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Abstract

Addressing Facility Workload Balancing in Coverage Problems

by

Jing Xu

Coverage problems have been important location models and have been widely applied

in practice. A major limitation of simple coverage problems is that they do not control

allocation, which might lead to unreasonable facility workloads and workload imbalance.

Previous studies have been dealt with facility workload related issues in coverage prob-

lems, with one of the most popular approach is to impose capacities and/or thresholds.

However, capacities and thresholds cannot guarantee facility workload balance and have

associated issues in application. This dissertation seeks to evaluate existing approaches

that consider workload balance in coverage problems and study alternative approaches

to better address facility workload balance. The primary contribution of this research in-

cludes: better understanding and systematic evaluation of existing capacitated coverage

approaches including their solution characteristics and commercial GIS performance, new

modeling approaches explicitly considering facility workload balance in coverage prob-

lems that might be applied to other types of location problems, and efficient solution

techniques for proposed multi-objective spatial optimization models.
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Chapter 1

Introduction

1.1 Motivation

Facility location siting has been a frequent practice for humans and human activities, with

location related decisions constantly being made by individuals, households, private com-

panies, governments, and others. To support and facilitate locational decision-making,

there has been extensive research on location analysis and modeling. When facility sit-

ing decisions are made, there are generally two types of implications: service provider

(i.e., facility) and service recipient (i.e., customer/demand). For example, the service

provider may be faced with how many customers a facility has to serve, whereas the

service recipient will be impacted by the travel time to access a facility. One topic that

has been of considerable interest is equity in facility siting, especially when addressing

public sector contexts. Facility workload, defined as the amount of demand a facility

serves, is probably one of the most important elements of equity as significant variation

in workloads is undesirable. If a facility is overutilized, it may not have the capacity to

1



Chapter 1. Introduction

suitably serve all allocated demand. Alternatively, if a facility is underutilized, then it

may not be economically viable to be operated. Imbalance in workloads can negatively

impact system efficiency, reliability and service quality. Therefore, workload balancing

should be carefully addressed as an integral component of the siting process.

While workload balancing is generally important in facility location, it is particularly

critical in coverage contexts. For many facility location problems, service provided to

a demand is usually related to the travel distance/time between the demand and the

facility to which the demand is assigned. Often, a service is not regarded as accessible

if the travel distance/time exceeds a threshold. For example, a fire incident cannot

be appropriately responded if it is more than eight-minute driving distance away from

its closest fire station, as the major goal is to save life and property. This maximum

service distance/time for a facility to suitably respond to a demand for service is called

coverage (Church and Murray, 2018). With the coverage concept, various problems types

have been studied, with supporting models developed. Fundamental coverage problems

include the location covering set problem (LSCP) and maximal covering location problem

(MCLP). With a given service coverage threshold(s), the LSCP seeks complete coverage

of all demand with a minimum amount of facilities (Toregas et al., 1971) while the

MCLP (Church and ReVelle, 1974) identifies the maximum demand coverage with a fixed

number of facilities. These two models have been applied to wide variety of application

contexts and extended in many ways (Daskin and Stern, 1981; Chung, 1986; Current

and Storbeck, 1988; Murawski and Church, 2009; Sorensen and Church, 2010; Church

2
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and Murray, 2018). However, these coverage problems only consider facility location,

with demand allocation a byproduct of service configuration. This makes it difficult to

control facility workloads. Consequently, it is not uncommon to observe facilities that

have significantly varied workloads when basic coverage models are relied upon. This is

problematic, making workload balancing an important factor to be addressed in coverage

modeling.

How to balance facility workloads in location modeling? First, an equity measure is

needed to characterize workload variation. Marsh and Schilling (1994) reviewed about

20 different ways that equity measures were used to quantify the variation of “effects” of

siting on facilities. These measures can be applied to workloads. There are two ways to

balance facility workloads: (1) imposing constraints to restrict workloads, and (2) adding

additional objective(s) to directly minimize workload variation.

Among approaches that restrict workloads, a prominent way to control facility work-

loads is to impose facility capacities and/or thresholds. For example, the capacitated

maximal covering location problem (CMCLP) was proposed to prevent the facility work-

load from exceeding a predefined capacity in MCLP (Chung et al., 1983; Church and

Somogyi, 1985; Current and Storbeck, 1988; Elkady and Abdelsalam, 2016; Ferrari et al.,

2018). Doing so, however, effectively requires a reformulation of the MCLP in order to

track facility allocations. Nevertheless, capacities help balance facility workloads to some

extent because it avoids significantly overutilized facility. In addition, imposing capacities

has been very popular in location modeling, partly due to the easy access to such model

3
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extensions in commercial GIS (Murray et al., 2019; Xu et al., 2020). However, capacities

are not designed for workload balancing, so significant imbalance in workloads can still

exist. Also, establishing a trade-off between coverage and workload balancing objectives

is not particularly accessible at this time. Therefore, a systematic understanding and

evaluation of performance capacitated model characteristics, especially from a workload

balancing point of view, is really greatly needed.

The second approach seeking to address workload balance explicitly has been consid-

ered using multi-objectives in location modeling. For example, the maximum workload is

adopted and minimized as a second objective to reach equitable allocations in center and

median problems (Berman et al., 2009; Kim and Kim, 2010; Davoodi, 2019). The mini-

mization of workload range of sited facilities was introduced in the context of p-median

problems (Weaver and Church, 1981; Daskin and Tucker, 2018). Other equity mea-

sures, like the workload deviation from a system-wise average workload (Garfinkel and

Nemhauser, 1970; Zhu and McKnew, 1993), deviation from a target amount, and total

pairwise workload difference (Church and Murray, 1993), have been structured through

the addition of objectives in location problems along with supporting constraints. These

approaches aim to balance workload directly and provide a way to explore the trade-off

among competing objectives. However, the relative capabilities of such approaches to

address equity remains largely unexplored for coverage problems. In addition, a common

consequence of the use of multi-objectives is greatly increased computational difficulty

along with alternative optima interpretation challenges. Therefore, further research is

4



Chapter 1. Introduction

important that explores alternative approaches, seeking to better understand modeling

implications and solution potential for effectively and efficiently balancing workloads in

coverage problems.

In sum, facility workload balance, an aspect of facility equity, is an important research

topic in location modeling, especially in the context of coverage problems that intention-

ally ignore allocation. Much research interest has been devoted to facility workload

related issues in coverage problems, with a popular approach being the use of capaci-

ties and/or thresholds. However, the effectiveness of capacity and threshold limits on

balancing facility workload is not well understood. Further, there are several important

limitations and issues associated with the use of capacities and thresholds that need to be

further investigated. While there have been studies that explicitly balance facility work-

loads through the use of multi-objectives in location modeling, such as minimizing the

maximum workload and workload range, their effectiveness and computational efficiency

to address coverage concerns remains unknown. Therefore, this dissertation seeks to eval-

uate existing approaches that consider workload balance in coverage problems and study

alternative approaches for addressing facility equity issues. This research will contribute

to theories and methods of location science in the sense that it investigates alternative

modeling approaches to classic covering models as well as develops spatial optimization

methods to solve them.

5
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1.2 Related Research and Context

This section summarizes relevant location models where facility workload balancing re-

mains a challenge, and positions this dissertation (Figure 1.1). The focus of this dis-

sertation is to address workload balancing in coverage problems. The MCLP, as one of

the most basic coverage problem, is studied. Related is the p-median problem (PMP)

(Hakimi, 1964; ReVelle and Swain, 1970), because MCLP could be formulated as an

equivalent PMP (Church and ReVelle, 1976). The existing prominent approach to gov-

ern facility workloads in location problems is to add constraints imposing upper and/or

lower bounds on workloads. This extended the MCLP to the CMCLP, maximum cover-

age with threshold (McTHRESH) (Balakrishnan and Storbeck, 1991), maximum coverage

with balanced assignment (McBAS) (Gerrard, 1995). Similarly, PMP was extended to

the capacitated p-median problem (CPMP) (Mulvey and Beck, 1984; Pirkul, 1987). Cur-

rent and Storbeck (1988) proved that the CMCLP could be formulated as a CPMP. The

dissertation will firstly evaluate the existing capacitated method in solution character-

istics and from workload balancing perspective. Alternatively, additional objectives can

be added to directly minimize workload variation. One example is the p-median problem

with workload range minimization (PMP-Range) (Daskin and Tucker, 2018). But the

capability of such multi-objective approach in balance workloads in coverage problems

remains unexplored. This dissertation will explore new modeling approaches in this area.

Finally, all these key problems were proved NP -hard (Garey and Johnson, 1979), which

6
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means it is difficult to be solved optimally and a polynomial time algorithm is not possi-

ble unless P = NP . Therefore, this dissertation will also study efficient solution methods

for the proposed model.
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1.2.1 Key Problems

Consider the following notation:

i = index of demand areas (I entire set)

j = index of potential facilities (J entire set)

dij= travel distance/cost/time between demand i and facility j

S = service coverage standard

Ni = {j|dij ≤ S}, the set of facilities that can suitably cover demand i suitably

ai = amount of demand in area i

p = number of facilities to site

Decision variables:

Xj =


1 if facility j is sited

0 otherwise

Yij =


1 if demand i is allocated to facility j

0 otherwise

The MCLP is one of the most imporant coverage modeling approaches, seeking to

maximize total demand served within the service coverage standard of a fixed number

of sited facilities (see Church and ReVelle 1974; Church and Murray 2018). With above

notation, the MCLP is formulated as an allocation model as follows:
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Maximize ΣiΣj∈Ni
aiYij (1.1)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (1.2)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (1.3)

Σj∈JXj = p (1.4)

Xj = {0, 1} ∀j ∈ J (1.5)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (1.6)

The objective (1.1) maximizes the total demand served. Constraints (1.2) require

that each demand is allocated to no more than one facility within the service coverage

standard. Constraints (1.3) stipulate that a demand cannot be allocated unless a fa-

cility is sited. These are often referred to as Balinski constraints, recognized as having

integer-friendly solution properties (Church and Roberts, 1983; ReVelle, 1993; Gerrard,

1995; Church and Murray, 2009). Constraint (1.4) requires exactly p facilities to be sited.

Constraints (1.5) and (1.6) impose binary restrictions on location and allocation deci-

sion variables, respectively. Note that allocation variables are used here and a simpler

formulation with no allocation variables can be found in Church and ReVelle (1974).

The formulation makes it clear that there is no control on facility workloads. Empirical

experience suggests that workloads can vary significantly.
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Another fundamental location model is the PMP that seeks to site p facilities so that

average (or total weighted) travel time/distance is minimized (Hakimi, 1964; ReVelle and

Swain, 1970). The PMP is formulated as follows:

Minimize Σi∈IΣj∈JaidijYij (1.7)

Subject to Σj∈JYij = 1 ∀i ∈ I (1.8)

Yij ≤ Xj ∀i ∈ I, j ∈ J (1.9)

Σj∈JXj = p (1.10)

Xj = {0, 1} ∀j ∈ J (1.11)

Yij = {0, 1} ∀i ∈ I, j ∈ J (1.12)

The objective (1.7) minimizes the total weighted travel distance. Constraints (1.8)

ensure that each demand to be assigned to one facility. Constraints (1.9) are Balinski

constraints, limiting the assignment of demand to sited facilities only. Exactly p facilities

are sited in Constraint (1.10). Finally, constraints (1.11) and (1.12) are binary integer

constraints. Similar to the MCLP, no control on facility workload is imposed here and

workloads can vary significantly. In addition, Church and ReVelle (1976) showed that

the MCLP can be transformed into an equivalent PMP by manipulating the facility-

to-demand distance matrix. Thus, in theory, the MCLP can be solved by any solution

techniques developed for the PMP.

10
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One way to balance facility workloads is to impose facility workload capacity and/or

thresholds, which are essentially upper and/or lower bounds on allocated demand for

service. Denote cj the capacity of facility j where cj > 0. Capacity constraints are

formulated as follows:

Σi∈IaiYij ≤ cjXj ∀j ∈ J (1.13)

The capacity constraints (1.13) require the workload of facility j not to exceed the

capacity cj if the facility is sited. The CMCLP is formulated by adding (1.13) to the

MCLP, (1.1)-(1.6) (Chung et al., 1983; Church and Somogyi, 1985; Current and Storbeck,

1988). Similarly, the CPMP is formulated by adding (1.13) to the PMP, (1.7)-(1.12)

(Mulvey and Beck, 1984; Pirkul, 1987). Current and Storbeck (1988) showed that the

CMCLP can be formulated as a CPMP. This theoretical linkage between the CMCLP

and the CPMP enables solution methods developed for the CPMP to be used to solve

the CMCLP, though it remains NP -hard so is considered extremely difficult to solve.

Denote tj the threshold of facility j where tj > 0. Threshold constraints are formu-

lated as follows:

Σi∈IaiYij ≥ tjXj ∀j ∈ J (1.14)

The threshold constraints (1.14) restrict the workload of facility j to be no less than

the threshold tj if it is sited. A model called McTHRESH, was structured and solved

in Balakrishnan and Storbeck (1991), involving constrains (1.14) added to the MCLP,

(1.1)-(1.6). In addition, there have been studies using both capacities and thresholds
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in coverage and median problems. For example, the McBAS model, was formulated by

integrating the MCLP, (1.1)-(1.6), and constraints (1.13) and (1.14) by Gerrard (1995)

to balance facility workloads in a maximal covering context. Again, the use of capacity

and threshold constraints can restrict workloads to be within a specified range [tj, cj],

but not necessarily balanced unless [tj, cj] is a tight range and it is same for all j.

An alternative way to balance facility workloads in location problems is to minimize

workload variation through the use of multi-objectives. A recent example is the PMP

with a secondary objective that minimizes the workload range (PMP-Range), proposed

by Daskin and Tucker (2018). Denote U and L the maximum and minimum workload

of sited facilities, respectively, and M a very large positive number. Additional objective

and constraints are introduced as follows:

Minimize U − L (1.15)

ΣiaiYij ≤ U ∀j ∈ J (1.16)

ΣiaiYij +M(1−Xj) ≥ L ∀j ∈ J (1.17)

L ≥ 0 ∀j ∈ J (1.18)

(1.15)-(1.18) may be combined with the PMP, (1.7)-(1.12), to introduce the PMP-

Range model (Daskin and Tucker, 2018). The objective (1.15) minimizes the difference

between the maximum and minimum facility workloads of sited facilities, or rather the

workload range. Constraints (1.16) track the maximum workload. Constraints (1.17)

track the minimum workload of sited facilities. If facility j is sited, constraint (1.17)
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becomes ΣiaiYij ≥ L. Alternatively, if facility j is not sited, constraint (1.17) becomes

ΣiaiYij +M ≥ L, which does not impose any restrictions since M is a very large positive

number. L is non-negative in constraint (1.18). Note that Daskin and Tucker (2018) also

introduced other constraints to tighten the model formulation.

While there is other research focused on minimizing other workload variation measures

in the context of other location problems, they are not in this introduction. One example

is minimizing the total pairwise workload difference in a median like problem (Church and

Murray, 1993). Another example is the k-balanced center location problem (k-BCLP)

that minimizes the maximum workload in a k-center problem (Davoodi, 2019). Other

multi-objective workload balancing problems can be found in Garfinkel and Nemhauser

(1970); Weaver and Church (1981); Zhu and McKnew (1993); Kim and Kim (2010);

Berman et al. (2009). But little research has focused on how to explicitly balance facility

workloads in coverage problems. The research gap here is twofold: lack of systematic

evaluation of existing implicit methods from the workload balancing point of view and

little exploration of explicit approaches to balance workloads in coverage problems. This

is what this dissertation addresses.

1.2.2 Solution Method

All these reviewed problems are NP -hard (Megiddo et al., 1983; Current and Storbeck,

1988; Daskin and Tucker, 2018), suggesting the computational challenges of solving them

optimally. As a result, there are many studies focused on developing efficient exact and
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heuristic solution techniques. The linear programming with branch-and-bound technique

is the most prominent exact solution method that has been applied to solve location prob-

lems (e.g., Church and ReVelle 1974; Murray and Tong 2009; Xu et al. 2020). However,

more efficient solution methods are needed when the problem instance becomes large and

difficult. For example, greedy adding and greedy adding with substitution were devel-

oped for solving the MCLP (Church and ReVelle, 1974). Lagrangean relaxation based

method is a common one that were used to solve MCLP (Weaver and Church, 1983;

Galvão and ReVelle, 1996), CMCLP (Pirkul and Schilling, 1989, 1991; Haghani, 1996),

PMP (Narula et al., 1977; Beltran et al., 2006), CPMP (Mulvey and Beck, 1984; Pirkul,

1987) and other problems. Metaheuristics were also used. Tabu search was applied to

solving MCLP (Adenso-Diaz and Rodriguez, 1997). Simulated annealing based heuris-

tics were developed for solving MCLP and PMP (Murray and Church, 1996). Genetic

algorithm were used to solve the PMP (Bozkaya et al., 2002; Alp et al., 2003), CPMP

(Shariff et al., 2013) and PMP-Range (Daskin and Tucker, 2018). Since the MCLP is

NP -hard plus the use of mutil-objectives usually increases the computational complexity,

it is expected the model that directly minimizes workload variation in coverage problems

is computational challenging. So a third focus of this dissertation is to study effective

and efficient solution methods for solving the explicit workload balancing model.
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1.3 Research Objectives

Three primary research objectives are among a number of goals associated with this

dissertation:

1. Examine and investigate important challenges and issues associated with existing

approaches that can be used to balance facility workloads in coverage problems,

focusing on evaluating solution characteristics of methods accessible in commercial

GIS.

2. Formulate and structure alternative modeling approaches that can be used to ex-

plicitly balance facility workload in coverage problems.

3. Develop efficient solution methods for proposed models that consider facility work-

load balance in coverage problems.

1.4 Significance

Coverage problems have been important location models and have been widely applied

in practice. A major limitation of simple coverage approaches is that they do not control

allocation, which might lead to unreasonable facility workloads, workload imbalance, in-

equity, service performance degradation, etc. Previous studies have dealt with facility

workload related issues in coverage problems, with one of the most popular approaches
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being to impose capacities and/or thresholds. However, capacities and thresholds cannot

guarantee facility workload balance and have associated issues in application. This disser-

tation seeks to evaluate existing approaches that consider workload balance in coverage

problems and propose alternative approaches to better address facility workload balance.

The primary contribution of this research includes: better understanding and systematic

evaluation of existing capacitated coverage approaches including their solution character-

istics and commercial GIS performance; new modeling approaches explicitly considering

facility workload balance in coverage problems that might be applied to other types of

location problems; and efficient solution techniques for proposed multi-objective spatial

optimization models.

1.5 Structure of Research

This remainder of the dissertation is structured as follows.

Chapter 2 investigates existing modeling approaches for balancing facility workloads

in maximal covering, focusing on the most popular method – CMCLP. The CMCLP

is assessed in terms of facility workload balance, theoretically and empirically. Rigorous

mathematical proof and empirical studies are given to support this. In addition, since the

CMCLP is available through commercial GIS software, this chapter compares solutions

produced by commercial GIS software with optimal solutions in terms of both quality

and efficiency.
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Chapter 3 studies five different workload balancing measures and corresponding mod-

eling approaches that can be used to explicitly balance facility workloads in the context

of maximal covering. Approaches are evaluated comparatively, with completeness, infe-

riority and maximum gap measures introduced to support this. Two empirical studies

are conducted to evaluate and compare the proposed five workload balancing models,

examining their effectiveness and computational efficiency.

Chapter 4 proposes a heuristic algorithm for the proposed workload balanced maximal

covering model, due to the observation of great computational difficulties. The proposed

algorithm incorporates interchange along with simulated annealing, taking advantage of

problem-specific knowledge to derive high-quality solutions in an efficient manner. Four

empirical studies are conducted to demonstrate the strength of the algorithm.

Chapter 5 summarizes major research findings and theoretical contribution, as well

as directions for future work.
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Chapter 2

Challenges in Applying Capacitated
Covering Problems

2.1 Introduction

Location covering models have been important spatial analytic approaches, used to sup-

port strategic planning, management and decision making in public and private sector

contexts. There is a long history in GIS of coverage application and development efforts,

including the work of Gerrard et al. (1997), Murray et al. (2008), Straitiff and Cromley

(2010), Downs et al. (2014) and Xiao and Murray (2019), as well as Murray and Tong

(2007), Tong and Church (2012), Church and Li (2016), Wei and Murray (2016) and

Murray et al. (2019). The coverage concept relates to service provision, acknowledging

that response criteria like access and accessibility are fundamental. Church and Murray

(2018) characterized coverage as a maximum distance or travel time standard for per-

sonnel at a facility to respond to a demand for service. Similarly, this may be viewed

This chapter represents a revised version of a paper published in Transactions in GIS, co-authored
with Dr. Alan T. Murray, Zifan Wang and Dr. Richard L. Church.
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from a central place theory perspective where coverage relates to the range of a good

or service, reflecting the maximum distance/time a customer is willing travel to con-

sume the good/service (see Christaller 1966). Many examples of coverage standards are

detailed in Church and Murray (2018). A classic analysis situation involves fire service,

where coverage is associated with a desired response by firefighting personnel within some

stipulated time standard, e.g., eight minutes. Given a response standard, a prominent

covering model is the maximal covering location problem (MCLP) introduced in Church

and ReVelle (1974). It seeks to site a given number of facilities in such a manner that

suitable coverage within the standard is provided to the highest total demand possible.

Interestingly, an important underlying assumption in the MCLP is that facilities be-

ing sited have unlimited capacities. That is, service by any one facility can be provided

to as much demand as possible as long as recipients are within the coverage standard.

This assumption, however, is problematic in many ways. Most facilities have limits on

service capabilities due to physical, political, structural, regional and other reasons. For

example, firefighting personnel at a particular station are limited in the number of calls

they can reasonably respond to as there are only so many hours in the day. In addition,

the assumption of unlimited service capabilities can lead to significant variation in facility

workloads, which is highly problematic and inequitable. For example, Murray and Ger-

rard (1997) showed how workloads can vary between located facilities when no utilization

limits are imposed. In particular, one facility serves 47.8% of total demand while another

facility only serves 3.1%, a factor of more than 15 times that of the less utilized facility.
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Such a significant deviation in workloads can cause employee dissatisfaction, low morale,

poor productivity and other negative effects. Beyond this, variability in workloads may

degrade service quality and lead to marginal economic returns. For these reasons and

others, unlimited capacity assumptions may be untenable (Current and Storbeck, 1988;

Church and Murray, 2018).

The prominent approach for dealing with the assumption of unlimited service capa-

bilities is to constrain total service provided by any one facility. That is, add capacity

constraints to the model. Indeed, this has been true for coverage models. The capacitated

maximal covering location problem (CMCLP), as an example, was introduced along these

lines, employing constraints to track and prevent the workload (total service) for each

facility from exceeding an established limit (Chung et al., 1983; Church and Somogyi,

1985; Current and Storbeck, 1988; Liao and Guo, 2008; Elkady and Abdelsalam, 2016;

Ferrari et al., 2018). Service availability and facility busyness can be managed through

the use of a capacity. Additionally, capacity limits can be employed and structured to

help balance facility workloads in a system, shifting demand from heavily burdened fa-

cilities to those with available resources. Capacities too are useful for avoiding situations

where over-utilized facilities degrade service quality as well as circumventing inefficiency

associated with under-utilized facilities.

While using capacity limits on facilities is appealing in many ways, there are challenges

and issues in their application. Little attention has been devoted to such considerations.

There are at least five challenges associated with the introduction of capacities. The
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first is that most approaches for specifying appropriate facility capacities are subjective.

Marianov and Serra (1998) suggested two methods for establishing and/or deriving a

facility capacity: use total demand multiplied by a scaling factor or use average historical

workloads. Both assume expert knowledge and/or the existence of historical information.

A second challenge is that a facility’s capacity is not necessarily a strict limit, so there

may be some degree of flexibility. Accordingly, uncertainty is introduced through the

use of strict capacities and this may in turn severely impact service system effectiveness

and efficiency. Third, the use of capacities can result in an undesired allocation response

where demand is denied service or dispatched to a further away service facility. A fourth

challenge is that capacities might fail to reflect actual workloads. If a service provider

lacks the authority or control to restrict people from accessing services, facility capacity

may be exceeded during operation. A final challenge is that the addition of capacities

often significantly increases computational processing in model solution (Current and

Storbeck, 1988; Pirkul and Schilling, 1988, 1989; Church and Murray, 2018), sometimes

beyond computing capabilities. With these challenges in applying capacitated models, it

is clear that further research is necessary.

Interestingly, access to capacitated modeling approaches has greatly expanded. One

can devise exact and heuristic approaches for capacitated models through the use of open

source packages and libraries in R and Python as well as others. Capacitated models

can also be structured and solved in general optimization software such as Xpress and

Gurobi. An increasingly popular option is commercial GIS software with user-friendly
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access through point-and-click interfaces, making it possible for any user to model and

solve various location problems, including capacitated coverage models (Murray et al.,

2019). A direct result of this can be observed in Table 2.1 as there has been a significant

increase in applications specifically relying on GIS packages to solve capacitated models

in various substantive contexts. While access to these analytical methods is encouraging

in many ways, a number of additional issues do arise, such as what is the actual model

being implemented and solved, how good are obtained solutions, etc. Thus, there is a

critical need for a systematic assessment of such capabilities.

This chapter examines important challenges and issues in applying capacitated cover-

ing models, focusing on evaluating allocation response and exploring solution characteris-

tics of capacitated coverage models available through commercial software. Background

literature associated with the research is provided in the next section. Then, mathemati-

cal details of coverage modeling is detailed in the methods section. Two empirical studies,

one focusing on postal service in San Jose, CA and another locating nutrition programs

in Santa Barbara, CA, are detailed to highlight performance issues and characteristics.

Finally, this chapter ends with discussion and conclusions.

2.2 Background

Location models have played an important role in supporting facility siting decision mak-

ing in numerous areas, such as emergency medical service, fire response, goods delivery,
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school districting, species preservation, and manufacturing, just to name a few. Loca-

tion problems have broad application. Further, they have been categorized according to

the following primary types: median, coverage, center, dispersion, hub and competitive

(Church and Murray, 2009; Daskin, 2011). One of the most prominent location models is

the location set covering problem (LSCP) that deems system service to be adequate if all

demand is within a given travel distance/time of a facility. Toregas et al. (1971) proposed

the LSCP, seeking complete coverage using a minimal number of facilities. Substantial

interest in covering models has followed that seminal work. Given budget and resource

realities, the MCLP (maximal covering location problem) was subsequently formalized

to support siting a certain number of facilities in order to achieve the most coverage of

demand possible (Church and ReVelle, 1974) and applied broadly (Chung, 1986; Gerrard

et al., 1997; Downs et al., 2014; Murray, 2016). Many related studies have sought to ex-

tend the LSCP and MCLP in various ways, including addressing backup issues (Daskin

and Stern, 1981; Hogan and ReVelle, 1985; Bianchi and Church, 1988), probabilistic fa-

cility availability (Chapman and White, 1974; Daskin, 1982, 1983; Sorensen and Church,

2010), and continuous space service (Murray and O’Kelly, 2002; Murray et al., 2008;

Straitiff and Cromley, 2010; Tong and Church, 2012; Wei and Murray, 2016), to name a

few.

One of the more important extensions has been the introduction of facility capacities

to deal with the assumption of unlimited service to demand. Associated with coverage

modeling, the CMCLP adds capacity limits to the MCLP. The CMCLP was first for-
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mulated by Chung et al. (1983) who also developed a substitution based heuristic to

solve it. Church and Somogyi (1985) proposed an alternative CMCLP formulation that

allows partial assignments and multiple facilities at a site. A max-flow based heuristic

called BASC (Balancing Access and Service Coverage) was developed to solve this model.

Hogan and ReVelle (1985) used separable programming to solve the CMCLP. Current and

Storbeck (1988) formulated the capacitated LSCP and CMCLP, with discussion of the

potential for solving a CMCLP using a technique developed for a capacitated p-median

and generalized assignment problems. Continued interest and related work includes min-

imizing total travel distance in addition to maximizing the total served demand (Church,

1974; Pirkul and Schilling, 1991; Haghani, 1996), considering backup service (Pirkul and

Schilling, 1989; Narasimhan et al., 1992), imposing multiple facility capacity levels (Yin

and Mu, 2012) and developing efficient solution methods (Straitiff and Cromley, 2010).

Interestingly, the CMCLP is accessible in contemporary GIS software for general usage.

In recent years, broad application of CMCLP can be observed in academic journals,

conference proceedings, thesis/dissertations and research reports (see Table 2.1).

The studies summarized in Table 2.1 all utilized commercial GIS software to structure

and solve the CMCLP, though their application foci differ significantly. Beyond its broad

utility and relevance, a primary reason for the observed uptake in reported applications

of the CMCLP is that GIS provides easy access to this approach, serving as an integrated

environment for data acquisition, management, manipulation, analysis and display for

users. While increased utilization of this location analytic approach is indeed encourag-
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ing for improving fundamentally important service systems, the performance behavior

of GIS software for solving capacitated models is effectively unknown. At present there

are no established solution quality characteristics nor an understanding of computational

efficiency in solving the CMCLP by embedded functions in commercial GIS. Critical eval-

uation is essential because the primary solution approaches for coverage models provided

in GIS are heuristics (see Esri 2019; Caliper 2019; Murray et al. 2019). Heuristics are

techniques that identify a solution to a model, and are often computationally efficient,

but cannot prove or verify anything about the quality of the obtained solution (Church

and Murray, 2008). Accordingly, heuristics cannot guarantee an optimal solution will be

found. In addition, GIS software, like ArcGIS, uses one heuristic to solve a variety of

different problem types through the technique of Hillsman editing (Esri, 2019). Murray

et al. (2019) summarized that GRASP (and Teitz and Bart) strategies with a path re-

linking metaheuristic, originally designed for the p-median problem, are used for solving

covering problems in ArcGIS. They found that the provided heuristic did not identify

optimal solutions in the majority of evaluated problem instances (LSCP and MCLP).

Given that the CMCLP is known to be much harder to solve compared to the MCLP

and LSCP due to capacity limits, concern for solution quality is warranted. As a result,

solution quality and performance in applying the CMCLP remains unclear in many ways

when a commercial GIS is utilized.

In addition to uncertainty in GIS-based heuristic performance, other issues associ-

ated with capacitated covering models are also a concern. Pirkul and Schilling (1991)
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Table 2.1 Applications of CMCLP relying on commercial GIS software for

direct solution

Reference Application Publication

Erfani et al. (2019) Waste storage stations Journal

Lemire et al. (2019) Biomass depots Journal

Alho et al. (2018) Bays for urban freight vehicles Journal

Erfani et al. (2018) Waste storage stations Journal

Helo et al. (2018) Distribution centers Research report

Sharma et al. (2018) Biorefinery, depot, and storage stations Journal

Teixeira et al. (2018) Power plants Journal

Tiggelaar (2016) Neonatal intensive care units Thesis

Manliclic (2016) Hydrogen fueling stations Dissertation

Anhorn and Khazai (2015) Emergency shelters Journal

Shahid and Mas Machuca (2015) Optical devices Thesis

Burciu et al. (2015) Port activities Conference proceeding

Sánchez et al. (2015) Pellet plants Journal

Naharudin (2014) School Thesis

suggested that the service standard is a way to ensure performance characteristics and

not a mechanism for withholding service. They argued that it would be unreasonable to

withhold service to demand beyond the standard. They extended the basic CMCLP to

include an additional objective that minimizes the total weighted distance for demand

beyond the standard, where allocation of all demand is made regardless of the stan-

dard. Haghani (1996) was similarly focused on allocation of demand within and outside

the standard while incorporating both lower and upper capacity limits for each facility.

Worth noting as well was the work of Church (1980) who developed a multi-objective

model that minimized the weighted distance of assigned demand, maximized the cov-
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erage, and minimized the number of facilities which could not reach a desired target of

assigned demand (a lower threshold) that was used to design solid waste planning regions

for the Tennessee Valley Authority. However, little attention has been given to the al-

location response of demand within the service standard, including holding back service

to some demand and dispatching some demand to further away facilities when capacities

are imposed.

2.3 Methods

Since capacitated models are available in commercial GIS software such as ArcGIS and

open-source software including Python and R libraries, easily set up and solved in general

optimization packages such as Gurobi, Xpress, LINGO and others, and the CMCLP has

been applied in a number of different settings, it is critical to assess current capabilities

in solving the CMCLP, especially given that it has increasingly been utilized through

GIS as part of integrated planning environments.

Consider the following notation:

i = index of demand areas (I entire set)

j = index of potential facilities (J entire set)

dij= travel distance/cost/time between demand i and facility j

S = service coverage standard

Ni = {j|dij ≤ S}
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ai = amount of demand in area i

cj = capacity of facility j

p = number of facilities to site

Decision variables:

Xj =


1 if facility j is sited

0 otherwise

Yij =


1 if demand i is allocated to facility j

0 otherwise

One detail to point out regarding Ni is that it is the set of potential facility sites that

can suitably cover demand i. This is predicated on the nature of service combined with

the associated standard S. Normally, it is assumed that ai > 0 and cj > 0. With the

above notation, the CMCLP can be formulated as follows:

Maximize ΣiΣj∈Ni
aiYij (2.1)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (2.2)

Σj∈JXj = p (2.3)

ΣiaiYij ≤ cjXj ∀j ∈ J (2.4)

Xj = {0, 1} ∀j ∈ J (2.5)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (2.6)
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The objective, (2.1), seeks to maximize the total demand served within the coverage

standard. This is equivalent to the objective of the MCLP, but involves the use of

allocation variables to indicate which demand is served by a specific facility. Constraints

(2.2) indicate that each demand is to be allocated to at most one facility. Exactly p

facilities are to be sited in Constraint (2.3). Capacity limits are imposed in Constraints

(2.4). The left hand side of Constraints (4) sums the total demand allocated to facility

j. The right hand side of Constraints (2.4) establishes the upper limit on demand that

can be allocated to facility j. There are two roles served by Constraints (2.4): first, the

facility workload of a facility cannot be greater than its upper limit if it is sited; second,

a demand can never be allocated to a facility that is not sited. Constraints (2.5) define

binary conditions for the location variable associated with each potential facility site.

Constraints (2.6) define binary conditions on each allocation variable.

Formulation of the CMCLP along the lines structured using (2.1)-(2.6) requires

Σi∈I |Ni| + |J | decision variables, where | · | is the number of elements in the associated

set. The number of constraints for this approach is Σi∈I |Ni|+ |I|+ 2|J |+ 1.

The MCLP can be viewed as a special case of a CMCLP with an unlimited capacity

for each facility. Specifically, the MCLP is equivalent to the CMCLP when cj =∞ for all

j. Constraints (2.4) would then become ΣiaiYij ≤ ∞ when Xj = 1. Thus, no limits are

imposed on facility workloads. Alternatively, Constraints (2.4) take the following form

ΣiaiYij ≤ 0 when Xj = 0. This then forbids demand from being allocated to facilities

that have not been sited.
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When allocation variables are utilized, Balinski constraints are sometimes added to

enhance structural properties, giving a model so called integer-friendliness when solved

by exact methods (Church and Roberts, 1983; ReVelle, 1993; Gerrard, 1995; Church and

Murray, 2009). These constraints take the following form:

Yij ≤ Xj (2.7)

The result is that Σi∈I |Ni| constraints are added, bringing the total number of con-

straints to 2Σi∈I |Ni|+ |I|+ 2|J |+ 1. Again, the benefit is that Balinski constraints often

enhance solution efficiency, if linear programming with branch-and-bound is used.

Worth noting is that a formulation nuance of the MCLP, the situation where a CM-

CLP has cj = ∞ for all j, is to adopt binary coverage decision variable that indicates

whether or not a demand i is suitably covered (Church and ReVelle, 1974). This avoids

the use of allocation decision variables Yij, requiring significantly fewer variables and con-

straints. However, it is impossible to derive facility workloads without tracking allocation

explicitly in the formulation.

Since the primary emphasis of the CMCLP is capacity limits, further discussion of the

role of capacities is necessary. First, more balanced facility workloads are an expected

byproduct due to the fact that each facility bounds the demand that it can be allocated.

Second, significant computational complexity arises when capacity limits are introduced.

Third, some demand within the coverage standard might not be allocated or could be

dispatched to further away facilities in order to satisfy capacity constraints.
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First, the upper bound of the workload range of a CMCLP solution is never greater

than that of a corresponding optimal MCLP solution. Let J∗ be the set of sited facilities,

The range of facility workload for any solution is as follows:

max
j∈J∗
{ΣiaiYij} −min

j∈J∗
{ΣiaiYij} (2.8)

This suggests the following proposition.

Proposition. The workload range of an optimal CMCLP solution, UBCMCLP , is

bounded by the corresponding workload range of an optimal MCLP, UBMCLP , implying

that UBCMCLP ≤ UBMCLP .

Proof. Let Rj be the set of demand that can be suitably covered by facility j.

Given capacity constraints (2.4), the workload of a facility j cannot exceed its capacity

bound as well as the total demand it is able to cover. That is ΣiaiYij ≤ min{cj,Σi∈Rj
ai}

for all j. Thus, the maximal facility workload of a sited facilities in a CMCLP solu-

tion is maxj{min{cj,Σi∈Rj
ai}}. The minimal workload of a sited facility j is mini∈Rj

ai.

Therefore, the minimal facility workload in the system is minj{mini∈Rj
ai}. Accord-

ingly, an upper bound of the CMCLP solution UBCMCLP = maxj{min{cj,Σi∈Rj
ai}} −

minj{mini∈Rj
ai}.

When cj =∞ in constraints (2.4), the model is the MCLP. In this case, the maximal

workload of sited facilities would be maxjΣi∈Rj
ai. The minimal facility workload of sited

facilities for the MCLP is still minj{mini∈Rj
ai}. Thus, an upper bound of the MCLP
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solution UBMCLP = maxj{Σi∈Rj
ai}−minj{mini∈Rj

ai}. Since maxj{min{cj,Σi∈Rj
ai}} ≤

maxj{Σi∈Rj
ai}, UBCMCLP ≤ UBMCLP .

It is easy to see that with tight capability limits cj, the workload range in capacitated

problems would be more restricted with a smaller UBCMCLP . In addition, workloads

of sited facilities will tend to approach/reach imposed limits cj. This is because the

objective (2.1) seeks maximum total demand served. �

Second, capacity limits introduce computational difficulties. There are two conditions

for a facility in a CMCLP solution: not sited or sited. If Xj = 0, a facility j is not sited,

the allocation decision associated with j in the CMCLP are trivial. Because of capacity

constraint (2.4), for facility j the condition becomes ΣiaiYij ≤ 0. Then, Yij for all i.

Alternatively, if Xj = 1, the CMCLP can be viewed as a 0-1 knapsack problem for each

sited facility j:

Maximize Σi∈Rj
aiYij (2.9)

Subject to Σi∈Rj
aiYij ≤ cj (2.10)

Yij = {0, 1} (2.11)

Note that Rj is a set that indicates those demand i that can be suitably served

within the coverage standard of facility j. The 0-1 knapsack problem is an integer linear

programming problem and is NP -hard (Gary and Johnson, 1979). Branch-and-bound

procedures coupled with linear programming are a general purpose integer linear pro-
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gramming technique (Church and ReVelle, 1974; ReVelle, 1993). The idea is to solve

a linear programming problem that ignores binary restrictions on a node of a tree, ob-

taining an upper bound for a maximization problem. If some variables violate binary

constraints, a branch of the tree is created by fixing a fractional variable to 0 and 1.

Each problem instance is then re-solved. This continues until all variables are integer

for a node and the node’s objective value is greater than or equal to that of any other

terminal node (Efroymson and Ray, 1966). The introduction of capacity cj would tend

to make allocation variables Yij fractional when solving the relaxed linear problem. Here,

Σi∈Rj
ai > cj is assumed without loss of generality. Define r such that Σr−1

i=1ai ≤ cj and

Σr
i=1ai > cj and |Rj| the number of demand areas that can be suitably covered by facility

j. An optimal solution of the relaxed problem is (Wolsey and Nemhauser, 1999): Yij = 1

for i = 1, 2, . . . , r − 1, Yij = 0 for i = r + 1, r + 2, . . . , |Rj| and Yrj =
cj−Σr−1

r=1ai
ar

, which is

likely to be fractional in order to satisfy capacity constraint (2.10). Thus, it can be dif-

ficult for a branch-and-bound procedure to find an integer solution for the 0-1 knapsack

problem. Therefore, it is even more computationally intensive to solve a CMCLP that is

comprised of many 0-1 knapsack problems.

Third, the provided allocation response might not be desirable. Let J∗ be the set of

selected facilities and a demand i is within the covering standard of selected facilities,

that is J∗ ∩ Ni 6= ∅. The demand i would not be served if for all j ∈ J∗ ∩ Ni, Yij = 0

is part of optimal solutions of associated 0-1 knapsack problems. A demand would be
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dispatched to a further away facility if allocation to a closer sited facility violates the

capacity limit and there is sufficient capacity to accommodate it elsewhere.

The CMCLP is an important capacitated model, but users face several challenges

caused by capacity limits. The introduction of capacity limits imposes a more restrictive

upper bound of the facility workload range, so it leads to a more balanced system to

some extent. However, capacity constraints mean that linear programming based solution

approaches will likely encounter highly fractional solutions, making it far more difficult for

a branch-and-bound technique to identify an optimal integer solution. Therefore, due to

capacities, the CMCLP can be computationally intensive to solve optimally. In addition,

some demand within the covering standard might not be served or may be dispatched to

a further away facility in order to satisfy capacity restrictions. The associated properties

of the CMCLP mean that greater understanding and further empirical evaluation is

essential.

2.4 Application Results

Two application case studies are utilized in the empirical assessment that follows. These

studies help to highlight practical issues in applying the CMCLP, but also serve to provide

insight regarding heuristic performance of commercial GIS software. The CMCLP is

structured and solved by Location-Allocation functionality available in Network Analysis

toolbox of ArcGIS (version 10.5). To establish a comparative basis, the CMCLP is also
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structured and solved optimally using an exact solver, FICO Xpress (version 8.4) that

uses the simplex algorithm combined with branch-and-bound. Corresponding MCLP

instances are also structured and solved for comparison. Origin-destination matrices are

exported from GIS, characterizing travel distance/cost between potential facilities and

demand. Facility capacity, cj, is established through evaluation of the maximal demand

that can be suitably covered without capacity limits (i.e. the MCLP optimal objective

value) divided by the number of facilities then multiplied by a coefficient α. Specifically,

cj = α×(MCLP optimal objective value)/p. The factor, α, adjusts facility capacity and

α = 1 initially. All empirical results are obtained using a desktop personal computer

(Intel Xeon E5 CPU 2.30 GHz with 64 GB RAM and 4 cores).

The first case study involves analysis and planning to support postal service in the

City of San Jose. The accuracy and efficiency of postal service is essential for business.

Demand for service is considered using 32 ZIP Code Tabulation Areas (U.S. Census

Bureau, 2018b) with a total population (2010) of 1,023,791 people. The population of

each area is regarded as service demand. The ZIP Code Tabulation Area centroid is

used to represent the demand point, as well as considered as a potential postal service

facility location. Travel information between demand and potential facilities is computed

based on a network extracted from The City of San Jose (2019). The covering standard

to access a facility is a maximal service distance of 5 miles. The resulting problem has

32 demand points and 32 facility sites. CMCLP (and MCLP) instances with 1 to 10

facilities (i.e., varying p from 1 to 10) are explored.
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Table 2.2 CMCLP results (total demand served) for San Jose case study

p ArcGIS Xpress Optimality deviation (%)

1 393,050 393,050 0.000
2 636,850 636,850 0.000
3 771,132 781,776 1.362
4 805,660 844,022 4.545
5 827,304 844,022 1.981
6 844,022 844,102 0.009
7 844,022 864,200 2.335
8 844,022 889,601 5.124
9 872,883 889,681 1.888
10 857,749 889,681 3.589

The summary of findings for each CMCLP can be found in Table 2.2 and Figure 2.1(a).

ArcGIS is unable to find optimal solutions in 8 of 10 problem instances. This is because

the heuristic in ArcGIS cannot guarantee that optimal solutions are found while the exact

solver using Xpress can verify solution optimality. Only when p is equal to 1 or 2, the

heuristic in ArcGIS successfully identifies optimal solutions. When p = 8, the optimality

deviation is 5.124%, which amounts to 45,579 people. This means that the optimal

configuration of postal service facilities can serve 45,579 more people within the service

covering standard than what was provided by the heuristic solution generated by ArcGIS.

This is significant because the additional costs and effort associated with adopting a non-

optimal solution are substantial, if a comparable level of service coverage is to be achieved.

The median optimality deviation is 1.934%. Solution time is summarized in Figure 2.1(b).

The computational time for ArcGIS is stable with an average of 0.553 seconds across the

10 application instances. The computational time for Xpress increases with p. Solution
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time is significantly longer, requiring 44.635 seconds for p = 7. Note that solving the

CMCLP and MCLP in Xpress requires the origin-destination matrix to be exported from

ArcGIS, which takes 2.230 seconds.
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Figure 2.1 Summary of CMCLP solution details for the San Jose case study

Allocation offered by optimal solutions is also investigated. First, with imposed facil-

ity capacities, facility workload ranges, maxj∈J∗{ΣiaiYij}−minj∈J∗{ΣiaiYij}, are signifi-

cantly less than workload ranges in the case of the MCLP (Table 2.3), except when p = 2.

The average workload range of optimal CMCLP solutions is 44,455 people compared to

an average of 214,669 people for corresponding MCLP solutions. Second, there exists

demand unserved even though it is within the service covering standard when p = 7

(Figure 2.2). Demand 31, representing 25,401 people, does not have access to service

provided by the seven site facilities for the optimal allocation using the CMCLP. How-

ever, the distances between Demand 31 and two selected facilities (Facilities 17 and 23)
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are around 3 miles, less than the maximal service distance of 5 miles. This means that

25,401 people, which account for 2.855% of total demand within the covering standard,

are not provided service. In addition to withholding service, there are 381,945 people

from 10 demand areas that are allocated to non-closest facilities when p = 7, leading

to additional 719,795.961 miles in total travel (Figure 2.2). Most notably, Facilities 17

and 23 are sited but Demand 17 and 23 (in nearby areas) would be allocated to other

facilities. More non-closest allocation can be found in all application instances except the

case where one facility is sited (Table 2.4). A significant amount of demand is allocated

to further away facilities, resulting in 671,531.689 more miles in total travel distance on

average.

Table 2.3 Facility workload range for San Jose case study

p MCLP CMCLP

1 0 0
2 2,174 13,904
3 121,358 17,273
4 288,112 13,214
5 293,392 32,769
6 287,010 76,464
7 270,833 91,833
8 317,003 77,721
9 258,795 65,525
10 308,015 55,849

Analysis and planning to support the Special Supplemental Nutrition Program for

Women, Infants, and Children (WIC) in the Santa Barbara area (Goleta, Santa Barbara

and Carpinteria) is also investigated. This federally funded program aims to provide

38



Chapter 2. Challenges in Applying Capacitated Covering Problems

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(
!(

!(
!(

!(

!(!(

!(

!(

!(

!(

!(

!(

!(

!(

#*

!(

!(

!(

!(

!(

!(

!(
!(!(

!(

!(

!(

!(

!(
!(

!(

!(

!(!(

!(
!(

!(

!(

!(
!(

!( !(

!(
!(

!(

!(

!(
!(

!(

)

)

)

) )

)

)

Legend

) Selected facility

!( Servered demand

!( Served deamnd (non-closest assigned)

#* Unserved demand within maximal covering distance

!( Uncovered demand

ZIP Code Tabulation Area 

±

0 4 8 12 162
Miles

ID: 31

ID: 23

ID: 17

Figure 2.2 CMCLP-derived facility configuration (p = 7) and withholding

service in the San Jose case study

nutrition, healthy foods, breastfeeding education and health care service across the United

States. The locations of WIC facilities and associated service allocation in Santa Barbara

are considered. There are 2,070 census blocks in the region with a total population

(2010) of 200,450 people. The population of each block is used as a proxy for service

demand, represented using the centroid. There are 82 locations identified as potential

WIC facilities. The road network is constructed using data downloaded from U.S. Census
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Bureau (2018a). The service coverage standard is assumed to be 5 miles. Siting 1 to 8

facilities under capacity restrictions is considered.

Table 2.4 Non-closet allocation for San Jose case study

p Demand not
allocated to

closet facilities

Total weighted
distance to

closet facilities
(mile)

Total weighted
distance to
allocated

facilities (mile)

Distance
difference

(mile)

1 0 0 0 0
2 86,976 212,777.599 385,873.873 173,096.274
3 94,907 198,957.989 394,689.289 195,731.300
4 164,565 377,184.379 542,493.900 165,309.522
5 332,247 588,347.791 1,358,672.029 770,324.238
6 276,989 193,914.388 959,206.769 765,292.382
7 381,945 741,504.511 1,461,300.472 719,795.961
8 530,828 747,646.767 1,894,780.189 1,147,133.422
9 570,992 746,412.817 2,247,774.870 1,501,362.053
10 435,246 229,336.481 1,506,608.215 1,277,271.735

The summary findings for applying the CMCLP can be found in Table 2.5 and Figure

2.3(a). Of the 8 problem instances solved using the ArcGIS heuristic, only one is optimal

(p = 1). Thus, 87.5% of the application instances are not solved optimally by the

heuristic. The optimal configuration of selecting 3 facilities is given in Figure 2.4. These

3 selected facilities can serve 182,749 people while facilities found using the ArcGIS

heuristic can only serve 170,144 people. This means that the configuration suggested

by ArcGIS would not serve 12,605 people within the standard as compared to what can

be optimally served. The median optimality deviation is 1.685%. Computational time

is presented in Figure 2.3(b). Generally, both ArcGIS and Xpress have an increasing

trend with p. ArcGIS requires significantly less computational time with an average
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of 30.844 seconds. In contrast, solution using Xpress requires an average of 1,232.300

seconds. Note that exporting of the origin-destination matrix from ArcGIS for Xpress

takes 22.420 seconds.
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Figure 2.3 Summary of CMCLP solution details for the Santa Barbara case

study

Characteristics of CMCLP allocations were also evaluated. First, significantly less

facility workload variation is observed in CMCLP solutions compared to the MCLP,

which is not surprising. The average workload ranges are 6,046 and 55,292 people for the

CMCLP and MCLP, respectively. When p = 3, the most utilized facility serves 5,330

more people than the least utilized facility in the CMCLP (Figure 2.4) while the range

reaches 84,323 people in corresponding MCLP solutions (Figure 2.5). Second, there are

two among eight problem instances giving optimal allocation strategies stipulating a total

of 6,216 people from 369 blocks within the standard would not be served. When p = 2,

41



Chapter 2. Challenges in Applying Capacitated Covering Problems

some 2.714% of demand within 5 miles from selected two facilities, 4,719 people, would

not be served (Figure 2.6). It can be observed as well that some unserved demand within

the maximal service distance is located much closer than some served demand. Service

is withheld for 1,497 people within the maximal service distance when selecting eight

facilities. Third, in the eight application instances, a total of 452,446 people are not

allocated to their closest sited facilities and have to travel a total of 803,713.691 miles

further for service.

Table 2.5 CMCLP results (total demand served) for Santa Barbara case

study

p ArcGIS Xpress Optimality deviation (%)

1 116,327 116,327 0.000
2 163,028 169,122 3.603
3 170,144 182,749 6.897
4 181,337 184,909 1.932
5 184,158 185,376 0.657
6 183,873 190,853 3.657
7 188,110 190,853 1.437
8 192,231 193,980 0.902

2.5 Discussion

There are a number of potential issues surrounding the application of the CMCLP worth

further investigation and discussion. More empirical assessment was conducted on the

impacts of different facility capacities, accomplished by varying the factor α in both case
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Chapter 2. Challenges in Applying Capacitated Covering Problems
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Chapter 2. Challenges in Applying Capacitated Covering Problems
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Chapter 2. Challenges in Applying Capacitated Covering Problems

studies. Specifically, α is varied from 0.2 to 2.0 in intervals of 0.2. For example, an α

of 0.2 means a relatively low facility capacity, that is 20% of the average workload of

facilities compared to the corresponding MCLP optimal solution. With each α value,

evaluation of the CMCLP along the lines reported in Table 2.2 and Figure 2.1 was

repeated for applications. As a result, an additional 90 problem instances for the postal

service context and 72 more instances for WIC in Santa Barbara were considered. In

total, 180 different CMCLP applications were examined.

Table 2.6 Capacity variation impacts on CMCLP results (total demand

served) for San Jose case study

α p ArcGIS Xpress Optimality deviation (%)

0.2

1 78,374 78,374 0.000
2 131,735 132,114 0.287
3 159,803 161,677 1.159
4 167,009 167,009 0.000
5 159,548 163,624 2.491
6 164,018 164,018 0.000
7 134,293 134,293 0.000
8 108,892 108,892 0.000
9 108,892 108,892 0.000
10 108,892 108,892 0.000

0.4

1 157,156 157,202 0.029
2 264,349 264,737 0.147
3 322,806 325,825 0.927
4 340,641 343,876 0.941
5 342,823 353,705 3.077
6 367,464 370,797 0.899
7 366,738 366,738 0.000
8 367,689 370,770 0.831
9 364,880 364,880 0.000
10 339,210 352,882 3.874
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Table 2.6 (continued)

α p ArcGIS Xpress Optimality deviation (%)

0.6

1 235,665 235,790 0.053
2 395,615 397,050 0.361
3 486,299 488,758 0.503
4 504,302 514,176 1.920
5 534,404 538,939 0.841
6 538,605 555,742 3.084
7 566,347 574,434 1.408
8 524,931 569,022 7.749
9 535,039 574,071 6.799
10 580,533 586,804 1.069

0.8

1 313,456 314,330 0.278
2 524,418 528,883 0.844
3 645,574 650,480 0.754
4 673,863 686,062 1.778
5 715,271 718,441 0.441
6 705,637 740,221 4.672
7 742,753 766,188 3.059
8 717,011 757,925 5.398
9 756,991 771,725 1.909
10 746,635 759,854 1.740

1.0

1 393,050 393,050 0.000
2 636,850 636,850 0.000
3 771,132 781,776 1.362
4 805,660 844,022 4.545
5 827,304 844,022 1.981
6 844,022 844,102 0.009
7 844,022 864,200 2.335
8 844,022 889,601 5.124
9 872,883 889,681 1.888
10 857,749 889,681 3.589

1.2

1 393,050 393,050 0.000
2 662,036 662,036 0.000
3 790,056 815,457 3.115
4 830,111 844,022 1.648
5 844,022 889,601 5.124
6 844,102 889,601 5.115
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Table 2.6 (continued)

α p ArcGIS Xpress Optimality deviation (%)

7 872,883 901,335 3.157
8 889,681 929,900 4.325
9 889,681 929,980 4.333
10 892,511 967,357 7.737

1.4

1 393,050 393,050 0.000
2 662,036 662,036 0.000
3 815,457 815,457 0.000
4 844,022 844,318 0.035
5 872,883 889,601 1.879
6 872,883 929,900 6.132
7 889,601 929,980 4.342
8 889,601 967,357 8.038
9 929,900 967,437 3.880
10 929,980 987,477 5.823

1.6

1 393,050 393,050 0.000
2 662,036 662,036 0.000
3 815,457 815,457 0.000
4 844,022 861,036 1.976
5 872,883 889,601 1.879
6 889,601 929,900 4.334
7 913,182 967,357 5.600
8 929,900 967,437 3.880
9 950,639 987,477 3.731
10 950,639 987,557 3.738

Table 2.6 summarizes empirical findings for San Jose. Of the 100 problem instances

for San Jose using the ArcGIS heuristic, 75 instances are not optimal. The optimality

deviation tends to be greater when selecting more facilities or when facility capacities

are higher. This implies the CMCLP with higher p (number of facilities) and larger cj

(capacity) are more difficult to solve for the ArcGIS heuristic. One potential reason is
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Table 2.6 (continued)

α p ArcGIS Xpress Optimality deviation (%)

1.8

1 393,050 393,050 0.000
2 662,036 662,036 0.000
3 815,457 815,457 0.000
4 844,022 861,036 1.976
5 872,883 901,335 3.157
6 889,601 929,900 4.334
7 913,182 967,357 5.600
8 929,900 987,477 5.831
9 950,639 987,557 3.738
10 950,639 1,006,446 5.545

2.0

1 393,050 393,050 0.000
2 662,036 662,036 0.000
3 815,457 815,457 0.000
4 844,022 861,036 1.976
5 872,883 901,335 3.157
6 913,182 929,900 1.798
7 913,182 967,357 5.600
8 929,900 987,477 5.831
9 950,639 1,006,446 5.545
10 950,639 1,006,446 5.545

that more facilities to site and higher facility capacities are associated with a larger fea-

sibility region in solution search processes, making it harder for the heuristic to find an

optimal solution. Relying on the ArcGIS heuristic for solving the CMCLP, 7.595% of the

total demand, amounting to 77,751 people, would not be suitably covered compared to

the optimal configuration in the worst case (p = 8, α = 1.4). The median deviation from

optimality is 1.839%. The optimality deviation revealed here for the CMCLP is gener-

ally much larger than that reported in Murray et al. (2019) for solution of the MCLP.
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This implies greater computation complexity for solving the CMCLP, making it more

challenging for heuristics to identify optimal or close to optimal solutions. Computation-

ally, the average time for the ArcGIS heuristic remains stable (around 0.537 seconds)

over different facility capacity levels. Generally, solution using Xpress requires more time

compared to ArcGIS, especially for more restrictive cases (e.g., α = 0.4, 0.6, 0.8, 1.0 and

1.2). This is due to Xpress using branch-and-bound when solving associated integer linear

programming problems. To satisfy tighter capacity limits, the binary allocation decision

variables tend to be fractional in relaxed linear programs, which ultimately makes the

branch-and-bound tree very deep in the search for feasible integer solutions and requires

more computational effort. Most notably, it takes about 153.042 seconds on average for

Xpress to solve problems when α = 1.0.

Reported in Table 2.7 are 42 instances found where service was withheld for demand

located within the coverage standard out of 100 problems for San Jose. Such instances

usually occur when facility capacities are low. The amount of unserved demand within

the maximal service distance tends to decrease with increasing facility capacities. Due

to higher capacity bounds, facilities are able to serve more demand, leaving less demand

unserved within the service standard. The most conspicuous instance of withholding

service is the case where p = 10 and facility capacities are the lowest, α = 0.2. In this

case, 85.932% of people (665,127) living within 5 miles from selected facilities are not

served within capacity limits. The median percentage of withholding service is 37.813%.
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In addition, there are 86 cases where an average of 223,030 people per case are not

allocated to their closest facilities, necessitating longer access travel.

Table 2.7 Capacity variation impacts on unserved demand within the service

standard for San Jose case study

p α # of unserved
demand area
within the
standard

# of unserved
demand

amount within
the standard

Percentage of
withholding
service (%)

1

0.2 7 279,213 78.083
0.4 7 173,907 52.523
0.6 3 157,260 40.010
0.8 2 61,719 16.412

2

0.2 11 504,736 79.255
0.4 7 325,934 55.180
0.6 7 220,803 35.737
0.8 4 107,967 16.953

3

0.2 9 325,690 66.826
0.4 10 393,723 54.718
0.6 5 201,397 29.181
0.8 2 39,675 5.749

4

0.2 11 410,983 71.105
0.4 8 276,878 44.603
0.6 6 313,128 37.849
0.8 2 79,014 10.328

5

0.2 10 457,130 73.641
0.4 10 473,599 57.246
0.6 7 226,137 29.557
0.8 5 80,053 10.025

6

0.2 7 330,798 66.853
0.4 11 427,777 53.568
0.6 6 288,280 34.156
0.8 3 103,801 12.298

7

0.2 13 565,296 80.804
0.4 10 431,756 54.071
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Table 2.7 (continued)

p α # of unserved
demand area
within the
standard

# of unserved
demand

amount within
the standard

Percentage of
withholding
service (%)

0.6 5 224,060 28.060
0.8 2 61,116 7.387
1.0 1 25,401 2.855
1.2 1 28,565 3.072

8

0.2 12 525,534 82.836
0.4 12 559,130 60.128
0.6 6 275,080 32.588
0.8 3 69,379 8.386

9

0.2 14 619,548 85.051
0.4 11 511,370 58.359
0.6 7 270,031 31.990
0.8 2 72,377 8.574

10

0.2 15 665,127 85.932
0.4 12 568,896 61.717
0.6 6 257,218 30.475
0.8 1 45,528 5.653

Similar results have been found for Santa Barbara. There are 38 (47.5%) problem

instances of 80 instances where the ArcGIS heuristics cannot provide optimal solutions

(Table 2.8). When facility capacities increase, more instances appear with non-optimal

solutions provided by ArcGIS. In the worst case (p = 4, α = 1.8), the ArcGIS solution

miss 19,941 (9.948%) people who should have been served. Reported in Table 2.9 are

36 instances where some demand is withheld service even though it is within the service

standard, which usually occurs when capacities are tight. The maximal percentage of

withholding service is up to 78.806% (p = 2, α = 0.8) and the median is 37.262%. Of
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the 80 instances, some demand is dispatched to a further away facility in 68 instances,

travelling an average of 14,509.012 miles further for service.

Table 2.8 Capacity variation impacts on CMCLP results (total demand

served) for Santa Barbara case study

α p ArcGIS Xpress Optimality deviation (%)

0.2

1 23,265 23,265 0.000
2 34,886 34,886 0.000
3 38,481 38,481 0.000
4 39,880 39,880 0.000
5 40,070 40,070 0.000
6 40,086 40,086 0.000
7 40,089 40,089 0.000
8 40,088 40,088 0.000

0.4

1 46,531 46,531 0.000
2 69,772 69,772 0.000
3 76,962 76,962 0.000
4 79,756 79,756 0.000
5 80,135 80,135 0.000
6 80,172 80,172 0.000
7 80,171 80,171 0.000
8 80,176 80,176 0.000

0.6

1 69,796 69,796 0.000
2 104,660 104,660 0.000
3 115,443 115,443 0.000
4 119,636 119,636 0.000
5 120,205 120,205 0.000
6 120,252 120,252 0.000
7 120,260 120,260 0.000
8 120,256 120,256 0.000

0.8

1 93,062 93,062 0.000
2 139,546 139,546 0.000
3 153,924 153,924 0.000
4 159,512 159,512 0.000
5 160,270 160,270 0.000
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Table 2.8 (continued)

α p ArcGIS Xpress Optimality deviation (%)

6 160,338 160,338 0.000
7 160,342 160,342 0.000
8 160,344 160,344 0.000

1.0

1 116,327 116,327 0.000
2 163,028 169,122 3.603
3 170,144 182,749 6.897
4 181,337 184,909 1.932
5 184,158 185,376 0.657
6 183,873 190,853 3.657
7 188,110 190,853 1.437
8 192,231 193,980 0.902

1.2

1 116,327 116,327 0.000
2 174,223 174,432 0.120
3 180,950 183,972 1.643
4 182,470 196,307 7.049
5 194,779 200,168 2.692
6 199,327 200,367 0.519
7 199,800 200,380 0.289
8 200,167 200,426 0.129

1.4

1 116,327 116,327 0.000
2 174,432 174,432 0.000
3 179,444 189,513 5.313
4 181,935 199,235 8.683
5 195,145 200,340 2.593
6 198,554 200,424 0.933
7 200,167 200,426 0.129
8 199,994 200,426 0.216
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Table 2.8 (continued)

α p ArcGIS Xpress Optimality deviation (%)

1.6

1 116,327 116,327 0.000
2 174,432 174,432 0.000
3 179,444 192,406 6.737
4 182,574 199,390 8.434
5 196,502 200,340 1.916
6 198,554 200,424 0.933
7 198,554 200,434 0.938
8 200,365 200,436 0.035

1.8

1 116,327 116,327 0.000
2 174,432 174,432 0.000
3 181,456 192,406 5.691
4 179,558 199,394 9.948
5 197,408 200,340 1.464
6 198,554 200,424 0.933
7 198,554 200,434 0.938
8 200,365 200,436 0.035

2.0

1 116,327 116,327 0.000
2 174,432 174,432 0.000
3 181,456 192,406 5.691
4 183,363 199,394 8.040
5 195,145 200,340 2.593
6 198,554 200,424 0.933
7 198,890 200,434 0.770
8 200,357 200,436 0.039
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Table 2.9 Capacity variation impacts on unserved demand within the service

standard for San Barbara case study

p α # of unserved
demand area
within the
standard

# of unserved
demand

amount within
the standard

Percentage of
withholding
service (%)

1

0.2 207 30,489 56.719
0.4 531 35,375 43.190
0.6 6 1,037 1.464
0.8 394 14,002 13.078

2

0.2 818 84,409 70.757
0.4 941 82,549 54.194
0.6 1339 68,480 39.552
0.8 492 23,009 14.155
1.0 315 4,719 2.715

3

0.2 1626 136,646 78.027
0.4 714 70,205 47.704
0.6 308 9,521 7.619
0.8 538 23,293 13.144

4

0.2 1444 11,7580 74.673
0.4 863 81,456 50.527
0.6 416 24,187 16.817
0.8 451 22,121 12.179
1.2 15 2,357 1.186

5

0.2 1610 136,432 77.298
0.4 1544 112,133 58.321
0.6 600 63,371 34.520
0.8 531 23,968 13.009
1.2 20 93 0.046

6

0.2 1636 140,150 77.759
0.4 1459 96,877 54.718
0.6 1329 69,861 36.747
0.8 414 24,344 13.182

7

0.2 1634 141,656 77.942
0.4 1622 103,741 56.408
0.6 902 73,010 37.776
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Table 2.9 (continued)

p α # of unserved
demand area
within the
standard

# of unserved
demand

amount within
the standard

Percentage of
withholding
service (%)

0.8 516 29,877 15.707

8

0.2 1777 149,062 78.806
0.4 1669 110,079 57.859
0.6 1329 61,373 33.790
0.8 925 29,469 15.525
1.0 54 1,497 0.766

2.6 Conclusion

This chapter examined solution characteristics and allocation response of the Capaci-

tated Maximal Covering Location Problem (CMCLP) because of its accessibility in GIS

packages and the significant increase in reported applications (Table 2.1). A total of

180 application instances for San Jose and Santa Barbara were investigated. On one

hand, GIS makes it accessible for general users to structure and solve a capacitated cov-

erage problem. It provides an integrated environment for data acquisition, management,

manipulation, analysis and display, which is generally not possible for exact solution ap-

proaches. Provided heuristics in ArcGIS did solve capacitated coverage problems with

less computational effort than an exact solver. On the other hand, empirical results

revealed that heuristics approaches in ArcGIS rarely found an optimal solution. There

was a high possibility, around 62.778% of the application instances, that sub-optimal
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solutions were identified. Optimality gaps were found to be as high as 9.948%. With the

increasing usage of GIS for addressing capacitated covering applications in recent years

(Table 2.1), these findings are significant. The implications for planning, management

and decision making are largely unknown, and are dependent on context and situation.

Nevertheless, exploration, understanding and insight are fundamentally important. The

findings suggest that imposing capacity limits introduces computational complexity for

solving the CMCLP and thus communication of heuristically obtained results needs to

improve. Explicit technical description of internal algorithms provided by GIS is needed

for better overall understanding. More user control for adjusting heuristic parameters in

the future is also likely to be beneficial.

Allocation derived using the CMCLP offers a more balanced service system by pre-

venting facility workloads from exceeding established limits. Theoretically, capacity lim-

its impose a more restrictive upper bound of facility workload range. Empirically, without

capacity limits, the facility workload range may vary substantially (see Table 2.3). How-

ever, there are many service implications. First, some demand may not be allocated for

service, yet remains within the service standard. Second, some demand may be allocated

to a further away facility, resulting in significantly more travel efforts for service providers

or demand. Therefore, further investigation of allocation response provided by CMCLP

solutions in application is essential.
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Chapter 3

Service Allocation Equity in
Maximal Covering

3.1 Introduction

Coverage is an important concept in location analytics, usually characterized as a max-

imum travel distance or time standard for a facility to suitably respond to a demand

for service (Church and Murray, 2018). For example, firefighter’s (and paramedic’s) re-

sponse within 8 minutes is critical to save property and lives, pizza (and food) delivery

within 30 minutes ensures meals stay warm and fresh, and recycling centers within a

half-mile of supermarkets facilitate cash redemption. These are all representative types

of service systems where coverage is central. Underlying these examples is that service

standards reflect acceptable access and accessibility. Based on the concept of coverage,

various location models have been proposed and studied to mimic important service

goals and strategies. A prominent approach is the location set covering problem (LSCP)

This chapter represents a revised version of a paper submitted to European Journal of Operations
Research, co-authored with Dr. Alan T. Murray, Dr. Richard L. Church and Dr. Ran Wei.
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that seeks the minimum number of facilities to serve all demand within a stipulated

travel distance/time standard of a facility (Toregas et al., 1971). Given a limited bud-

get and resources, the maximal covering location problem (MCLP) is another central

approach, proposed to site a fixed number of facilities to optimize suitable service of de-

mand (Church and ReVelle, 1974). The LSCP and MCLP have been broadly applied and

extended in many ways (Chung, 1986; Church and Murray, 2018; Current and Storbeck,

1988; Daskin and Stern, 1981; Sorensen and Church, 2010; Murawski and Church, 2009).

A major limitation of traditional location coverage analytics is that they concentrate

primarily on where to locate facilities, intentionally ignoring how demand is allocated

to sited facilities. Of course, this makes it difficult to control the workloads of sited

facilities (i.e., total demand served by a sited facility). The MCLP, for example, has

an important underlying assumption that facilities being sited have unlimited capacities.

That is, the workload of any sited facility can be as high as possible in order to serve all

demand within the coverage standard. Alternatively, the workload of a sited facility could

also be as excessively low. As a result, significant variation in facility workloads is not

uncommon for service configurations identified using the MCLP, yet can be problematic

and inequitable. Shown in Figure 3.1 are three sited clinics identified using the MCLP

that maximize the total covered demand within a service distance of 5 miles in Santa

Barbara, CA. The middle facility serves 102,925 people (51.3% of the total demand)

while the facility on the right only serves 18,602 people (9.3% of the total demand).

The workload variation exceeds a factor five. Such significant service allocation variation
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Chapter 3. Service Allocation Equity in Maximal Covering

represents a form of inequity that is not desirable in practice: on one hand, a facility

that is overutilized may not be able to serve all allocated demand with timely and high

quality service; on the other hand, it may not be economical to open a facility that is

vastly underutilized. At a more practical level, workload imbalance along these lines can

cause employee dissatisfaction, low morale, poor productivity, marginal economic returns

and other negative effects as well. For these reasons, facility workload balance in coverage

modeling remains an important research topic.
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Figure 3.1 Workload imbalance for an MCLP solution

61



Chapter 3. Service Allocation Equity in Maximal Covering

The prominent approach to deal with facility workload variation in coverage modeling

has been to constrain total service provided by any one facility by adding capacity or/and

threshold constraints to the model. The capacitated maximal covering location problem

(CMCLP) was introduced along these lines, employing constraints to track and prevent

the workload for each facility from exceeding an established limit (Chung et al., 1983;

Church and Somogyi, 1985; Current and Storbeck, 1988; Elkady and Abdelsalam, 2016;

Ferrari et al., 2018). Capacity limits can be employed and structured to shift demand

from heavily burdened facilities to those with available resources, thus helping to balance

facility workloads to some degree. Another approach is the McTHRESH (maximum cov-

erage with thresholds) model, which maximizes the spatial market coverage and requires

each facility to serve at least a given amount of demand (Balakrishnan and Storbeck,

1991). Threshold limits ensure that no open facility is underutilized, making each facil-

ity viable. There are also covering models with both capacity and threshold constraints,

imposing upper and lower limits on facility workloads (Gerrard, 1995; Haghani, 1996).

However, adding facility capacity and/or threshold constraints does not actually balance

facility workloads in a direct manner. As a result, imbalanced facility workloads may

still persist. In addition, the use of capacities and/or thresholds gives rise to several chal-

lenges, including appropriate specification of capacities and/or thresholds, uncertainty,

undesirable allocation response and computational difficulty (Xu et al., 2020). There are,

however, more direct ways to balance workloads that can be found in broader facility

location work, including minimizing the maximum workload, workload range, and total
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absolute difference. However, the capabilities of such approaches to address equity in

coverage modeling remains largely unknown.

The purpose of this chapter is to study analytics that can be used to explicitly bal-

ance facility workloads in coverage modeling, and evaluate them in terms of solution

quality and computational effort. A literature review related to this research is provided

in Section 3.2. Then, five workload variation measures are studied and mathematical

formulations for associated location cover analytics are given in Section 3.3. This is fol-

lowed by a formalized evaluation approach proposed in Section 3.4. Empirical studies are

carried out in Section 3.5 to assess and compare proposed models. Finally, this chapter

ends with a discussion in Section 3.6 and conclusions in Section 3.7.

3.2 Background

Coverage models are prominent location optimization approaches (Church and Murray,

2018). Location covering primarily focuses on two basic objectives. One is to minimize

the number of facilities necessary in order to ensure a sufficient level of coverage to each

demand. Toregas et al. (1971) proposed the LSCP along these lines, seeking complete

coverage using a minimal number of facilities. Considering limited budget and resource

realities, it may be that not all demand can be covered. Thus, the other type of objective

is to maximize coverage when siting a limited number of facilities. The MCLP introduced

in Church and ReVelle (1974) was structured to address this, seeking to site a given num-
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ber of facilities in such a manner that suitable coverage within the standard is provided to

the most total demand possible. Many related studies have sought to extend the LSCP

and MCLP in various ways. A number of extensions are based on the recognition of

excessive facility workloads and uncertain availability of facilities. To consider possible

busyness and unavailability of facilities, some research has focused on providing backup

or redundant coverage (Daskin and Stern, 1981; Hogan and ReVelle, 1986; Bianchi and

Church, 1988) while others have adopted probabilistic facility availability (Chapman and

White, 1974; Daskin, 1983; Sorensen and Church, 2010). A prominent extension has

been to track allocation and impose facility capacities and thresholds (Balakrishnan and

Storbeck, 1991; Chung et al., 1983; Church and Somogyi, 1985; Current and Storbeck,

1988).

Imposing capacity and/or threshold constraints is popular for controlling facility

workloads in coverage problems. Capacities represent an established maximum on de-

mand that a sited facility can serve, thereby ensuring facility availability when service is

needed. The CMCLP adds capacity limits to the MCLP. Chung et al. (1983) first formu-

lated the CMCLP and proposed a substitution based heuristic to solve it. An alternative

formulation of the CMCLP that allows partial assignments and multiple facilities at a site

was proposed by Church and Somogyi (1985). The seminal work of Current and Storbeck

(1988) discussed theoretical linkages between capacitated covering models, capacitated

p-median problems and generalized assignment problems in addition to formulating the

capacitated LSCP and CMCLP. Unfortunately, the application of the CMCLP is compli-
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cated by challenges and issues. Pirkul and Schilling (1991) extended the basic CMCLP

to allocate all demand regardless of proximity within the coverage standard through the

use of an additional objective that minimizes total weighted distances for demand beyond

the standard. Similar work can be found in Haghani (1996) and Yin and Mu (2012).

Thresholds impose a minimum amount of demand allocated to a sited facility, often

done to ensure economic viability. Threshold constraints can be imposed to give lower

bounds on facility workloads in coverage problems. Covering models with threshold con-

straints can be found in Church (1980), Current and Storbeck (1988), Carreras and Serra

(1999), Drezner and Hamacher (2004) and Hong and Kuby (2016). A prominent example

is the McTHRESH model which adds threshold constraints to the MCLP, ensuring a suf-

ficient market to each facility Balakrishnan and Storbeck (1991). There are also studies

considering both capacity and threshold constraints in covering models. For example,

lower and upper limits on facility workloads were incorporated into the MCLP by Ger-

rard (1995) and Haghani (1996). Thresholds enable facility workloads to be controlled,

similar to capacities. However, thresholds and capacities do not directly balance facility

workloads, as noted previously.

More direct ways to balance facility workloads are found in work dealing with equity

issues in location modeling. Starting with the early work of Mumphrey et al. (1971)

and Savas (1978), facility equity has been incorporated in various location problems,

especially in public sectors. Marsh and Schilling (1994) reviewed equity measures to

quantify the effects of facility siting in location problems. They discussed 20 different
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approaches that could be used to measure facility equity, such as range, variance, mean

absolute deviation and others. Facility workloads are implicit in such concerns for equity,

making them of broad general interest.

Minimizing maximum workload in a system is one way to achieve balance. For exam-

ple, the maximum total demand assigned to a facility was minimized to reach equitable

allocations by Berman et al. (2009) and Kim and Kim (2010). Similarly, Davoodi (2019)

included two additional objectives to minimize the maximum clients a center serves and

to minimize the range of workloads in a k-center problem. They also proposed an itera-

tive algorithm based on a Voronoi diagram for solution. Workload range, which reflects

dispersion, was utilized to account for balance. Maŕın (2011) located a fixed number

of facilities to minimize the range of customer assignments between sited facilities, with

restrictions that customers can only be assigned to their closest facilities. Weaver and

Church (1981) minimized the range of assigned workloads while solving a vector assign-

ment p-median problem with a special substitution heuristic. Daskin and Tucker (2018)

minimized the range of assigned demand to obtain facility allocation equity as an ex-

tension to the p-median problem, proposing a genetic algorithm to solve the bi-objective

problem. Similarly, D’Amico et al. (2002) restricted the ratio of the largest and smallest

district areas from exceeding a prespecified upper bound in order to balance patrol car al-

location in police command redistricting. Another approach appearing in the literature

is to govern workload deviations from a system-wise average workload. Garfinkel and

Nemhauser (1970) balanced workloads by imposing a constraint on population deviation
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from the mean in districts. Zhu and McKnew (1993) developed a workload balancing

model to control ambulances assigned to stations based on system-wise averages. A

more detailed way is to control the total workload deviation between any two sited fa-

cilities, something used to equalize school utilization rates in district planning (Church

and Murray, 1993). While researchers have considered facility workload balance in dif-

ferent contexts, the relative capabilities of approaches to address equity in the context

of maximal coverage remain largely unknown. Thus, this chapter is focused on study-

ing modeling approaches that can directly balance workloads in coverage modeling given

significant observed increases in the application of capacitated coverage modeling (Xu

et al., 2020). Such a trend was shown to be facilitated by access to capacitated cover-

age approaches in commercial geographic information system software, such as ArcGIS,

where problems are solved using heuristics.

3.3 Methods

This section details existing and proposed analytic models that consider equitable facility

workload balance in the context of maximal covering. The intent is to identify measures

that more accurately account for workload balance, and can be readily incorporated in

the maximal covering formulation. In this section, the MCLP is introduced first. Then,

various workload variation measures are discussed, followed by model formulations that

incorporate these different measures.
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3.3.1 MCLP

Consider the following notation:

i = index of demand areas (I entire set)

j = index of potential facilities (J entire set)

dij= travel distance/cost/time between demand i and facility j

S = service coverage standard

Ni = {j|dij ≤ S}, the set of facilities that can suitably cover demand i

Rj = {i|dij ≤ S}, the set of demand that is within the coverage standard of facility j

ai = amount of demand in area i

cj = capacity of facility j

p = number of facilities to site

Decision variables:

Xj =


1 if facility j is sited

0 otherwise

Yij =


1 if demand i is allocated to facility j

0 otherwise

Using this notation, the MCLP can be structured using a location-allocation frame-

work (Church and ReVelle, 1976; Church and Murray, 2018):

Maximize ΣiΣj∈Ni
aiYij (3.1)
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Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (3.2)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (3.3)

Σj∈JXj = p (3.4)

Xj = {0, 1} ∀j ∈ J (3.5)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (3.6)

The objective (3.1) maximizes the total demand served. Constraints (3.2) require that

each demand is allocated to at most one facility within the service coverage standard.

Constraints (3.3) stipulate that a demand can only be allocated to a sited facility. These

are often referred to as Balinski constraints, recognized as having integer-friendly solution

properties (Church and Roberts, 1983; ReVelle, 1993; Gerrard, 1995; Church and Murray,

2009). Constraint (3.4) requires p facilities to be sited. Constraints (3.5) and (3.6)

impose binary restrictions on location and allocation decision variables, respectively.

This formulation contains Σi∈I |Ni| + |J | decision variables and 2Σi∈I |Ni| + |I| + |J | + 1

constraints, where | · | indicates the number of members in the associated set.

The introduction of allocation variables makes it possible to explicitly track facility

workloads. Denote Wj the workload of facility j, with Wj = ΣiaiYij. Accordingly,

there are no restrictions on workloads in the MCLP as no total service allocation limits

are imposed in Constraints (3.3). A potential consequence is that imbalanced facility

workloads can result. That is, Wj can vary significantly across j in cases where Xj = 1.

Therefore, consideration of facility workload balance in the context of maximal coverage
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is critical in some application contexts, as noted in Current and Storbeck (1988); Pirkul

and Schilling (1991); Haghani (1996); Xu et al. (2020), among others.

3.3.2 Workload Variation Measure

In order to consider workload balance, this section reviews quantitative measures of work-

load variation. Incorporation in the above modeling framework is then considered. As

noted previously, Marsh and Schilling (1994) reviewed some twenty different approaches

to measure facility equity, such as range, variance, mean absolute deviation and others.

Five approaches are specifically noted here to characterize facility workload variation

(Table 3.1). These five are used because they reflect the fundamental intent of equity

and have been considered in various ways in location modeling literature. Additionally,

these approaches can be incorporated in a manner that retains linearity, as is true for

the MCLP.

The first measure in Table 3.1, total pairwise absolute workload difference, compares

the workload of each two sited facilities, summing the absolute difference (see Church

and Murray 1993). This measure explicitly characterizes any workload variation in the

system. Other measures, such as those reviewed in Marsh and Schilling (1994) as well

as others, can be viewed as approximations to the total pairwise measure for workload

balancing. The total pairwise measure can be expanded as follows, given Wj = ΣiaiYij
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and assuming a solution of J∗ = {j1, j2, · · · , jp}:

Σj∈J∗Σj′∈J∗|Wj −Wj′ |

= Σj∈J∗Σj′∈J∗|ΣiaiYij − ΣiaiYij′ |

= Σj∈J∗(|ΣiaiYij − ΣiaiYij1|+ |ΣiaiYij − ΣiaiYij2|+ · · ·+

|ΣiaiYij − ΣiaiYij|+ · · ·+ |ΣiaiYij − ΣiaiYijp|)

(3.7)

The second measure in Table 3.1, total mean absolute deviation, sums each workload

deviation from the system-wide average facility workload (see Zhu and McKnew 1993).

This measure can be expanded as follows:

Σj∈J∗|Wj − W̄ |

= Σj∈J∗|ΣiaiYij −
1

p
Σj∈J∗ΣiaiYij|

=
1

p
Σj∈J∗|(ΣiaiYij − ΣiaiYij1) + (ΣiaiYij − ΣiaiYij2) + · · ·+

(ΣiaiYij − ΣiaiYij) + · · ·+ (ΣiaiYij − ΣiaiYijp)|

(3.8)

While the total mean absolute deviation does compare workload differences, it is done

with respect to the mean workload. Some workload differences are positive and others

are negative, so they will effectively cancel some differences. Thus, workload variation

using total mean absolute deviation (3.8) overlooks the inherent differences that can

occur, making it an approximation to the total pairwise absolute approach, (3.7). In

addition, due to the triangle inequity, |α + β| ≤ |α| + |β| for any real numbers α, β,

(3.8) is always less than or equal to (3.7) divided by p. That is, the total mean absolute

deviation is always less than or equal to the total pairwise absolute workload difference
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divided by p. The equality holds if and only if ΣiaiYij − ΣiaiYij1 , ΣiaiYij − ΣiaiYij2 ,

· · · , ΣiaiYij − ΣiaiYijp are all non-negative or non-positive for all j ∈ J∗. This condition

means that the workload of any sited facility j, Wj, needs to be the maximum or minimum

workload, which only happens when p = 2 or workloads of all sited facilities are all equal.

The third measure in Table 3.1, maximum mean absolute deviation, tracks the max-

imum deviation of a facility workload from the average value (Garfinkel and Nemhauser,

1970). This measure is formulated as:

max
j∈J∗
|Wj − W̄ |

= max
j∈J∗
|ΣiaiYij −

1

p
Σj∈J∗ΣiaiYij|

(3.9)

Worth noting is that (3.9) is a portion of the total mean absolute deviation, (3.8).

Interestingly, these three measures, (3.7)-(3.9), can be considered piecewise linear. While

they are technically non-linear with respect to decision variables defining Wj, simple

linear transformations are possible.

The last two measures in Table 3.1, workload range and maximum workload, are linear

functions with respect to decision variables defining Wj, making them straightforward

to include in an extension of the MCLP. The workload range compares the difference

between the maximum and minimum workloads of sited facilities (e.g., Daskin and Tucker
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2018; Maŕın 2011). This measure is formulated as:

max
j∈J∗

Wj −min
j∈J∗

Wj

= max
j∈J∗

ΣiaiYij −min
j∈J∗

ΣiaiYij

= max
j∈J∗

max
j′∈J∗
{|ΣiaiYij − ΣiaiYij′ |}

(3.10)

Thus, workload range (3.10) can be viewed as comparing sited facility workload pairs,

but tracking only the maximum difference. Accordingly, it is an approximation of the to-

tal pairwise measure, (3.7). It is mathematically equivalent to the total pairwise measure

only when p is 2.

The maximum workload measure (see Berman et al. 2009; Davoodi 2019) tracks only

the maximum. This measure is formulated as:

max
j∈J∗

Wj

= max
j∈J∗

ΣiaiYij

(3.11)

Thus, maximum workload (3.11) is a portion of the workload range, (3.10), because

it only accounts for the largest workload.

In summary, these five measures, (3.7)-(3.11), are not mathematically equivalent.

The total pairwise absolute difference measure tracks workload variation most explicitly,

with the other four measures serving as approximations. Therefore, an important re-

search question is whether such proxies are effective and meaningful. Accordingly, it is

essential to evaluate and compare how these workload variation measures behave when
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incorporated in models, and in particular when utilized through the extension of the

MCLP.

3.3.3 MCLP Extensions to Balance Workloads

It is possible to use the various equity oriented measures in Table 3.1, and detailed

above, in some manner to extend the MCLP. This may not be straightforward in all

cases. The primary approach taken here involves the use of multi-objectives, where the

added objective incorporates the intent to minimize workload variability using one of

the five equity metrics given above. The choice of using multi-objectives over including

the equity measures in a constraint is intentional, enabling a user to derive the complete

Pareto optimal frontier when considering both coverage and workload variation objectives

simultaneously. Along with the objective are additional constraints needed to relate

associated decision variables. The extension using the most explicit variation measure,

the total pairwise workload difference, is formulated followed by extensions based on the

other four approximation measures.

WBMCLP-TotPairDiff

The first model extension considers workload difference between each pair of sited facil-

ities, seeking to minimize variability. Recall the total pairwise difference in (3.7). This

compares sited facility workloads assuming they are already known. But Wj is unknown,

a byproduct of model solution to identify workload assignments. Thus, (3.7) cannot be
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readily used in a model formulation. To deal with this, the absolute workload difference

between any two potentially sited facilities j and j
′

is structured using additional vari-

ables, Djj′ . Consider three situations regarding the siting of two facilities j and j
′
: 1)

both are sited, i.e. Xj = Xj′ = 1; 2) both are not sited, i.e. Xj = Xj′ = 0; and, 3) one

is sited and the other not, i.e., Xj = 1 and Xj′ = 0 (or vice versa). Constraints were

introduced in Church and Murray (1993) to track these situations in a spatial optimiza-

tion model applied to school districting. Consider the first situation where Wj ≥ Wj′ .

The smallest value of Djj′ satisfying the following accounts for the actual variability in

workloads:

ΣiaiYij − ΣiaiYij′ ≤ Djj′ (3.12)

Since Wj ≥ Wj′ , (3.12) is mathematically equivalent to Djj′ ≥ |ΣiaiYij − ΣiaiYij′ |,

making Djj′ at least the absolute workload difference between j and j
′
. This necessitates

a second objective to ensure that the minimum value of Djj′ is obtained in order to

accurately account for workload difference, as reflected in (3.7). A workload balancing

model that minimizes the total pairwise workload difference (WBMCLP-TotPairDiff)

through extension of the MCLP is formulated as follows:

Maximize ΣiΣj∈Ni
aiYij (3.13)

Minimize ΣjΣj′>jDjj′ (3.14)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (3.15)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (3.16)
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Σj∈JXj = p (3.17)

ΣiaiYij − ΣiaiYij′ −M(1−Xj′ ) ≤ Djj′ ∀j, j
′ ∈ J&j

′
> j (3.18)

ΣiaiYij′ − ΣiaiYij −M(1−Xj) ≤ Djj′ ∀j, j
′ ∈ J&j

′
> j (3.19)

Xj = {0, 1} ∀j ∈ J (3.20)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (3.21)

Djj′ ≥ 0 ∀j, j ′ ∈ J&j
′
> j (3.22)

Objective (3.13) maximizes the total demand allocated. Objective (3.14) minimizes

the total pairwise absolute workload difference of sited facilities. Constraints (3.15)-

(3.17), (3.20) and (3.21) are those associated with the MCLP. Note this dissertation

considers only single source problems where no fractional allocation is allowed. Assume

that M is a very large positive number1, Constraints (3.18) and (3.19) track the absolute

workload difference between facilities j and j
′

in the three noted situations. In the case

that both are sited, then Constraints (3.18) and (3.19) become ΣiaiYij −ΣiaiYij′ ≤ Djj′

and ΣiaiYij′ − ΣiaiYij ≤ Djj′ , thus Djj′ ≥ |ΣiaiYij − ΣiaiYij′ |. For the situation that

both are not sited, then Constraints (3.18) and (3.19) become −M ≤ Djj′ . Thus, Djj′

is not required to be greater than zero since M is a very large number. Objective (3.14)

ensures that Djj′ will be zero in value. In the case that only one is sited (e.g., j is sited

and j
′

is not), then Constraints (3.18) and (3.19) would become ΣiaiYij −M ≤ Djj′ and

1In practice, M should be as small as possible for computational efficiency. Here, M is set to Σi∈Rj
ai

and Σi∈R
j
′ ai respectively in Constraints (3.18) and (3.19).
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−ΣiaiYij ≤ Djj′ . Similarly, Djj′ is not required to be greater than zero since M is a very

large positive number. In addition, Djj′ is non-negative by Constraints (3.22). So Djj′ ≥

|ΣiaiYij − ΣiaiYij′ | for pairs of sited facilities and Djj′ ≥ 0 for other paired outcomes.

Since ΣjΣj′>jDjj′ is minimized by objective (3.14), Djj′ will seek to be the smallest

value possible, which is the pairwise absolute difference |ΣiaiYij − ΣiaiYij′ | or 0. This

model includes Σi∈I |Ni|+ |J |(|J |+1)
2

decision variables and 3
2
|J |2 +2Σi∈I |Ni|+ |I|− 1

2
|J |+1

constraints, which is significantly larger in size than the MCLP.

WBMCLP-TotMeanDiff

Approximate approaches to WBMCLP-TotPairDiff, (3.13)-(3.22), are possible. One al-

ternative is the minimization of the total mean absolute workload deviation. This would

relate sited facility workloads to the average workload. The measure of total mean ab-

solute deviation in (3.8) cannot be directly added to a model because it assumes facility

workloads are known. To incorporate (3.8) into the model, Dj is introduced to represent

the deviation of facility j’s workload from the average workload. Consider an example

where facility j is sited and Wj is greater than the average workload
ΣjΣiaiYij

p
. The min-

imum value of Dj in the following condition is the mean absolute workload deviation of

facility j.

ΣiaiYij − ΣiΣjaiYij/p ≤ Dj (3.23)

To make Dj take the minimum value, a second objective is necessary. An extension

of the MCLP that minimizes the total mean absolute workload deviation (WBMCLP-
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TotMeanDiff) is formulated as follows:

Maximize ΣiΣj∈Ni
aiYij (3.24)

Minimize Σj∈JDj (3.25)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (3.26)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (3.27)

Σj∈JXj = p (3.28)

ΣiaiYij − ΣiΣjaiYij/p ≤ Dj ∀j ∈ J (3.29)

ΣiΣjaiYij/p− ΣiaiYij −M(1−Xj) ≤ Dj ∀j ∈ J (3.30)

Xj = {0, 1} ∀j ∈ J (3.31)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (3.32)

Dj ≥ 0 ∀j ∈ J (3.33)

Objective (3.24) maximizes the total demand allocated and objective (3.25) mini-

mizes the total mean absolute workload deviation. Constraints (3.26)-(3.28), (3.31) and

(3.32) reflect those in the MCLP. Constraints (3.29) and (3.30) track the mean absolute

workload deviation considering two situations for facility j: 1) sited, i.e. Xj = 1; and,

2) not sited, i.e. Xj = 0. If facility j is sited, then Constraints (3.29) and (3.30)

become ΣiaiYij − ΣiΣjaiYij/p ≤ Dj and ΣiΣjaiYij/p − ΣiaiYij ≤ Dj. This means

Dj ≥ |ΣiaiYij − ΣiΣjaiYij/p| for a sited facility j. If facility j is not sited, then Con-

straints (3.29) and (3.30) become −ΣiΣjaiYij/p ≤ Dj and ΣiΣjaiYij/p −M ≤ Dj, not
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imposing any effective constraint on Dj because M is a very large number2. Thus, Dj ≥ 0

results in the case where a facility is not sited given (3.33). Since Σj∈JDj is minimized

by objective (3.25), any Dj will seek to be its lower bound, |ΣiaiYij − ΣiΣjaiYij/p| or 0,

depending on whether facility j is sited or not. Thus, the total mean absolute deviation

formulated in (3.8) is accurately reflected in (3.24)-(3.33). This model has Σi∈I |Ni|+2|J |

decision variables and 2Σi∈I |Ni|+ |I|+ 4|J |+ 1 constraints, smaller in size compared to

the WBMCLP-TotPairDiff.

WBMCLP-MaxMeanDiff

Another approximation approach is to minimize the maximum mean absolute deviation,

(3.9). Since the maximum mean workload deviation is minimized, accounting for other

deviation is implicit. Facility workloads would tend to approach the average workload,

and are therefore balanced in theory. Unfortunately, the maximum mean absolute de-

viation (3.9) cannot be readily incorporated into a model formulation. To address this,

a decision variable D is introduced to track the maximum absolute deviation of sited

facility workload from the average. For example, assume that a facility j is sited and its

workload is greater than the average, then the following inequality restricts D to be at

least the mean absolute workload deviation:

ΣiaiYij − ΣiΣjaiYij/p ≤ D (3.34)

2M is set to Σi∈Iai/p in Constraints (3.30) and (3.41).
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An objective is therefore needed to ensure D is the minimum value, making it the

mean absolute workload deviation of facility j. A workload balancing model that min-

imizes the maximum mean absolute workload deviation in the context of the MCLP

(WBMCLP-MaxMeanDiff) is formulated as follows:

Maximize ΣiΣj∈Ni
aiYij (3.35)

Minimize D (3.36)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (3.37)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (3.38)

Σj∈JXj = p (3.39)

ΣiaiYij − ΣiΣjaiYij/p ≤ D ∀j ∈ J (3.40)

ΣiΣjaiYij/p− ΣiaiYij −M(1−Xj) ≤ D ∀j ∈ J (3.41)

Xj = {0, 1} ∀j ∈ J (3.42)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (3.43)

D ≥ 0 (3.44)

The first objective (3.35) maximizes the total demand allocated and the second objec-

tive (3.36) minimizes the maximum mean absolute deviation. Constraints (3.37)-(3.39),

(3.42) and (3.43) reflect the MCLP. Constraints (3.40) and (3.41) track the maximum

mean absolute deviation, with D considering situations when facility j is sited and not
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sited. For the case that facility j is sited, D ≥ |ΣiaiYij − ΣiΣjaiYij/p| in Constraints

(3.40) and (3.41). For the case that facility j is not sited, D ≥ 0 due to Constraint

(3.44). Collectively, D ≥ maxj |ΣiaiYij − ΣiΣjaiYij/p|. Combined with objective (3.36),

D seeks to be the smallest value possible, which is exactly the maximum mean absolute

deviation of sited facilities (3.9). This model has Σi∈I |Ni| + |J | + 1 decision variables

and 2Σi∈I |Ni| + |I| + 3|J | + 2 constraints, significantly smaller in size compared to the

WBMCLP-TotPairDiff.

WBMCLP-Range

Another approximation to the WBMCLP-TotPairDiff is comparing maximum and min-

imum workloads. By minimizing the range, (3.10), facility workloads are driven to less

variability. To incorporate the range into a model, decision variables U and L are in-

troduced to track the maximum facility workload and the minimum workload of sited

facilities, respectively. A workload balancing model that extends the MCLP by minimiz-

ing the workload range (WBMCLP-Range) is formulated as follows:

Maximize ΣiΣj∈Ni
aiYij (3.45)

Minimize U − L (3.46)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (3.47)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (3.48)

Σj∈JXj = p (3.49)
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ΣiaiYij ≤ U ∀j ∈ J (3.50)

ΣiaiYij +M(1−Xj) ≥ L ∀j ∈ J (3.51)

Xj = {0, 1} ∀j ∈ J (3.52)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (3.53)

L ≥ 0 (3.54)

Objective (3.45) maximizes the total demand allocated and objective (3.46) minimizes

the workload range of sited facilities. Constraints (3.47)-(3.49), (3.52) and (3.53) reflect

the MCLP. Constraints (3.50) ensure U is at least the maximum facility workload. That

is U ≥ maxjWj, which can be re-written as U ≥ maxj∈J∗Wj because Wj = 0 for j 6∈ J∗.

Constraints (3.51) consider two situations, whether facility j is sited or is not sited. If

facility j is sited, then 0 ≤ L ≤ ΣiaiYij. If facility j is not sited, then 0 ≤ L ≤M where

M is a very large number3. Thus, 0 ≤ L ≤ minj∈J∗Wj. Combined with objective (3.46),

U will be its lower bound, maxj∈J∗Wj, and L will be its upper bound, minj∈J∗Wj. Thus,

the minimization of U−L is equivalent to the minimization of the workload range (3.10).

This model contains Σi∈I |Ni| + |J | + 2 decision variables and 2Σi∈I |Ni| + |I| + 3|J | + 2

constraints, significantly smaller in size compared to the WBMCLP-TotPairDiff.

WBMCLP-Max

Related to WBMCLP-Range is a focus on minimizing the maximum workload, (3.11).

If the maximum workload is minimized, other sited facility workloads are controlled

3M is set to maxj Σi∈Rj
ai in Constraints (3.51).
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implicitly. Since the maximal covering objective would reward sited facility to cover

as much as possible, workloads would tend to balance to some extent, in theory. An

extension of the MCLP that minimizes the maximum workload (WBMCLP-Max) is

formulated as follows:

Maximize ΣiΣj∈Ni
aiYij (3.55)

Minimize U (3.56)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (3.57)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (3.58)

Σj∈JXj = p (3.59)

ΣiaiYij ≤ U ∀j ∈ J (3.60)

Xj = {0, 1} ∀j ∈ J (3.61)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (3.62)

The first objective (3.55) maximizes the total demand allocated. The second objective

(3.56) minimizes the maximum workload. Constraints (3.57)-(3.59), (3.61) and (3.62)

address MCLP considerations. Constraints (3.60) restrict U to be greater than or equal

to any observed facility workload, i.e. U ≥ maxjWj. Since U is minimized in objective

(3.56), it will be the smallest value possible, which is exactly the maximum workload

(3.11). This model has Σi∈I |Ni|+ |J |+ 1 decision variables and 2Σi∈I |Ni|+ |I|+ 2|J |+ 1

constraints, significantly smaller in size compared to the WBMCLP-TotPairDiff.
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3.3.4 Forcing Assignment Constraints

A byproduct of the workload balancing objectives reflected in the above models is that

some demand may simply be unassigned even though it is within the service coverage

standard from a sited facility. In a sense this is akin to a strategic denial of service

in order to better balance workloads. However, such avoidance of allocation is highly

problematic in practice since it is obvious that response within the standard is both

possible and likely, yet the model is not reflecting this due to the desire to balance

workloads. Operationally speaking, it is difficult to imagine a situation where a public

agency or private company of any sort would actually keep people from accessing service

when response is possible. Later in the chaper we will return to this issue, demonstrating

that it happens and discussing the implications. To address this situation in the context

of workload balancing, it is possible to structure and impose additional constraints that

force service assignment when demand is actually covered. Consider an additional binary

decision variable Ci, where it is 1 if demand i is within the service coverage standard

of a sited facility and 0 otherwise. The following constraints can be included in each of

the above models to ensure that demand is allocated/served if it is within the service

coverage standard from a sited facility:

Σj∈Ni
Xj ≤ pCi ∀i ∈ I (3.63)

Ci ≤ Σj∈Ni
Yij ∀i ∈ I (3.64)
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Ci = {0, 1} ∀i ∈ I (3.65)

Constraints (3.63) require Ci to be 1 if at least one facility that can suitably cover

demand i is sited. Constraints (3.64) associate the coverage with the forced allocation: if

demand i can be suitably covered by a sited facility, i.e. Ci = 1, then demand i must be

allocated because Σj∈Ni
Yij ≥ 1. Finally, Constraints (3.65) give binary integer restric-

tions. Constraints (3.63)-(3.65) can be added to proposed workload balancing models if

they are suitable for a specific application context. Each of the workload balancing mod-

els detailed above impose these constraints to force assignment when demand is within

the service coverage standard, unless indicated otherwise.

3.4 Assessment

A critical question is whether the theoretical measures of variability in Table 3.1 that

are formalized in the derived models effectively address workload balance in the context

of maximal covering. This is important because the MCLP is known to produce facility

workloads that can vary considerably, as noted by Current and Storbeck (1988); Pirkul

and Schilling (1991); Haghani (1996); Xu et al. (2020). This section proposes an eval-

uation approach to comparatively assess capabilities of proposed approaches to address

equity in maximal covering. The WBMCLP-TotPairDiff is treated as the benchmark

model providing optimal solutions for evaluation. The reason for this is that the total

pairwise measure characterizes workload variation explicitly and accurately, as discussed
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in Section 3.3.2. The other four approximation approaches are evaluated relative to

WBMCLP-TotPairDiff.

Each proposed workload balancing model formulated in the previous section is a

discrete bi-objective problem, so the Pareto optimal set defines the best tradeoff between

objectives. This chapter uses the constraint method (Cohon, 1978) to derive the complete

Pareto optimal set. The task is then to compare obtained Pareto optimal sets for each

approximation model with the Pareto optimal set of the benchmark model. This is

not necessarily an easy task because solution sets are obtained in different objective

spaces. In addition, every solution is associated with two objective attributes, total

demand covered and the workload variation measure. To deal with these difficulties, the

Pareto optimal sets of approximation models are mapped to the objective space of the

WBMCLP-TotPairDiff, which is denoted as Z = R2 : Z1×Z2 where Z1 and Z2 represent

the total demand amount allocated and the total pairwise absolute workload difference,

respectively. This can be done by computing total pairwise measure values of solutions

for non-benchmark models. Evaluation is then possible in the objective space Z. Three

quantitative measures are defined to help assess a solution set in the bi-objective space:

completeness, inferiority and maximum gap.

Definition 1. Let P be the Pareto optimal set in objective space Z, Q be a set of

solutions in the same objective space Z, Q∗ be the set of Pareto optimal solutions that

exists in Q, i.e., Q∗ = P ∩Q, then completeness is defined by |Q∗|/|P |.
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Definition 2. Let P be the Pareto optimal set in an objective space Z, Q be a set of

solutions also in Z, Q
′

be the set of solutions in Q that is inferior to at least one solution

in P , that is Q
′

= {t : t ≺ s|t ∈ Q,∃s ∈ P} where the strict order ≺ denotes Pareto

dominance and t ≺ s means solution s dominates solution t, then inferiority is defined

by |Q′ |/|Q|.

Definition 3. With the notation in Definition 2, if P \Q 6= ∅, let t be a solution in

P \Q, t
′

be the closest solution to t in Q, Zs
1 , Zs

2 be the total demand coverage and the

workload variation value of a solution s, ε a very small number (e.g., 10e-6) to avoid zero

denominator, then the maximum gap is defined by (gap1, gap2) where:

gap1 = max
t∈P\Q

|Zt
1 − Zt

′

1 |
Zt

1 + ε
∗ 100% (3.66)

gap2 = max
t∈P\Q

|Zt
2 − Zt

′

2 |
Zt

2 + ε
∗ 100% (3.67)

Definitions 1-3 are proposed to measure similarity/difference between a set of solutions

and the Pareto optimal set in the objective space Z ∈ R2. Completeness measures how

completely Pareto optimal solutions can be obtained in the evaluated solution set. Thus,

the larger the completeness, the more Pareto optimal solutions found by the evaluated

solution set. Inferiority characterizes how many solutions in the evaluated solution set are

inferior solutions. Thus, the lower the inferiority, the smaller the proportion of inferior

solutions in the evaluated solution set. If any optimal solution is missed, the maximum

gap measures the maximum percentage deviation of the closest solution from the missed
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Pareto optimal solution in objective space. So the smaller the maximum gap, the closer

the given solution set is to the Pareto optimal set in the objective space.

The evaluation approach is summarized as follows:

Step 1: Derive the complete Pareto optimal set for each workload balancing model

in its own objective space. This is done by changing the total demand coverage maxi-

mization objective to a constraint that restricts the total demand coverage to be no less

than a threshold, and is systematically adjusted and then re-solved as a single-objective

problem. The Pareto optimal set of the WBMCLP-TotPairDiff is denoted as P .

Step 2: Select an approximation approach, map its Pareto optimal solutions obtained

in its original objective space to the objective space Z of the WBMCLP-TotPairDiff for

evaluation, generating a solution set Q in Z. This is done by calculating the total

pairwise absolute workload difference associated with each Pareto optimal solution of

the evaluated model.

Step 3: Evaluate the obtained solution set (Q) against the Pareto optimal set (P )

in Z by computing completeness, inferiority and maximum gaps.

Step 4: Repeat Steps 2-3 until every approximation model is evaluated.

3.5 Application Results

Empirical assessment was carried out utilizing two planning applications to evaluate and

compare the five detailed workload balancing approaches in terms of solution quality and

89



Chapter 3. Service Allocation Equity in Maximal Covering

computational effort. All workload balancing models with forcing assignment constraints,

(3.63)-(3.65), are solved to obtain the entire set of Pareto optimal solutions. This is

accomplished using the constraint method, as noted previously. An exact solver, Gurobi

(version 9.0.1), is relied on for solution, employing the simplex algorithm combined with

branch-and-bound. The solution qualities of the various models are evaluated against

the benchmark, WBMCLP-TotPairDiff. Computational time is reported for a MacBook

Pro (2.9 GHz Intel Core i5 processor and 8 GB memory).

3.5.1 San Jose Study

The first planning application involves postal delivery to representative points of 32 ZIP

Code Tabulation Areas in San Jose, CA, as reported in Xu et al. (2020). The centroids

of the areas are used to represent demand locations and potential postal service facilities.

Travel distances between demand and potential facilities are computed based on the street

network for San Jose. The service coverage standard (S) is set to a network distance of

3 miles. The number of postal service facilities to site (p) ranges from 2 to 17.

The complete set of Pareto optimal solutions is derived for each model. Figure 3.2

illustrates the trade-off between the total demand coverage and the pairwise absolute

workload difference, WBMCLP-TotPairDiff, when p is 4. The horizontal axis shows

demand coverage and the vertical axis indicates total pairwise absolute workload differ-

ence, both in thousands of people. There are 9 Pareto optimal solutions in this case.

The maximum coverage possible by siting four facilities is 619 (in units of thousands
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of people). The associated facility workloads are highly imbalanced when covering 619,

with a large total pairwise absolute workload difference of 389. Figure 3.3(a) gives the

spatial configuration of this solution where two facilities serves 195 and 196 and the other

two serves 83 and 145. When p = 4, it is found that significantly more balanced facility

workloads could be achieved by covering 10% less demand (Figure 3.2). The workload

variation (in total pairwise absolute workload differences) can be reduced from 389 to 59

when serving 561. Figure 3.3(b) presents the spatial configuration of this more balanced

solution where workloads of four sited facilities are 133, 137, 139 and 152. It can be seen

that sited facilities are shifted towards the area with less dense demand. The lowest total

pairwise measure value possible with four facilities is 9 when serving 421.

Figure 3.4 presents Pareto optimal solutions of the four approximate (non-benchmark)

models when p is 4. There are 10 Pareto optimal solutions for the WBMCLP-TotMeanDiff.

The total demand covered ranges from 421 to 619 and total mean absolute workload de-

viation ranges from 3.5 to 163. Most sited facility configurations are the same as those

identified using the WBMCLP-TotPairDiff except one. When using the WBMCLP-

MaxMeanDiff, there are 11 Pareto optimal solutions. The maximum absolute workload

deviation ranges from 1.75 to 71.75. Some difference in facility configurations is witnessed

compared to those of the WBMCLP-TotPairDiff. There are 9 Pareto optimal solutions

for the WBMCLP-Range, whose facility configurations are mostly the same with those

of the WBMCLP-TotPairDiff. The workload range varies from 3 to 113. When the

WBMCLP-Max is applied, 39 Pareto optimal solutions are found, with the total demand
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Figure 3.2 Pareto optimal solutions for WBMCLP-TotPairDiff (San Jose,

p = 4)

covered ranging from 19 to 619 and the maximum workload ranging from 10 to 196. The

facility configurations identified are more varied than those found using the other models.

The above comparison is not straightforward (Figures 3.2 and 3.4) because Pareto

optimal solutions are shown in different objective spaces. Thus, solutions of approximate

(non-benchmark) models are mapped to the objective space of the WBMCLP-TotPairDiff

for comparison (Figure 3.5). This is done by calculating the total pairwise measure of

each solution, then identifying and keeping non-dominated ones. Accordingly, 8 out of

9 solutions in the Pareto optimal set for the WBMCLP-TotPairDiff are found using the

WBMCLP-TotMeanDiff. One solution given by the WBMCLP-TotMeanDiff is inferior.
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Figure 3.3 Two Pareto optimal solution configurations for

WBMCLP-TotPairDiff (San Jose, p = 4)

In other words, the completeness is 88.9% and the inferiority is 11.1% according to Def-

initions 1 and 2. The missed optimal solution has objective values of Z1 = 561, Z2 = 59

and its closest WBMCLP-TotMeanDiff solution is Z
′
1 = 561, Z

′
2 = 63. Thus, the maxi-

mum gap is gap1 = 0, gap2 = 6.8% according to Definition 3. The obtained completeness,

inferiority, and maximum gap values show that the WBMCLP-TotMeanDiff is able to

identify a solution set close to the actual optimal set in this case. Similarly, the other

models can be compared. The WBMCLP-Range also finds 8 solutions in the WBMCLP-

TotPairDiff Pareto optimal set. The WBMCLP-MaxMeanDiff and WBMCLP-Max both

find 5 Pareto optimal solutions.
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(a) WBMCLP-TotMeanDiff
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(b) WBMCLP-MaxMeanDiff
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(c) WBMCLP-Range
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(d) WBMCLP-Max

Figure 3.4 Pareto optimal solutions of non-benchmark workload balancing

models (San Jose, p = 4)

The above analysis demonstrates that for p = 4, Pareto optimality is only approx-

imated using non-benchmark workload balancing approaches. Problem instances for

other values of p are analyzed similarly and summarized in Table 3.2. First, the four

non-benchmark models all have relatively small completeness values and large inferiority

and maximum gap values, especially with larger p. When p ≥ 6, more than 50% of the

Pareto optimal solutions are often missed. Also, in most cases, more than 50% of solu-
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(561,63)

(561,59)

Figure 3.5 Pareto optimal solutions of approximate workload balancing

models mapped to the objective space of WBMCLP-TotPairDiff (San Jose,

p = 4)

tions are actually inferior, with the maximum gap reaching 5.4% in total coverage and

15.4% in workload variation. For example, when p= 17 using the WBMCLP-Max, only

4.5% of Pareto optimal solutions are identified. Among its solutions, 93.3% are actually

inferior. These results highlight that the WBMCLP-TotPairDiff approach is not approx-

imated well by the other four models. Therefore, if a model does not address workload
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balance explicitly, solution optimality is likely to be questionable and deviation could

be large. In addition, the WBMCLP-TotMeanDiff and WBMCLP-Range models have

relatively larger completeness, and smaller inferiority and maximum gap compared to

WBMCLP-MaxMeanDiff and WBMCLP-Max. This further confirms that more model

simplification leads to larger optimality deviations. There is a trend that completeness

decreases, and inferiority and maximum gaps increase as p becomes larger. This implies

that for problems that are more difficult to solve due to workload balance, the optimality

deviation of a non-benchmark approach becomes larger.

Computational times for obtaining the Pareto optimal set for each model using an

exact solver is also compared (Table 3.2). First, it takes the exact solver considerable

time to solve the WBMCLP-TotPairDiff when p ≥ 8. For example, when p = 17,

some 7879.519 seconds (∼2.2 hours) are needed to find the complete Pareto optimal

set. Second, the WBMCLP-TotPairDiff requires significantly more time compared to

non-benchmark approaches. Clearly the larger the model in terms of decision variables

and constraints, the more time needed for deriving the Pareto optimal set. For example,

when p = 17, the WBMCLP-TotMeanDiff needs 318 seconds, yet the smallest size model,

WBMCLP-Max, only requires 2.818 seconds. Third, in general, all workload balancing

models require more time to solve problems as p increases.
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Table 3.2 Solution quality and computational time comparison among

workload balancing models (San Jose)

p Model Completeness
(%)

Inferiority
(%)

Maximum
Gaps(%)

Solution
Time
(Sec-
onds)

2

TotPairDiff(2) 100 0 (0.0, 0.0) 0.503
TotMeanDiff 100 0 (0.0, 0.0) 0.379
MaxMeanDiff 100 0 (0.0, 0.0) 0.247

Range 100 0 (0.0, 0.0) 1.813
Max 100 0 (0.0, 0.0) 4.098

3

TotPairDiff(9) 100 0 (0.0, 0.0) 7.891
TotMeanDiff 100 0 (0.0, 0.0) 3.223
MaxMeanDiff 100 0 (0.0, 0.0) 1.835

Range 100 0 (0.0, 0.0) 5.705
Max 100 0 (0.0, 0.0) 5.58

4

TotPairDiff(9) 100 0 (0.0, 0.0) 7.338
TotMeanDiff 88.9 11.1 (0.0, 6.8) 3.175
MaxMeanDiff 55.6 28.6 (1.0, 5.1) 2.415

Range 88.9 0 (2.0, 1.0) 4.559
Max 55.6 28.6 (1.0, 5.1) 5.997

5

TotPairDiff(20) 100 0 (0.0, 0.0) 31.709
TotMeanDiff 55 42.1 (1.0, 6.0) 13.837
MaxMeanDiff 30 50 (3.2, 11.5) 7.542

Range 75 11.8 (3.6, 6.7) 20.143
Max 60 36.8 (1.5, 15.6) 7.394

6

TotPairDiff(19) 100 0 (0.0, 0.0) 66.893
TotMeanDiff 73.7 12.5 (3.1, 4.9) 18.077
MaxMeanDiff 31.6 57.1 (1.2, 15.4) 7.159

Range 42.1 27.3 (1.8, 15.0) 28.049
Max 47.4 30.8 (2.5, 6.8) 7.394
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Table 3.2 (continued)

p Model Completeness
(%)

Inferiority
(%)

Maximum
Gaps(%)

Solution
Time
(Sec-
onds)

7

TotPairDiff(13) 100 0 (0.0, 0.0) 52.748
TotMeanDiff 61.5 33.3 (0.6, 1.6) 16.876
MaxMeanDiff 30.8 66.7 (0.9, 10.4) 5.542

Range 38.5 54.5 (1.3, 10.6) 28.161
Max 30.8 69.2 (1.4, 9. 8) 5.783

8

TotPairDiff(16) 100 0 (0.0, 0.0) 108.634
TotMeanDiff 37.5 57.1 (0.2, 3.1) 23.663
MaxMeanDiff 18.8 81.3 (2.0, 14.9) 9.792

Range 25 69.2 (1.0, 6.7) 23.49
Max 25 71.4 (0.9, 10.0) 6.52

9

TotPairDiff(25) 100 0 (0.0, 0.0) 776.002
TotMeanDiff 32 60 (0.2, 3.1) 112.536
MaxMeanDiff 12 86.4 (4.5, 14.3) 16.161

Range 16 71.4 (4.2, 13.3) 42.432
Max 20 64.3 (2.2, 5.8) 5.624

10

TotPairDiff(28) 100 0 (0.0, 0.0) 1,270.63
TotMeanDiff 32.1 60.9 (1.2, 3.9) 221.457
MaxMeanDiff 0 100 (3.5, 13.3) 14.927

Range 10.7 75 (3.6, 8.9) 47.174
Max 7.1 88.9 (3.1, 6.8) 5.439

11

TotPairDiff(21) 100 0 (0.0, 0.0) 1,422.25
TotMeanDiff 4.8 94.7 (1.0, 3.8) 216.559
MaxMeanDiff 4.8 92.9 (3.8, 5.1) 10.613

Range 19 66.7 (3.9, 5.3) 74.783
Max 4.8 93.3 (3.6, 3.3) 5.648

12

TotPairDiff(21) 100 0 (0.0, 0.0) 2,269.48
TotMeanDiff 9.5 90.5 (1.3, 2.6) 155.262
MaxMeanDiff 0 100 (5.4, 3.6) 11.38

Range 14.3 78.6 (2.6, 3.6) 68.217
Max 4.8 94.2 (2.6, 3.3) 5.607
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Table 3.2 (continued)

p Model Completeness
(%)

Inferiority
(%)

Maximum
Gaps(%)

Solution
Time
(Sec-
onds)

13

TotPairDiff(22) 100 0 (0.0, 0.0) 3,190.57
TotMeanDiff 0 100 (1.2, 2.8) 155.356
MaxMeanDiff 0 100 (3.9, 5.4) 11.968

Range 9.1 87.5 (1.6, 2.4) 77.466
Max 4.5 94.4 (2.1, 2.8) 4.244

14

TotPairDiff(19) 100 0 (0.0, 0.0) 2,876.58
TotMeanDiff 10.5 88.9 (0.8, 3.8) 136.39
MaxMeanDiff 5.3 94.7 (1.9, 3.3) 9.869

Range 10.5 83.3 (1.2, 2.7) 75.817
Max 10.5 85.7 (1.4, 3.7) 4.036

15

TotPairDiff(20) 100 0 (0.0, 0.0) 3,374.39
TotMeanDiff 20 80 (0.9, 3.1) 141.455
MaxMeanDiff 5 95 (1.8, 4.9) 15.596

Range 10 86.7 (2.0, 2.7) 89.943
Max 10 86.7 (0.9, 2.5) 3.394

16

TotPairDiff(23) 100 0 (0.0, 0.0) 6,647.06
TotMeanDiff 30.4 63.2 (1.7, 3.2) 234.961
MaxMeanDiff 4.3 93.3 (2.1, 4.1) 11.955

Range 8.7 87.5 (1.1, 2.8) 101.821
Max 8.7 88.2 (2.0, 2.6) 2.996

17

TotPairDiff(22) 100 0 (0.0, 0.0) 7,897.52
TotMeanDiff 45.5 54.5 (0.4, 2.9) 318.347
MaxMeanDiff 0 100 (2.0, 3.3) 16.113

Range 4.5 92.9 (1.9, 3.7) 61.906
Max 4.5 93.3 (1.6, 3.6) 2.818
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3.5.2 Santa Barbara Study

The second case study investigates fire response to 80 block groups in Santa Barbara,

CA. The centroids of these areas are used to represent both demand and potential fire

stations. The demand is based on population in the area. The local street network is used

to construct the transportation network, from which travel distance between demand and

potential stations is derived. The service coverage standard is a network distance of 1.5

miles. The number of fire stations to site (p) ranges from 2 to 6.

Table 3.3 summarizes solution quality and computational time for each workload

balancing model. When p is 2, there is only one Pareto optimal solution of the WBMCLP-

TotPairDiff that the four non-benchmark approaches find. When p = 3, WBMCLP-Max

and WBMCLP-Range have the same performance as the WBMCLP-TotPairDiff while

the WBMCLP-MaxMeanDiff and WBMCLP-TotMeanDiff only find 33.3% of the optimal

solutions, as well as a few dominated solutions. When p is 4, the WBMCLP-TotPairDiff

has 27 Pareto optimal solutions (Figure 3.6). The maximum coverage possible is 719 with

a maximum total pairwise absolute workload difference of 321. The workload variation

can be reduced to half of the maximum value if giving up 8% demand coverage. A totally

balanced system (with 0 workload variation) can be obtained when the total coverage is

632. The WBMCLP-Range approximates the WBMCLP-TotPairDiff best, finding 88.9%

Pareto optimal solutions while it take 94,639.084 seconds (more than one day) to obtain

these solutions. When p is 5 or 6, most proportions of found Pareto optimal solutions
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reduce to below 50%, indicating the WBMCLP-TotPairDiff is not approximated well.

The WBMCLP-Max identifies a large number of solutions, but only approximate the

Pareto optimal front of the WBMCLP-to TotPairDiff. The other models generate fewer

solutions. For example, when p = 3, there are 163 Pareto optimal solutions for the

WBMCLP-Max while only around 10 exist for the other models. The large number

of solutions also explains why it takes more time to solve the WBMCLP-Max in the

Santa Barbara case. In sum, when approximating the benchmark model, optimality

deviation is again observed, particularly as p increases. Computational efficiency remains

a concern, with some workload balancing models not able confirm optimality after a week

of computer time.
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Table 3.3 Solution quality and computational time comparison among

workload balancing models (Santa Barbara)

p Model Completeness
(%)

Inferiority
(%)

Maximum
Gaps(%)

Solution
Time
(Sec-
onds)

2

TotPairDiff(1) 100 0 (0.0, 0.0) 10.938
TotMeanDiff 100 0 (0.0, 0.0) 1.953
MaxMeanDiff 100 0 (0.0, 0.0) 0.969

Range 100 0 (0.0, 0.0) 2.026
Max 100 0 (0.0, 0.0) 1,135.06

3
TotPairDiff(6) 100 0 (0.0, 0.0) 177.043
TotMeanDiff 33.3 60 (1.7, 31.4) 52.187
MaxMeanDiff 33.3 50 (1.7, 33.3) 26.86

Range 100 0 (0.0, 0.0) 19.505
Max 100 0 (0.0, 0.0) 2,240.56

4

TotPairDiff(27) 100 0 (0.0, 0.0) 5,195.20
TotMeanDiff 7.4 86.7 (3.7, 20.0) 1,313.74
MaxMeanDiff 7.4 83.3 (6.0, 29.4) 72.625

Range 88.9 0 (0.1, 0.5) 94,639.08
Max 81.5 15.4 (0.6, 26.3) 2,103.97

5

TotPairDiff(28) 100 0 (0.0, 0.0) 23,448.22
TotMeanDiff 10.7 87 (2.0, 21.1) 6,216.86
MaxMeanDiff 7.1 88.9 (3.3, 36.4) 274.529

Range1 78.6 0.00 (0.7, 8.3) 45,935.46
Max 82.1 0 (0.7, 8.3) 6,869.47

6

TotPairDiff(18) 100 0 (0.0, 0.0) 32,194.57
TotMeanDiff 44.4 38.5 (1.0, 22.2) 989.137
MaxMeanDiff 27.8 70.6 (1.0, 30.0) 112.891

Range1 33.3 33.3 (1.5, 41.2) 43,424.77
Max 50 35.7 (1.1, 20.0) 104,737.23

1 Best solution used if no optimal solution found after 12-hour processing for the single-objective

problem.
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Figure 3.6 Pareto optimal solutions for WBMCLP-TotPairDiff (Santa

Barbara, p = 4)

3.6 Discussion

There are a number of observations worth discussion associated with workload balancing.

One is the issue of withholding of service. Another is how the detailed models compare

to often relied upon capacitated approaches.

3.6.1 Withholding Service

As detailed previously, forcing assignment constraints (3.63)-(3.65) were imposed in or-

der to avoid the situation of not assigning demand within the service coverage standard
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of sited facilities. Models seeking to balance workload could inadvertently opt to not

serve demand simply to balance workloads even though they are likely to require service

because they are within a coverage standard of a sited facility. In order to illustrate this

phenomenon, results are now noted for the case where no forcing of assignment is im-

posed using the WBMCLP-TotPairDiff. Figure 3.7 shows the trade-off between the total

coverage and the pairwise absolute workload difference when p = 4 (San Jose). There

are 40 Pareto optimal solutions in this case. This can be contrasted to the 9 optimal so-

lutions in Figure 3.2 (WBMCLP-TotPairDiff with forcing assignment constraints). Why

the difference? This is because there is more flexibility in service allocation. What is

noteworthy is that the spatial configuration of facilities never changes, only the allocation

of demand. For example, the facility configuration with total demand coverage of 616

and total pairwise workload variation of 384 is shown in Figure 3.7. The configuration

(Figure 3.8) is the same as that of the solution given in Figure 3.3(a) (total coverage

of 619 and workload variation of 389). The smaller workload variation in Figure 3.7 is

achieved simply by not serving a portion of demand that is within the coverage standard.

The unassigned demand is circled in Figure 3.8, effectively reducing the workload of a

more heavily utilized facility from 196 to 193. This withholding of service phenomenon

is not uncommon due to the workload balancing objective, which leads to the linear-

looking point clusters in the trade-off plot (Figure 3.7). As discussed in Section 3.3.4,

this withholding of service is problematic in practice. Worth mentioning as well is that

computational effort actually increases. The extended allocation possibilities make work-
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load balancing even harder to solve and require more time compared to those that force

allocation. As an example, it takes 6.737 seconds to obtain the complete set of Pareto

optimal solutions in Figure 3.2 while 50.499 seconds for those in Figure 3.7. But as noted

previously, the artificial withholding of demand is problematic to begin with.
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Figure 3.7 Pareto optimal solutions for WBMCLP-TotPairDiff with no

forcing assignment constraints (Santa Barbara, p = 4)

3.6.2 Capacitated Comparison

Noted previously was that capacitated and threshold models are often relied upon to deal

with workload balancing in covering problems, with the expectation that they ensure

equity between facilities through explicit lower and upper limits on allocated demand. A
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Figure 3.8 A Pareto optimal solution configuration for

WBMCLP-TotPairDiff (no forcing assignment constraints)

prominent model is the CMCLP (Chung et al., 1983; Church and Somogyi, 1985), and is

available for general application through ArcGIS (Xu et al., 2020). How do the reported

findings compare to the CMCLP for workload balancing? Denote cj the capacity of

facility j. The CMCLP can be formulated as follows:

Maximize ΣiΣj∈Ni
aiYij (3.68)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (3.69)

Σj∈JXj = p (3.70)
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ΣiaiYij ≤ cjXj ∀j ∈ J (3.71)

Xj = {0, 1} ∀j ∈ J (3.72)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (3.73)

Capacity limits are imposed in Constraints (3.71), keeping facility j’s workload from

exceeding an upper limit cj. There are two roles served by Constraints (3.71): first,

the facility workload of a facility cannot be greater than its upper limit if it is sited;

second, a demand can never be allocated to a facility that is not sited. Objective (3.68)

and other constraints reflect the MCLP. This formulation contains Σi∈I |Ni| + |J | deci-

sion variables and Σi∈I |Ni| + |I| + 2|J | + 1 constraints, significantly smaller than the

WBMCLP-TotPairDiff in size. Note that the withholding service phenomena also hap-

pen when the CMCLP is applied due to capacity limits. Thus, the addition of forcing

assignment constraints, (3.63)-(3.65), is necessary in the context of the previously ap-

plied models. However, forcing assignment does raise the likelihood that the resulting

capacitated problem is infeasible.

The CMCLP is applied to the San Jose application and compared with the WBMCLP-

TotPairDiff. The cj is established to take a very wide range of values in order to fully

explore capabilities of the CMCLP. Problem instances when siting four postal service

facilities (i.e., p = 4) are solved and compared. Note that there is one capacitated

instance that is infeasible due to forcing assignment constraints. The CMCLP only finds

11.1% of the solutions in the Pareto optimal solution set of the WBMCLP-TotPairDiff
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and 40% of the solutions are inferior. The maximum gap in the demand coverage is 1.2%

and in the total pairwise measure is 47.5%. These results indicate that the capacitated

model does not balance facility workloads well in maximal covering by imposing upper

limits on facility workloads. However, the computational time for solving the CMCLP

(1.254 seconds when p = 4) is much less compared to that of workload balancing models.

3.7 Conclusion

This chpater proposed five workload balancing approaches in the context of maximal

covering. In order to incorporate the goal of workload balance, five variation measures

were detailed, including total pairwise absolute workload difference, total mean abso-

lute workload deviation, maximum mean absolute workload deviation, workload range,

and maximum workload. It is mathematically shown that the total pairwise measure

tracks the workload variation most explicitly and other measures can be viewed as ap-

proximations. To incorporate the measures in a model, a second objective of minimizing

the workload variation and associated constraints were proposed to extend the MCLP

for workload balancing. As a result, five workload balancing models were formulated,

including the WBMCLP-TotPairDiff that explicitly minimizes total pairwise absolute

workload difference (benchmark) and along with the other four approximation models

(non-benchmark). Additional constraints that force demand service allocation were also

discussed and imposed. In order to assess capabilities of the proposed models to ad-

108



Chapter 3. Service Allocation Equity in Maximal Covering

dress equity in maximal covering, an evaluation approach was formalized. This used

the WBMCLP-TotPairDiff as the benchmark model and three quantitative evaluation

measures, completeness, inferiority and maximum gaps, to evaluate the other four non-

benchmark models.

Empirical studies involving postal service in San Jose and fire response in Santa Bar-

bara were used to evaluate these models in terms of solution quality and computational

effort. Results indicated that if a model does not appropriately reflect workload balance

explicitly, optimality is not likely and large deviations are possible. When the number of

facilities to site is small, the deviation from optimality was found to be slight. However,

deviation from optimality increases significantly when many facilities are being located.

The sacrifice is that the WBMCLP-TotPairDiff requires significantly more computational

effort to solve. Computational efficiency by exact solvers for all proposed models is a

major concern, limiting the size of practical applications that can be addressed. The

computational time could be more than a week for selecting 5 facilities involving 80

demand nodes. The traditionally used capacitated method was also compared with pro-

posed workload balancing approaches. Results showed that the capacitated MCLP does

not balance facility workloads well by imposing workload upper limits though it is much

easier to solve by an exact solver.

The implications of this chapter are many. Most importantly, modeling approaches

based on approximation measures should be thoroughly understood. It is clear that in

the context of maximal coverage that meaningful Pareto optimal results will not likely
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be found unless the explicit approach, minimizing pairwise absolute workload difference,

is used. Another critical finding is that significant computational challenges remain for

supporting planning and decision making contexts. Problem application size is limited

for exact solution. Future research is essential for developing more efficient solution

techniques capable of addressing workload balancing in the context of maximal coverage.
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Chapter 4

A Heuristic Algorithm for Balancing
Workloads in Coverage Modeling

4.1 Introduction

Location covering models have been important spatial analytic approaches, used to sup-

port strategic planning, management and decision making in public and private sector

contexts. The coverage concept is often related to service provision, acknowledging that

response criteria like access and accessibility are fundamental. Church and Murray (2018)

characterized coverage as a maximum distance or travel time standard for personnel at

a facility to respond to a demand for service, detailing many examples of coverage stan-

dards. One of the most prominent coverage planning approaches is the maximal covering

location problem (MCLP), formulated by Church and ReVelle (1974) to identify a set of

facilities that can serve the most demand possible. It is considered NP complete with

respect to computational complexity (Garey and Johnson, 1979; Megiddo et al., 1983),

This chapter represents a revised version of a paper submitted to Computers, Environment and
Urban Systems, co-authored with Dr. Alan T. Murray, Dr. Richard L. Church and Dr. Ran Wei.
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suggesting that specific problem instances can be difficult and challenging to solve. As

a result, both exact and heuristic techniques are critical in solving the MCLP (Church

and ReVelle, 1974; Murray and Church, 1996; Galvão and ReVelle, 1996; Zarandi et al.,

2011; Church and Murray, 2018). The MCLP has been widely applied and extended in

various ways (Murray and Tong, 2007; Lee and Murray, 2010; Tong and Church, 2012;

Wei and Murray, 2015; Church and Li, 2016; Murray, 2016; Tong and Wei, 2017; Murray

et al., 2019), reflecting its broad utility and applicability.

One of the underlying assumptions of the classic MCLP is that facilities can serve/cover

an unlimited amount of demand. This simple assumption often leads to identified facility

configurations with severely imbalanced workloads, where some facilities are overutilized

while others are under-utilized. Significant workload variation in a system, however, can

result in inequities, and may be unsustainable in many ways. Research seeking to control

facility workload variation in coverage modeling includes imposing capacity limits (Chung

et al., 1983; Church and Somogyi, 1985; Current and Storbeck, 1988; Elkady and Abdel-

salam, 2016; Ferrari et al., 2018) and/or adding threshold limits that are workload lower

bounds for sited facilities (Balakrishnan and Storbeck, 1991; Gerrard, 1995; Haghani,

1996; Church, 1980). Capacitated coverage problems are usually much more computa-

tionally complex and decidedly harder to be solved by exact approaches compared to the

MCLP. This is because the introduction of facility capacities and/or thresholds result in

allocation variables that tend to be fractional in a relaxed linear programming problem,

necessitating the use of branching based methods to identify feasible integer solutions (Xu
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et al., 2020). This is precisely why many heuristics have been developed for solving capac-

itated models (Chung et al., 1983; Church and Somogyi, 1985; Hogan and ReVelle, 1985;

Shariff et al., 2012). Although capacitated models can control workloads to some extent,

they are not direct ways to govern variation in covering problems. An explicit approach

involves the use of multi-objectives, where demand coverage and workload variation can

be simultaneously addressed. However, multi-objective problems can be computationally

challenging as well, particularly associated with the MCLP, with practical limitations en-

countered for exact methods. Therefore, effective heuristics are essential, yet no research

to date has developed approaches capable of solving multi-objective coverage models that

focus on workload variability.

This chapter details a heuristic algorithm for balancing workloads in coverage mod-

eling. Related research is reviewed in Section 4.2. Then, the mathematical formulation

of an explicit workload balancing coverage model is given in Section 4.3. The design of a

heuristic algorithm for solving this problem is derived in Section 4.4. Application results

are presented in Section 4.5 followed by a discussion in Section 4.6. Finally, this chapter

ends with concluding observations and comments.

4.2 Background

The intent of this chapter is to extend the MCLP in order to account for workload

balancing. Thus, the discussion starts with solving the MCLP. Church and ReVelle
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(1974) introduced the MCLP, as noted previously, along with two heuristic algorithms

for solving it: greedy adding and greedy adding with substitution. The greedy adding

with substitution heuristic seeks to improve a solution by exchanging or substituting an

available facility location with an already selected facility location following the initial

greedy procedure. Weaver and Church (1983) used Lagrangean relaxation with sub-

gradient optimization to solve several forms of the MCLP. Adenso-Diaz and Rodriguez

(1997) employed a tabu search metaheuristic to generate solutions for the MCLP. Galvão

and ReVelle (1996) proposed a Lagrangean heuristic for solving the MCLP, producing

an upper bound by a vertex addition and substitution heuristic; and lower bound by a

subgradient optimization algorithm. Downs and Camm (1996) developed a dual-based

heuristic with branch-and-bound for the MCLP. Pirkul and Schilling (1989) also uti-

lized Lagrangean relaxation to solve a capacitated coverage maximization problem with

backup service. Murray and Church (1996) designed a simulated annealing algorithm

for solving the MCLP, providing comparisons to substitution/interchange approaches.

Jaramillo et al. (2002) applied a genetic algorithm to solve several location problems,

including maximal covering problems, and compared its performance against well-known

heuristics using publicly available data sets. Tong et al. (2009) introduced a genetic al-

gorithm for solving an extension of the MCLP, and a genetic algorithm was also used by

Zarandi et al. (2011) to solve large-scale MCLP instances.

The above methods can be categorized as direct approaches for solving the MCLP.

In contrast, there is another group of methods that is regarded as indirect. Church
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and ReVelle (1976) showed how a maximal covering problem could be structured as an

equivalent p-median problem. This was achieved by a distance matrix transformation.

Because of this seminal work, it is possible to utilize algorithms developed for solving the

p-median problem to solve the MCLP. Church and ReVelle (1976) discuss two p-median

oriented heuristics for the MCLP, the well-known substitution/interchange algorithm of

Teitz and Bart (1968) and the other a neighborhood search algorithm of Maranzana

(1964). Among various algorithms designed for the p-median problem, a prominent

approach is the global regional interchange algorithm. It attempts to speed up the inter-

change algorithm through data structure modifications in order to solve large problem

instances (Densham and Rushton, 1992). The global regional interchange algorithm was

subsequently integrated into ARC/INFO, a commercial geographic information system

software package, providing capabilities to heuristically solve the MCLP (Church and

Sorensen, 1996; Church, 2002). Church and Sorensen (1996) also discussed the possibil-

ity of integrating the Greedy Randomized Adaptive Search Procedure into a geographic

information system for solving general location-allocation problems, including covering

problems, representing much of how the heuristic in the Location-Allocation module of

ArcGIS now works (Murray et al., 2019). While ArcGIS is effective in solving covering

problems, Murray et al. (2019) found that optimal solutions are unlikely to be identified,

with deviations from optimality being rather large in some instances.

Balancing workloads is a practical objective in location modeling, but also is at the

heart of equity concerns (Mumphrey et al., 1971; Savas, 1978). Although facility equity
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has indirectly been considered through the imposition of capacities and/or thresholds

(Chung et al., 1983; Church and Somogyi, 1985; Current and Storbeck, 1988; Balakrish-

nan and Storbeck, 1991; Gerrard, 1995; Xu et al., 2020), there are direct attempts to

account for equity in location-allocation problems. Weaver and Church (1981) solved a

bi-objective p-median problem that involved minimizing weighted distance and balanc-

ing facility workloads. Murray and Gerrard (1997) proposed a capacitated regionally

constrained p-median problem that accounted for equity issues. They solved this prob-

lem by Lagrangean relaxation. More recent work is that of Daskin and Tucker (2018),

with a second objective introduced to minimize the range of assigned demand to sited

facilities in order to obtain facility equity. A genetic algorithm was designed to solve

this bi-objective problem. Workloads were also explicitly balanced in center problems

by Davoodi (2019) through the addition of two additional objectives that minimize the

maximum demand a center serves and the range of workloads. Davoodi (2019) proposed

an iterative algorithm based on a Voronoi diagram to solve the problem. Beyond this

research, there are many studies that sought to balance facility workloads in other types

of location-allocation problems. For example, Berman et al. (2009) detailed heuristics

to locate p facilities such that the maximum weights attracted to facilities is minimized.

Kim and Kim (2010), Maŕın (2011), and Mǐsković and Stanimirović (2015) presented

other attempts for balancing workload in location-allocation problems.

Workload balancing has also been considered in allocation problems. Zhu and McK-

new (1993) developed a workload balancing model to allocate a fixed number of ambu-

116



Chapter 4. A Heuristic Algorithm for Balancing Workloads in Coverage Modeling

lances in defined service locations. Utilization of ambulances at different locations was

balanced through the minimization of the workload deviation from a system-wide aver-

age. Huang et al. (2006) proposed a stochastic model that minimized the total pairwise

workload difference between two airline terminals over different time periods. They also

developed a Benders decomposition algorithm to accelerate computation. Storage space

allocation problems have also been addressed, where the objective is to balance container

terminal workloads (Zhang et al., 2003; Bazzazi et al., 2009). Closely related are dis-

tricting problems as well, because a typical objective is to minimize population variation

among different districts in order to ensure political fairness or balance administrative

loads. For example, Garfinkel and Nemhauser (1970) controlled the maximum popula-

tion deviation from the average using a two-phase procedure. Church and Murray (1993)

minimized the total pairwise absolute difference in utilization associated with school dis-

tricting. D’Amico et al. (2002) constrained the ratio of the largest and smallest districts

from exceeding a specified upper bound in order to balance patrol car allocation using a

simulated annealing approach.

The above research demonstrates the necessity of an efficient solution method for

maximal covering problems, and more generally location problems, that consider work-

load balance. The focus of this chapter is on a maximal covering problem extension

that considers facility workload balance. This problem has proven to be computationally

challenging. A heuristic is therefore proposed to derive high-quality solutions for this

multi-objective problem.
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4.3 Addressing Workload Balancing

The previous sections have highlighted the significance of balancing workloads as well as

the utility of the MCLP to address a range of important planning contexts. Unfortunately

the MCLP and other coverage models generally do not enable workload balance to be

addressed explicitly. This section offers a formulation of the workload balancing MCLP

as an extension that incorporates an additional objective to explicitly minimize total

pairwise absolute workload differences (WBMCLP-TotPairDiff) between sited facilities.

Consider the following notation:

i = index of demand areas (I entire set)

j = index of potential facilities (J entire set)

dij= travel distance/cost/time between demand i and facility j

S = service coverage standard

Ni = {j|dij ≤ S}, the set of facilities that can suitably cover demand i

ai = amount of demand in area i

cj = capacity of facility j

p = number of facilities to site

M = a very large positive number
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Decision variables:

Xj =


1 if facility j is sited

0 otherwise

Yij =


1 if demand i is allocated to facility j

0 otherwise

Djj′ = the absolute workload difference between any two potentially sited facilities j

and j
′

Ci =


1 if demand i is within the service coverage standard of a sited facility

0 otherwise

Maximize ΣiΣj∈Ni
aiYij (4.1)

Minimize ΣjΣj′>jDjj′ (4.2)

Subject to Σj∈Ni
Yij ≤ 1 ∀i ∈ I (4.3)

Yij ≤ Xj ∀i ∈ I, j ∈ Ni (4.4)

Σj∈JXj = p (4.5)

ΣiaiYij − ΣiaiYij′ −M(1−Xj′ ) ≤ Djj′ ∀j, j
′ ∈ J&j

′
> j (4.6)

ΣiaiYij′ − ΣiaiYij −M(1−Xj) ≤ Djj′ ∀j, j
′ ∈ J&j

′
> j (4.7)

Σj∈Ni
Xj ≤ min{p, |Ni|}Ci ∀i ∈ I (4.8)
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Ci ≤ Σj∈Ni
Yij ∀i ∈ I (4.9)

Xj = {0, 1} ∀j ∈ J (4.10)

Yij = {0, 1} ∀i ∈ I, j ∈ Ni (4.11)

Djj′ ≥ 0 ∀j, j ′ ∈ J&j
′
> j (4.12)

Ci = {0, 1} ∀i ∈ I (4.13)

The WBMCLP-TotPairDiff has two objectives. Objective (4.1) maximizes the to-

tal demand suitably covered. Objective (4.2) minimizes the absolute workload differ-

ence between sited facilities. Constraints (4.3)-(4.5) structure an equivalent MCLP as

a location-allocation problem. A demand can only be allocated to a facility at most

once in Constraints (4.3). Constraints (4.4) prohibit allocation of demand unless a fa-

cility is sited. Exactly p facilities are to be sited in Constraint (4.5). Constraints (4.6)

and (4.7) track the workload difference between facilities. When considering the sit-

ing of two facilities j and j
′
, there are three situations: 1) facilities j and j

′
are sited;

2) facilities j and j
′

are not sited; and, 3) either j or j
′

is sited. Accordingly, Con-

straints (4.6) and (4.7) must accurately track differences between the siting of j and j
′

for these three situations. In the case that both are sited, which is the only situation of

interest with respect to workload difference, Constraints (4.6) and (4.7) would become

ΣiaiYij − ΣiaiYij′ ≤ Djj′ and ΣiaiYij′ − ΣiaiYij ≤ Djj′ , respectively. Thus, the outcome

is effectively Djj′ ≥ |ΣiaiYij −ΣiaiYij′ |, as intended. For the situation that both are not

120



Chapter 4. A Heuristic Algorithm for Balancing Workloads in Coverage Modeling

sited, Constraints (4.6) and (4.7) become −M ≤ Djj′ . Coupled with non-negativity con-

ditions in Constraints (4.12), the outcome isDjj′ ≥ 0, as intended. In the third case where

only one facility is sited (e.g., j is sited and j
′

is not), then Constraints (4.6) and (4.7)

result in ΣiaiYij−M ≤ Djj′ and −ΣiaiYij ≤ Djj′ , respectively. As Djj′ is non-negative in

Constraints (4.12), then it must be no less than 0, as intended. Collectively, the outcome

of Constraints (4.6) and (4.7) is the measurement that Djj′ ≥ |ΣiaiYij−ΣiaiYij′ | for pairs

of sited facilities and Djj′ ≥ 0 for other paired outcomes. Since ΣjΣj′>jDjj′ is minimized

in objective (4.2), Djj′ will seek to be the smallest value possible, which is the pairwise

absolute difference |ΣiaiYij − ΣiaiYij′ | or 0. Note that the value of M affects solution

efficiency and ideally a smallest sufficient M is preferred for a more efficient computation.

Here the M in Constraints (4.6) is set to Σi∈Rj
ai and in Constraints (4.7) is set to Σi∈R′j

ai

in implementation. Constraints (4.8) and (4.9) force assignment/allocation for any de-

mand that is within the coverage standard of a sited facility, necessary to avoid artificial

withholding of service. Constraints (4.8) require Ci to be 1 if at least one facility that

can suitably cover demand i is sited, where the min{p, |Ni|} is also used to tighten the

model. If demand i can be suitably covered by a sited facility, i.e. Ci = 1, then demand i

must be allocated because Σj∈Ni
Yij ≥ 1 by Constraints (4.9). Finally, Constraints (4.10),

(4.11), (4.12) and (4.13) specify binary integer and non-negativity restrictions.

There are a number of WBMCLP-TotPairDiff features that make it challenging and

difficult to solve. The workload balancing objective, (4.2), is among the most significant.

A PARTITION problem can be reduced to the WBMCP-TotPairDiff with fixed facili-
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ties. Assume p sited facilities are known. Due to constraints (4.8) and (4.9) that force

assignment (or partitioning) of covered demand, such coverage would be fixed once sited

facilities are determined. Thus, the WBMCLP-TotPairDiff becomes an allocation (par-

tition) problem seeking to minimize the total pairwise absolute workload difference. The

allocation is trivial for facilities that are not sited (i.e., when Xj = 0) as well as demand

that is beyond the service coverage standard of any sited facility. Assignment variables

become zero in this case, i.e., Yij = 0, because an un-sited facility cannot serve demand

and demand cannot be allocated to a facility beyond the cover standard. This leaves the

Yij = 0 variables associated with sited facilities (i.e., when Xj = 1) and demand that

are within the coverage standard of one or more sited facilities needing to be resolved.

Define J∗ as the set of sited facilities, i.e., J∗ = {j|Xj = 1}; Rj the set of demand that

can be suitably covered by facility j, where Rj = {i|dij ≤ S}; and, R the union of Rj for

all j ∈ J∗, i.e., the set of demand that can be suitably served. The allocation problem

can be formulated as follows.

Minimize ΣjΣj′>jDjj′ (4.14)

Σi∈J∗∩Ni
Yij = 1 ∀i ∈ R (4.15)

Σi∈Rj
aiYij − Σi∈R

j
′ aiYij′ ≤ Djj′ ∀j, j

′ ∈ J∗&j ′ > j (4.16)

Σi∈R
j
′ aiYij′ − Σi∈Rj

aiYij ≤ Djj′ ∀j, j
′ ∈ J∗&j ′ > j (4.17)

Yij = {0, 1} ∀i ∈ Rj, j ∈ J∗ (4.18)
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Objective (4.14) minimizes the total pairwise absolute workload difference between

sited facilities, noted in (4.2). Constraints (4.15) stipulate that a demand within the

standard of a sited facility must be allocated to one and only one facility. Thus, Con-

straints (4.15) are a combination of Constraints (4.3), (4.8) and (4.9). Constraints (4.16)

and (4.17), which are simplified versions of Constraints (4.6) and (4.7), track the absolute

workload difference between two sited facilities j and j
′
. Constraints (4.18) define binary

allocation decision variables Yij associated with sited facilities and demand that can be

covered. Again, this assumes that the set of sited facilities, J∗, is known, which is not

the case for the WBMCLP-TotPairDiff, making it even more difficult to solve.

Assume there is an instance of a PARTITION problem with |R| members. Set the

demand ai where i ∈ R to be equal to the |R| members to be partitioned. Then, set

p = 2 (therefore |J∗| = 2) and Ni = J for each i. Clearly, the PARTITION instance has

a feasible solution if and only if the constructed instance of the allocation problem (4.14)-

(4.18) has an optimal solution with a value of 0. Thus, (4.14)-(4.18) is also NP complete

(see Garey and Johnson 1979), suggesting it is indeed difficult to be optimally solved

and a polynomial time algorithm is not possible unless P = NP . It is also evident that

the allocation variable Yij tends to be fractional due to objective (4.14), which makes

finding an integer solution more difficult during a branch-and-bound procedure in an

exact algorithm. Thus, the computational time using exact methods for this allocation

problem theoretically becomes very large as problem size grows. Therefore, it is even more

computationally challenging to solve the bi-objective WBMCLP-TotPairDiff involving

123



Chapter 4. A Heuristic Algorithm for Balancing Workloads in Coverage Modeling

facility location and demand allocation simultaneously, as (4.14)-(4.18) is a special case.

Accordingly, exact methods are not likely to be computationally viable for problems

encountered in practical application, as highlighted in the results that follow. This means

that the development of an efficient solution approach is needed for any application of

the WBMCLP-TotPairDiff.

4.4 Heuristic Algorithm

Since exact capabilities for solving the WBMCLP-TotPairDiff are limited, a heuristic

algorithm is proposed that is capable of identifying high quality solutions in an efficient

manner. Figure 4.1 gives a flowchart describing the developed heuristic. There are three

major stages of the proposed approach: initialization, subproblem delineation and local

search. In the initialization stage, the algorithm begins with an empty set Υ for tracking

solutions, pre-defined threshold coverage bounds Ψk for subproblems, and a group of sim-

ulated annealing parameters (initial temperature T , stopping temperature Tmin, cooling

factor β, etc.) for local search. The algorithm then identifies a set of feasible facility

configurations using an initial hybrid facility site selection procedure. Each obtained

facility configuration is used as a starting point in the subproblem delineation stage.

Given an initial facility configuration, the next stage in Figure 4.1 decomposes the

WBMCLP-TotPairDiff into a set of subproblems using the constraint method. This is

a multi-objective solution approach that is broadly applied, the details of which can be
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found in Cohon (1978). This is accomplished by making objective (4.1) a constraint,

imposing that the total demand coverage is no less than the bound. Specifically, for a

facility configuration obtained in the initialization stage, the algorithm considers suc-

cessive coverage lower bounds Ψk for k = 1, 2, · · · , K, with objective (4.1) becoming a

constraint of the following form:

ΣiΣj∈Ni
aiYij ≥ Ψk (4.19)

The subproblem, consisting of (4.2)-(4.13) and (4.19), now minimizes the workload

variation while ensuring the total demand coverage is at least Ψk for a given facility

configuration.

The local search stage in Figure 4.1 then follows, seeking to improve a subproblem

solution. There has been a long history of successful heuristics focused on separating

facility location and demand allocation decision making when solving location-allocation

problems (Maranzana, 1964; Teitz and Bart, 1968; Haghani, 1996; Daskin and Tucker,

2018). The local search is similarly conceived in that a facility location is the central focus

of substitution, with demand allocation carried out using a simulated annealing approach.

Specifically, the local search stage begins with a facility configuration, and then employs

a simulated annealing approach to obtain the allocation. The algorithm then consid-

ers substitutions of a facility site that are not part of the current facility configuration;

such a substitution then triggers the need to update demand allocations, subsequently

achieved via the simulated annealing approach. Improvements to the location-allocation
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configuration are accepted if they produce a decrease in workload variation while main-

taining the stipulated demand coverage. Local search stops when no improvement in

the workload variation can be obtained for the current subproblem. Any new solution

found during the local search is added to Υ. This enhances the likelihood that non-

dominated/high-quality solutions are identified as well as avoids redundant computation

associated with already identified solutions.

With the updated location-allocation solution, the algorithm in Figure 4.1 then re-

turns to define another subproblem for a different threshold coverage bound Ψk for

k = {1, 2, · · · , K} followed by local search. This process is repeated until all subproblems

have been defined and solved. Once all initial facility configurations are considered in

the above process, the heuristic ends by extracting and returning non-dominated solu-

tions in the set Υ. Specifics associated with initial hybrid siting and simulated annealing

allocation are now detailed.

4.4.1 Initial Hybrid Siting

The performance of a heuristic algorithm in location problems is usually sensitive to the

quality of initial solutions (Adenso-Diaz and Rodriguez, 1997; Wei and Murray, 2014).

Indeed, there are a number of ways to identify initial (feasible) solutions, including speci-

fication, randomization, greedy or hybrid approaches (e.g., Maranzana 1964; Church and

ReVelle 1974; Murray and Church 1996; Daskin and Tucker 2018; Murray et al. 2019).

Since the WBMCLP-TotPairDiff is a bi-objective optimization problem, the “goodness”
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of the initial solution set depends on both objective values (i.e. the total demand cover-

age and the total pairwise workload variation) associated with every single solution and

diversity of solutions (or distribution of solutions in the objective space). Wei and Murray

(2014) proposed a hybrid way to obtain an initial population using a genetic algorithm for

solving their bi-objective problem, which includes solving relaxed problems by ignoring

some uncertain conflict constraints and random initialization. The superiority of their

hybrid initialization compared to three other initialization approaches is essentially due

to the consideration of solutions with high and low objective values. Similarly, in order

to generate good solutions that enable complete exploration of the objective space, a

hybrid facility siting procedure is taken here.

The initial hybrid siting procedure is given in Figure 4.2, which has three parallel

components. First, the procedure relaxes the workload balancing constraints and objec-

tive, then solves the resulting MCLP by exact or heuristic approaches. Here, Gurobi

is used to solve the MCLP and multiple optimal or close-to-optimal facility configura-

tions are obtained by forcing 1 sited facility not to be sited each time from an initial

MCLP optimal solution. These facility siting solutions are associated with large demand

coverage (possibly large workload variation as well). There is some likelihood they are

good starting points for solution search. Second, the procedure computes the maximum

possible demand coverage by each potential facility, i.e., Σi∈Rj
ai. The procedure then

inspects whether there are exactly p facilities that have the same Σi∈Rj
ai and their Rj

do not intersect (here the strict zero intersection condition is used, but one can set some
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threshold to allow small intersected coverage). If feasible, such a p-facility configuration

is kept. These facility location solutions may already have balanced workloads. Such

cases are rare but do occur and help to find good starting solutions when p is small (2 or

3). The last component is to quickly derive initial facility configurations that span dif-

ferent demand coverage levels in order to achieve solution diversity. With each coverage

bound Ψk, the procedure picks a group of p facilities having the smallest Σi∈Rj
ai that

is no less than an average workload Ψk/p. Therefore, there will be at least K groups

of p-facilities generated by the last component. This hybrid initialization is expected to

enhance performance of the algorithm compared to random initialization.

4.4.2 Simulated Annealing Based Demand Allocation

An important component of the local search stage is to allocate demand to sited facilities.

This is accomplished in the context of solving an allocation problem, (14)-(18). As

discussed above, this allocation problem is NP complete and requires an efficient method

to solve it. Simulated annealing is a systematic method for perturbing an incumbent

solution while allowing degradation of solution quality under some conditions in order to

avoid the objective value becoming trapped in local optima (Karmarkar and Karp, 1982).

It has been widely applied to many types of optimization problems, including p-median

(Murray and Church, 1996; Golden and Skiscim, 1986), quadratic assignment (Burkard

and Rendl, 1984; Sharpe and Marksjö, 1986; Wilhelm and Ward, 1987), partitioning
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Figure 4.2 Initial hybrid siting configuration construction
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(Johnson et al., 1991), police districting (D’Amico et al., 2002) and others. A simulated

annealing approach for demand allocation is now detailed.

Figure 4.3 depicts the simulated annealing demand allocation approach. Parameters

in this procedure include a cooling schedule (current temperature T , stopping tempera-

ture Tmin and cooling factor β ∈ (0, 1)), an equilibrium state threshold E, and a proba-

bility p1 ∈ [0, 1]. The approach starts with an initial allocation solution s obtained from

a greedy allocation. Specifically, demand that is within the coverage standard of only

one sited facility is allocated, then the facility having the minimum current workload is

prioritized for serving more demand until all demand in R is allocated. At temperature

T , a search to a neighbor solution s
′

is attempted. If such a move reduces the total

pairwise workload variation, it is accepted and the current solution s is updated. Other-

wise, the move is accepted with a probability that depends on the current temperature

T and the degradation of the workload variation ∆. Specifically, the acceptance proba-

bility is defined by e
−∆
T (see Kirkpatrick et al. 1983), and decreases as the temperature

cools down. At a particular temperature T , many attempts of a neighbor solution are

explored until an equilibrium state is reached. To reach an equilibrium state at each

T , a sufficient number of neighbor solutions have to be searched, which is defined as at

least E neighbor solutions searched where E is a proportion of the neighborhood size.

Once the equilibrium state is reached, the temperature T is decreased according to a

geometric cooling process, namely T = β×T where β ∈ (0, 1) (Talbi, 2009). These steps
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iterate until T < Tmin. The best solution found during the process is stored as the final

allocation solution for the given facility configuration.

Although the basic structure of simulated annealing is similar in many different ap-

plications for solving an optimization problem, the effectiveness of a simulated annealing

approach relies on how a neighbor solution of an incumbent solution is identified (Koula-

mas et al., 1994; Talbi, 2009). Here, a neighbor allocation solution is searched by re-

allocating demand. There are many different ways to re-allocate, such as to re-allocate a

single demand, making a one-to-one allocation exchange, making an allocation exchange

among three demand, etc. Re-allocating a single demand to another sited facility is the

most basic approach. A neighbor solution for an incumbent solution obtained from this

approach is illustrated in Figure 4.4(a). This is done by a spatial search process for a sited

facility j
′

that can cover a demand, replacing allocation from facility j. Re-allocating

a single demand is very flexible, but doing so for a relatively balanced solution often

increases total workload variation. As a result, such a move is unlikely to be accepted,

making it an ineffective neighborhood search approach in this case. Another demand

re-allocation strategy is a one-to-one exchange, leading to a neighbor solution similar

to that illustrated in Figure 4.4(b). This type of solution can be obtained by a spatial

search for a pair of demand i and i
′

such that i could be re-allocated to facility j
′

and

i
′

could be re-allocated to facility j. Compared to the single demand re-allocation, the

one-to-one exchange is more likely to reduce workload variation, making it a potentially

effective attempt. For both types of re-allocation, if more than one re-allocation option
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Figure 4.3 Simulated annealing demand allocation process
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available, a random one is picked. The neighbor solution search employed here is designed

to combine single demand and one-to-one re-allocation by randomly choosing between

the two processes with a probability of p1 for the single demand re-allocation and 1− p1

for a one-to-one exchange.

facility 𝑗 facility 𝑗"
demand 𝑖

demand 𝑖"

facility 𝑗 facility 𝑗"
demand 𝑖

(a) Re-allocate a single demand (b) One-to-one allocation exchange

Figure 4.4 Two potential types of neighbor allocation

4.5 Application Results

The proposed algorithm for solving the WBMCLP-TotPairDiff was programmed in Python

(version 3.6) and executed on a personal MacBook Pro (with 2.9 GHz Intel Core i5 pro-

cessor and 8 GB memory). Four different case studies were used to evaluate the effec-

tiveness of the proposed heuristic algorithm. The initial temperature T was set to make

the median initial acceptance rate to be no less than 50%, T = −median({∆})/lg(0.5)

where {∆} is a set of workload variation values by 1,000 random move experiments. The

stopping temperature Tmin and cooling parameters β were then set accordingly to ensure

134



Chapter 4. A Heuristic Algorithm for Balancing Workloads in Coverage Modeling

enough iterations in the simulated annealing. To establish benchmarks, the WMBCLP-

TotPairDiff was solved optimally when possible using the constraint method (Cohon,

1978) and Gurobi (version 9.0.1). This then enables an assessment of heuristic perfor-

mance, at least in the cases where the exact approach is successful. Three quantitative

measures, completeness, maximum gaps and average gaps, are used for algorithm evalu-

ation. Let P be the Pareto optimal set, Q be a set of solutions found by the algorithm,

completeness is defined as |P ∩ Q|/|P |, the ratio of the number of found Pareto op-

timal solutions to the number of all optimal solutions. A higher completeness means

more Pareto optimal solutions are found by the algorithm. Denote Z1 and Z2 the total

demand amount allocated and the total pairwise absolute workload difference of a so-

lution to the WBMCLP-TotPairDiff, respectively. Let t be a missed optimal solution,

i.e., t ∈ P \ Q, t
′

be the closest solution to t in Q, the maximum gaps are defined as

(maxt∈P\Q
|Zt

1−Zt
′

1 |
Zt

1
,maxt∈P\Q

|Zt
2−Zt

′

2 |
Zt

2
), the maximum percentage deviation of optimal so-

lutions from their closest solutions by the algorithm in both objective values. Similarly,

the average gaps are defined as ( 1
|P\Q|Σt∈P\Q

|Zt
1−Zt

′

1 |
Zt

1
, 1
|P\Q|Σt∈P\Q

|Zt
2−Zt

′

2 |
Zt

2
). The smaller

maximum (average) gaps, the better obtained solutions approximate to the Pareto opti-

mal front. Computational time is also noted.

4.5.1 San Jose Postal Service

The first case study is associated with postal service in the city of San Jose (Xu et al.,

2020). The goal is to maximize the total expected demand (population) served while
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balancing postal facility workloads simultaneously. There are 32 demand areas (ZIP

Code Tabulation Areas) with a total demand of 1,023 (in thousands of people). The

demand area centroids are used to represent both demand locations and potential postal

service facilities. Travel distances between demand and potential facilities are computed

based on the street network for the region (U.S. Census Bureau, 2018a). The service

coverage standard is a distance of 3 miles. The number of facilities considered ranges

from 2 to 15.

Parameters of the heuristic algorithm were set as follows. The total demand coverage

bound Ψk is a percentage, e.g., {1.00, 0.98, 0.96, · · · , 0.02}, of maximum total demand

that can be covered for a given number of facilities, p. The initial temperature T is

300, the minimal temperature Tmin is 10 and the cooling parameter β is 0.9. Finally,

the equilibrium state threshold E is set to 10% of the neighborhood size (i.e. a rough

number of possible neighbor solutions of the mentioned two types), and the probability

of re-allocating a single demand p1 is 50%.

Table 4.1 summarizes the computational results of the heuristic algorithm. In general,

the heuristic is able to identify high-quality non-dominated solutions and the computa-

tional time needed is significantly faster than the exact solver, especially as problem

difficulty increases as p increases. The heuristic is able to find more than 70% of Pareto

optimal solutions in all cases and the average gap is usually less than 10% in the total de-

mand coverage with ranges of 0-17% in the total pairwise absolute workload difference.

When siting two or three facilities, the heuristic successfully finds all Pareto optimal
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solutions, requiring less computational effort. As p becomes larger, the algorithm perfor-

mance is slightly degraded but the computational efficiency of the heuristic is also more

evident. When siting 15 facilities, there are 20 Pareto optimal solutions and 16 (80%)

are found by the heuristic. Only 3 solutions are dominated. The average gap in total

demand coverage is 1.5% and the workload variation is 3.6%. This problem is solved

in around 5 minutes by the heuristic compared to 1 hour using the exact solver. The

degraded effectiveness of the algorithm is expected as p increases, because (1) there are

more combinatory siting options, which greatly increases the difficulty of finding the right

p-facility combination in the facility substitution process; (2) there are more allocation

options for a demand (|Ri| becomes larger) and more overlapped coverage among sited

facilities (a demand could be in multiple Nj for j ∈ J∗), which makes it hard to get the

allocation swaps that lead to the optima in the simulated annealing process.

The trade-off between total demand coverage and workload variation can be visual-

ized. Figure 4.5 shows the true Pareto optimal fronts derived by the exact solver and

solutions found using the heuristic for both small and large values of p. When p is 3,

there are 9 Pareto optimal solutions with total demand coverage ranging from 96 to

536 thousand people and the total pairwise deviation ranging from 6 to 102 thousand

people (Figure 4.5(a)). In this case, all nine optimal solutions are found. The spatial

configuration of the highly imbalanced location-allocation solution covers 536 thousand

people and has a workload variation of 102 thousand people is given in Figure 4.6. The

three sited facilities have workloads of 145, 195 and 196 thousand people, respectively.
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Table 4.1 Computational results for proposed algorithm (San Jose postal

service delivery, S = 3)

p # of
Pareto
optimal
solutions

# of
Pareto
optimal
solutions

found
(Complete-

ness)

Maximum
Gaps (%,

%)

Average
Gaps (%,

%)

Solution
Time -
Algo-
rithm
(Sec-
onds)

Solution
Time -
Gurobi
(Sec-
onds)

3 9 9 (100.0) (0.0, 0.0) (0.0, 0.0) 0.63 7.89
4 9 9 (100.0) (0.0, 0.0) (0.0, 0.0) 0.90 7.34
5 20 17 (85.0) (20.4, 23.5) (8.8, 17. 4) 3.34 31.71
6 19 17 (89.5) (1.7, 11.8) (0. 9, 9.1) 12.05 66.89
7 13 11 (84.6) (3.2, 13.0) (1.6, 7.7) 15.88 52.75
8 16 12 (75.0) (3.0, 3.8) (1.3, 3.1) 19.54 108.63
9 25 18 (72.0) (3.1, 8.6) (1.4, 3.7) 56.52 776.00
10 28 22 (78.6) (3.0, 18.7) (1.8, 5.8) 64.00 1,270.63
11 21 15 (71.4) (8.5, 8.0) (4.2, 4.4) 62.21 1,422.25
12 21 16 (76.2) (8.7, 3.9) (3.6, 2.1) 67.99 2,269.48
13 22 16 (72.7) (7.8, 4.6) (3.0, 2. 3) 136.42 3,190.57
14 19 15 (78.9) (5.7, 5.7) (2.6, 3.2) 184.66 2,876.57
15 20 16 (80.0) (1.8, 5.1) (1.5, 3.6) 304.00 3,374.39

In contrast, a more balanced solution with three facilities serving 133, 138 and 139 thou-

sand people is shown in Figure 4.7. This solution has a total demand coverage of 410

thousand people and a pairwise workload variation of 12 thousand people. When p is 15,

the Pareto optimal front ranges from 775 to 1,006 in demand coverage and 918 to 5,326

in the workload variation (Figure 4.5(b)). A few Pareto optimal solutions were missed

but they do span the frontier. As Figure 4.5 illustrates, the heuristic solutions are well

distributed and cover the objective space of the Pareto optimal fronts. The deviations

from the solutions on the front are small.
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Figure 4.5 Pareto optimal front comparison (San Jose postal service

delivery)
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Figure 4.6 Workloads associated with an unbalanced location and allocation

decision (San Jose postal service delivery, p = 3)
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Figure 4.7 Workloads associated with a balanced location and allocation

decision (San Jose postal service delivery, p = 3)

4.5.2 Santa Barbara Fire Response

The second case study investigates fire response to 80 block groups in downtown Santa

Barbara, CA. The centroids of these areas are used to represent both demand and po-

tential fire stations. The demand amount is based on population in the area. The local

street network is used to construct the transport network (U.S. Census Bureau, 2018a)

and calculate travel information between demand and potential stations. The service

coverage standard is 1.5 miles. The number of fire stations to site (p) ranges from 2 to

6. Parameters are the same as those reported previously.
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Table 4.2 gives the computational results when the heuristic is applied to Santa Bar-

bara fire response. When p is 2 or 3, the heuristic is able to identify all Pareto optimal

solutions. When p is 4, the heuristic finds 18 of 27 Pareto optimal solutions, with 5 dom-

inated solutions, in 225.46 seconds. The trade-off curve between total demand coverage

and total pairwise workload variation measure is given in Figure 4.8(a). The maximum

coverage possible with four facilities is 719 hundred people, with a workload variation of

321 hundred people. When covering 632 hundred people, it is possible to reach a bal-

anced system. The trade-off plot shows that solutions generated by the heuristic are very

close to, if not coincide with, optimal non-dominated solutions. The average percentage

gap for total demand coverage is 0.4% and workload variation is 1.5%. When siting six

facilities, 12 out of 18 (66.7%) Pareto optimal solutions are found by the heuristic in 997

seconds compared to 1.5 hours by Gurobi. The average percentage gaps are 0.2% and

8.2% in total coverage and workload variation, respectively. The trade-off is illustrated

in Figure 4.8(b). There are 18 Pareto optimal solutions, with total coverage ranging from

750 to 793 hundred people and workload variation ranging from 0 to 403 hundred people.

Most of the solutions identified by the heuristic are or near optimal solutions. Overall,

heuristic solutions are evenly distributed over the objective space, with little divergence

from the Pareto front. Again, the computational time is much shorter for the heuristic

compared to the exact approach.
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Table 4.2 Computational results for proposed algorithm (Santa Barbara fire

response, S = 1.5)

p # of
Pareto
optimal
solutions

# of
Pareto
optimal
solutions

found
(Complete-

ness
%)

Maximum
Gaps (%,

%)

Average
Gaps (%,

%)

Solution
Time -
Algo-
rithm
(Sec-
onds)

Solution
Time -
Gurobi
(Sec-
onds)

3 6 6 (100.0) (0.0, 0.0) (0.0, 0.0) 28.88 177.04
4 27 18 (66.7) (1.0, 3.9) (0.4, 1.5) 225.46 5,195.20
5 28 14 (50.0) (1.5, 18.2) (0.4, 4.1) 1,257.67 23,448.21
6 18 12 (66.7) (0.3, 30.0) (0.2, 8.2) 997.00 32,194.57
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Figure 4.8 Pareto optimal front comparison (Santa Barbara fire response)

4.5.3 Boston Fire Response

The third case study investigates fire response in eight suburbs of Northwest Boston

(Acton, Bedford, Carlisle, Concord, Lincoln, Maynard, Sudbury and Wayland). Murray

and Tong (2009) provided context for this planning application. There are 511 reported
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structure fires during 1990 to 2004, which are used to represent both demand and poten-

tial fire stations. The demand amount is one at each location. The local street network

is used to construct the travel network and calculate travel information between demand

and potential stations. The service coverage standard is 1.5 miles. The number of fire

stations to site (p) ranges from 2 to 6. The initial temperature T is 10 and the minimum

temperature Tmin is 1. The remaining parameters are as defined above.

Table 4.3 summarizes computational results for this study. When p is 2, all 20 Pareto

optimal solutions are found by the heuristic in 15 seconds compared to 29,241.13 seconds

by the exact solver. When p is 3, the heuristic identifies 28 of 32 Pareto optimal solutions

(completeness of 87.5%), with 2 inferior solutions. Solution time is about 33 seconds

compared to around 11 days by the exact solver. Cases with larger p values were also

attempted. Unfortunately, these problem instances cannot be solved optimally. For

example, when p ≥ 4, Gurobi was not successful after 2 weeks in verifying any optimal

solutions. Since all Pareto optimal solutions could not be found, heuristic evaluation

along these lines is not possible. However, the Pareto frontier identified by the heuristic

is possible. When p is 4, the heuristic identified 35 solutions (shown in Figure 4.9)

within 91 seconds. The maximum coverage is 226 with a workload variation of 282. The

total pairwise workload difference can be reduced by 61.7% (i.e., to 108) by covering

2.6% less demand. A system with equivalent workloads can be obtained when covering

165 demand. For p equals 5 and 6, 42 and 35 solutions are identified by the heuristic,

respectively.
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Table 4.3 Computational results for proposed algorithm (Boston fire

response, S = 1.5)

p # of
Pareto
optimal
solutions

# of
Pareto
optimal
solutions

found
(Complete-

ness
%)

Maximum
Gaps (%,

%)

Average
Gaps (%,

%)

Solution
Time -
Algo-
rithm
(Sec-
onds)

Solution
Time -
Gurobi

(Seconds)2

2 20 20 (100.0) (0.0, 0.0) (0.0, 0.0) 15.27 29,241.13
3 32 28 (87.5) (2.8, 21) (1.6, 1.51) 32.98 989,708.29
4 – 35 – – 90.77 –
5 – 42 – – 92.82 –
6 – 35 – – 184.03 –

1 Absolute gaps are used due to zero denominator when computing percentage gaps.

2 Unreported times indicate no feasible solution found after 2+ weeks of processing.

4.5.4 Santa Barbara Nutrition

The final case study considered involves the Special Supplemental Nutrition Program for

Women, Infants, and Children in the larger Santa Barbara area (Goleta, Santa Barbara,

and Carpinteria) (Xu et al., 2020). The program aims to provide healthcare, supplemental

foods and nutrition education for eligible women, infants and children. There are 2,070

census blocks in the region, with a total population (2010) of 200,450 people. The

population of each block is used as a proxy for service demand, represented using the

centroid. In addition, there are 82 locations identified as potential facility sites. The

road network is used to compute travel distance (U.S. Census Bureau, 2018a). A service
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Figure 4.9 Non-dominated solutions identified by heuristic algorithm

(Boston fire response, p = 5)

coverage standard of 5 miles is assumed. Siting 2 to 8 facilities while considering workload

balance is investigated. The initial temperature T is 300, the minimal temperature Tmin

is 10 and the cooling parameter β is 0.9. The equilibrium state threshold E is 10% of

the neighborhood size. The probability of re-allocating a single demand p1 is 50%.

The computational results are summarized in Table 4.4. The coverage set Ni (or Rj)

is very large due to the 5 mile coverage standard in this area. On average, a facility can

cover 805 demand areas, which amounts to 74,056 people on average. Therefore, there are

numerous demand allocation possibilities, which make associated problem instances very
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challenging to solve. Unfortunately, no problem instances can be solved completely using

the exact solver within 2 weeks, even for only two sited facilities. When p is 2, there are 34

solutions identified as non-dominated solutions by the heuristic. The maximum coverage

is 174,432 people with a total pairwise workload variation of 30,318. When covering

159,122, the workloads of the two sited facilities are equal. When p is 5, the heuristic

identifies 58 non-dominated solutions (Figure 4.10 inset), taking 532 seconds to solve. The

maximum demand coverage possible is 200,340 people, with an associated total pairwise

workload variation of 218,190 people. By sacrificing 0.2% population coverage, workload

variation can be significantly reduced to 123,172 people (by about 44%). Covering 8.6%

less population could further decrease the workload variation to 3,968 people, as shown

in Figure 4.10. A system with five balanced facility workloads can serve 148,115 people.

Each sited facility has a workload of 29,623 people. Finally, for p equals to 8, the heuristic

identifies 56 non-dominated solutions in 1,430.85 seconds.

4.6 Discussion

There are a number of items worth further discussion. One is the importance of the

initial hybrid facility siting approach. A second one is the performance of the simulated

annealing algorithm on solving the allocation problem (4.14)-(4.18). The last one is the

sensitivity of heuristic performance to different service coverage standards.
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Table 4.4 Computational results for proposed

algorithm (Santa Barbara nutrition, S = 5)

p # of solutions
identified

Solution Time
- Algorithm
(Seconds)

Solution Time
- Gurobi
(Seconds)1

3 44 40.89 –
4 69 132.84 –
5 58 532.26 –
6 111 870.58 –
7 73 1,179.66 –
8 56 1,430.84 –

1 Unreported times indicate no feasible solution found after 2+ weeks of

processing.
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Figure 4.10 Workloads associated with a balanced location and allocation

decision (Santa Barbara nutrition, p = 5)
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4.6.1 Hybrid vs Random Siting

The initial hybrid siting approach (Figure 4.2) is critical to the success of the algorithm.

To demonstrate this point, a random initialization is compared with the hybrid proce-

dure. The random initialization generates the same amount of p-facility configurations

randomly. Other steps and parameters of the algorithm remain the same. Table 4.5

summarizes the comparison between the hybrid procedure and the best results among

five different runs with the random initialization using San Jose data. Results show that

the hybrid initialization is able to find more optimal solutions compared to the random

initialization. For example, when p is 7, the random initialization finds a maximum of 6

out of 13 Pareto optimal solutions among five different runs while the hybrid initialization

finds 11 Pareto optimal solutions. Figure 4.11 shows the best non-dominated solutions

identified by the algorithm with a random initialization and those by the algorithm with

the hybrid initialization when p is 7. Although the random initialization provides good

convergence in the middle part of the front, its solutions are not well uniformly distributed

and miss optimal solutions with high and low demand coverage (or workload variation).

It is also evident that solutions by the random initialization are dominated by the hybrid

initialization in Figure 4.11. The better performance of the hybrid procedure is due to

the consideration of solutions with extreme objective values and the greedy steps that

enable a complete exploration of the objective space.
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Figure 4.11 Non-dominated solutions using hybrid facility initialization vs

random facility initialization (San Jose postal service delivery, p = 7)
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Table 4.5 Computational results comparing initial hybrid siting

vs random siting (San Jose, S = 3)

p

# of Pareto # of Pareto optimal

optimal solutions
solutions found (Completeness %)

Hybrid Random1

2 2 2 (100.0) 1 (50.0)
3 9 9 (100.0) 5 (66.7)
4 9 9 (100.0) 7 (77.8)
5 20 17 (85.0) 11 (55.5)
6 19 17 (89.5) 15 (78.9)
7 13 11 (84.6) 6 (46.2)
8 16 12 (75.0) 5 (37.5)
9 25 18 (72.0) 11 (44.0)
10 28 22 (78.6) 20 (71.4)
11 21 15 (71.4) 9 (42.9)
12 21 16 (76.2) 12 (57.1)
13 22 16 (72.7) 13 (59.1)
14 19 15 (78.9) 12 (63.2)
15 20 16 (80.0) 15 (75.0)

1 Best results among five runs with random initialization.

4.6.2 Strength of Simulated Annealing Based Allocation

To evaluate the performance of the simulated annealing algorithm on solving the alloca-

tion problem, (4.14)-(4.18), it is compared with the initial greedy allocation (as explained

in Section 4.4.2) and the Gurobi solver for a set of allocation problems with randomly

generated facility configurations. The total pairwise workload variation (i.e., the objec-

tive value of the allocation problem) and computational time are compared. The gap of

the workload variation is computed as the percentage deviation from the objective value
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found by Gurobi. Computational results are summarized in Tables 4.6 and 4.7. Out

of all 9 random instances (when p = 3, 10, 15) using the relatively easier San Jose case

(Table 4.6), simulated annealing is able to find optimal solutions in a similar amount of

time with Gurobi. While the greedy algorithm miss the optimal solution in 4 cases and

the gap in the objective value can be as large as 125.6% though it is very fast. Out of the

20 random instances (when p = 5, 8) using the large Santa Barbara nutrition case (Table

4.7), simulated annealing is able to find the same solutions as Gurobi does in 8 cases and

its generated objective values are usually within 2% from Gurobi results in cases that

solutions do not coincide. This is done in a comparable amount of computational time,

compared to Gurobi. It is noted that there are 5 instances that Gurobi is not able to

converge the gaps between the upper and lower bounds for the objective value after 1

hour of processing, which highlights the inefficiency of solving this NP -hard allocation

problem using the exact method. The greedy algorithm runs very fast but generates

poor-quality solutions that have objective values much larger than Gurobi results. These

results show the necessity and strength of the simulated annealing algorithm for solving

the allocation problem when the sited facilities are fixed for the WBMCLP-TotPairDiff.
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4.6.3 Sensitivity to Coverage Standard S

The service coverage standard S affects the complexity of a workload balancing problem

instance. A large S would usually increase the number of facilities that can suitably

cover each demand (i.e., |Ni|) and the number of demand that can be covered by each

potential facility (i.e., |Rj|) as well. Thus, a large S tends to increase facility location and

demand allocation possibilities, leading to a larger solution space for search. Therefore,

the service coverage standard S is adjusted to 5 miles and 7 miles in San Jose study

to test how sensitive the algorithm performance is to S. Tables 4.8 and 4.9 summarize

computational results when S is 5 miles and 7 miles respectively. The number of facilities

to be located, p, ranged from 2 to the maximum amount that optimal results could be

obtained by an exact solver within 2 weeks of computational time. When S is 5 miles

and p ranges from 2 to 10, 57%-100% Pareto optimal solutions are found by the proposed

algorithm. More solutions are produced that are inferior solutions compared to when S

is 3 miles but optimality gaps remain small for most instances. When S is 7 miles and

p ranges from 2 to 5, the overall results are comparable to finding a Pareto front when

S is 3 or 5 miles. Therefore, solution quality is not degraded significantly. However,

the computational time of the exact solver significantly increases with larger S, which

further demonstrates the computational complexity of the problem and the necessity of

a heuristic algorithm. For example, it takes the exact solver about 203,162 seconds ( 56

hours) to obtain all Pareto optimal solutions when S is 5 miles and p is 10 compared to
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1,270 seconds when S is 3 miles. In contrast, the solution time when using the proposed

algorithm is still acceptable when S is large enough in the study area. It takes the

algorithm about 2,935 seconds when S is 5 miles and p is 10.

Table 4.8 Computational results for proposed algorithm (San Jose, S = 5)

p # of
Pareto
optimal
solutions

# of
Pareto
optimal
solutions

found
(Complete-

ness
%)

Maximum
Gaps (%,

%)

Average
Gaps (%,

%)

Solution
Time -
Algo-
rithm
(Sec-
onds)

Solution
Time -
Gurobi
(Sec-
onds)

2 2 2 (100.0) (0.0, 0.0) (0.0, 0.0) 0.02 2.24
3 7 6 (85.7) (0.0, 10.0) (0.0, 10.0) 2.01 24.81
4 7 6 (85.7) (2.0, 57.1) (2.0, 57.1) 8.50 122.45
5 5 3 (60.0) (8.1, 150.01) (4.5, 77.1) 9.72 275.52
6 8 7 (87.5) (0.0, 0.7) (0.0, 0.7) 48.67 1,430.35
7 12 7 (58.3) (10.9, 166.72) (6.6, 43.7) 123.94 14,407.43
8 14 8 (57.1) (28.6, 3.5) (5.7, 1.1) 537.63 73,069.99
9 15 9 (60.0) (4.4, 15.9) (1.1, 3.1) 1,712.83 58,880.03
10 15 10 (66.7) (1.3, 2.0) (0.3, 0.6) 2,935.10 203,162.82

1 The missed Pareto optimal solution has a workload variation of 4 and its closet solution by the algorithm

has a workload variation of 10; (10-4)/4 leads to the 150% gap in workload variation.

2 The missed Pareto optimal solution has a workload variation of 12 and its closet solution by the

algorithm has a workload variation of 32; (32-12)/12 leads to the 166.7% gap in workload variation.

4.7 Conclusion

This chapter proposed a heuristic algorithm for solving the workload balancing MCLP,

which is a bi-objective optimization problem that maximizes demand coverage and mini-
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Table 4.9 Computational results for proposed algorithm (San Jose, S = 7)

p # of
Pareto
optimal
solutions

# of
Pareto
optimal
solutions

found
(Complete-

ness
%)

Maximum
Gaps (%,

%)

Average
Gaps (%,

%)

Solution
Time -
Algo-
rithm
(Sec-
onds)

Solution
Time -
Gurobi
(Sec-
onds)

2 1 1 (100.0) (0.0, 0.0) (0.0, 0.0) 0.19 0.31
3 6 6 (100.0) (0.0, 0.0) (0.0, 0.0) 0.77 41.25
4 12 10 (83.3) (0.2, 0.3) (0.1, 0.2) 54.10 505.85
5 20 16 (80.0) (1.6, 2.6) (0.9, 1.3) 253.94 260,919.42

mizes total pairwise absolute workload difference simultaneously. The proposed heuristic

algorithm has three major stages. In the initialization stage, the heuristic identifies a set

of initial facility siting solutions using a hybrid approach. In the subproblem delineation

stage, there is a focus on allocation to minimize workload variation while ensuring total

demand coverage is no less than a pre-defined coverage bound. With an initial facility

configuration and a subproblem allocation, a local search stage follows. Facility siting

is updated by substituting facilities that are not sited for sited facilities. Demand is

allocated to sited facilities using a simulated annealing approach that incorporates two

types of neighbor solution search approaches. Empirical studies involving four applica-

tions demonstrated that the heuristic was able to identify non-dominated solutions that

approximate the Pareto optimal front well, yet required significantly less computational

resources. Solutions identified by the heuristic were well distributed in the objective
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space, covering extreme objective values. Finally, the heuristic proved capable of identi-

fying solutions for larger problem instances for which the exact solver was not successful.
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Chapter 5

Conclusions

This dissertation evaluated prominent modeling approaches to govern facility workloads

in coverage problems. These approaches were explored and compared in different ways,

focusing on resulting workloads and qualitative considerations. Solution approaches were

developed and applied, with an efficient heuristic algorithm identified for obtaining trade-

off solutions.

This chapter offers concluding comments to the dissertation. A summary of each

chapter is detailed in the next section. This is followed by a discussion of theoretical

contributions. The chapter ends with suggestions for future research.

5.1 Summary

Chapter 1 offered motivation for this research work, identified key problems, reviewed pri-

mary objectives, and spoke to the significance of various aspects of associated modeling.

Further, an overview of this dissertation was provided.
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Chapter 2 evaluated the CMCLP, the prominent method to govern workloads in cov-

erage problems, from the perspective of workload balancing. This was done with respect

to both solution characteristics and allocation response. First, this chapter showed why

workloads could be balanced using the CMCLP from a theoretical and mathematical per-

spective. Second, the solution quality and computational time to solve the CMCLP using

GIS packages were evaluated against the exact approach, recognizing that the CMCLP is

accessible in GIS and increasingly relied upon in planning applications. GIS provides an

integrated environment for data acquisition, management, manipulation, analysis, and

display; and offers easy access to modeling for general users. Two empirical studies that

involved 180 problem instances were carried out. Although the heuristics applied in GIS

packages solved capacitated problems in less computational effort, some 63% of problems

could not be solved optimally. The observed maximum optimality gap was approximately

10%. Third, service implications due to the use of capacities were highlighted. Some de-

mand may not be allocated even if it is located within the service standard. In addition,

some demand may be allocated to a further away facility. This means that a closer sited

facility exists, yet capacity limitations dictate that some demand must seek service from

a different facility. With all these limitations, approaches that can better balance facility

workloads in coverage problems should be explored.

Chapter 3 proposed five workload balancing approaches in the context of maximal

covering. This chapter first analyzed different equity measures including the total pair-

wise absolute workload difference, total mean absolute workload deviation, maximum
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mean absolute workload deviation, workload range, and maximum workload. It proved

that the total pairwise absolute workload difference captures the workload variation most

explicitly. As a result, other measures can be regarded as an approximation to pairwise

workload difference. The five different workload balancing maximal covering models in-

corporating equity measures were formulated through the use of an additional objective

and associated constraints. Evaluation was conducted by treating the workload balanc-

ing model with the total pairwise measure as the benchmark, against which other models

are compared. The empirical results demonstrated that it was very likely that approx-

imation approaches would be suboptimal, often with significant optimality gaps. This

suboptimality was especially prevalent when the number of facilities to site becomes

large. Although the model with the total pairwise measure was able to identify opti-

mal trade-offs, it required significantly more computational effort to be solved optimally.

This called for the development of more efficient solution techniques to address workload

balancing issues.

Chapter 4 proposed a heuristic algorithm for solving the workload balancing MCLP as

a bi-objective optimization problem that maximizes demand coverage and minimizes total

pairwise absolute workload difference simultaneously. The proposed algorithm starts with

an initialization stage where a hybrid siting approach was designed to obtain facility

configurations. Then, the algorithm splits the bi-objective problem into subproblems

using the constraint method. Next, a local search stage was proposed to search for

the best location-allocation solution for each subproblem. Facility siting is updated by
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substituting a facility that is not sited with a sited facility, followed by demand allocation

via simulated annealing. Evaluation with four different empirical datasets showed that

the heuristic could find a set of solutions that approximates the Pareto optimal front

well, but did so with much less computational effort. In addition, the algorithm was able

to derive good-quality solutions when the exact method failed.

5.2 Theoretical Contributions

Facility workload balancing is an important topic in location problem. However, it has

been ignored or not appropriately handled in covering problems. This dissertation pro-

vided a systematic evaluation of prominent approaches to control facility workloads in

coverage problems, highlighting the implications of applying capacities in practice. This

ultimately offered insights on opportunities for better approaches. This work enables

a technical and practical understanding of different equity measures to control facility

workloads. As a result, new modeling approaches that explicitly balance workloads were

possible. The proposed models are not directed to any specific application, but rather are

expected to have many potential applications. In addition, recognizing computational

difficulty, this dissertation designed a heuristic method for obtaining solutions to the pro-

posed workload balancing model. It proved to be efficient, making the model applicable

for supporting planning.
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5.2.1 Better Understanding of Capacitated Methods

The first major contribution of the dissertation is a better understanding of capaci-

tated methods. The prominent way to control facility workloads in coverage problem

is to introduce facility capacity cj. Along these lines, the CMCLP was structured

by imposing a constraint Σi∈IaiYij ≤ cjXj for each potential facility j in the con-

text of maximal covering (MCLP). The MCLP can be regarded as a special case of

CMCLP with cj = ∞ for all j. The introduction of facility capacity has two ma-

jor benefits. First, this relaxes the unrealistic assumption that a facility can serve an

unlimited amount of demand within its service coverage standard. Second, from the

perspective of workload balancing, facility capacities help to balance facility workloads

to some extent. It has been shown that the upper bound of the workload range of

a CMCLP solution is UBCMCLP = maxj{min{cj,Σi∈Rj
ai}} − minj{mini∈Rj

ai} while

the upper bound of the workload range of a corresponding optimal MCLP solution is

UBMCLP = maxj{Σi∈Rj
ai} − minj{mini∈Rj

ai} by substituting cj = ∞ for the MCLP,

where Rj is the set of demand that is within the service coverage standard of facil-

ity j. Therefore, the workload range of an optimal CMCLP solution, UBCMCLP , is

bounded by the corresponding workload range of an optimal MCLP, UBMCLP , that is

UBCMCLP ≤ UBMCLP . In another words, the CMCLP solution tends to be more bal-

anced compared to a corresponding MCLP solution due to the introduction of facility

capacities. In addition, the workload variation of an optimal CMCLP solution really de-
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pends on the specific setup of facility capacities and the spatial configuration of regional

demand.

However, there are several limitations associated with the use of capacities. The

first is that most approaches for specifying appropriate facility capacities are subjective

and require expert knowledge and/or historical information. Second, a facility’s capacity

is not necessarily a strict limit, so there may be some degree of flexibility. Thus, the

use of strict capacities may introduce uncertainty, negatively impacting service system

effectiveness and efficiency. Third, the facility capacity could fail to reflect the actual

workloads that a facility undertakes. In the context where the service provider lacks

control in preventing people from accessing services, especially in the public sector, facility

capacity could be exceeded in practice.

Another challenge is that the addition of capacities often significantly increases com-

putational processing in model solution, sometimes beyond computing capabilities. As-

sume sited facilities are known, and let J∗ = {j|Xj = 1} be the set of sited facilities.

For demand that is beyond the service coverage standard of any sited facilities, i.e.,

{i|dij > S ∀j ∈ J∗}, and un-sited facilities {j|j 6∈ J∗}, their associated Yij = 0. Then

for the remaining demand and sited facilities, the CMCLP becomes an allocation problem

that seeks to maximize the total service coverage while not exceeding facility capacities.

For a certain facility j ∈ J∗, the allocation problem is essentially a 0-1 knapsack problem

that is known as NP -hard. Because the capacity constraint Σi∈Rj
aiYij ≤ cj for a sited

facility j would very likely lead to a fractional Yij in order to satisfy the constraint and
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maximize total coverage. This can make the search explore deeply into the branch-and-

bound tree before finding an integer solution for the 0-1 knapsack problem. Thus, the

introduction of capacity significantly increases the computational complexity. Empirical

experiments also demonstrated that substantial computational resources were needed for

solving the CMCLP optimally.

The final limitation is the use of capacities can result in undesirable allocation re-

sponse. A demand could be denied service even if it is within the service coverage

standard from a sited facility. The withholding of service will happen if no workload

capacity is available from a sited facility that can suitably serve the demand. However,

it could be problematic in practice to restrict people from service when they are spatially

close to a service provider. Another possible allocation response is that a demand may be

dispatched to a further away facility when allocation to a closer sited facility violates the

capacity limit and there is sufficient capacity to accommodate it elsewhere. Cases with

such undesirable allocation response were observed in empirical studies. Although con-

straints that ensures mandatory assignment and/or closest assignment could be imposed,

they might make the problem infeasible due to strict facility capacities.
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5.2.2 Explicit Modeling Approaches for Addressing Workload

Balancing

The second major contribution is the proposal of explicit modeling approaches that better

address workload balancing in coverage problems. Five workload variation measures that

are analytically tractable were formulated and compared mathematically. Denote Wj as

the workload of facility j, W̄ the average workload of sited facilities. It is found that the

total pairwise absolute workload difference Σj∈J∗Σj′∈J∗|Wj −Wj′ | can be expanded as

Σj∈J∗(|ΣiaiYij−ΣiaiYij1 |+ |ΣiaiYij−ΣiaiYij2|+ · · ·+ |ΣiaiYij−ΣiaiYij|+ · · ·+ |ΣiaiYij−

ΣiaiYijp |) which tracks the workload variation most explicitly among the five measured

studied. The total mean absolute workload deviation Σj∈J∗ |Wj−W̄ | can be re-written as

1
p
Σj∈J∗|(ΣiaiYij−ΣiaiYij1)+(ΣiaiYij−ΣiaiYij2)+· · ·+(ΣiaiYij−ΣiaiYij)+· · ·+(ΣiaiYij−

ΣiaiYijp)|. Thus, the total mean absolute workload variation overlooks the inherent work-

load difference and can be regarded as an approximation to the total pairwise measure.

In addition, the total mean absolute workload deviation is no greater than the total pair-

wise absolute workload difference divided by p according to the triangle inequality. They

are equivalent only when p = 2 or workloads of sited facilities are all equal. The third

measure, maximum mean absolute deviation maxj∈J∗ |Wj − W̄ |, is a portion of the to-

tal mean absolute deviation, thus, also an approximated approach. The workload range

maxj∈J∗Wj − minj∈J∗Wj can be re-written as maxj∈J∗ maxj′∈J∗{|ΣiaiYij − ΣiaiYij′ |},

comparing pairwise workload difference but only tracking the maximum difference. So
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the workload range is a simplified way compared to the total pairwise measure as well as

the maximum workload maxj∈J∗Wj.

With each workload variation measure, the dissertation proposed a bi-objective opti-

mization model that maximizes the total coverage and minimizes the workload variation.

Take the WBMCLP-TotPairDiff as an example. Denote Djj′ the absolute workload dif-

ference between any two potentially sited facilities j and j
′
. An additional objective

and two sets of constraints were added to the MCLP. The second objective is to min-

imize the total pairwise absolute workload difference, ΣjΣj′>jDjj′ . Added constraints

are ΣiaiYij − ΣiaiYij′ −M(1 − Xj′ ) ≤ Djj′ and ΣiaiYij′ − ΣiaiYij −M(1 − Xj) ≤ Djj′

for all facilities j and j
′
> j where M is a very large positive number. These con-

straints result in Djj′ ≥ |ΣiaiYij − ΣiaiYij′ | for pairs of sited facilities and Djj′ ≥ 0

for other paired outcomes, hence only tracking pairwise absolute workload difference be-

tween sited facilities. Similarly, other four workload balancing models were formulated.

In addition, constraints were also formulated to avoid the potential withholding service.

Consider an additional decision variable, Ci, will be 1 if demand i is within the service

coverage standard of a sited facility and 0 otherwise. Forcing assignment constraints are

Σj∈Ni
Xj ≤ pCi and Ci ≤ Σj∈Ni

Yij for all demand i. Also, three quantitative evaluation

measures, completeness, inferiority and maximum gap, and an evaluation procedure were

proposed to compare bi-objective problems in different objective spaces. Compared to

traditional capacitated methods, the proposed modeling approaches have three advan-

tages: a) more explicitly balance workloads; b) provide a complete trade-off between
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coverage and workload balancing objectives, to better assist the decision making process;

and c) can avoid withholding service allocation response.

5.2.3 Efficient Heuristic Solution Method

The third major contribution is an efficient heuristic solution method for workload bal-

ancing in coverage problems, making the new approach applicable in practice. The

heuristic algorithm is comprised of three major components: initialization, subproblem

delineation and local search. A hybrid initialization procedure was proposed to gener-

ate good quality starting solutions. Different from a random initialization, this hybrid

method produces solutions that relatively uniformly cover the objective space and in-

cludes solutions with extreme objective values. This is particularly important for solving

multi-objective problems because the ultimate goal is to derive the complete Pareto opti-

mal front. The algorithm relaxes the workload balancing model and solves the resulting

MCLP for solutions with large demand coverage; and seeks for relatively balanced facility

configurations by a spatial search for solutions with small workload variation. Empirical

evaluation has shown that the hybrid initialization outperformed the random method.

The heuristic method splits the problem into a group of single-objective problems by

using the constraint method. Then for each subproblem, facility locations are updated

by one-to-one facility substitution and demand allocation is achieved using a simulated

annealing procedure. The simulated annealing based allocation procedure was designed

because the WBMCLP-TotPairDiff proved to be NP -hard. Specifically, a PARTITION
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problem that is known as NP -hard can be reduced to the WBMCLP-TotPairDiff when

sited facilities are known. A key component in the simulated annealing approach is the

neighbor solution search. This dissertation proposed a way that combines two types of

demand re-allocation: single demand re-allocation and one-to-one exchange. The first

one re-allocates a demand to another suitable sited facility, which is very flexible but may

increase workload variation for a relatively balanced solution. The one-to-one allocation

exchange, on the other hand, searches for two suitable pairs of facility-demand and swaps

the allocation, which is more likely to generate a more balanced solution. Both are done

by a spatial search to ensure the service coverage standard is not violated. The designed

simulated annealing demand allocation uses a 50/50 combination of them, which has been

shown more effective than the use of a single re-allocation approach or other combinations.

The strength of the designed allocation method over a greedy approach and the exact

solver was supported by evaluation results. Finally, through four empirical studies with

real-world data, the proposed heuristic algorithm proved capable of deriving good quality

solutions for small and medium size problems in a more efficient way; and identifying

solutions for larger problem instances for which the exact solver was not successful.

5.3 Future Work

Four limitations and opportunities for future research are summarized as follows.
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First, this research studied and evaluated five equity measures including the total

pairwise absolute workload difference, the total mean absolute workload deviation, the

maximum mean absolute workload deviation, the workload range and the maximum

workload, and finally used the model with the total pairwise workload difference. These

five measures are selected because they were frequently considered in location modeling

literature and they are analytically tractable. And the model with the total pairwise

measure was found to be the most explicit one balancing workloads. However, neither

scale invariance nor the principle of transfers is satisfied in the total pairwise measure

(Erkut, 1993; Eiselt and Laporte, 1995), thus may limit the usefulness of this measure.

One potential future work direction is to structure alternative measures that are more

complex in the modeling. This would require further evaluation as well, particularly with

respect to empirical performance.

Second, this research considers only single source problems where allocation decision

variables are binary, and fractional assignment is not allowed. The underlying assump-

tion is that a demand unit can only be connected to one sited facility and this is suitable

in many application contexts, such as postal delivery service, school districting, customer

allocation in telecommunication, and others. However, there could be cases that a de-

mand can be allocated to more than one sited facility and single source problems would

not be appropriate. Also, the non-single source problem is generally less difficult to solve

compare to the single source problem, because allocation decision variables are allowed to

be continuous. It is also expected that there is more room to balance facility workloads
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when fractional assignment is permitted. Therefore, one potential direction for the future

work is to study the workload balancing maximal covering model that allows fractional

assignment.

Third, an assumption here is no more than one facility is allowed to be sited at a

location. Think about a case: there are two potential facilities A and B, A is located

in an area with a large amount of demand within its service standard while B has few

demand within its coverage. In this case, we should not expect or make the workload

of these two facilities the same, because A can be a good candidate of a “super” service

provider (e.g., a supermarket) that has larger capacity and can serve more demand. One

way to incorporate this is to extend the workload balancing model by allowing multiple

units a location, that is co-location. Co-location allows the facility workload to expand

in area with large demand amount and reflects planning strategies in practice (Gerrard,

1995). If co-location is allowed, then the equity measure should be re-designed to reflect

the workload variation appropriately, decision variables and some constraints need to be

updated too. Also, it is expected that the model with co-location will be computationally

harder to solve compared to the proposed model in this work, and efficient solution

approaches may need to be developed.

Last, other efficient solution approaches could be explored for the proposed workload

balancing MCLP. This dissertation designed a heuristic that delineates the bi-objective

problem into a set of single-objective subproblems using the constraint method, then

updates facility siting by one-to-one facility substitution and allocates demand by a
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Chapter 5. Conclusions

simulated annealing approach. Heuristics, such as genetic algorithm, have been found to

be suitable for solving multi-objective problems, and therefore may prove valuable. As

for the demand allocation, other heuristics, such as tabu search, GRASP, etc., may offer

improved performance.
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