l~~ 

coincide more or less closely with extrema in a continuous map. 

The {(R) as determined from amplitudes at extrema compares well with that cal­

culated from eq. 01) . It is seen, however, that for R < 10 (reference distance) 

eq. (11) underestimates and for R > 10 overestimates amplitudes at extrema. This 

can be understood from the fact that with increasingR in general all structures 

in the polarization contour map become somewhat wider, i.e. the number of states 

contained within corresponding contours increases slightly. This effect is neg­

lected in eq.(I"t) .We conclude that, with this approximation, eqs. (itt) (11) 

* give a consistent description of the radial dependence of the polarization. 

3.2 J2.. - dependence. 

Polarization effects generally are largest for \.Jl1 = 1/2 and decrease fast with 

\ 
~. ' 

increasing ..11\. In a typical situation (lf7/2 - state .around a Ca - core, 

160 at grazing distance R = 10 fm) the polarization decreases by roughly an order 

of magnitude if t1l1 increases by 1 (see fig. '3 ). 

* Because of the schematic form of the barrier in our two center model (see ,fig. 1), 
and because of the neglect of Coulomb effects, the R-dependence of the polarization 
as determined in this work is probably not realistic. 
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This feature is of purely geometric brigin and can "be understood from the first 

order perturbation expression, eq. (to}. The polarizing potential VR is centered 

c¥. 40 
on the z-axis, 1. e. around 'Il = 0 as seen from the Ca -nucleus. For m 1= 0 

Y.(.:m is proportional to (1 - cos
2
,u)m/2. Only for (.fl.1 = 1/2 does an angular· 

function Ye:m. with m = 0, which is non-zero on the z-axis,· appear in the matrix 

element of eq. (10) • Fora given .e. the region around ,;r = 0 in which ~ 1111-1 is 

small increases with Illi . The asymptotic state reaches the perturbing potential 

bnly at small R, at which part of the perturbing potential is seen under a large 

angle 1r~ 

It is suggested that for quasielastic reactions the polarization effect need only 

be taken into account for the\JlI =1/2 -components. 

3.3 E - dependence. 

From the perturbation expression eq. (10) it is also clear that polar:i,zation effects 

generally will increase with increasing excitation energy of the single particle 

states i~volved, because for higher lying states the tails of the asymptotic 

wave function reach further out. 

In fig. IS we have depicted the polarization as a functiion of the single particle 

energy. It is seen that it increases roughly by an order of magnitude in going 

to the next major shell. Superimposed on this general trend are resonance effects. 

When the energy difference between single particle states in the cOllidirig nuclei 

is small, these states are mutually strongly polarized. In fact, from table 2. 

it is seen that the polarization essentially consists in admixing a ·few states 
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of the polarizing nucleus which have neighbouring energies. 

This behaviour is somewhat reminiscent of the resonance mechanism which occurs 
15 

in elastic. scattering involving identical cores. The latter may be considered 

asa particular case of very strong polarization. Single particle states in a· 

symmetrical two center potential have equal amplitudes in both nuclei (except 

possibly for the sign). They are not concentrated in one nucleus even asymptotically. 

The connection between resonance exchange and the polarization effect in general 

deserves further study in the futUre. 

The above stated resonance behaviour suggests favorable conditions to observe 

polarization effects experimentally (Le. to observe discrepancies between DWBA 

and experimental angular distributions for transfer reactions, which can not be 

attributed to two step transfer via strong inelastic states). For simplicity 

consider a one neutron transfer reaction 

A(a,b)B ; a = b + 1 . , B A + 1 

In a particle .. core picture, neglecting rearrangement effects, (mutual) resonance 

polarization will occur for statesla) 

if the single. particle separation energies fulfill Ea ~ ~. 
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3.4 Energy Shifts. 

Apart from changing single particle wave functions the polarization also makes 

the single particle energies dependent upon the nucleus-nucleus distance. The 

energy shift, 

(/8) 
has to be accounted for by the relative motion energy. It acts as an addition 

to the optical potential 1J"(R) t" 1.JlR) , which governs the relative motion. 

- 16 _ --
Figure 16 shows that the energy shifts induced by a 0 .. nucleus are small -

( rv 100 keY) and probably negligible for low lying unoccupied proton states 

in 40ca, which might-be populated through proton transfer from 160 • 

In the case of two identical cores even small energy shifts are not negligible, 
15 

because they give rise to a peculiar interference effect (resonance exchange). 
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v. Conclusion. 

For collision energies not too high above the Coulomb barrier,polarization of 

41Sc -states, which are populated in the proton transfer reaction 40Ca(160,15N)41Sc, 

will be strong (20 % and more) •. Calculations of angular distributions for this 

reaction, using polarized single particle states, are under way. 

. 16 . ( at The polarization of states in 0, on the other hand, is found to be weak rvl p 

or less), due to the strong binding of the closed shells. Calculations for other 

systems (ihcluding 64Ni + 160 , 208pb + 160 ), which are not presented here, indi-

. cate that in grazing collisions 160 - states generally are weakly polarized 

(.,vl % or less), whereas states populated in transfer to the heavy nucleus are 

strongly polarized (- 20 % and more). 

potential 
We find that the polarization is sensitive to the shape of the/bar:der between 

the nuclei. Therefore, calculations with realistic two center models (WoodS-

Saxon or self-consistent) are desirable. Such calculations, taking into account 

also Coulomb effects, are in progress?-o. 
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Appendix A: One -and two. - center Oscillator. 

Consider a one - dimensional harmonic oscillator, centered at z~ 

v" (~) :: (A.I) 

A = 1,2 specifies the nucleus to which the potential corresponds. 

For our purposes it is convenient to write eigenstates of the potential eq. (A.l) 

in terms of parabolic cylinder functions rather than in terms of the more customary 
16 

Hermite polyno~ials. 

~ M~' U(-n-i) XA) 'P..(:C1 = 
'T1. 

'). 

where 

(~J~~n!' M) :; 

~) = . -m. ~').I ft. 

X) - i2IA) (t -1;») 

A one - dimensional two center oscillator potential may be written as 

m 
= - . 

:t 

(A.2) 

(A.3Q) 

\A.3fr) 

(A. 3c) . 



0" 

-25-

where 

to assure continuity. 

Eigenstates of the potential eq. (A. 4) may also be expressed in terms of parabolic 

6 
cylinder functions. 

(A.S) 

where (A. Sa.) 
The quantum nUmbers nz and the normalization N6'" have to be calculated numerically. 

~ " 

For reference purposes we also give the eigenstates Inz,m) of the 3 -dimensional 

two center oscillator with potential energy 

We have 6 

where ~ (~) is given by eq. (A.5) and 
In:t 

= 2~! __ 
( -n.$+\m.I)~ 

" H, 0' €;" 1 

(A.b) 

(A.l) 

(A. ~) 
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, l?'ll. 
The L-

"! 
is a generalized Laguerre polynomial, as defined in ref. 16 . The phase 

factor in ~ is chosen for convenience. 
ft\ 

Eigenstates of the 3 ':'·dimensional spherically symmetric harmonic oscillator in 

a cylindrical basis may also be written in the form eq. (A.7) except that ~ 
Hl~ 

is to be replaced wIth a harmonic oscillator function, eq. (A~2). 

The two.centeroscillatorfunction eq. (A.5) may be expanded in terms of a COIn",: 

plete set of harmonic oscillator states 

(A. 10) 
where ;\.= 1 or 2, depending upon whether one wants to expand after states of nucleus 

1 or2. 

Introducing 

fJ- - \A.II ) 
we have 

00 

= f d.. i. ce"Ctt;) ~ (1:1 
_ cD l'\,.l\.'t 

lA.12) 

-. 
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where 

(A.13) 9). = (_)f- i1fi~' ~). (A It'") = (I \;n )('~.I) 

(A. 12 ) 
. .. 

The first term in eq. is an analytical expression for that :part of the. 

overlap integral in which the parabolic cylinder functions of two center - and 
6 . 

harmonic -oscillator states depend upon the same argument. The second integral 

must be evaluated numerically. 

Apperidix B: Angular Momentum Eigenstates in a: Cylindrical B~ 

We start from eigenstates of the spherically symmetric harmonic oscillator, 

written in a cylindrical basis as J n n m). Eigenstates of e2., written as . $ ~ 

= (B.O 
may be formed as a lin.ear combination of states with the same phonon number 

N) :. :: (13.2) 
Requiring the state eq. (B.l) to in fact be an eigenstate of e1 gives the 

"" 
* following eigenvalue equation. 

" 
L It N' .. ",) [ (i' ~ ",-WI n "Yis m) n,f· . '" 

~"t llsJ (BJ) - -t{ .e ({+ I) ~I'\'A :: 0 'Ytl'l 

where 

n' + 2n; + Iwd = ~ +2-n.r + hn./ 

if- The author·is indebted to Dr. P. Lichtner who, after completion of this work, brought 
.to his attention a papi,r by J.D. Talman.~3 Talman derives an analytical expression 
for the coef1'iciellts Cl,(N',m), which could be used instead of going through the 
eigenvalue problem eq. (B.3). 



-28-

The solution of eq. (B.3) involves, for each phonon numberN' and each f:. -projection 
,,2. . 

m separately, diagonalization of the matrix of ~ in a cylindrical basis. 

The matrix elements of {1. are computed from the formulas given in ref. Lt- in a 

straightfonvard way. Introducing 

(E. S) 
we find 

( ".)N) )le2.J'" N > n S l'Yt"" )t .~'Wl . 

:: h, 26" m 1 m r ~( NS2. - YVt 1) ( It + I) (-n.+ 2 f 6..). d" 1 . A LWt' Nfl ll-I n+/ 

+ (l n ( N! + I) + ~ + m 2.) d N 1 N_ d,,, '" 
. ~ -l' It'Yl. 

+ (N~l.-m~)(1t)+I)(n+l) d~+1 ~_Is-~'I ~J 

... 
1l 

Some care must be exercised in adjusting the phases of the C(, • The radial part 

of the spherical states 

is taken to be positive at large r, 1.e. 



o 0 

- l'l -

:: .\]3.80.) 

For the '1(1"frl the usual phase convention is adopted, see e. g. ref. 13. 

The proper phase of the linear combination eg. (B.l) may be ensured by cO,nsiderihg 

both the region of large rand .;]" ~ 0, and, egui valently,. the region of large z 

From the explicit form of the spherical harmonics it is easily seen that 

im(lJ 
(discarding the e T - part) 

= 

From egs; (A~2,8) we h~ve 

= +1 for large z 

for small ~ 

(]3. 9) 

\E.lOQ) 

(lL lot-) 

The important point to appreciate is that the large -z - region is always domin­

ated by the largest ~ contributing to an .e'J.. -' eigenstate in eg. (B. 1) . Taking ,... 

into account the phase of the <f - part, eg. (A.9), it follows that the phases 
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,. 
Yl 

of the eigenvectors of eq. (B.3) must be taken such that the C{,(N' ,m) with the 

largest n for any N' ,m,!' is Eositive. 

The advantage of taking the ~-frequencY"'5 of the basis states equal to the 

z·- frequency (.)1 or (.\)2' depending upon whether we want to expand after asymptotic 

states of nucleus 1 or nucleus 2, is now apparent. Had we chosen ~! differently, 

e.g. Wf=(CJ,'t~)(l (which is somewhat preferable from the point of view of diag-
. 6 .. . 

onalizing the TCSM-Hamiltonian), we would not have the simple selection rule eq. 

(B.2) for the states appearing in eq. (B.l). Hence all oscillator shells would 

appear simultaneously in the eigenvalue problem eq. (B.3), instead 6fjust one 

at a time. Also, the matrix elements of .e'l., eq. (B.6); would be much more ,., 

complicated. 
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Calculation evaluated remarks time I~ quantities (sec) C) I-' 
"" 

!;. 

,-.... (') 
~~, 

.J:'" 0 

( i) two center oscillator basis n~(R) 100 two center oscillator 8 (')0 ,§ lr c I 

states and diagonalization <:~(Tn basis states (E~92.5 MeV) P' ~ 
c+ e' of TCSM + III 

I 
;-

c+ 

~ ....," 
W 0 Er-c 

° ::1 -" 
P' 0 t CO 

~: 
c+ t-!, 

( ii) expansion of z - part of 13 two center oscillator 60* III III 
two center oscillator state~ l\. states; 40 harmonic oscil~ (JQ c+ a 
after harmonic oscillator lator states >oj ~ III Vl 
states Gaussian quadrature N ....," 

...... () 

::1 III 
(JQ I-' 

a. () .. ...... III 

'" 1 ) 
til til 

(iii) angular momentum eigenstates c
l

,(N}1n. c 

Nt = 0, ... , 39 10 c+ ro 
III . 

in a cylindrical basis ill == 0, ...• , 6 ::1 
\.I - ro 
:::0 

1l~ • .tt II 

(iv) asymptotic expansion A c'J CR.) 40 single particle states 16 I-' 

° c ~~).) (E ~ 58 MeV} t-!, J 2n' + -l' ~c 39 s ......... 

. ~ 
* Includes numerical evaluation of both Sides of eq. (A.10) for - 20~~ z ~ 201i.n steps 

of 0.5t-. as a check of numerical accuracy • 

. "-----_ ... _-- ---~-. --------------

~ -------
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Table 2: Polarization of 40ca - states due .to 160 at grazing distance R 10 fm. 

40
Ca - states 16

0 - states 

n.t j ld5/ 2 2sl /2 ld3/ 2 lf7/2 2P3/2 
pfl~d- LA2 

Entj (NIl.'J) (IO;'~ J 43·43 45.51 48.63 55·39 . 57.47 i 
(10-1 ) 

ld 3/ 2 4.4 -0.21 -0.09 0.04 5·4 

40·76 

lf7/2 20.1 ·0.11 0.27 0·39 0.06 24.1 

46.43 

2P3/2 41.4 0.11 0.64 0.07 42·7 

48.17 

2Pl / 2 8.7 0.09 -0.22 -0.17 8.5 

50·79 

If5/ 2 · 12·7 0.02 -0·32 -0.15 12·5 

52·53 

The first column lists asymptotic quantum numbers and energies of 40Ca ;. states for 

the oscillator shell model. The second colulJUl shows the polarization of the ..n. = 1/2 

components of these states (rounded barrier, ~ =0.8). The amplitudes of strong 

160 - components of the polarized states are given. in the next five columna. The last 

colulJUl shows the combined probability of the strong 160 - components. Resonance 

effects are clearly visible, especially for the lf7/2 - and 2P3
/ 2 -stateS. 

, 



Extrema of AI17hY~(R) . , , 1\.'.(' f . , 
If"kYt, d-> J.< ~~)J 1 CR) t- C" 

p 

" AcID) , ~ " R 2. 3. 5., 6. 
~ (fm) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) 

" 

8 (1,6) 1.67 (2,7) 1. 81 1.74 1.51 

9 (4,1) 1.24 (7,2) 1.25 (1,8) 1.31 (2,9) 1.40 1.30 1.28 

10 (4,1)1.00 (8,3) 1.00 (2,9) 1. 00 (3,2) 1.00 (9,2) 1.00 (3,9) 1.00 1.00 1.00 

11 (5,1) 0.65 (10,4) 0.64 (3,10) 0.62 (4,3) 0.61 (11,3) 0.70 (4,10) 0.59 0.63 0.64 

12 (6,1) 0.27 (12,4) 0.26 (4,11) 0.24 (5,3) 0.25 (12,3) 0.29 (5,11) 0.23 0.26 0.27 

13 (7,2) 0.077 (14,4) 0.072 (6,11)0.066 (6,3) 0.070 (14,4) 0.084 (6,12) 0.063 0.072 0.082 

14 (8,2) 0.018 (16,4) 0.016' (7,12) 0.015 (7,4) 0.016 (16,4) 0.019 (8,12) 0.014 0.016 0.020 

The calculation is for the 1f7/2 1/2 -proton stat~' in 40ca, p()larized from 160 ; the barrier was 

chosen of two center oscillator form. Columns (a) list the locations (n' ,f') of the six different 

extrema appearing in the polarization contour map (ch. IV.2). Columns (b) give, for each of the 
I ,.""I,l. 

extrema, the value of the polarization amplitude A~ft-' , divided by its value for the same 
_ , ' ' I, ..p'f11"Yt., 

extremum at R = 10 fm distance. Averages for this quantity and, the function ,. (R) afj calculated 

from eq. (17) are also listed. ' 
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Figure Captions. 

Fig. 1: Two Center Potentials for 40Ca + 160 at grazing distance R = 10 fm. 

The potentials are shown along the z-axis. 

Curve "a" is a two center Woods-Saxon potential, formed by adding Woods-Saxon 

potentials for the individual nuclei. The potential parameters were fitted to 

yield the proper binding for the If
7
/ 2- and IPI/2- proton 

/1J18 
- 12.11 MeV. (rO = 1.2 fm; which ate at _ 1.087 MeV and 

= - 57.72 MeV; V 6' 
1 0 

= - 60. 35 MeV) .ICf 

states, respectively, 

a = 0.65fm; 

·Curve "b" is a two center oscillator potential, with frequency parameters ad­

justed to the rms - radii 2 (40ca : 11."" = 10.90 MeV ~ l<"'~)' = 3.38 fm;20 

16 +.' ;I' ,( /. ,....,. , 21 
0: 'lW = 13.00 MeV = ",1' / = 2.68fm). 

The levels (full lines) are for the oscillator shell model (spin-orbit parameter 
~ . j~ 

;c.. = 0.08; !: -force parameter p = 0 for both nuclei). Dashed lines indicate 

experimental level positions. The zero of the two center oscillator has been 

40 
adjusted such that the If7/2 - proton state around the Ca - core appears at 

the experimental position. The relative position of the IPI/2. - proton level in 

160 is reproduced well. 

Curve "c" is the same as "b", except that the two center oscillator barrier has 

been rounded off. The barrier parameter . E. = , o. 8 was chosen so that the barrier 

seen by the If
7
/ 2 - proton state around the 40Ca - core would be close to the more 

realistic two center Woods-Saxon barrier, curve "a". It is seen that the rouriding off 
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slight 
also produces a/distortion of the potential away from oscillator form near the 

centers of the nuclei. This distortion changes with distanceR. Hence,for quan-

titieswhich we want to study as a function of R, we have alSo made calculations 

without the rounding off. 

All calculations for 40Ca + 160 have been made with the frequency, t~ -and 

-parameters as-given above. 

Fig. 2: Polarization of the If7/2 1/2 -proton state in 40Ca , due to 160. 

Amplitudes for polarization by a 160 - nucleus, calculated from eqs. (8), are 

displayed as contour maps. Also shown.are amplitudes at extrema and for some 

strong states, notably the asymptotic state lf7/2 1/2 (~ n' = 0,.(1 = 3, jl 

-2 

j 1 ). ,. 
Units along the contours for this and the following maps are 10 . The barrier 

was chosen to be the unmodified two center oscillator (i.e. ~ = 1, ~usp in the 

potential; see fig. 1). It is seen that the amplitude of the asymptotic state 

decreases as R decreases, while the amplitudes of admixed states increase. It is 

also .evident that upon letting R become smaller the general shape of th.e contours 

persist, while all structures move towards smaller n 1 , .e 1 (compare· also table 3). 

Fig. 3: 
. . . 40 ... ~ 

Polarization of the lf7/2 1/2 -proton state 1n. Ca, due to 0 

at grazing· distance .. 

A contour map of polarization amplitudes is shown ·for a "realistic" choice of the 

barrier region ( Eo = 0.8, !.ounded; see fig. 1) at grEizing distance R = lOfm. 
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The amplitudes are similar to those for the two center oscillator at R = 10 fm; 

see last map of fig. 2. 

Fig. 4: . Polarization of the lf7/2 3/2 -proton state in 40Ca due to 160 

at grazing distance. 

The same as fig. 3, but for the J2. = 3/2- component. Comparing amplitudes along 

contour lines it is seen that. the polarization is much weaker than for ..n. = 1/2. 

The rather strong admixture of the 2P3
/2 3/2 -state (amplitude - 0.1756) is due to 

40 
the distortion of the potential near the center of the Ca - nucleus, because 

of the rounding off of the 'barrier (compare curves "b"and"c" of fig. 1). It does 

2 2 
. not reflect a polarization effect. The actual polarization is 1 - 0.9736 - 0.1756 

= 2.13 % (generalizing eq. (13) ), compared to 20.1 % for the .n.. = 1/2 - compo­

nent (see table 2). 

Fig. 5: Polarization of the 2P
3
/2 1/2 -proton state 

40 . 16 
in Ca due to 0 

at grazing distance .. 

The . same as fig. 3, but for the 2P3
/2 1/2 - state. 

Fig. 6: Polarization of ~he lPl/2 1/2 -proton state in 160 due to 40Ca 

at e;razin~ distance. 

. 
The same as fig. 3, but for the lPl/2 1/2 -proton state in 160 , polarized 

',' , 

from 

40 
10 fm distance. The expansion (3) was made here on tha basis of Cn at R = eq. 



o Q o o 8 

-37-

as,ymptotic 160 ~ states. All amplitudes were multiplied with (- )t', to eliminate 

the alternation in sign which occurs because the admixtures here are in the negative 

16 "( ) z - region, as seen from the 0 - nucleus compare fig. 1. Due to the strong 

b1 d · f th 1 t t . 160 h' h . d d 11 i 'd I' ( f' n lng 0 e Pl/2 - s a e ln ,w lC lS repro uce we n our mo e c. 

fig. 1), the polarization is weak, namely 1 - 0.9943
2 

= 1.14 ro. In proton transfer 

reactions, 40Ca(160,15N)41Sc the polarization in the entrance channel will therefore 

be negligible compared to that in the exit channel (see also fig. 15). 

Fig. 7: 
'16 40 

IPI/2 1/2 -proton state in ,0 on a Ca - basis at grazing distance. 

The state shown here is identical to t,hat of fig. 6. Th'e difference being that the 

expansion eg.(3) here is made on the basis of asymptotic 40Ca - states, 10 fm 

away fro.n where the state is centered. The accuracy of ,the calculation maybe seen 

from the fact that the normalization (cf. eg. (11) ) turns out to be 1 - 3X10-8, 

2 
although no single state contributes more than 0.14 = 0.0196. 

Fig. 8: 16 40 . 
151/ 2 1/2 -proton state in 0 on a Ca - basls at- R 12 fm distance. 

16 
At R = 12 fm the polarization of the deep lying lSl/2 - state in 0 is very 

weak, namely 0.12 ro. The contour lines show what an essentially undisturbed 181/ 2 

state in 160 looks like when expanded on the basis of 4bCa - states centered at 

R = 12 fm distance. We find the normalization to be 1 - 7XIO-7 , with no single 

2 state contribu'ting more than 0.1229 = 0.015. The missing probability is probably 

"real", Le. due to the cutoff for N' = 2n' +~, "39, rather than to numerica.l 

inn ccuruc ie s . 
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Fig. 9: 40 
Probability density of lf7/2 1/2 -proton state in Ca, polarized 

16 from 0 at various distances. 

Shown are contour maps for \"tif11'1.
"
",I2., calculated from eq. (1) for simplicity 

rather than from eq. (3). The barrier was chosen to be that of tlb.etwo center 

oscillator, to avoid the R - dependent potential distortions from the roundiilg 

off. The state at R = 16 fm is equal to the asymptotic state within line thickness. 

WhenR decreases probability around the center of the polarizing 160 - nucleus 

builds up, the shape of ,which persists when R varies. At the same time the state 

40 gets weaker hear the Ca - center. For R = 10 fman appreciable distortion near 

the 40ca - center is apparent. The last three maps depict the same state as fig. 2. 

Figs. 10 - 12: Probability densities of polarized states. 

Probability densities of lf7/2 1/2-' lf7/2 3/2-' and 2P3/ 2 1/2- proto~ states in 

40 '. 160 (. co 8 Ca, polarized from at grazing distance R = 10 fm realistic barrier: c. = o. , 

!.ounded). The states are the same as those for which polarization amplitudes 

are shown in figs. 3 .., 5. For comparison 'We have also given contour maps for the 
16 

states at R = 14 fm distance of the 0 - nucleus, at which the polarization is 

very weak (it is visible as a slight distortion of the outermostconto\.l.r line, 

corresponding to '1.'. -5 l'lfi = 10 ,for the 2P3
/2 1/2 - state). The admixtures for the 

1f7/2 3/2 - state are mUch weaker than those for the lf7/2 1/2 - state, because 

the former is localized off the z-axis and hence misses the polarizing 160 -

nucleus. 
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Fig. 13: Polarization of various proton states in 40ca , as .afunction of· the 

d i t f th 1 · i 160 . ·1 .s ance 0 e po ar~z ng -nuc eus. 

Polarization strengths as calculated from eq. (13) are shown for a number of 40Ca 

·proton states. The barrier was chosen to be of two center oscillator form, to 

avoid effects from potential distortion due to rounding off (seecaptio~ to figs. 

1, 4). It is seen that the polarization decreases fast with increasingR, with 

111, ". tel, ... 'I 2&,,&11.. ,., increasing binding (f Ion. > f ... z. > f , .. ), and with increasing .. u_ 

(f'Pl1. I/c. > 'P'~'7ltlh > 'P1{7(tS'h), 

Fig. 14: Various polarization 
40 

amplitudes for thelf
7

/ 2 1/2 -proton state in Ca, 
. . . 16 . 

as a function of the distance of the polarizing 0 -nucleus. 

A selection of amplitudes showing different radial dependence (part of them may 

be read off from fig. 2). The barrier was chosen to be of two center oscillator 

form, for the same reason as in fig. 13. 

Fig. 15: Dependence of Polarization on Single Particle Energy. 

Polarization strengths as calculated from eq. (13) are shown for sipgle particle 

proton states in 40Ca and 160 up to E = 52.5 MeV. The barrier was chosen "realistic" 

( £. = 0.8, !.ounded ), with 40Ca and 160 at grazing distance R = 10 fm. The polar-

ization increases by roughly an order of magnitude in going to the next major shell. 

, . . . 40 . 16 
The energy dependence follows the same pattern ~n Ca (polarized from 0) as it 
. . 16· , 40 .. 
does in ° (polarized from Ca). Resonance effects for the mutual polarization 

~ ~ .' 

of the 2s l /2 - and ld
3
/ 2 - 0 - states and the If7/2 - and 2P3

/2 - Ca - states· 
I 

are clearly visible (compare also table 2). 
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Fig~ 16: Poiarization Effects on Single Particle Energies ,in thesystem 40ca+ 160• 

Single particle energies for a number of 160 - and 40ca - proton states are sh'own 

as a function of distance R. The barrier was chosen to be of two, center oscillator, 

form, for the saine reason as in figs. 13, 14. The crosses at R := 10 fm ind·icate 

single particle energies for a "realistic" barrier ( ~ = 0.8, E.0unded). They are 

seen to be pushed up by roughly 1 MeV, because of the distortion of the potential 

due to the rounding off (compare curves "b" and "c" in fig. 1). 



. ". 

-> 
Q) 

20 

o 

~ -20 

w 

-40 

~60 

-10 

o 0 o 

~·41 -

-5 o 5 10 15 20 
R( fm} 

XBL 7673183 
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