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ABSTRACT
Background: Metabolic and transcriptomic differences between
visceral adipose tissue (VAT) and subcutaneous adipose tissue
(SAT) compartments, particularly in the context of obesity, may
play a role in colorectal carcinogenesis. We investigated the differ-
ential functions of their metabolic compositions.
Objectives: Biochemical differences between adipose tissues (VAT
compared with SAT) in patients with colorectal carcinoma (CRC)
were investigated by using mass spectrometry metabolomics and
gene expression profiling. Metabolite compositions were compared
between VAT, SAT, and serum metabolites. The relation between
patients’ tumor stage and metabolic profiles was assessed.
Design: Presurgery blood and paired VAT and SAT samples during
tumor surgery were obtained from 59 CRC patients (tumor stages
I–IV) of the ColoCare cohort. Gas chromatography time-of-flight
mass spectrometry and liquid chromatography quadrupole time-
of-flight mass spectrometry were used to measure 1065 metabolites
in adipose tissue (333 identified compounds) and 1810 metabolites
in serum (467 identified compounds). Adipose tissue gene expres-
sion was measured by using Illumina’s HumanHT-12 Expression
BeadChips.
Results: Compared with SAT, VAT displayed elevated markers of
inflammatory lipid metabolism, free arachidonic acid, phospholi-
pases (PLA2G10), and prostaglandin synthesis–related enzymes
(PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT
than in SAT, which was supported by lower gene expression of
FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT.
Serum sphingomyelin concentrations were inversely correlated
(P = 0.0001) with SAT adipose triglycerides. Logistic regression
identified lipids in patients’ adipose tissues, which were associated
with CRC tumor stage.
Conclusions: As one of the first studies, we comprehensively as-
sessed differences in metabolic, lipidomic, and transcriptomic pro-
files between paired human VAT and SAT and their association with
CRC tumor stage. We identified markers of inflammation in VAT,
which supports prior evidence regarding the role of visceral adipos-
ity and cancer. This trial was registered at clinicaltrials.gov as
NCT02328677. Am J Clin Nutr 2015;102:433–43.

Keywords: colorectal cancer, obesity, adipose tissue, visceral ad-
iposity, metabolomics, inflammation

INTRODUCTION

Obesity, a condition present in w30% of colorectal cancer
(CRC)12 patients, has received increasing attention as a prog-
nostic factor with some but not all studies, suggesting worse
clinical outcomes associated with excess body weight (1). In
addition to energy storage, adipose tissue also acts as a secretory
organ involved in the regulation of hormonal and inflammatory
pathways (2, 3). Moreover, distinct adipose compartments, vis-
ceral adipose tissue (VAT) and subcutaneous adipose tissue
(SAT), display differences in anatomic, cellular, and molecular
compositions, which may be dependent on the degree of adi-
posity (4, 5). Unlike SAT, higher concentrations of VAT have
been shown to be strongly associated with metabolic dysfunc-
tion and related diseases (5, 6).
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Although evidence linking obesity and CRC is increasing, the
underlying biological mechanisms are still unclear. The colon,
which is surrounded by mesenteric visceral body fat, has a direct
physical and vascular interface with VAT. Given the colon’s in-
timate connection and proximity to visceral fat, we hypothesize
that VAT-produced metabolites may have a direct influence on
obesity-associated CRC aggressiveness and progression.

Metabolomics has been widely used to characterize biological
markers for CRC diagnosis and prognosis and constitutes a
powerful tool to probe the biochemistry underlying cancer eti-
ology (7–9). However, previous metabolomic studies of CRC
have been mostly limited to the analysis of urine or serum (10).

To date, no study has generated a comprehensive evaluation of
the lipidome, metabolome, and transcriptome of human VAT and
SAT. In addition, to our knowledge, the impact of compositional
differences between adipose tissue compartments on patients’
serum metabolic profiles and the relation with cancer stage have
never been assessed. The current investigation is one of the first of
its kind with regard to the breadth of metabolomic coverage and
VAT and SAT profiling to investigate their molecular differences,
which may relate to carcinogenesis or prognosis in CRC (11).

METHODS

Study population

This study used specimens from ColoCare—a multicenter, in-
ternational prospective cohort, recruiting newly diagnosed CRC
patients before surgery with the goal to investigate predictors of
cancer recurrence, survival, treatment toxicities, and health-related
quality of life. Patients (eligibility: newly diagnosed, age 18–80 y,
stages I–IV, German speaking, and able to provide informed
consent) from the ColoCare Heidelberg cohort were included in
this study, recruited between September 2011 and September 2013
at the National Center for Tumor Diseases, Heidelberg, Germany.
Patients were staged according to the American Joint Committee
on Cancer system based on histopathologic findings. Both colon
carcinoma (International Classification of Diseases C18) and rectal
or rectosigmoidal cancer patients (International Classification of
Diseases C19 or C20) were included. A detailed description of
the sample availability and study population is given in Table 1.
ColoCare has been approved by the ethics committee of the
medical faculty at the University of Heidelberg. All study partic-
ipants provided written informed consent.

Biospecimen collection

Adipose tissue samples (VATand SAT) from 59 patients (CRC
tumor stages I–IV) were obtained during surgery for primary
tumor resection. Samples were snap frozen in liquid nitrogen
within 45 min and stored at2808C until further processing. VAT
was processed at the tissue bank of the National Center for
Tumor Diseases in accordance with the regulations of the tissue
bank. VATwas subsequently cut into serial 10-mm aliquots with
a total weight ofw100 mg on a cooled (225 to2208C) cryostat
(Leica Microsystems), and a representative section was hema-
toxylin and eosin stained for histopathologic assessment. SAT
was manually cut into aliquots within the gas phase of liquid
nitrogen. In addition, paired serum samples were collected.
Blood was primarily taken 1 d before surgery (n = 48) and, if not

possible, intraoperatively (n = 11). Blood samples were pro-
cessed within 4 h and stored at 2808C until further processing.

Metabolic profiling

For metabolic profiling, all samples were shipped on dry ice
to the NIH West Coast Metabolomics Center, University of
California, Davis. For gas chromatography time-of-flight (GC-TOF)
mass spectrometry (MS) analysis, samples were randomized
before analytic analysis by using the Laboratory Information
Management System, MiniX (12). For liquid chromatography
quadrupole time-of-flight (qTOF) MS analysis, adipose tissue
(VAT and SAT) was run as randomized matched patient pairs.
Randomization was not blocked for stage, but all samples were
analyzed in one batch irrespective of the analytic platform.

Serum and adipose tissue sample preparation

For GC-TOFMS analysis, serum aliquots (30 mL) and adipose
tissue (15 mg) were extracted and derivatized as previously
described (13). For analysis by ultra-high-performance liquid
chromatography-qTOF, 20 mL serum or 5 mg adipose tissue was
extracted by using a modified liquid-liquid phase extraction
approach by Matyash et al. (14). See Supplemental Methods
for detailed sample preparation protocols.

GC-TOF MS data acquisition and processing

A Gerstel MPS2 automatic liner exchange system was used
to eliminate sample cross-contamination during the GC-TOF MS
analysis. Sample (0.5 mL) was injected at 508C (ramped to 2508C)
in splitless mode with a 25-s splitless time. Chromatographic sep-
aration was achieved by using an Agilent 7890A gas chromatograph
with an Rtx5Sil-MS column (30 m, 0.25 mm inner diameter,
0.25 mm 5% diphenyl film), including an additional 10-m integrated
guard column (Restek) (15–17). Chromatographic and mass spec-
trometric conditions are provided in the Supplemental Methods.

Spectra were processed by using the BinBase database (12, 18).
Briefly, output results were filtered based on multiple parameters to
exclude noisy or inconsistent peaks (17). All entries in BinBase
were matched against the Fiehn mass spectral library of 1200
authentic metabolite spectra by using retention index and mass
spectrum information or the National Institute of Standard and
Technology 11 library. Metabolites were reported if present in at
least 50% of all samples within each group to ensure exclusion of
low confidence or background species (19). Data reported as
quantitative ion peak heights were normalized by the sum intensity
of all annotated metabolites and tissue weight (mg) and used for
further statistical analysis.

All samples were analyzed in one batch, throughout which data
quality and instrument performancewere monitored by using quality
control and reference plasma samples (National Institute of Standard
and Technology). Quality controls, composed of a mixture of stan-
dards analyzed every 10 samples, were monitored for changes in the
ratio of analyte peak heights and used to ensure equivalent in-
strumental conditions over the duration of the data acquisition (13).

Liquid chromatography qTOF MS data acquisition and
processing

Lipid extracts were analyzed on an Agilent 1290A Infinity
Ultra High Performance Liquid Chromatography system coupled
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to an Agilent Accurate Mass-6530-qTOF in both positive and
negative modes. Chromatographic and mass spectrometric con-
ditions can be found in the Supplemental Methods. For adi-
pose tissue, 2 injections with different dilution factors were used:
1) nondiluted extracts were injected at a volume of 5 mL for
electrospray ionization (+/2), and MS acquisition was captured
during the first 8.5 min, before the elution of triglycerides, and
2) 67.5-fold diluted extracts were injected at a volume of 1 mL
to capture mass spectrometric data for triglycerides. Our
optimized method for adipose tissue lipidomics enabled us
to additionally capture more polar compounds, such as glyc-
erophospholipids (phosphatidylcholines, phosphatidylethanol-
amines, plasmalogens), sphingomyelins, and ceramides (see
Supplemental Figure 1). Raw data were processed by using
MZmine 2.10 (20), and lipid identification was based on an
accurate mass and retention time matching by using internal
library databases. In addition, for equivocal identities (i.e., dif-
ferent possible isomers/fatty acid side chains), tandem MS data
were used to determine the structural identity. Metabolites that
were positively detected at very high mass spectral confidence in
at least 5 samples (equal to half the sample size of the smallest
stage group) were reported. Data, reported as peak heights for
the quantification ion (m/z) at the specific retention time for each
annotated and unknown compound, was normalized to tissue
weight (mg) and class-specific internal standard (annotated) or
to the internal standard that had the closest retention time (un-
knowns). Data quality and instrument performance were moni-
tored throughout the data acquisition by using quality controls
and pooled reference samples.

Microscopic image analysis

Images of hematoxylin and eosin–stained cryosections of VAT
were analyzed by using the Keyence BZ-II analyzer software to
measure the mean area (mm2) of adipocytes in the microscopic
image within each section. Area measurements were conducted
blinded and independently by 2 different persons to ensure validity.

Gene expression analysis

Adipose tissue sample preparation

For gene expression analysis, whole RNAwas extracted from
VATand SATaccording to the manufacturer’s protocol by using

AllPrep DNA/RNA/miRNA Universal Kit (Qiagen). Briefly,
ceramic beads were added to fresh-frozen adipose tissue,
stored at –808C, and tissue samples were homogenized by
using a Precellys 24 Tissue Lyser (Peqlab). Genomic DNAwas
separated by binding to DNA spin columns, and flow-through
was subsequently used for RNA extraction. Proteins were di-
gested with Proteinase K and removed by chloroform extrac-
tion. Remaining DNA was digested by adding DNase I. Pure
whole RNA was then obtained by using RNA spin columns.
RNA concentration was quantified by using the Epoch Mi-
croplate Spectrophotometer (BioTek), and quality was assessed
on a Bioanalyzer 2100 (Agilent Technologies). RNA samples
that were further analyzed had an RNA integrity number be-
tween 6.3 and 9.6.

Gene expression profiling and data processing

Gene expression profiling was performed at the Genomic and
Proteomics Core Facilities, German Cancer Research Center,
Heidelberg, Germany (21). A total of 200 ng RNAwas analyzed
by using HumanHT-12 Expression BeadChips (Illumina) ac-
cording to the manufacturer’s instructions. Samples were run in
chronological order in which patients received tumor surgery.
Paired samples from the same patient (SAT/VAT) were pro-
cessed in the same batch for most (30/52) samples. Raw data
were transformed by using variance-stabilizing transformation
and normalized with robust spline normalization. Possible batch
effects were adjusted with ComBat (22). All preprocessing steps
were carried out in the statistical software R 3.1.0 (www.
r-project.org) with the lumi and sva packages (23, 24).

Statistical analysis

Metabolic profiling

Preprocessed data matrices were subject to statistical analyses.
We used nonparametrical methods for analyses, because of a de-
viation from normality for most metabolites. For adipose tissue
samples, we compared both a data set that had been normalized only
to the respective tissueweight and one that was further normalized to
the sum of all metabolite abundances present in the respective
chromatogram to get insight into relative concentration ratios within
each tissue. Furthermore, data sets were log transformed and
autoscaled (25) before statistical analyses.

TABLE 1

Characteristics of the study population (stage I–IV colorectal cancer patients)

Stage I Stage II Stage III Stage IV Total

Patients, n (%) 9 (15) 23 (39) 16 (27) 11 (19) 59 (100)

Sex, n (%)

Male 7 (16) 16 (37) 14 (33) 6 (14) 43 (73)

Female 2 (12.5) 7 (44) 2 (12.5) 5 (31) 16 (27)

Age, y 62.0 6 8.41 65.7 6 12.9 61.6 6 16.7 59.6 6 14.7 62.9 6 13.7

BMI, kg/m2 27.7 6 3.3 28.1 6 4.7 27.5 6 4.3 24.1 6 3.7 27.1 6 4.4

Tumor site, n (%)

Colon 2 (8) 14 (54) 5 (19) 5 (19) 26 (44)

Rectum 7 (21) 9 (27) 11 (34) 6 (18) 33 (56)

Data availability, n (%)

Metabolomics 9 (15) 23 (39) 16 (27) 11 (19) 59 (100)

Transcriptomics 8 (15) 20 (38) 14 (27) 10 (19) 52 (88)

1Mean 6 SD (all such values).
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Univariate analysis

Paired Wilcoxon signed rank tests were used to compare me-
tabolites in VATwith those in SAT of the same patient. Wilcoxon
tests were carried out in the freely available softwareMetaboanalyst
2.0 (26). To test for associations of metabolites in VATor SATwith
patients’ tumor stage, we further grouped patients with stages I–II
as “early” and III–IV as “late,” and we built a logistic regression
model in the statistical software R 3.1.0 that accounted for age,
sex, BMI, and tumor location as covariates. Metabolites that were
associated with stage of disease were further tested for a positive
trend with increasing stage (I, II, III, IV) by using Kendall’s t rank
correlation with P values based on 1000-fold permutation of the
stage variable. Spearman rank correlation analyses were carried
out between serum and adipose tissue metabolites to assess pos-
sible serum metabolites for their use as surrogate markers for
adipose tissue biochemistry. Finally, in case of multiple testing,
raw P values were adjusted by using the Benjamini-Hochberg
false discovery rate (FDR) (27). Raw P values will be reported as
“P” in the tables and throughout the text, whereas FDR-corrected
P values will be reported as “FDR” hereafter.

Multivariate analysis

A partial least squares discriminant analysis (PLS-DA) model
for the comparison of metabolites in VATand SATwas calculated
in Metaboanalyst 2.0. To test for possible overfitting, 10-fold
cross-validation was applied within the build-in PLS-DA toolbox
of Metaboanalyst 2.0. The robustness of the class separation was
assessed by permutation testing (2000-fold permutation of the
group label). PLS-DA model variable importance in projection
(VIP) values were calculated and used to identify importantly
altered metabolites during biochemical network analysis (see
Network visualization section below).

Network visualization

Network mapping (28) was used to interpret statistical and
multivariate results within a biological context. A biochemical
and chemical similarity network was constructed between all
measured and annotated metabolites. MetaMapR (https://github.
com/dgrapov/MetaMapR) was used to identify metabolic pre-
cursors to product relations based on Kyoto Encyclopedia of
Genes and Genomes identifiers (29). PubChem chemical iden-
tifiers (https://pubchem.ncbi.nlm.nih.gov/) were used to calculate
structural similarities. Molecular fingerprints were compared and
a threshold for structural similarity was defined at a Tanimoto
coefficient .0.7. Lipid species with ambiguous structural or
biochemical information were connected based on the similarity
in the complex lipid class (triglyceride, diacylglyceride, phos-
phoglycerolipid, sphingomyelin/ceramide). Network node prop-
erties, representing metabolites, were defined based on statistical
and multivariate modeling results.

Integrating gene expression data

For the integration of gene expression data, we used our
metabolomics data set to target the transcriptomic analyses. Genes
encoding for enzymes of metabolic pathways covered with our
metabolic profiling approach were extracted by using KEGG (29)
(see Supplemental Table 1 for a subset of genes). Paired
Wilcoxon signed rank tests were used to compare gene expression
patterns in VATwith those in SAT of the same patient. We carried

out pathway enrichment analyses for both the metabolomic and
the transcriptomic data set. For metabolite data, a metabolite set
enrichment analysis was carried out in Metaboanalyst 2.0 by
using the standard pathway-associated metabolite set. For the
gene expression data set, we carried out significance analysis of
functional categories in gene expression analysis (30) by using the
R-package “safe” (31) and gene sets from the REACTOME data-
base (32). To illustrate the direct agreement between the metab-
olomic and transcriptomic data sets, we calculated Spearman rank
correlations between gene expression and metabolite concentra-
tions for every gene in both SAT and VAT. The most important
and consistently observed correlations in both tissues can be
found in Supplemental Table 2.

RESULTS

Metabolomics

Metabolite coverage

Metabolomic measurements of primary metabolites and com-
plex lipids in paired biospecimens (VAT, SAT, and serum) from
59 CRC patients were carried out by using a combination of
GC-TOF MS and liquid chromatography qTOF MS platforms. A
total of 1810 metabolites were detected in serum; 467 of those
could be annotated. Similarly, 1065 metabolites were detected in
adipose tissues, and 333 of those were annotated.

Metabolic differences between VAT and SAT

Independent of the metabolomic data normalization method
used, there were marked differences in the metabolomic profiles
between VAT and SAT. Metabolomic network analysis and
mapping (Figure 1) were used to visualize global differences
between the 2 adipose compartments. Statistical and multivari-
ate results for all metabolites with PLS-DA model VIP .1.5 are
summarized in Table 2. Our PLS-DA model did not show any
signs of possible overfitting, as indicated by cross-validation.
Moreover, none of the permuted models performed better than
the original model in separating classes.

Differences in primary metabolism and free fatty acids

Compared with SAT, VAT displayed higher abundances of most
measured amino acids, nucleosides, and carbohydrate metabolites
(Figure 1, left). Only select sugars and sugar alcohols (glucose,
fucose, mannose, and galactitol; all FDR,0.05) showedmarginally
lower abundances in VAT compared with SAT (Figure 1). With the
exception of arachidonic acid, most free fatty acids were lower
in VAT. Interestingly, arachidonic acid was consistently elevated
(FDR = 7.3 3 1027) in VAT compared with SAT among 52 of 59
paired comparisons (Figure 1). The difference in arachidonic acid
between VAT and SAT also constituted one of the most important
multivariate discriminant metabolites (PLS-DA VIP . 2.5) be-
tween these 2 adipose depots.

Differences in complex lipid metabolism

Numerous complex lipids were altered between the 2 adipose
compartments. In particular, all measured ceramides were ele-
vated in VAT compared with SAT (all FDR ,0.01). In contrast
to ceramides, most sphingomyelin lipids were lower in VAT
(Figure 1, bottom).
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Higher molecular weight triglycerides, with a mean of 56
carbons and 4 double bonds, were elevated in VAT compared with
SAT, whereas lower molecular weight triglycerides with fewer
double bonds (51 carbons, 3 double bonds) remained unchanged
between the 2 compartments (Figure 1, top right).

VATand SAT showed distinct differences in glycerophospholipids
(Figure 1, bottom right). Most phosphatidylcholines and phospha-
tidylethanolamines were higher in VAT than in SAT. Lysoglycer-
ophospholipids (containing one fatty acid, lysophosphatidylcholines,
and lysophosphatidylethanolamine) were also markedly higher in
VAT. In particular, a stearic acid containing lysophosphatidyletha-
nolamine (18:0) was among the most important metabolites
discriminating VAT from SAT (top 5% based on VIP values in
the PLS-DA). In contrast, plasmenyl-phospholipids and select
phosphatidylethanolamines with higher degrees of unsaturation

and specifically those containing arachidonic acid [i.e., Figure 1:
phosphatidylcholine (P-16:0/20:4); FDR = 6.8 3 1028] were
reduced in VAT compared with SAT.

Correlations between serum and adipose tissue metabolites

Sampling adipose tissue (especially VAT) is an invasive
procedure. We therefore probed empirical associations between
the easily accessible serum metabolites and adipose tissue me-
tabolites. In general, serum metabolites showed a low degree of
correlation with their SATandVAT localized counterparts. This is
not unexpected given that serum metabolite compositions con-
stitute the sum integrated pool of metabolites from all organismal
tissues and exogenous sources. Although the correlation bet-
ween total adipose tissue and serum triglycerides was low (see
Supplemental Figure 2, top), we did observe moderate correlations

FIGURE 1 Biochemical and structural similarity network displaying metabolic differences between SAT and VAT. Network nodes representing metabolites
(shape displaying the biochemical domain) are connected based on biochemical (precursor to product, blue lines) or structural similarity (Tanimoto . 0.07, gray
lines) or complex lipid class–specific relations (gray lines). The direction of the metabolic differences in VAT relative to SAT tissue (green, lower in VAT; red,
higher in VAT, gray; inconclusive or FDR-adjusted P $ 0.05) is defined based on the number of matched samples ($30) displaying the trend. The multivariate
importance of the metabolomic differences for discriminating between VAT and SAT tissues is displayed based on the color brightness, which encodes the quartile
for the partial least squares discriminant analysis VIP, with thick black borders displaying species with the top 5% VIP values. Node size is proportional to the
number of higher/lower pairs (30 times out of 59 pairs lower/higher = small size, 59 times or 0 times higher/lower = big size). Cer, ceramide; DG, diacylglycerol;
FDR, false discovery rate; MG, monoacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SAT, subcutaneous adipose tissue; SM, sphingo-
myelin; TG, triacylglycerol; VAT, visceral adipose tissue; VIP, variable importance in projection.
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(Spearman r = 0.25–0.35) between selected serum and SAT
triglycerides. We expanded correlation analyses between dif-
ferent lipid species in adipose tissue and serum. Surprisingly, we

identified statistically significant inverse correlations between
total serum sphingomyelins and SAT triglycerides (FDR =
0.0001; see Supplemental Table 3 for a list of metabolites).

TABLE 2

Summary of the most significantly different metabolites between SAT and VAT based on a PLS VIP value (component 1) .1.5 and an FDR ,0.051

Metabolite ID Match

N[ in

VAT2
HMDB

ID SAT3 VAT3 FC4 P5 FDR6
PLS

VIP7

Plasmenyl-PC (34:2) PC [P-16:0/18:2(9Z,12Z)] 7 11211 4756 6 1735 2770 6 1020 0.6 8.7 3 10–11 3.0 3 10–9 2.11

Cer (d38:1) Ceramide (d18:1/20:0) 54 04951 4591 6 1222 6144 6 1638 1.3 1.6 3 10–10 3.0 3 10–9 1.51

Ceramide (d40:1) Ceramide (d18:1/22:0) 57 04952 18,309 6 5953 26,036 6 6520 1.4 1.1 3 10–10 9.8 3 10–9 2.04

Lactosylceramide

(d18:1/16:0)

Lactosylceramide (d18:1/16:0)* 54 06750 10,029 6 20,705 27,756 6 35,517 2.8 5.4 3 10–10 2.5 3 10–8 2.11

DG (36:3) DG (18:0/0:0/18:3n–6) 52 56049 100,168 6 63,102 194,375 6 159,245 1.9 9.1 3 10–10 3.3 3 10–8 1.62

LPE (18:0/0:0) LPE (18:0/0:0) 53 11130 1068 6 746 6214 6 12,508 5.8 1.5 3 10–9 3.8 3 10–8 2.06

Maltose D-maltose 54 00163 1090 6 1070 4086 6 3494 3.7 5.2 3 10–10 6.0 3 10–8 3.07

Lysine L-lysine 54 00182 4550 6 2488 9049 6 5334 2.0 9.0 3 10–10 6.0 3 10–8 2.53

Plasmenyl-PC (36:4) PC [P-16:0/20:4(5Z,8Z,11Z,14Z)]* 5 11220 4793 6 2536 2250 6 993 0.5 5.5 3 10–9 6.8 3 10–8 2.16

Methionine L-methionine 54 00696 705 6 455 1747 6 1495 2.5 1.7 3 10–9 7.6 3 10–8 2.71

Ceramide (d42:2) Cer [d18:1/24:1(15Z)] 54 04953 24,660 6 9440 36,461 6 12,759 1.5 5.5 3 10–9 1.1 3 10–7 1.89

Phenylalanine L-phenylalanine 52 00159 2767 6 1441 5280 6 3018 1.9 5.8 3 10–9 1.9 3 10–7 2.49

Plasmenyl-PE (36:4) PE [P-16:0/20:4(5Z,8Z,11Z,14Z)]* 11 08937 14,258 6 4288 9951 6 2541 0.7 2.7 3 10–8 2.5 3 10–7 1.97

DG (36:2) DG (18:0/0:0/18:2n–6) 50 56048 180,426 6 94,977 304,989 6 180,447 1.7 2.2 3 10–8 3.1 3 10–7 1.69

Malic acid L-malic acid 49 00156 735 6 387 1218 6 415 1.7 2.0 3 10–8 5.4 3 10–7 2.67

5-Aminovaleric acid 5-Aminopentanoic acid 52 03355 158 6 61 525 6 549 3.3 2.8 3 10–8 5.6 3 10–7 2.77

Glutamic acid L-glutamic acid 50 00148 4729 6 2435 8936 6 5681 1.9 2.9 3 10–8 5.6 3 10–7 2.27

Aspartic acid L-aspartic acid 51 00191 2645 6 1051 5732 6 3418 2.2 4.4 3 10–8 6.5 3 10–7 2.68

Histidine L-histidine 50 00177 878 6 516 1655 6 1093 1.9 4.4 3 10–8 6.5 3 10–7 2.19

Arachidonic acid Arachidonic acid 52 01043 937 6 350 3645 6 4651 3.9 5.5 3 10–8 7.3 3 10–7 2.70

Oxoproline Pyroglutamic acid 48 00267 32,556 6 17,603 58,826 6 41,557 1.8 6.3 3 10–8 7.6 3 10–7 2.12

PC (p-38:5) or

PC (o-38:6)

PC [P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)]* 12 11255 38,326 6 20,286 22,824 6 11,941 0.6 6.6 3 10–8 8.2 3 10–7 1.68

Threonine L-threonine 48 00167 3351 6 1485 5286 6 2299 1.6 9.8 3 10–8 1.1 3 10–6 2.32

Plasmenyl-PE (38:5) PE [P-18:0/20:5(5Z,8Z,11Z,14Z,17Z)] 12 11387 5915 6 2210 4226 6 1368 0.7 1.8 3 10–7 1.1 3 10–6 1.66

Serine L-serine 47 00187 7826 6 3021 12,071 6 4843 1.5 1.2 3 10–7 1.2 3 10–6 2.27

Ribose D-ribose 49 00283 253 6 115 485 6 272 1.9 1.4 3 10–7 1.3 3 10–6 2.55

PC (p-36:4) or

PC (o-36:5)

PC [P-16:0/20:4(5Z,8Z,11Z,14Z)]* 8 11220 186,360 6 78,351 116,539 6 61,169 0.6 1.3 3 10–7 1.4 3 10–6 1.69

Plasmenyl-PC (36:3) PC [P-18:0/18:3(6Z,9Z,12Z)] 9 11245 10,371 6 6471 6516 6 3355 0.6 2.8 3 10–7 2.7 3 10–6 1.51

Leucine L-leucine 49 00687 11,005 6 6258 18,898 6 11,843 1.7 4.7 3 10–7 4.2 3 10–6 2.00

Alanine L-alanine 49 00161 31,118 6 13,343 46,593 6 17,858 1.5 6.1 3 10–7 5.0 3 10–6 2.17

Ornithine Ornithine 47 00214 2523 6 939 3863 6 1999 1.5 8.7 3 10–7 6.8 3 10–6 2.02

LPC (18:0) LPC (18:0) 47 10384 8691 6 6947 37,476 6 130,402 4.3 9.1 3 10–7 7.0 3 10–6 1.55

Glyceric acid Glyceric acid 48 00139 521 6 202 835 6 423 1.6 1.2 3 10–6 8.9 3 10–6 2.20

SM (d18:1/16:1) SM (d18:1/16:1) 12 NA 47,232 6 18,983 33,286 6 17,280 0.7 1.3 3 10–6 9.1 3 10–6 1.55

LPC (16:0) LPC (16:0) 45 10382 17,484 6 16,639 86,936 6 323,719 5.0 2.6 3 10–6 1.7 3 10–5 1.52

Tyrosine L-tyrosine 44 00158 4529 6 2225 7167 6 3889 1.6 2.9 3 10–6 2.0 3 10–5 1.86

Isoleucine L-isoleucine 46 00172 6127 6 2821 9148 6 4938 1.5 4.7 3 10–6 3.2 3 10–5 1.81

Proline L-proline 46 00162 7410 6 4602 11,255 6 6499 1.5 9.3 3 10–6 5.9 3 10–5 1.81

Uracil Uracil 47 00300 419 6 237 700 6 457 1.7 1.1 3 10–5 6.5 3 10–5 1.91

Valine L-valine 44 00883 14,113 6 7790 19,454 6 10,157 1.4 4.4 3 10–5 2.6 3 10–4 1.56

Maltotriose Maltotriose 41 01262 195 6 109 330 6 224 1.7 3.6 3 10–4 0.002 1.55

Fumaric acid Fumaric acid 42 00134 636 6 265 836 6 352 1.3 0.001 0.002 1.66

Xanthine Xanthine 41 00292 222 6 87 306 6 142 1.4 0.001 0.004 1.74

1Match in the HMDB: for complex lipid species, matches are putative, based on the population in the HMDB. Fatty acid side chains were confirmed by

using tandem mass spectrometry for matches indicated by asterisks (*). DG, diacylglycerol; FC, fold change; FDR, false discovery rate; HMDB, human

metabolome database; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PLS,

partial least squares; SAT, subcutaneous adipose tissue; SM, sphingomyelin; VAT, visceral adipose tissue; VIP, variable importance in projection.
2Number of elevated pairs in VAT. Example: the metabolite was higher in VAT in 49 of 59 matched pairs for N[= 49.
3Values are means 6 SDs of the raw mass spectrometric intensities, normalized to the total metabolic intensity signal.
4Positive values indicate higher abundances in VAT; negative values indicate higher abundances in SAT.
5Raw P value from matched Wilcoxon rank sum tests.
6FDR-corrected P value.
7VIP value of the first principal component in a PLS discriminant analysis.
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This correlation was not observed between VAT triglycerides and
serum sphingomyelins (see also Supplemental Figure 2, bottom).

Adipose tissue metabolites associated with CRC tumor stage

Logistic regression was used to test for differences in me-
tabolite concentrations in VATor SAT between early (stages I–II)
and late (stages III–IV) CRC tumors with adjustment for tumor
location and patients’ age, sex, and BMI. None of the tested
metabolites remained significant after multiple test correction.
However, some lipids showed moderate trends with CRC tumor
stage, indicated by Kendall’s t correlation (see Supplemental
Table 4). Figure 2A illustrates lipids with raw P, 0.05 for both
logistic regression and Kendall’s t correlation with t . 0.25 or
t , 20.25 in VAT. These species were low abundant lipids that

were missed in data-dependent tandem MS fragmentation dur-
ing data acquisitions, rendering these compounds nonannotated.
Comparison of accurate masses and retention times to known
lipids did not yield hits with ,5 ppm mass error.

Association between age, sex, BMI, and adipose metabolic
profiles

Multiple linear regression models were used to test asso-
ciations between SAT and VAT metabolite concentrations and
patients’ age, sex, and BMI. No measured species were signif-
icantly associated with patients’ sex after adjusting for multiple
testing. Only 5 metabolites, triglycerides (58:8; 56:7, 56:8, and
58:7) and phosphatidylcholine (P-36:3), were significantly as-
sociated with patients’ age (FDR = 0.03–0.05). However, we did

FIGURE 2 Association between the adipose tissue metabolome with tumor stage and BMI. (A) Box-whisker plots for normalized peak heights of
unknown lipid species in VAT for which a trend was observed with increasing tumor stage. P values are based on Kendall’s t correlation with 1000-fold
permutation analysis of the stage variable to account for ties. Detected lipids are marked by accurate mass and chromatographic retention time. (B) Positive
association between the ratio of triglycerides/membrane lipids and patients’ BMI in both SAT (left) and VAT (right) indicating (C) increased adipocyte
diameter with increasing BMI. (D) Representative microscopic images of hematoxylin and eosin–stained cryosections of VAT from a patient with a high
triglyceride/membrane lipid ratio (left) and a low triglyceride/membrane lipid ratio (right). (E) Box-whisker plot representing the adipocyte area in those
patients with the top 5 highest triglyceride/membrane lipid ratios compared with those patients with the lowest 5 triglyceride/membrane lipid ratios; P value
derived from Wilcoxon signed rank test. SAT, subcutaneous adipose tissue; TG, triacylglycerol; VAT, visceral adipose tissue.
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observe an interesting pattern related with BMI. Concentrations
of high-molecular-weight SAT triglycerides (carbon numbers
56–58; double bonds 6–8) were positively correlated with BMI
(FDR = 0.005–0.025). In contrast, select phospholipids (phos-
phatidylcholines and one phosphatidylethanolamine) showed an
inverse correlation with BMI (see Supplemental Table 5). On
the basis of this observation, we calculated the ratio between
total triglycerides and membrane lipids [triglycerides / (phos-
phatidylcholines + phosphatidylethanolamines + plasmalogens +
sphingomyelins + ceramides)], which was positively correlated
with patients’ BMI in both SAT and VAT (see Figure 2B),
indicating that BMI was positively associated with adipocyte
cell size (see Figure 2C). Subsequently, we measured the area of
adipocytes in VAT of 10 patients based on their triglyceride/
membrane lipid ratio (top 5 compared with lowest 5) and observed
a larger adipocyte size (P = 0.06) in patients with the high ratio
(see Figure 2D and 2E and Supplemental Figure 3).

Gene expression analysis

Transcriptomic analysis was used to confirm the observations
from the metabolomic investigations. We analyzed differences in
gene expression between VAT and SAT for enzyme-encoding
genes that were part of metabolic pathways covered by our
metabolomics approach (see Supplemental Table 1). Correlations
between gene expression andmetabolite concentrations generally
indicated a positive and complementary agreement in the de-
scription of cellular biochemical processes (see Supplemental
Table 2). Positive correlations of various triglycerides with
CLYBL (citrate lyase b-like) underlined the role of citrate lyase
in lipogenesis, whereas negative correlations between the amino
acids valine, lysine, and leucine with ALDH9A1 correspond to
the role of this aldehyde dehydrogenase in the shared oxidative
pathway of these amino acids (29).

Results of pathway enrichment analyses (metabolomics compared
with transcriptomics) are given in Table 3. The fundamentally
different metabolisms of VAT compared with SAT were confirmed
by our metabolite set enrichment analysis, indicated by many
significantly overenriched pathways. In contrast, the top 10
overenriched pathways in our transcriptomic analysis did not
reach significance after FDR correction. However, the most
enriched pathway in the transcriptomic data set was the “synthesis
of prostaglandins and thromboxanes” (P = 0.004), a finding that
particularly confirmed the arachidonic acid pathway of our
metabolomics data set.

Arachidonic acid metabolism

Gene expression was elevated in VAT compared with SAT for
many arachidonic acid metabolism-related enzymes, specifically
phospholipases (PLA2G10, FDR = 1.0 3 1024), prostaglandin
synthase D (PTGDS, FDR = 1.7 3 1027), and prostaglandin
synthase 2 (PTGS2 also known as COX2, probe 1: FDR = 2.2 3
1025, probe 2: FDR = 2.7 3 1025; see also Supplemental Table
1). These findings align with our initial observation of signifi-
cantly elevated arachidonic acid in VAT. Figure 3 displays the
results of the combined transcriptomic and metabolomic analysis
for the arachidonic acid pathway. In addition to higher expression
of selected PLA2s, lower abundances of their educts were de-
tected in VAT, specifically for some phosphatidylethanolamines as
well as plasmenyl species. Notably, phosphatidylethanolamine

(38:4), putatively phosphatidylethanolamine (20:4/18:0), and ly-
sophosphatidylethanolamine (18:0) displayed an inverse educt-
product relation (see Figure 3, top).

Plasmalogen synthesis

Metabolomic analysis indicated overall lower abundances of
ether lipids (plasmalogens) in VAT compared with SAT. Consistent
with this observation, gene expression of fatty acyl reductase 1
(FAR1), the rate-limiting enzyme for ether lipid synthesis, was
significantly reduced in VAT compared with SAT (fold change =
0.85; FDR = 1.2 3 1025).

Ceramide and sphingolipid metabolism

We observed lower concentrations of selected sphingomyelins
in conjunction with higher abundances of ceramides in VAT
compared with SAT. Although these changes constituted some of
the major differences in lipids between these 2 tissues (see
Table 2), gene expression for sphingomyelinases (SMPD1–4) or
sphingomyelin synthases (SGMS1, SGMS2) was similar between
VAT and SAT.

DISCUSSION

VAT is metabolically different from SAT

Compared with SAT, VAT displayed higher abundances for
most metabolites involved in primary metabolism (e.g., amino
acids, nucleotides, carbohydrates, and organic acids; see Figure
1, left), suggesting that this adipose depot is more metabolically
active. These findings support previous evidence that has char-
acterized VAT as an active endocrine organ with complex roles
beyond energy storage. In contrast, almost all free fatty acids,
with the exception of arachidonic acid, were elevated in SAT,
indicating that SAT may be more active with regard to lipid
storage and release, the latter of which may be accelerated
during surgery (33). Adipose compartment–specific differences in
phospholipids may be related to differences in phospholipase
expression and activity, particularly PLA2, between the 2 tis-
sues. A similar case can be made for plasmalogens, the majority
of which were lower in VAT relative to SAT (see Figure 1,
bottom right). Changes in these complex lipids were directly
supported by lower expression of FAR1, the rate-limiting en-
zyme for ether-lipid synthesis (34), in VAT compared with SAT.

Plasmalogens’ biological roles and implications in health and
disease have been widely studied (35, 36). It has been speculated
that one of the primary roles of plasmalogens is for sequestration
of unsaturated fatty acids such as arachidonic acid (36) for lipid
signaling. Depleted plasmalogen abundances in VAT compared
with SAT may indicate higher phospholipase A2–dependent
lipid signaling activity in VAT. However, because of lack of
detection of lysoplasmalogens, altered de novo plasmalogen
synthesis between the 2 tissues cannot be ruled out as a possible
source of disparity for these lipids between VAT and SAT.

Patients’ BMI is a predictor of the adipose triglyceride to
membrane lipid ratio

Abundances of select SAT triglyceride and phospholipid
species were directly dependent on BMI. Specifically, the ratio
between triglycerides and membrane lipids was significantly
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correlated with BMI in both SAT and VAT. On the basis of the
volume to surface area relation in adipocytes, we propose that the
ratio between triglycerides and membrane lipids may constitute

a novel approach for estimating adipocyte cell size as supported
by microscopic image analysis (see Figure 2). Moreover, the
abovementioned lipid ratio may constitute a more sensitive

TABLE 3

Ten most significantly enriched metabolic pathways in the metabolomics/lipidomics and gene expression data sets comparing VAT with SAT1

Metabolomics Transcriptomics

Pathway P FDR Pathway P FDR

Betaine metabolism 1.0 3 10–13 5.8 3 10–12 Synthesis of prostaglandins and thromboxanes 0.004 0.623

Phospholipid synthesis 2.1 3 10–13 5.9 3 10–12 Synthesis of bile acids and bile salts via

24-hydroxycholesterol

0.025 0.623

Arachidonic acid metabolism 9.3 3 10–12 1.8 3 10–10 Chondroitin sulfate/dermatan sulfate metabolism 0.032 0.623

Methionine metabolism 1.0 3 10–10 1.5 3 10–9 Chondroitin sulfate/dermatan sulfate degradation 0.032 0.623

Lysine degradation 5.1 3 10–9 4.8 3 10–8 Hyaluronan metabolism 0.032 0.623

Biotin metabolism 5.1 3 10–9 4.8 3 10–8 Hyaluronan uptake and degradation 0.032 0.623

Pyruvate metabolism 8.1 3 10–9 6.6 3 10–8 Cellular responses to stress 0.037 0.623

Pentose phosphate pathway 4.3 3 10–8 3.0 3 10–7 Detoxification of reactive oxygen species 0.037 0.623

Histidine metabolism 4.8 3 10–8 3.1 3 10–7 Visual phototransduction 0.041 0.623

Glycerolipid metabolism 7.0 3 10–8 4.0 3 10–7 Diseases associated with visual transduction 0.041 0.623

1Pathway enrichment was based on a metabolite set enrichment analysis for metabolites and on a significance analysis of functional categories in gene

expression analysis for gene transcripts. FDR, false discovery rate; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue.

FIGURE 3 Biochemical network of arachidonic acid metabolism. Combined transcriptomic and metabolic network analysis of differences in arachidonic
acid metabolism between VAT and SAT adipose tissues. Metabolites are illustrated as circles; genes are illustrated as squares. Significant (FDR ,0.05)
members of the network are colored red or green (higher or lower in VAT, respectively). Node size is proportional to fold change. No oxylipins, prostaglandins,
or leukotrienes were measured in this study, but orange indicates a predicted alteration in abundances in VAT based on the combined measured metabolic
network. Blue indicates a group of multiple metabolites being accepted as substrate/product. FDR, false discovery rate; LPE, lysophosphatidylethanolamine;
PE, phosphatidylethanolamine; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue.
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metric than BMI alone to identify limits of adipocyte storage
capacity and to characterize obese phenotypes.

Differences in VAT lipids based on CRC tumor stage

Logistic regression adjusting for sex, age, tumor location, and
BMI was used to identify lipids in both adipose tissues associated
with CRC tumor stage, but none remained significant after FDR
correction. However, several lipids showed trends with increasing
tumor stage, based on Kendall’s t correlation (Figure 2A and
Supplemental Table 4). These lipids may constitute potential
biological markers of CRC progression that deserve further in-
vestigation. Unfortunately, these species’ low abundance pre-
vented their structure elucidation using tandem MS. Furthermore,
their abundances in serum were below the instrumental limits
of detection.

We generally observed limited correlations between adipose
tissue and serum metabolites. This suggests that blood-based
measurements of species analyzed by the current investigation
have a limited value as surrogate markers of adipose tissue
metabolism.

Integrated metabolomic and transcriptomic measurements
suggest higher inflammatory signaling in VAT compared
with SAT

Integrated analysis of SAT and VAT adipose gene expression
and small-molecule gene end products (metabolites) suggest
a greater inflammatory environment in VAT than in SAT. Ara-
chidonic acid, a precursor for eicosanoid synthesis (e.g., series 2
prostaglandins) (Figure 3), was the only significantly elevated
fatty acids in VAT compared with SAT. A recent case-control
study identified an elevation in arachidonic acid in VAT of colon
cancer patients (37). However, their analysis was limited by
transmethylation derivatization, which precludes the decoupling
of complex lipid esterified and free arachidonic acid abundances,
which is required for biochemical network interpretations.
Arachidonic acid is primarily bound in the sn-2 position of
membrane phospholipids (phosphatidylcholine, phosphatidyl-
ethanolamine, ether lipids) and is released via phospholipase A2
activity (38). We observed lower concentrations of phosphati-
dylethanolamines, phosphatidylcholines, and plasmalogens
[(phosphatidylethanolamine (38:4), phosphatidylethanolamine
(P-38:4), phosphatidylcholine (P-16:0/20:4)], all of which pu-
tatively contain arachidonic acid (20:4). We also observed ele-
vations in products of phospholipase activity, such as lyso-lipids
[lysophosphatidylethanolamine (18:0), lysophosphatidylcholine
(18:0)] in VAT than in SAT. Further gene expression analysis
confirmed a higher PLA2 expression in VAT than in SAT. Par-
ticularly, the PLA2G10 isoform was significantly overexpressed
in VAT and may directly contribute to the observed elevation in
free arachidonic acid in this tissue. Although no eicosanoids and
other oxylipins were measured in this study, we observed sig-
nificantly higher gene expression for both PTGDS and PTGS2
(also known as COX2) in VAT compared with SAT. On the basis
of higher availability of free arachidonic acid and elevated gene
expression for enzymes involved in inflammatory signaling, we
hypothesize that compared with SAT, VAT produces elevated
concentrations of inflammatory lipid signaling mediators, spe-
cifically prostaglandins G2, H2, and D2 (see Figure 3).

Evidence for the role of adipose tissue in endocrine and im-
munologic functions beyond lipid storage is increasing (39). On the
basis of the current investigation of different adipose tissue
compartments, we conclude that VAT is particularly metabolically
active and may constitute an important source of organismal
signaling lipid production (e.g., inflammatory mediators). How-
ever, it is important to mention that adipose tissue can be infiltrated
with immune cells (40), particularly in obese individuals. There-
fore, some of the aforementioned metabolic and transcriptomic
changes between VAT and SAT may also stem from differences in
cell types beyond adipocytes (e.g., infiltrating macrophages).
Despite the potential effects of tissue heterogeneity, the observed
inflammatory characteristics of VAT may help provide an addi-
tional link between visceral adiposity and carcinogenesis.

Strengths and limitations

The study design minimized patient-specific variance with
paired sample collection of different adipose tissues compartments
and serum. Advanced metabolomic and transcriptomic profiling
techniques were used to measure an unprecedented number of
metabolites and gene transcripts in VAT and SAT. Integrated
transcriptomic and metabolomic data analyses were used to
strengthen and corroborate metabolomic results. One limitation
of this study is that conclusions can be drawn only on a “tissue”
and not on a cell type–specific level. Thus, more detailed in-
vestigations will be needed to determine the potential impact of
adipose tissue cell composition on its metabolic profiles. The
study was designed to cast a wide metabolomic net to identify
potentially affected species, which subsequently identified the
need to conduct follow-up studies targeting for analyses of ei-
cosanoids and other lipid signaling mediators as well as a bigger
sample size to validate potential markers of CRC tumor stage.

In conclusion, our study comprehensively characterized the
global metabolic differences of human adipose tissue compartments
(visceral and subcutaneous) in a CRC context by using integrated
metabolomic, lipidomic, and transcriptomic analyses. Although
both adipose tissue types displayed fundamentally different meta-
bolic profiles, VAT can be characterized as more metabolically
active and contains higher abundances of most primary metabolites
measured. Most important, VAT displayed elevated markers of
inflammatory signaling, as evident by higher concentrations of
arachidonic acid and elevated gene expression for phospholipases
and enzymes involved in prostaglandin synthesis.
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