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- éalédlafions for»thé system

Abstract.

In "slow" nucleus-nucleus collisions the single particle states will adjust.con-

tinuousiy to an instantaneous two cehter potential; Transfer reactions will,occur'__

.'between'polarized rather than between asymptotic states.

In order to employ two center states in reaction calCulétions,'an expansion in .

terms of asymptotic states with good angulér momentum is required.'This éxpansionv

”1.iS'formuléted; and equations for the expansion coefficients afe derived. Model

l+OCa + 160 indicate that the polarization of unoccupied

' pfotén states. in ll'OCa is strong, while it isvvervaeak for the tightly bdund
'lp1/2'¥ proton in l-60. Ihe dependénce of the polarization effectvonvseVéral rele-

~ vant parameters is discussed.



I. Introduction.

Two center shell.models; using either pre-given or'self-conSistent (constrained.
Hartree-Fock) potentials, have been applled to problems of nuclear fission ‘and
'nucleus-nucleus colllslons for qulte some tlme.'-_—lo More spec1fically, these
models haue:been used for the microscopic calculation of total energies’ of
nuclear configurations, which depend upon a number ofvcollective geonetrical
parameters'(such as shane, fragmentation, length or nucleus-nucleus separation).
The resulting potential energy surfaces (PES)-were taken as potentlalsfgoverning

. collective.modes of motion,fsuch as the elongation and'necking:in~of a‘fissioning‘

nucleus, or the relative motion of two colliding nuclei. SR

Underlyiné‘these models is an adiabatic picture, witn the single_particle notion-"

' considered:to te fast compared to the collective motion. If this.ls to_be taken
seriously, and consistently, tnen notvonly the single particle energies would

adjust‘to tne collective_motion; Also, single particle wave functions should be

Vtaken to depend upon;collective-variables’as parameters; E.g. in nucleus~nucleus
colllsions the internal motion should not be described'With"the asymptotic states_

of the free separated nu“lel. If an adlabatlc picture applies, all ‘single particle

states would adJust contlnuously to the approachlng shell model potential -
' vof the other nucleusq.At any nucleus nucleus distance the nucleons would occupy .
:instantaneous two center states;ratner than asynptotic states.'Rearrangement
reactlons w1ll occur between 1nstantaneous polarized (two center) single partlclc
states, with form factors presumably rather dlfferent than for . asymptotic utates

henomenological
e]dcs"rlptlon of elastlc scatterlng is not affected of course, because all
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.interdei.degfees‘of freedom<cad'be inteéreted_outt
_;In en actual scéttering exﬁeriment ‘the bolarization of éingle pefticle“stetes'v
»4 w1ll be less than predlcted for the adlabatlc llmit It depends upon. the'
'ratio of trans1t time to nuclear perlod ~which can be estimated as EFermi (E/A))l/z.
d For EFerml 30 MeV and the COlllSlOn energy per projectile nucleon E/A typically
1‘of the ofder Qf 5 MeV,-this ratio will be -Vgﬂ, which is large _but not very large
'eompered to'l.‘ " : Qualitati#ely; we expeet that the polariiatiOnbeffect |
Cwill increase both the idteractioﬁ radiusﬂand the diffusehess of the~1nteraction
-region. ThlS effect w1ll become stronger with 1ncrea31ng excitation of the part-

'1c1pat1ng states. It w1ll shlft grazing peaks in transfer angular distributions

forward, and will enhance transfer at forward»angles. L

vExperimental evideﬁce for this, and actual:teaction caieulatiods employing'pqlar— E
-~ized eingie,particle etates; are 'reported'elseﬁhere!'In'this'paper we shdll”>

discuss the technique through which parameter dependent channei fudétiohs, -
.dcalculated within the two center shell model, mayvbe'employed in reaction caleul— :
.atiensﬂ The eseential:step-is td expand tWobeenter states in terme of dsymptotie,f-'
'_states of free~ndelei."Formdlas'for the coefficients of the"asymptotic eipaneion'
Ere.gived in ch{_IIi. We also present eOme model ealéulations.énd diSCﬁée»system—'
datiee'ef the:poléritetiOn_effect. ‘
-.Although our method is generally appllcable to any two center models, 1ncluding
_self con51stent ones, - the actual dlscus31on w1ll be based on the model as

»_developped by Maruhn and Grelner.6



II}‘Ehé Model;
We use tﬁe.asymmetfic‘two center shell model (TCSM) in-thé forﬁ-as developped..
by_Maruhn and Gréinef. For the‘defiﬁitioh of the Hamiltonian ana the calcul-
bétion:of'the eigenstatéé_we réfer the‘réader to their papér._The-botential is
a modified asminetric two:cent_er ‘oscillator, including the uéué.i &s arkldv. | gz..
forces. To avoid the-unphyéiéal sharp éusp appearing in the two éenter oééillétor,
fhe potential between the centers is represéntéd'by a polynomial 6f fourfh degreeal
" The height of the potential barfier betweepvthe nuclei may be choéeﬁ freely..
While{frbm.a physical:poiht of view it would be preferable to use a ﬁﬁp-ceﬁtér
Woods-Saxon potential, the Maruhn/Greiner model hés the édvanﬁage thaf all pot-
entiél MatriX'eiemeﬁts can be evaluated énalytiéally.in avsuitably-chosen'basis
(see below). Aléo, the shape of the ba;rier region can be made‘to'quitevcldéely 
,resembie that 6f a two center Woods-Saxon potential (see fig. [
The TCSM—éigenstates_are obtéined‘by numericallyvdiagonalizihg thé two center
Hamiltonian on the bésis Qf_the'eigenstates ofrthe.twovcenter.éscillator._Thé
'only'iﬂtegrais éf motion.are energy E‘and, fof collisionénof sphericai.nﬁclei;
projectioﬁAil‘bf the‘angular momenﬁum oﬁ.thé_z—éxis (intrihsicvsymmetfj.aﬁis)q
The_TCSM-states may be eéither specified'with the quantum numbers E and jl;.or
with the (asyﬁptotic) quéﬁtum numbers hfjjl of-eigensfates éf the spherical
'harmonic.:v oscillator inciud_in'g gs-force, ‘which.they apprda‘ch és .t'_he' two center o

separation parameter R ->oo.



Thus we have two center 'single particle states in the form (.ﬂ. > O)

Y E;M_m |

=2 | 1;‘2} (®) |nt“g 'Q 1>7(.L ¥ Q’ "\S(R) lnins,ml)x 1 (’)

AN

.nhere ve have intrOducedvan cbvious notation forispin-up and*sPinfdown.compcnents,
)gu is a spin function. The Inzngm> are_eigenstateseof‘the tﬁo centerVQSCillatcr r
.‘(see appendix A).

,It is not obv1ous how single partlcle states of the form eq. (l) should be uued

in the calculatlon of rearrangement reactions. They depend upon the nucleus—nucleus
vdlstance as,a parameter, thereby abandoning the rigorous separation of.internal
:~and relative motion. Additidnal kinetic energy terme would arise from the para-
metrlc dependence However, the rarlatlon of the state eq. (1) as a function of R
fw1ll be small in the region where qua31elastlc reactions proceed, so that for :
these the addltlonal klnetlc terms may well be negllglble in comparison with
the_kinetlc terms from the radlal motlon.proper:/A more basic difficulty.concerns
“the connection between the TCSM separation_parameter R and a relative mction_
.‘ccordinate‘for'the nucleué—nuclens:system.-Thé usual'description.of'relative :'
"motion employs the vector r‘ connecting the mass centers of a particular (arbitrary'

A

" but fixed) partltlon c( = ( ,B ) of the A= A + B«t nucleon system, ‘Q = %-‘A‘: /A
'-Z:T'/B Strlctly speaklng, it should not be the length L of this vector -
\68‘ .



: upon whieh the pblerltatiqn of single_particle etates~ehould-be»ceneidered>tov_;
depend;.If tuo‘nuclei'cduld be placed next to each other at e.é; a-aistence
typical of grazing chliSions,,all siﬁgle_particle statesfweuld be‘polafized in
a certain way. The fauli principle would requifeiall partitlonsfte te present,:
not‘just the ‘one distinguished iu the definitioﬁ of r, . Each partition Weuld
correspond to a different value of r, for a fixed hucleus—nueleus ebnfiguration.
The eepefation'parameter R;,which determines the radial depenaence ef'the polar-

:izatiou in our model; should rather be couneeted'with a symmetfical.distanee ’
cqerdinate,:whieh'is'ihvariant with reSpeet to'nucleen pemmutatibns and depends‘

only upon the geometry of the nucleus-nueleus system.

A deocrlptlon of nucleus- nucleus collls1ons in terms of symmetrical relative
motion coordlnates, 1nclud1ng Euler angles for the relatlve angular motion, has
- been formulated in ref. 12 . However, a solutlon to the equatlons of motion which

~would ‘allow actual,reactlon calculations has not yet .been accompllshed;

' For the time being one may use reaction theories such as the DWBA or coupled -

- .channel fofmalisms; and identify Re¢r, in the spirit Qf,é particle-core_pictureL
In order to take the polarization_effect.ihto account all astptetic’single particle
states have to be replaced according to

|n€}ﬁ>’1‘(’§‘) —_ lf(R)n(J.D.> (1:() | | ._ | . (2)

where Hft is the function of relative motion (e. g diutorted wave ). .

' The usual reactlon theorles ‘require angular momentum coupling of internal and

relative motlon. As the polarlzed state, eqp(l) , contains a superpqsition of
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jmany states w1th different angular momenta, it must be decomposed in terms of

‘.asymptotic states with good angular momentum

mneém -7 ‘*’%R) e, ’ﬂ> 0

e)) 'VI.

.Ihe asymptotic states ]n'{f UZ) may be either those of nucleus 1 or, at a

- distance R apart those of nucleus 2 (see below)

' We shall refer to eq. (3) as an asymptotic expansion_. The actual calculation

;of this for a two center state of the form eq. (n 1is the main objective of this

paper.

" The polariZation coeffiCients have'theffollowing asymptotic behaviour

'n.fa

A

\(1 ’ (R) /fz\/ g((’

S )

~_Taking‘polari2ation into account amounts to having a very large number'of virtual
‘v.channels (n' C'J ) present (of the order of 100 in. typical cases, as we shall see).’

‘»These channels are off the energy shell and hence are confined to the interaction

region, cf, eq.(ﬂ? .,In-princ1ple, all virtual channels haveto’bebtreated explicitly

dby means of coupled eduations; very much like-strong‘inelaStic‘channels. Transfer-
- between polarizedfsingle particle states would appear as indirect.processes_

‘with a large number (~100) of virtual channels as intermediaries. Usually, .

indirect contributions-to transfer via a largevnumber of weak statesvare neglectedi

~ on the basis of a random'phase-argument. ‘Such an argument is not apblicubleiin

the case of nucleus-nucleus polarization, however, because the coherence is strong



(see below) The TCSM may be regarded as a natural way to approx1mately para—iu
meterize the dlstance-dependent admlxture of Vlrtual states, thereby av01d1ng

a very large coupled ohannelsvproblem in the'subspace of closed-channels."

If a. descrlptlon of relatlve motion in terms of symmetrlcal coordinates would

: reaction calculations
actually be fea51ble, no asymptotic expan51on eq.(3) would be needed forf] .with
polarlzed partlcle states The TCSM-states_as‘glven by eq. (l) could be used'

dlrectly in the evaluation of transfer fOrm’factors, without explicit recourse

to virtual channels.vThis desirable simplifioatiOn would occur because the Euler

angles would carry'not‘just'the relative, but the total angular momentum.
- An expansion in terms of asymptotlc states remains useful, however, because it

prOV1des insight into the polarization effect (cf. ch. IV).

III. The,Asymptotic Expansion.

\

To obtaln the two center state eq. (l) in the form. of an asymptotlc expanslon,
- eqf(3) the states In n m))gw On-+}; L) must be expanded in terms of states’

,In'C"J1>r ThlS is done in three steps. Flrst the z-part of the two center

osc1llator states is expanded in terms of harmonlo oscillator states (see appende_

ix A):

o ' Ny S o ".; ' o ,
Y = T IR )
: ' ~ T O ' ' .

- Then the states In ngm>' are expanded in terms of elgenstates of'e In order'

\ .

to facilitate thls.expans1on, we choose the g-dhequency Q% of the two Lonto

oscillator basisAfunctions to be equal to the z-frequencyjcﬁ_or_d B depending

3



" where

o upon whether we want to expand On."asymptotic states of nucleus 1 or nucleus .

2 (see appendlx B) W1th the 1ndlcated ch01ce of cqg 5 the ln ngm>' are eigenstateo

. of the Spherlcally symmetrlc harmonlc oscillator, written in a cylindrical,basis.

" The . 4£" -expansion is written

CRmemy = X 'c';,w’,m) wemd o (6)

N

N o _ | . . 4 _
.. is the phonon number. The calculation of the coefficientsﬂck, is discussed in

~

appendix B}:

7Finally;'we'expand in terms of total angular momentum'eigenstates:

sy

R I X

o US1ng the exp11c1t forms for the Clebsch-Gordon coefflcients we fihd'for,the -

' -polarlzatlon arnplltudes in eq. (3.) (for .ﬂ.>0) _-

) ﬂ.‘é-.“; . 5 (e n‘s‘” wo ng -2+ W

' A“'g*é;(R) e g (2( Y¥l ) W, ){LN zng.fl# (N '/a.)
‘ {1_-0_;1/1 Vz u(;ﬂ.b ™ “ N 17\.,--0-‘,‘} _ ‘ .
(G a SACEN hg n_; (N, 2+1) (ga)

where N'=2nw+l; J, =L+
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v V2 ne;al N-2ng -+
Ganfdimes, & waml (3)
:‘L{.’ﬂ e N-Ing-2tly L
were N el b =2

As the two center ooc1llator basis states themselves depend upon the two center o

separatlon parameter R, the coeff1c1ents 4{« are also functlons of R (which we

have not indicated through an explicit_notation);

Matrix elements of the TCSM-Hamiltonian are independent of the sign of L .

Therefore, E _ ‘ ' ' . S '  o

w€y -l B 3 £ JA!

For purpOSes of diécuésing’systematics of the polarization effect'it is con-

' venlent to also- con51der a flrst order perturbatlon express1on for the amplitudeo
n!)JL ,

A ’" (R) We haVel3
\z&' »

» e :
P = SRl (g

- E

En{} n){)é'l
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Here \4{ is the shell model potentlal of the polarizing nucleus at a distance

R Taklng only the momentum-lndependent parts of Vk into account and using

eq (7) e have
nCJJL

a4 vn 2
A w ,(R) = (E'n(} e ’) Z C:: ! ':: J .<Rn{'\/£m,v an-CYCm>
(I0)

IV. Results and Discussion.

l.cThe Calculation.

*_'We have programmed the. calculatlon of eqs 68) onLaICDC 7600 computer.'Tablel

gives a summary of the steps and times involved. The computational procedure has
not been optimized yet. : .

,The lengthlest part of the calculatlon is seen tovbe the numerical integration
(ii) to obtain the ﬁ. , eq. (A.12). This could be avolded altogether, 1f -the
’ diagonallzation (1) of the TCSM-were made with harmonic oacillator rather than
- two center osc1llator states. Thereby the d1mens1on of the eigenvaluc problem _
(1) would increase by more than a factor of 3, and the requlred calculation timez
. would increase by a factor of lO approx1mately. Thns it appears not to-be advant—
nageous,toiavoid‘step (ii); It would certainly_heCOme a disadvantage if at aﬂfchd.

R several calculations for different TCSM-barriers were made, requiring several
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calculations (i) and only one calculation (ii).

If a different TCSM were_considered,Ve.g.'a more realistic two center Woods-
Saxon or & self—cdnsistent-potential, only calculation (i)'wéuld be affected.
The a(R) in eq. (}) would. be numerically different. All equations given in chs.
‘II III and in appendlces A, B remain valid.

Calculation (111) has to.be made Just once and for all as the coefficients C (N 'm.)’
o eq.(ﬁ) do not depend upon any parameters

We have restricted curselves so far to collisicns of-Spherical nuclei; The f,"

” o _ -
two center model we use has the following adjustable parameters.

R, the separatlon between the potentlal centers.
E; whlch measures the barrler helght in units of the barrier for a
- two center oscillator at the same_separation;

601.(1_; 1,2), the frequency parameters of the underlying two’center} v
oscillator;. ' .
ac /u (1 =1 2), strength parameters of the CS and -C -forces, respect— ‘

1vely

We have adjusted the (0 to the rms-radll of the collldlng nucleizlkn'the ',g
L .

the asymptotlc values applylng to the free separated nuclei were taken. € was

taken to get as close a resemblance to a two center Woods-Saxon potential as

possible (see fig. | ).

As it is advantageous_for certain systematic ekplorations we have also made caleul-

~ations with the unmodified two center oscillator form of the berrierkregionQ



To check the accuracy of the calculation, we have numerically compared both sides
of eq. (A.10). Using the first fifty oscillator shells we found_that the difference

LI

_betWeen'tHe-(one dimensional) two center oscillator function and its harmohic
. : . 40 16 . o B T
oscillator expansion for Ca + "0 at R = 10 fm never exceeded 10 = whenever
the function (absolute value) exceeded 10", Tis holds for -the first 13 two

center-oscillator states, with the agreement'improving for the lower states.x

Another'eheck was made with respect to the normalization of the full 3-dimensienal
polarized state in fhe form of an asymptotic expansion, eq.(37 + Including the
first 40 oscillator shells (N' = 2n' + £ £ 39) we found that
- = [A%- low £ 007 ()
. ',,_, ’{) ‘ lacd . . . '
w4 } ‘ . o R

for 51ngle partlcle states up to E = 50 MeV (fp - shell) in uQCa + l6O (roundéd-

'barrier, € = 0.8). Even this small difference appeers'teibe'"reel"; i.e. due
to the N' - cutoff,vas it decreases contihuously_with deereasing'E to below'10°9

ko

‘for the 1s Ca - state at 16.4 MeV..

"1/2
A more‘sens1tive check can be ‘made from the normalliation of. a. poiarized.etate;
-:whlch is expanded on the basis of the polarlzlng rather than that of the po]ariecd
"nqcleus; the check being more sensitive because the center of the'expansion

'States:is displaced by.R‘with iespect-to the te-be—eXpanded state;eﬁence no single
. cemPOnent is sﬁrepé in thisvceee.'Fof the-lpi/é ;state.in“160 e.8., polarized

o Lo B . . . o -
from a Ca - nucleus at R = 10 fm distance (rounded barrier, € = 0.8), no single



-

|pvuyz wo
A exceeds O 14 when ‘the expansion 1is made in terms of asymptotic Ca - states.

C)}J
'And yet we find the normallzatlon to. be 1 - 3x10 8
The . accuracy of the calculatlon can also be checked from the asymptotic behaviour
‘of the coefflclents A (R) eq. Q‘f‘) Ca + 16O and an_ unmodified_ two center
osc1llator barrler we flnd at R = lh fm, which is "large",
| ne.; L A-6 ()
[ - A ° (- wa) £ 10 | _(ll)
,‘VL-QJ, o ' _ v _ ST

for _&QC& - .st,ates ‘with E < 41 Mev. (For hlgher states there is still some polar-—': S

' iv_zation present a_t R = llb fm, whlch dlmlnlshcs the amplltuie of the parent state

p)

to e.g. 1 - 5x10° at E = 50 MeV.)

In what follows we shall glve a survey of , properties of " the polar-ization co_e'f-.
ficients Al (R) The d-1scuss1on will mainly'foéus on the system ,“%a-+ 16_0,
ey | |

with rather obvious generallzatlons to other systems.

2. General Behaviour of Polarization Amplitudes.

Among the outstandlng features .of the polarlzatlon effect is that it admixes a.
number - :

. large i i i R - Le .
Larg 7 of states with apprec1able_amp_11tud_es ihe lf7/2 '1/2 proton state, in,
b1 ’ : :

Sc.e.g., which is populated in proton'transfer. to uoCa, has admixed about 130 -
| | 16,

states with amplitudes (absolut value) in excess of 0.02 due to a polarizing ~ 0

~nuc‘leus at graZing distance R = 10 fm.

The polarlzatlon amplitudes show marked systematlcs. More spec:Li‘ically, the
n{a .
v A (R) are slowly and smoothly varying functlons of n' and {', which attaln

YA J'
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a number of'extrema.in‘oifferent n'g -regions. This3suggests a.convenient way
"to:present:and»discuss the;lafge amOunt of data characterizing'thevpolafiiationv"v
effect Interpolatlng between nelghbourlng values of n' and £' we extend the .
irsi)(RJ to a contlnuous range of n'(', and display them in the form of contour
:maps*ln the n'g' - plane (figs. 2—_8 ).

For'each single particle state‘(asymptotic-qnantum numbers:nejll),;and each nuclens~
nnCleus distance.R,-there_are two such maps: One foritheij; = @'+ 1/2 -states,

and one for the jé = 4£' - 1/2 -states. If the polarization coefficients.arebevalj‘
uatedvup to a certain Nli= 2n' + e',veach map is confined-to a trlanglef It ﬁs L
.convenient to‘combine both into a single figure,‘and to choose the‘scaleIOf‘the

e' -axis half that of the n' -axis. The second main diagonal divides the j> .
'from the q< - map. Parallels'to-thls diagonal correSpond to states of“the same
' oscillator shell N' = .2n' + €', hence the same rms -radius (-r’-) (N'-'-’/z)ﬁ/mw_'

The contour maps glve a plctorlal representatlon of what a single particle state

1nclud1ng_polar1zation effects_looks like (flgs. 2"8 ).

A general understandlng of the polarlzation effect may be obtained from an in-

‘spectlon of -the polarlzed wave functlon in 3-d1men51onal space Figs. Cf IZ

a show contour maps of the'probability-density H’_’r, calculated from eq.(l)','

. . Y . ‘ _ _ -
It is seen that the single particle states are slightly distorted from their'

asymptotic appearance'Within the polarized nucleus, and€ more important, have
attained. a whole new region of appreciable amplitudes near the centef'Of the

polarizing nucleus.
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S | e
The smooth and slow variation of the A BPER
¢

.coherence of the participating states, eq (3) in a limited region of space‘neef

as a function of n'{ assures a

the center of the polarizing nucleus. Each extremnm.region in theln'CJ -plane
.represenfs a colleetion of}statesrwhich interfer with.nearly.equsl'amplitudes_'
to give a_nqn;zerp.wane function in some limited region of’spasef This;ean be
explicitiy.seen from:fig.;g’ whieh displaysvthe coefficients for the.eXpansion

of the ls -,sfate in a 16O - nncleus on ‘the basis of a'hOCa - nucleus_;"

1/2 1/2
at R = 12 fm distance.

To further clérify this coherence ‘it isvconvenient'to expand a ﬁolarized state,
;which asymptotically belongs to aYEOCa - nucleus, ’bn‘eigenStates'of'the polar-
izing 16OV- nuCleus;_Table 4 shows that the polarization essentially consists.

of admixing a small number of l60 - states'with;neighboufing singie particle

ko

energies into the Ca - states{'It,is the'representation of these compbnents
on a %0 Ca - ba31s at a distance R of the order of 10 fm, which requireo expansion
n(&.fl

coefficients A varying slowly and smoothly with n l'; as shown in figs 2,.5

1¢1J'

3. Specific Effeets.

3.1 R - dependence.

The polarization effeet decreases, andvultimately vanishes, .with increasingidistancev
R (see eqsl?Um»; As a natural measure of the overall strength of the polarization
-we. introduce the total probability aécoﬁnted'for by thevadmixed states

TR e R 0 N &)

1‘1@) 1\{4



The prime at the sum indicates that (n'{'j") # (n(J)};Fromvfig.fK3”1£ is seen
that:P(R) typically décreases by an order of‘magnitude f6r an increase in the

'“Oca -'160 distance by 1 fm.

_in fié;_ﬂf‘we haVe depicted a number of pqlarizatidn ampiitUdes as a function:of

R. Whilé asymptotically they all apprbach zerq; their radial dependénce.appears

to be rathér different in the grazing region (aréund R = 10 fm). Loéking at the
_poiarized wave fﬁpction.in 3-dimen§ionél space we see (fig. 9 ) that the.admixtﬁrés,
gré loéaliiéd_near'the éentér of tﬁé polarizing nucleus. They move withvthié

hﬁcléus when R’Varies. At the samevtime they decrease'with incregSing R,IWhile
”'preservihg,théif.general'éhape}‘It'is‘this interplay of'ﬁwo'éffeéts, which makes

" the R-dependénce of the A épﬁea;.complicated, which in fact it is not.

,Firstly,_ﬁpon iétting R increase.all_cohtéurs of &32:?(R). in‘the h'€' - piune”

.mové bﬁtwérd, toﬁards greater n'{ (see fig.fl ' and table 3 ). This mefely :
reflects fhe fact that Staﬁes with largef'rms - rédius‘<31%pﬂlnflare:needéd'fq
representithe-admixtures'nearvfhercenter~of'the polarizihg‘nucleuS"when theviatter- 
moves aﬁay, Secondly, all coeffiéiéntS-in an_extremum-regiOn decréasg.in a
similar'fashioﬁ Whén R'increéses,‘so that the shape of‘therbolarization.cdntour

~map and of the interference pattern in space persist..This propérfy-suggesté 
usefulvapproximatiéns'for pfactiéél appiications (reactioﬁ éélculatiohs),.so éhﬁt;f |
we will'explofe it in some detail. | | |

AcqéﬁntingveXplicitiy for tﬁe R - dependent.éhift in extremé locatiéns wequstuie '

ate an R - dependence of the polarization amplitudes which is independent of the
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admixed statesi Labelllng the latter w1th n. C,j 1nstead of n'£'j' we write

A az) { ® R do ltr

(1\ ( &) # (n€ J)
: We adopt\the ‘convention, once and for :éll, to take R0 = 10 fm as a re_ferenée, ’
~and will henceforth drop it notationally.
We shall now show that eq. (l‘f} s to a good approki’maﬁi_on, indeed gives a consistent
repr_esentétion‘_of'the R - depéndence. ‘@ may _be determined from lrjlormal_izatibn' '
argurhents, in the following way. Introducing the abbreviation

\2(&\

. nej J

we have, using eq. UL&‘)

. Acfz)1 + z AR? A(K) + #CRT‘Z A. - mm

= [ l" A (R- 0? + ZA .(R= to) Q(D)

so that

62

R 0

L = AR e
' l_" Ao(lmt ' | ‘P“QJ’D"“O)
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Table 3. gives as an example values of <? - (R} for the system Ca '+ 0.

‘In order to check the hypothesis of 'persistent shape" of the polarization contour
'llmap, Wthh we have formulated in eq Uq? , we may dlrectly calculate 42 from eq
Uq) B comparlng correspondlng polarization amplltudes at different R. Cor-
-respondlng " amplitudes may be found at "corresponding” extrema. We’haye listed
»-the.pertinent.quantities in-table»3 . It‘is seen that the ratios of A's for
dlfferent extrema are falrly close‘ Part of the, dev1ations may be attrlbutcd to

JJL

LU

: _the fact that the A are confined to 1ntegral values of n fi, which may

001nc1de more or less closely with extrema in a contlnuous map.

_The ;{(R) as determined from amplitudes at extrema compares Welldwlth tnatﬁcale
culated from eq. 07) . Tt is seen, however, that fordRJ< lb (reference distance)u
- eq. U?) ‘underestimates and for R > 10 ouerestimates.amplitudes at extrema.'This
can be_understoodlfrom the fact that with lncreasing“R in general allistfuctures :
:in the §Olarization contour map become somewhat wider,7i;e. the numter of states'
contalned within correspondlng contours increases sllghtly. This effect 1s. neg-.
'Tlected in eq. (“f) .- We conclude that, with this approx1mat10n, eqgs. 0%) (l?)

glve a con51stent descrlptlon of the radlal dependence of the polarization

. 3{2 £ -'dependenceh

" Polarization effects-generally'are largest:forv\JlJ 1/2 and decrease fast with

increasings‘Jl‘. In a typlcal 31tuat10n (lf - state around a % Ca - core,

16

7/ 2

0 at gra21ng dlstance R = lO fm) the polarizatlon decreases by roughly an ordcr

':of magnltude if lJll 1ncreases by 1 (see fig. 13 )

1]

* Because of the schematic form of the barrler in our two center model (see fig. 1),
and because of the neglect of Coulomb effects, the R-dependence of the polarization
as determined in this work is probably not reallstlc. .
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‘ ThlS feature 1s of purely.geometrlc orlgln.and can be underotood from thc first
order perturbatlon expres51on,‘eq_ UO} The polarlzlng potential Vk is centered -
on the z-ax1s, i.e. around «7ﬁ= O as seen from the ko Ca - nucleus. For m # 0 |
.7Q"t is proportlonal to (1 - cosafr)m/z. Only for lJlI = 1/2 does an angular
vfunctlon )Qnm w1th m = O which is non-zero on the z-axis," appear in the matrix
element of eq.(W) For a glven-e the region around 47'_ 0 in which Ylnli
small increases w1th ‘Jll The asymptotlc state reaches the perturblng potential )

'_only at small R, at Wthh part of the perturblng potentlal is seen under a large'

" angle 4?1 _

It is suggested that for quas1elast1c reactlons the polarlzation effect need only

‘be taken 1nto account for the lill 1/2 - components.

' 33 E' - dependence. . - ' o .

From the perturbation.expression eq.(lo) it is also clear that pOlarizationfeffects L

‘generally will.incfease_with increasing excitation_energy of the singledparticle
: statesvinvolved, because for higher lying states the tails of the asymptotic

wave'function'reach furthef out.
In fig. E; we have.depicted the'polamization'a;.a function ofvthe.single‘particleu
: enefgy. It'is seen_that it increases roughly by an order of magnitude in going

_to the next major shell.vSuperimpOSed on:this general:trend are resonance'effGCts.
When the lenergy difference between single particle states in the colliding nuclel

is'small; these states ate'mutually stfongiy polarized. Inffact,'from tatle )

it is seen that the polarization_essentially'consistsVin admixing a few states’



vof theApoiafizing nucleusbwhich havevneighbouring energieé.

This behaviour is sémeﬁhat remihiscent-bf the fesonanée mechéniém thch-éccurs

- in eléstic_scattering»invo;ving identigal coreéF;The latter may be considered

as ‘a particular case of véry strong polarization. Single particle states-in a
..symmétrical two center'potentiai have equal amplitudes in both nuclei (except_.

) pbssiﬁly for the sign). They afe not concéntrated in one nucléus even asymptotically.
TheICOnnection beﬁwéen resonance exchange and the'polarizatioﬁ effect in genefal

.deserves further study in the future.

'Thé above ;tatéd resonanée behaviour suggesﬁs.favorable conditions_to.obserVe-
polarization.effects-experimentally (i.e; to observe discfépanciéé_betwéén-DWBA
aﬁd experiméntal angular distributions for'transfer reactibns; which can not be:'
attributed to two step trahsfer via strong-ineléstic states). For simplicity .;

consider a one neutron transfer reaction
A(a,b)B. ; a=b+1 3 B=A+1
In a partlcle-core plcture, neglectlng rearrangement effects, (mutual) resonance'

polarlzatlon will ocecur for states a> lb) | l> and states |B> A7 , l>

if the 81ngle partlcle separation energies fulfill E "'EB
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3.4 Energy Shifts.

Apartefrom‘changing singlefparticlé wave functions the polarization elsc.makes
 the single particle energies dependent upon the nucleus-nucleus distance. The -

energy shift. | : - R .
’ i ( n o vy
“QJ'Q'(R) g (oo) o <,8)

" has to be accounted fornby'the relative motion energy; Iﬁ acts as an addition

 to the optical potential 17(R)+i1£702); which governs the relative motion.
Figure 16 .shdws that the energy shifts induced_by a l6O - nucieus are'smeli?

(¢~ lOO keV) and probably negllglble for Tow lying unoccupled proton states~ o

h Ca, whlch mlght be - populated through proton transfer from 160}

In the case of two 1dent1cal cores even small energy shlfts are not negllgible,

5

because they glve rise to a peculiar interference effect (resonance exchange)



V. Conclusion.

For collisidn'energies not too high above the Coulomb barrier, polarization of
LI'l'Sc - states, which are pOpulated in the proton transfer reaction
will be strong (20 % and more). Calculations of angular distributions for this

reaction,:using'polarized sihgle particle States, are under way.

The polarization‘of states in 16O,'on the other hand, is found to be weak (~1 %

or less), due to the strong binding of the cloéed shells. Calculatibns for other =

systems (including 6hNi + 160, 208Pb +_l60),‘which.arevnot'presented‘heré,_indi-

cate that in grazing collisions l60 - states generally are weakly‘polarized
(~1 % or less), whereas states populated in transfer to the heavy nucleus are

strongly polarized (~ 20 % and more).
. S potential
~ We find that the polarization is sensitive to the shape of the/barrier between

the nuclei. Therefore, calculations with realistic two center models (Woods-

_.Saxon or selféconSistent) are desirable. Such calculations, taking into accbunt'

22

aiso Couiomb effects, are in progress.
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Appéndix A: One - and two - center Oscillator. _ 

Consider a.one - dimenéional harmonic oscillator, centered at'z}:_v _
\ (= Lo 2 o2 "-,( )f;,
V, () T (et - (Al |
1 = 1;2 speCifies'the nucleus to which thé potential.correéponds.
For our purposes it is convenient to write eigenstates of the pOtentiai-eq.'(A.l)
in terms of’parabolic>cylinder functiqns rather than in terms of the more customary -
Hermite'pqunomiéls.' , o
- 4 : o o A
P = My UCndx) A:l :

I

’ «mr N (1-25) o (ASc)

EX

A one —vdimeﬁsioﬁal two.center Qscillator potential may belwrittenvas . ‘v :
o o oy (2-1)7 . Y 220 .
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where - ' 2 2

- | _ o R . _
ol ey (Ata)
to assure éontinuity.

Eigenstates of the potentlal eq. (A.4) may also be expressed in terms of parabolic '

cylinder functions.

G W Uk )9

where : - . - '
| 2 | e
- Thé'quantum numbers n, and the normalization Ne have to be calculated numeriCQIIyr

) S _ : .
For reference purposes we also give the eigenstates |nzngﬁ> of the 3 -dimensional

two center oscillator with poténtial energy

Vis,2) R V@ (A6)

TCosH
6 _

<%3‘{Dln@n?m> ca 7( (g) P | | (A7>

where q;ﬂ%ﬂ is given by eq. (A.5) and
' g 4

0 B s k) 0
- (& = ?rnwg/ﬁ)

ey = Y e T (A?)
A AT | S
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. m| . - ' ' o o -
The L_“f 1s a generalized Laguerre polynomial, as defined in ref. 16 . The phase

factor in n; is chosen'for-conVeniénce.

Elgenstates of the 3 - dlmensional spherlcally symmetrlc harmonic oscillator in o

a cylindrical ba51s may also be written in the form eq. (A 7) except that q%'
%

is to be'replaced ‘with a harmonic oscillator function, eq. (A 2).

The twacénter.oscillatorjfunCtion eq. (A.S) may be expanded in‘terms_of a com-

plete set of harmonic bscillator-states

e s IALge D)

where Au: 1 or.2,_depending upon whether one wants to’ekpand after States of nucleus -

1 or'z.

n,h

Ihtroduéing ' ' I- ' - | ‘2'11 ' A 'v C : | '
BT A S R
we have - S : - - : : : » - o
| &m fat-t c( ¥ cr N

.= - (MAN))-‘
. .'\liﬁk' (n_ni)

U (-“hf%ﬂ;\) U(—n’ %,,‘h) o |
- U-(’“’%:Ch) U(‘“z,\- 2) ch)

ﬁ&,ﬁ
%

)

(Mx )‘«) d'x/& U( n- 1, 1%, [ + 2= ‘ ;') U (;,nl/.u—%) xf")Af'



' where ‘ . '. o : L -
9, = C—')’L‘{Qﬁk N - p) - (l\z) (2 D (A 13)

| The first term in eq. (A 12) is an analytlcal expression for that part of the
overlap integral in which the parabollc cylinder functions of two center - and
harmonic - oscillator states depend upon the same argument. The second,integral.

must 'be evaluated numerically.

Apperidix B: Angular: Momentum Eigenstates in a Cylindrical Basis.
We start from eigenstates of the spherically symmetric harmonic os_cvillator,b N

written in a cylindrical basis as |1 :ngm> . Eigenstates of gz‘ , written as
b} _ ) A . . ' .
ln{i)m> = 2_ ¢ (Nm) [AmemD (B ’)
| I ¢ B |
may be formed as a llnear comblnatlon of states w1th the same phonon number '

: N’ = ,%‘.{:Lngf Im-l = -2"n7+€’ o | ,‘ (B 1)

‘Requiring the state eq. (B. l) to in fact be an elgenstate of Cz gives the

- 'following elgenvalue equation *
Z.C(N.m)[(nngmlﬁzfnn m> R
- Sﬁ,ﬁ S;n':] -0 (B3)

) . A\ : ) A : L o . ) ' : ]

n + Qng’ + Iml = W 2‘n +Iml = N° ' (:Bl'f')

* The author is indebted to Dr. P. Llchtner who, after completion of this work, brought
to his attention a paper by J.D. Talman23 Talman derives an analytical expression

- - tor the coefficients Ce.(N m), which could be used instead of going through the
eigenvalue problem eq. (B. 3) :
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. The solution of eq (B.3) 1nvolves, for each phonon number ‘N' ahd. each C -projection _

m separately, diagonalizatlon of the matrlx of { in a cylindrical basis.

The matrix elements of ;ﬁ " are computed'from the formulas given in ref. % ina

straightfdrward ﬁay.*Intrdducing o : ' T
‘N, = 2m, + Iml | o - QBS)

S R 1 o e . : | | T

'we'find,' _ _ _
A) ).') 2

_< S ]€ ,n N m> N o
- mm[\kwl—mvwxmn S Y

+I Ne-l SR R

+(1n(N +1) + N, +m1) § Ng Sosn

ﬂl@?- o H)(#_*l). % S “-_.'. am] (B-G) |

Some care must be,exercised'invadjusting the phases.df the CC;,. The radial part

of the spherical etates _
<1"')"Pl'n- €’m> “)2)(1") )’e, (’D—C() | .v o (B.—,)

is-taken to be positive at large r, i.e.



Q 0 0 45U “s 8 0 4

'Rric(‘_('f‘). = j(‘)n, N,;\e,-w ‘. Ery 2)1' F("nze,_*a/zlb%@%i)v- (Bg)

.N“)-{).. = (YTYFL‘_C‘_)) Y4 2]—‘(7:-:("’3/2) /T.‘(C’-f-}/l) - » (Bga)

For.the 7&1 the usual phase conventlon is adopted, see e.g. ref 13. .

'The proper phase of the linear combination eq.: (B 1) may be ensured by’ considering
both the region of large r and O'-—)O and, equlvalently, the region of largc Z

and §—>0.

. From the explicit'form of - the spherical harmonics it is easily Seen tha_t

(dis'carding. the - e P part) S -
oam.\/c,m(«?—?O) = (17 o | , QB )
From egs. (A.2,8) we have
. ¢ | = '+ | - for large =z : S K l CL) o
ogn Pa(2) | , | ez B ~0_
il ' L P o .
3 S | for small ¢ (B 1ot
X, ) =+l forsmilg B.log)
The importaht point to appreciate is that the larlge -7 = 'region'is alWays domin-

ated by the largest e contrlbutlng to an 8 - elgenstate in eq. (B. l) Taking

into account the phase of the ¢ - part eq. (A.9), it follows that the. phases
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of the eigénvectors of eq. (B.3) must be taken such that the qc(N',m) with the
‘largest n for any N',m,£' is positive.
- The advéntage of taking thé gdeequency a% of the basis statesvequal to the

z -~ frequency gol or_q>; depending upon whether we want to expand after asymptot1c

stgtes of nﬁclgus 1 or nucleus 2, is now.appérént} Had wé.éhosen Gk differently,'
e.g.v Odg‘=(ﬂﬂ*&a)ﬂl (which is somewhat p?efergbie'from tbeipoint of view of diag-
onalizing the TCSM;Hamiltonian), we would not have the simple selection fule eq. :
(B.2) for the ’states appearing in eq. :(15.1). Hence all oscillator s‘he.‘lls_ would '
‘appear simultaneously in the eigéhvalué problem éq.'(B.3), instead 6f Jjust one

af a time. Also; the matrix elements of -ﬁa', eq. (B.6), WQUld be much more

complicated.



aw

evaluated

'Caiculation  remarks ‘time
: quantities ' (sec)
'(i) two center oscillator basis M(R) 100 two center oscillator 8

: " states and diagonalization néja basis states (E£92.5 MeV)
of TCSM | (R)

| "

(ii) expansion of z - part of .ﬁ?‘ 13 two center osclllator - 60%
two center oscillator states. R states; 40O harmohnic osc1l~A '
after harmonic oscillator lator states

- stetes Gaussian quadrature
- : T '

(_iii) angular momentum eigenstates Ce,(N,m)_ N' =0, ..., 39 10
in a cylindrical basis ' A mo==0, ui, 6

(iv) asymptotic ‘expansion A “( 40 single particle states 16

' o ey (E= 58 M)
2n' + €' = 39
Fn

* Includes numerlcal evaluation of both sides of eq. (A 10) for - 20%1‘ z ¢ 20]in steps

of . th as a check of rumerlcal accuracy.
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Table 2: Polarization of'uOCa - states due to 160 at-grazihg distanCe R =IlO fm.

hoca'f states 165 - states

4y s | s Pz My Ty Ty 5.2

E_,. (MeV) , 434 45.51 48.6 : ST.4T Ay
ney (MeV) (102) 3.43 551 S S R

Wam b 0.21  -0.09 0.0k RS

40.76 ' ’

o2 20.1 0.1 0.27 0.39 0.06 2k

46 .43 '

2p3/2. b1k 0.11 0.64 0.07 42,7

48.17 o '

2pi/2» | 8.7 0.09 . -0.22 -0.17 8.5

50.79 -

g 12.7 0.02 -0.32 -0.15 12.5

52.53 | |

The first column lists ésymptotic Quantum numbers and energies of.uoCa - states for

the oscillator shell model. The second column shows the polarization of the JL = 1/2

16

column shows the combined probability of the strong 16

effects are clearly visible; especially for the 1f

7/2

components of these states (rounded barrier, £ = 0.8). The amplitudes of strong

0 - components. Resonance

- and 2p3/2 -sﬁates.

0 =~ components of the polarized states are given.in,the next five columns. The last



- E#trema of A'\‘vlz'h.(R) o - .
B T E Y V. QP
A S /’\‘c — ) T®
(m)le>@> @ ® @ ® @ 6 @f@> (® ®' -
8 | o (1,6) 1.67 | | T@n 1.8 L7 La1
9 (1) L2k (7,2) .25 (1,8) 1.31 : | | ..(2,9) 1.40 1.30 1.28

10 (h,l)‘l,oo (8,3) 1.00 (2,9) 1.00 '(3 2) 1. oo ‘(9,2) 1.00 (3,9)_1.00 1.00 1.00
11 (5,1) 0.65 (10,k) 0.64 _(3,10) 0.62 (h 3) 0. 61 (11 3) o. 70' (u,lo)_o.59- _ o.63v' 0.6k |
C12 (6,1) 0.27 (12,4) 0.26 (h,ll)'o.zh (5,3) 0.25 (12 3) 0.29 (5,11) 0.23 | 0.26 0.27

13 (7,2)_0.077,(iu,u) 0.072 (6,11)*0.066}'(6,3) 0.070 (1k,4) 0.084 (6,12) 0.063 0.072 0.082 -

1 (8,2) 0}018'(16,h) 0.016'(7,12)‘0;015 x(7,h) 0.016 (16,4) 0.019 (8,12)'0.01h' 0.016 0.020 -

The calculatlon is for the lf,_(./2 1/2 .proton state in llrOCa,-pol'arized from ;66' the'barfier sas .
chosen of two center osc1llator form. Columns (a) llSt ‘the locatlons (n e') of the six different.
-extrema appearlng in the polarlzatlon contour map (ch..IV.2). Columns (p) glve, for each of the :
extrema, the value of the polarlzatlon amplltude A:::; ;.d1v1ded by its: value for theAsame o |
extrevum at R = 10 fm distance. Averages for this quantlty and the function :f%g?‘ as calculated

from egq. (17) are. also listed.

:¢ 9TqmlL
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Figure Captioﬁs.'

Fig. 1: Two Center Potentials for uoCa + 16O at grazing'distance R = 10 fm.

| The potentials are shown along the z-axis.

- Curve "a" is.a two center Woods-Saxon potential, formed by adding Woods-Saxon:

potentials for the individual nuclei. The potential parameters were fitted to

yield the proper binding for the lf7/2- and lpl/z- proton states, respectively,

which are at - 1.087 MeV and - 12.11 MeV. ' (ry = 1.2 fm; =& = 0.65 fm;
R L ‘ w | i

Vg, = - 5T-72 MeV; - Vop - = - 60.35 Me_v_).q

_ Ca o ] . : .

.. Curve "b" is a two center oscillator potential, with frequency parameters ad-

o ' _ : 20
justed to the rms - rad_iil- (M_)Ca: how = 10.90 Mev £ VTD = 3.38 fm;
16o: ‘hcq = 13.00 MeV 2 NG = 2.68 -fm)"_' " '
The levels (fuli'lihes) are for the oscillator shell model‘(spin-orbit parameter
r | : Lt .
2 = 0.08; £” -force parameter M= 0 for both nuclei).  Dashed lines indicate
b'expérimental level positions. The zero of the two center oscillator has been

. ad justed such-that the 1f_,, - proton state around the hoCa -V¢ore appears at -

7/2 o .
the experimental position. The relative position of the lpl/é - proton level in
16O is reproduced well..

Curve "c" is the same as "b", except that the two center oscillator barrier has
been rounded off. The barrier parameter . &= 0.8 waS'chosen so that the barrier

" seen by the 1f = -proton étate around the hOCa - coré wdﬁld‘be close to thejmore

7/2

realistic two center WOods-Saxon-barrier, curve "a": It is seen that the rounding off
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00 0459 4 8 0 7

;.:35;', -

o slight » i : : - : - o e
also produces a/distortion of the potential away from oscillator form near the - .

“centers of the nuclei. This distortion changes with distance R. Hence, for quan-
tities which we want to study as a function of R, ﬁevhave also made ééiculatibns'v
without the rounding off.

" All calculations for_hOCa + 160 have been made_wifh the freQuency, f!g-rand f?z—f

- -parameters as-given above.

Fig. 2: Polarization of the lf7/2 1/2 -proton stafe in-hOCa, due to 16O.

'Amplitudes'for polarization by a 160 - nucleus, calculéteékfrom'éqs;-(8),.are
.'diSplayed as contour maps. Also shown are amplitudés‘éfleitrema and for some

bsﬁrong statés,,noﬁably the asymptotic state lf,(/2 1/2 (e ‘n:i= b;~C' . 3, J':=.j;:).
UnitS“along the cOntQurs for this and the following maps are 10—2. The barrief

was chééen'to be the unmodified two centérkoscillétor (i.e;'ii % 1, gpsp_in the
'potential; see fig.-l). it is seen that the amplitude of the asymptétic state

. decreases as R decreases, while the amplitudes of admixéd'states'increase. It is

‘also evident that upon letting R become smaller the general shape of the contours

persist, while all strudtures move towards smaller n', €' (compare also table 3).

, RN P 1) Y 16
Fig. 3: Polarization of:thg lf7/2vl12 -proton_state in. .Ca, duevtq in

-at grézing'distance.
‘A contour map of polarization amplitudes is shown for a_"reaiistic""chbice‘of_thé

barrier region ( & = 0.8, rounded; see fig. 1) at grazing distance R = 10 fm.
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" The amplitudes'are:similar to those for the two center oscillator at R = 10 fm;

see:last map of fig. 2.

Fig. L. Polarizatlon of the 1f /2 3/2 proton state in hOCa due to l60

at gra21ngfdlstance

.The.saﬁe as fig. 3,.butvfor the A ; 3/2'e component. Comparing amplitudesAaibng
'contour llnes it is seen that the polarlzatlon is. much weaker than for o I 1/2.
The rather strong,admlxtgrebof.the_2p3/'z 3/2 -state (amplitude - 0.1756) is due to
the’distdrtioh of the potential near_the“center of the Ll'OCza‘.'-- nucleus, becausee
of the roﬁnding Off of the barrier (compare curves "b" .and "c" ofvfig..ij It does -
'not ‘reflect a polarization effect The actual polarlzation is 1 - O. 9736 —.O 1756?
= 2.13 % (generallzlngveq. (13) ), compared . to 20.1 % for the JQ.— 1/2 - compo-

nent (see table 2).

Fig. 5: Polarization of the 2p3/2‘i/2 4protqn State_in l+OCa.-d,ue_to 1'60

.at grazing distance.
| The seme as fig. 3, but for the 2p3/2 1/2 e‘sﬁate.

Fig. 6: Polarizatioh of the lpl/2 l/zv-proton state in 160 due to h.OCa

atggrazing distance.

- The same as flg 3, but for the lpl/2 1/2 -proton state in 6O, polarized from
ko

Ca at R = 10 fm distance. The expansion eq. (3) was made here on tha basis of



asymptotio.l6o - states. All amplitudes were multiplied with_(})e'? to ei}minﬁte*w
the aiternation in sign whichvoccurs because the admixtures here dre in the negatire
z - region, as.seen from thev 6O - nucleus (compare fig. l) Due to the strong _
.bindlng of the lpl/2 - state in 16O which is reproduced well in our model (cf..

fig. 1), the polarlzatlon is weak, namely 1 - O.99h3 = 1.1& %. In proton transfer

16 15

reaetions Ca( N) Sc the polarlzatlon in the entrance channel will therefore

be negligible'compared to that in the exit channel (see also fig. 15).

Figf T: lpl/2 i/z -prOton state in 160 on a hoCa - basis at.grazing distance.

The state shown here is 1dent1cal to that of fig. 6. The difference being that the
expan81on eq. (3) here is made on the basis of asymptotic ko Ca - states, lO fm

away fron where the state is‘centered The accuracy of the calculation may»be seenv'
from the fact that the normallzatlon (cf. eq. (11) ) turns out to be -1 -~ 3x10 . 8

although no single state contributes more than O. lh = 0. 0196

a. .16 ko : ', o e
Fig. 8: l_sl/2 1/2 -proton state in T 0 on a Ca - basis at'R = 12 fm distance.

At_RV= 12 fm the polarisation of the deep lying ls)/, - state 13}160 is veryh
weak,.namely O.lzv%._The contOur lines show what an essentially nndisturbed lsl/z."
- state in 16O looks like when expanded on the basis of uoCai- states centered‘at
R 12 fm dlstance. We find the normallzatlon to be l - 7xlO 7, with no single _
state contrlbutlng more than O. 1229 = 0.015. The m1551ng probability is probably

"real", i.e. due to the cutoff for N' = 2n' +€ _43 39, rather than to numeri(_al

inuoouxac1es.



'Fig;,9: Probability density of‘lf,?/2 l/2 -ﬁrdton state ih hoCa, polarized '

from 16O at various distancés;

Showp are‘contour maps for ‘thWQVz'25 calculated.from eq. (l) for'simplipify
. rather_thén_from eq; (3)}'The barrier was chosen fo be.that 6f the'two'center‘
Qscillatof, to'évoidvthe R - dependent potenfial distortions from the rouhdihg
.off..Thé state aﬁ'R = 16 fm is equal to the ésymptotic state within 11he thickness.
When R decreases probability éround'thé centef.of thé polar;iing 16O - nucleus
build$ up, the,Shape of_which,peréistsvwhen R Varieé.'At the:same‘timg‘fhe state’ -
_ gets-weﬁker near the kocé - center.:Fof.R = 10 fm'én appreciable:diétortion near

thé‘hoca'- center 1is apparent. The last three maps depict the same state as fig. 2. 

Figs. 10 - 12: Probability densities of polarized states.

Probability densitlesvof lf7/2v1/2-, lf7/2 3/2—, and,2p3/2 1/2- protog states in
uoCa, pOla?ized from l6O at grazing distance R = 10 fm (realistic barrier: £ = 0.8,
zpunded). The_states_are the“same as those for which pqlarizatiOn amplitudes

" are shown'in figs. 3 - 5. For compariéon we have also given contour maps for the

‘ | 16
states at R = 14 fm distance of the

0,; nucleus, at which the_pol&rization is

very weak (i£~is visible as a slight distortion of the outermost contour line, -

corresponding to ¥ = 10_5, for the 2p3/2 12 " state). The admixtures for the
1f - state are much weaker than those for the 1f - - state, because

' 7/2'3/2 7/2 1/2 state, ) 1Se
' 1

the former is localized fo the z - axis and hence misses the polarizing ~ 0 -

nucleus.
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Fig. 13: Polarlzatlon of various E;oton states in uOCa, as a function of the _'

distance of the polarlzing 66 -nucleus o

folarization strengths as calculated from‘eq. (13) are shown for a number of h.OCa -
dproton'stétes. The.barrief weé.choseu to be of two center oecillator fofm, to

éuoid effects from.potential distortion due to roundiug off (seevcaptiou to figs.
1, h)i It is seen that the polarization‘decreases fastlwith increaeing'R,:with

\d 25 ' :
increasing binding (P{""'v‘- > P Mol >P Yo% ) and with increasing L |

C ?\;v_ul,,_ c_’u Y - ? {"h St ).

Fig. 1&:; Various polarization amplitudes for the lf7/2 1/2 -proton state in OC a,

‘, as a function of the distance of the;pglarlzing l6b -nucleus.

A séiection of,amplitudes showing different radial dependence (partAof them may

be fead off from fig. 2). The barrier_uas chosen to-be of two oenter oscillator

~ form, for the same reason as in fig. 13.

"Fig. 15: ‘Depehdencé of Polarization on Single Particle Energy.
- Polarization strengths as calculated from eq. (13) are shown for single particle
proton states in 4OCa and 160 up to E = 52.5 MeV. The barrier was chosen "realistic"
(2; = 0. 8 rounded ), with Ca and 0 at ‘grazing distance R = 10 fm. The polar-
"1zat10n 1ncreases by roughly an order of magnitude in going to the next maJow shell
_The_energy dependence follows the same pattern in 4o Ca (polarized from ~ 0) as it

- 16, ; ' »
~does in ~-0 (polarized from J-‘LoCzaL). Resohance effects for the mutual‘polarization

6. ' 40

of the 2;1/2-- and ld3'/2 - 0~ states and the 1;'7/2 - and 2p3/2 - ?a - stateo_,

| . . . .
are clearly visible (compare also table 2).



Fig. 163, Polarization Effects on Single Particle Energies in the-system'uOCa'+ 160;

16

Single particle energies for a nﬁmber of 0o - and LLOCa'f pfpton Statés are shown'
as a‘fﬁnction_df distance R. Thé barrier ﬁas chosen to be of tWQ center_oscillator_
form, fdr'the same feasoh aé in figs. 13, 14%. The crossés-at R = 10 fm indicate
single fafticle energies for a "realistic" barrier ('E:}; 0.8, rounded). They'are
seen to{be pushea”ﬁp'by foughly 1 MéV} because of:the'distortion,gfifhe'poteﬂtial

due to the rounding off (compare curves "b" and "c¢" in fig. 1).
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~Fig. 1: Two Centeerotentials'for'uQCa + 16O at grazing'diStance-R = 10 fm. 
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Fig. 2: Polarization of the 1f -proton stafe in ,hocé-, due to 0.

7]2 1/2




-3 -

|
1S

XBL 767-3160 .

Fig. 3: Polarization of. the lf7/2 1/2 -proton state in OCa, due t0'160_

at grazing distance. - (R = 10 fm, € = 0.8r)
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Fig. h: Pblariz&tibq of-the‘lfT/sz/zk-proton;state in LLO_Ca due to 160g )

- at grazing-distance. (R = 10 fm, & = 0.8r)
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. Fig. 5: _Polariiation of the 2p3Z§_l/2 -proton state in hoCa due to 16O |

gt grazing-distance.,v~(R =10 fm{.e = 0.8r)
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Fig. 6: Polarizatioh of the lpl/2 1/2 -proton state in ;60 due'to.hOCé-
' N -/ . ! — .

at grazing distance. (R '= 10 fm, E-;‘O.Bﬁ)
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Fig~v7=v'lpl/2 i/z -proton state in ;60 on a l+O.Ca-_-basis at-grazingvdistance;i

| (R = 10 fm, € = 0.8r)
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XBL 767-3159

Fig. 8: lsl-/2 i/z -proton state in _16_0 on .a 11LOCel -basis at R = 12 fm.distance.

"(R=12fm, &€ =0.8r)
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Fig. 9:_ Probabiiity- density of the lf,?/2 1/2 -protbn' state in hoCa, polarized

from 160 at various distances. (R in fm, E = 1)
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Fig. 10: Probability density of ;vthe lf7/2 1/2 -proton state in h-OCa, polarized-

from lgO'under nearly asymptotic (R = 14 fm, & = lc) and under

grazing (R = 10 fm, € = 0.8r) conditions.
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- Fig. 11: Probability density of the lf7/2 3/2 -profon stéte.in hOCa, p'v'ola‘rizevd_'

~ from 16O under nearly asymptotic (R = 14 fm, & = lc) and under’
grazing (R = 10 fm, &€ = 0.8r) conditions. '
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Fig. 12: Probability density of the 2p3 /2 1/2 -proton state in’ oC&, polarized:

~ from J'60 under neai'ly asymptotic (R = 14 fm, € = 1lc) and under
grazing (R = 10 fm, £ = 0.8r) conditions. ’
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Fig. 13: quarization of various proton’states in ll"OCa, as function of-fhe

distance of the polarizing 160 =nucleus.
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Figf 14: vVarious polarization amplitudes for the 1f7 /2 1/2 -proton state i‘n' -

uoCa, as a function of the distance of the polarizing 160 -nucleus.
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