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Abstract 

When semantic information is activated by a context prior to 
new bottom-up input (i.e. when a word is predicted), semantic 
processing of that incoming word is typically facilitated, 
attenuating the amplitude of the N400 event related potential 
(ERP) – a direct neural measure of semantic processing. This 
N400 modulation is observed even when the context is just a 
single semantically related “prime” word. This so-called 
“N400 semantic priming effect” is sensitive to the probability 
of seeing a related prime-target pair within experimental 
blocks, suggesting that participants may be adapting the 
strength of their predictions to the predictive validity of their 
broader experimental environment. We formalize this 
adaptation using an optimal Bayesian learner, and link this 
model to N400 amplitudes using an information-theoretic 
measure, surprisal. We found that this model could account 
for the N400 amplitudes evoked by words (whether related or 
unrelated) as adaptation unfolds across individual trials. 
These findings suggest that comprehenders may rationally 
adapt their semantic predictions to the statistical structure of 
their broader environment, with implications for the 
functional significance of the N400 component and the 
predictive nature of language processing. 

Keywords: language; prediction; rational adaptation; 
semantic priming; EEG/ERP; word processing; information 
theory; Bayesian modeling; surprisal 

Introduction 

How a word is processed fundamentally depends on the 

context. Predictable words are processed more quickly than 

unpredictable words (Fischler & Bloom, 1979), with shorter 

fixations (and more frequent skips) during reading (see 

Staub, 2015 for review). A similar facilitation pattern is 

found on the N400 component (Kutas & Hillyard, 1984), an 

event-related potential (ERP) that reflects semantic 

processing (Kutas & Federmeier, 2011). The degree to 

which any particular word is facilitated is proportional to the 

probability of encountering that word given the context 

(DeLong, Urbach, & Kutas, 2005; Smith & Levy, 2013). 

Semantic facilitation is observed even when the 

preceding context is only a single word. For example, the 

processing of a “target” word is facilitated when it is 

preceded by a semantically related (versus an unrelated) 

“prime” word: the so-called “semantic priming effect” 

(Neely, 1991). Semantic priming is also apparent on the 

N400 component, with more predictable words eliciting a 

smaller (less negative) N400 amplitude than less predictable 

words (Bentin, McCarthy, & Wood, 1985).  

Importantly, the strength of the behavioral semantic 

priming effect is sensitive not only to the degree to which 

the prime and target are semantically related, but to the 

probability of receiving a related trial in the first place 

(Brown, Hagoort, & Chwilla, 2000; Grossi, 2006). This has 

also been found with ERPs: experimental blocks with a 

higher proportion of related trials elicit a larger N400 

semantic priming effect (Lau, Gramfort, Hamalainen, & 

Kuperberg, 2013; Lau, Holcomb, & Kuperberg, 2013). The 

semantic priming effect is likely sensitive to predictive 

validity because participants implicitly track and adapt to 

changes in the statistical contingencies over time.  

Here we utilized data from Lau and colleagues (Lau, 

Holcomb, et al., 2013) to build and test a quantitative 

hypothesis of what drives this effect of predictive validity 

on the N400 semantic priming effect. Specifically, we asked 

whether the larger N400 priming effect in the high 

predictive-validity block could have been achieved through 

a “rational” probabilistic model of trial by trial adaptation. 

Although there are an infinite number of ways to build such 

a model, there are some particular theoretical constraints we 

can start from. Current evidence suggests that (a) prediction 

in language processing is probabilistic in nature, (b) 

predictions incrementally adapt to new information (where 

adaptation should be rapid when the environment changes), 

and (c) the brain calculates something like prediction error. 

Probabilistic Prediction in Language Processing 

and Semantic Priming 

The role of prediction in language has long been debated, 

with differing definitions of what a “prediction” actually 

entails (see Kuperberg & Jaeger, 2016 for discussion). Here, 

we view probabilistic prediction as a central feature of 

language comprehension (DeLong et al., 2005; Federmeier, 

2007; Smith & Levy, 2013), which does not necessarily 

need to be strategic or even conscious in nature. For any 

given context, there exists a probability distribution over the 

words that could be encountered next. A “prediction” is 

simply the presence of this probability distribution. While 

there is evidence for probabilistic prediction at multiple 

different levels of representation (Kuperberg & Jaeger, 

2016), here we focus only on prediction at the lexical level. 
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Note that, defined in this way, prediction exists even in 

the absence of a local context. Consider an experiment 

where words are being serially presented to participants at 

random. The “prediction” that participants make in such an 

experiment could be expressed as a probability distribution 

over words given an average context. This is functionally 

identical to word frequency, where high frequency words 

are more probable given a random/average context and low 

frequency words are less probable given a random/average 

context (Norris, 2006).  

Given these assumptions about the nature of linguistic 

predictions, we can view the semantic priming effect as a 

type of probabilistic prediction. If a participant knows that a 

prime informs the target, they will implicitly generate a 

probability distribution over possible targets given that 

prime. Target processing is facilitated proportional to its 

probability. Though these prime-target transition 

probabilities are not easy to estimate from corpus studies 

(people don’t often write in prime-target pairs), it can be 

estimated using production tasks like word association. 

A Rational Model of Adaptation 

Probabilistic prediction is only beneficial if it actually 

approximates the statistical structure of the environment. 

Bad predictions aren’t helping anybody. A number of recent 

language studies suggest that people rapidly adapt local 

models based on changes in their environment 

(Kleinschmidt & Jaeger, 2015). For example, an 

environment with a high proportion of typically dis-

preferred syntactic parses can attenuate or even reverse the 

so-called “garden-path” effect in ambiguous sentences 

(Fine, Jaeger, Farmer, & Qian, 2013). At the phonemic 

level, participants change their perception of ambiguous 

phonemes if one of the two competing options was locally 

repeated (Kleinschmidt & Jaeger, 2016). And across longer 

periods, people show signs of adaptation to foreign accents 

that can generalize between different speakers with that 

accent (Bradlow & Bent, 2008). 

We can view the predictive validity manipulation in Lau 

et al (2013) through a similar lens. In experimental contexts 

with a higher proportion of semantically related word-pairs, 

participants will rely relatively more on the prime (versus 

relying more on a random/average context) to inform their 

predictions of the target. This means that the probability 

mass assigned to any particular target word depends not 

only on the associative strength of its prime, but also the 

likelihood that the prime provides information about the 

target in the first place (i.e. the predictive validity effect). 

When the proportion of semantically related and unrelated 

trials within a block changes, people adapt. 

Although there are many ways to quantify adaptive 

learning, one attractive theoretically motivated 

implementation is Bayesian updating. This  assumes that 

adaption is “rational” in nature  (Anderson, 1990). Here, 

initial belief about the probability of obtaining a particular 

type of trial (i.e. a related versus unrelated prime-target pair) 

is denoted by the prior probability p(h). Upon receiving a 

trial, this prior belief is updated using Bayes Law. This 

“posterior” is then used as the prior belief for the next trial. 

Applying this rational, Bayesian framework to the 

predictive validity effect (on semantic priming) has a 

number of advantages. It would allow for prior beliefs from 

an initial lower predictive validity block to influence 

expectations for a subsequent higher predictive validity 

block in a principled way (i.e. the prior). It would adapt 

incrementally across trials. It would adapt more quickly near 

the change point, when evidence is low. And beliefs would 

slowly asymptote to the known true probability of receiving 

a related trial.  

In the present investigation, we will use this type of 

Bayesian framework as the starting point for explaining how 

the brain adapts to changes in the statistical contingencies of 

incoming language input. We will refer to this as a Rational 

Adapter model.  

The N400 Measures Information Content 

So our model should be probabilistic, and it should adapt, 

but a third component of this model is required before it can 

be tested: a linking function to actual brain activity. It is not 

necessarily the case that N400 amplitudes — the brain 

activity we are attempting to model — need be linearly 

dependent on the probability of a word given a context. 

Here, we argue that the N400 is best thought of not as a 

measure of probability, but as a measure of information (see 

Rabovsky & McRae, 2014 for discussion). 

In information theory (Shannon & Weaver, 1949), the 

amount of information conveyed by an event is “whatever 

was not known ahead of time”. An input that was perfectly 

predicted does not convey any new information. In contrast, 

messages that are not very predictable convey a lot of 

information. The amount of information (in units of “bits”) 

that was not predicted ahead of time is called “surprisal”, 

quantified as -log2[p(word|context)]. One bit is the amount 

of information provided by flipping a fair coin once. A 

halving of the probability (e.g. conveying a sequence of two 

coin flips instead of one) corresponds with a 1 bit increase 

in surprisal.  

 This simple transformation has proved tremendously 

powerful in explaining language processing data (Hale, 

2001; Levy, 2008). Smith and Levy (2013) provide 

empirical evidence that reading times relate to word 

probability logarithmically (e.g. as with the surprisal 

transformation) across six orders of magnitude. More 

recently, Frank and colleagues (Frank, Otten, Galli, & 

Vigliocco, 2015) discuss ERP evidence that the N400 

component is sensitive to word surprisal. Given this 

evidence, for the present investigation, information-theoretic 

surprisal will be our linking function between the Rational 

Adapter model and N400 amplitude, rather than probability. 
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In the present investigation, we aim to build and test a 

Rational Adapter model of semantic priming against neural 

N400 component data. Specifically, we use data from Lau 

and colleagues (2013). Here, the N400 semantic priming 

effect was measured first in block 1 where 10% of the trials 

were related, and then in block 2 where 50% of the trials 

were related. We use the block 1 only to inform the prior, 

which is then fed into the Rational Adapter model to 

predict N400 amplitudes in block 2, as participants’ beliefs 

about the predictive validity of the prime adapt. 

We hypothesize that this Rational Adapter surprisal 

model will better account for the N400 data than a non-

learning model of N400 data. Specifically, we hypothesize  

that the size of the N400 effect (the difference in amplitude 

of the N400 evoked by  related and unrelated target words ) 

will increase rapidly near the beginning of block 2, as the 

Rational Adapter shifts from a “10% related” prior towards 

a “50% related” asymptote.  

Methods, Modeling and Results 

ERP Data collection 

We used data from Lau and colleagues (Lau, Holcomb, et 

al., 2013). Briefly, 32 right-handed participants (13 men) 

between age 19-24 were shown sequential prime-target pairs 

as event-related potentials (ERPs) were recorded and time-

locked to the onset of the target. Participants were asked to 

perform a semantic monitoring task that was not directly 

related to the experimental manipulation.  All participants 

saw an initial 400 trials (block 1) where 10% of the stimuli 

were related (e.g. “ladder… climb”), followed by 400 trials 

where 50% of the stimuli were related (block 2). The blocks 

were separated by a short break, but participants were not 

explicitly told about any changes in the experiment. 

80 of the trials in block 2 (40 related, 40 unrelated) were 

critical prime-target pairs that were matched and 

counterbalanced across participants, alongside 320 fillers.  

Primes were presented with an SOA of 600ms and targets 

had a duration of 900ms. The N400 component was 

averaged across a time window of 300-500ms over the 

average of three centro-parietal channels. Extreme outliers 

in N400 measures were removed (4 standard deviations or 

more from the mean). 

 

Visualization Lau et al originally reported that the N400 

semantic priming effect was larger in block 2 than block 1. 

For the present investigation, we plotted how the N400 

amplitudes of these critical trials changed over the course of 

block 2, as shown in Figure 1. This was estimated using a 

loess local regression over N400 amplitudes for related and 

unrelated words across the ordinal position of critical items 

in the experiment (this local regression was necessary 

because not every participant saw critical targets in the same 

place).  As can be seen here, N400 amplitudes for related 

and unrelated words are initially similar, but then diverge as 

participants are exposed to more and more of the block. 

 

Figure 1: Block 2 N400 amplitudes over trials.  

The Rational Adapter Word Surprisal Model 

Our Rational Adapter model consists of three primary 

components: a) a Bayesian belief about the probability of 

receiving a related vs. an unrelated prime-target pair at any 

given point, b) a mixture of p(word|prime) and 

p(word|average context) given these beliefs about the trial 

types, and c) a conversion from these probabilistic 

predictions to word surprisal (as a linking function to the 

N400 component). The whole model takes the form: 

Word surprisal = -log2[λ*p(word|prime) + (1-λ)* 

p(word|average context)] 

 

where λ is a point estimate of the probability with which a 

rational adapter expects a related trial at that point in time. 

We use a beta-binomial model to estimate a participant’s 

belief about the probability of seeing related versus 

unrelated trials. To set a prior on the beta distribution, we 

assume that participants enter block 2 assuming the 

proportion will be the same as block 1: a 10% chance of 

receiving a related trial. This prior is expressed using a 1:9 

ratio of related:unrelated pseudocounts. Though participants 

see 400 trials in block 1, participants will likely discount 

their previous experience somewhat (reflecting some 

uncertainty). As a best-guess approximation, we set the 

prior going into block 2 at Beta(5, 45), i.e. pseudocounts 

equivalent to having seen 5 related and 45 unrelated trials. 

In other words, participants were assumed to put more 

weight on their experience with the new block (vs their prior 

given the old block) after about 50 trials. 

After each new trial, this Beta distribution is updated by 

adding the observed trial counts to the prior pseudocounts. 

For example, after 5 related and 5 unrelated trials in block 2, 

a participant’s beliefs would be modeled as Beta(10, 50). 

We took the mean of this beta distribution just before each 

critical trial to reflect the point probability λ with which that 

participant expects a related trial for that event.  

This probability, λ, then provides a weighting term for a 

mixture model between the two ways that participants might 

generate more specific predictions about the upcoming 

target word at any given trial. Given a related trial, we 
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model these within-trial predictions as p(word|prime), 

estimated using “forward association strength” (FAS) from 

the Florida Word Association Norms (Nelson, McEvoy, & 

Schreiber, 2004), and then we weight this probability by λ. 

Given an unrelated trial, we model these within-trial 

predictions as p(word|average context), as estimated by 

word frequency from the SUBTLEX corpus (Brysbaert & 

New, 2009), and then we weight this probability by 1-λ. 

 The mixture of these two terms yields a “word 

probability”, given the prime and beliefs about whether or 

not it will inform the target at any point in the experiment. 

Finally, this word probability is transformed into “word 

surprisal”, or the amount of information that was not 

predicted ahead of time (in bits), given by –log2[p(word 

probability)]. 

Word Surprisal and N400 Amplitudes 

To numerically test whether our estimate of surprisal 

explains variance in the N400 amplitudes evoked by each 

target word, we conducted a linear mixed-effects regression 

using the lme4 package in R, with word surprisal as a 

predictor and centro-parietal N400 amplitude for each trial 

in block 2 as an outcome. Word surprisal was standardized. 

The maximal random effects structure across (crossed) 

subjects and items was used (Barr, Levy, Scheepers, & Tily, 

2013). 

 

Results We found that word surprisal significantly 

accounted for variance in N400 amplitudes (β = -1.14, t = -

5.24, p < 0.001). As word surprisal increased, N400 

amplitudes tended to be more negative (i.e. larger). 

Word Surprisal Explains Trial-by-Trial Variance 

There is an important caveat to this “rational adapter” word 

surprisal effect, however: by definition, unrelated words 

tend to have high surprisal, while related words tend to have 

low surprisal. As such, the word surprisal effect in block 2 

could potentially be attributable to the categorical 

“Relatedness” effect already reported in the initial study. 

To address this possibility, we ran a second linear mixed-

effects regression that included both categorical Relatedness 

and word surprisal as predictors. This would show whether 

our rational adapter estimate of word surprisal could 

account for variance in N400 amplitudes above and beyond 

what could already be explained by the main effect of 

related vs unrelated trials. Again, the maximal random 

effects structure for word surprisal was used. 

 

Results We found that word surprisal significantly 

accounted for variance in N400 amplitudes (β = -2.21, t = -

2.76, p = 0.006) above and beyond the main effect of 

Relatedness. This indicates that the surprisal difference 

between related and unrelated words was not sufficient to 

account for the way that word surprisal related to the N400 

in the first model. 

We caution that given the multicollinearity between word 

surprisal and the relatedness effect (the primary motivation 

for running this test in the first place), this β estimate is 

likely inflated. We limit our conclusions to the explanatory 

power here, not the regression coefficient. 

The “Rational Adapter” Word Surprisal Model 

Outperforms its Constituent Elements Alone 

Another potential concern is that the model we used to 

estimate word surprisal simply includes more information 

about the trials. Namely, the word frequency and FAS of 

each trial are inputs to the Rational Adapter model 

calculations. These could have explained items-level 

variance in N400 amplitudes without resorting to 

adaptation, given that the N400 component is already 

known to be sensitive to both these factors. In short, perhaps 

the explanatory power of our rational adapter model is 

primarily due to the inclusion of trial-specific frequency and 

FAS information, rather than prediction and adaptation. 

To address this possibility, we ran a third linear mixed-

effects regression that includes not only word surprisal as a 

predictor, but also Frequency, FAS, and Relatedness 

predictors for each trial. This tests whether the particular 

arrangement of inputs into the “rational adapter” word 

surprisal model explains variance in N400 amplitudes 

marginal to the stationary main effect of Relatedness and to 

its constituent items-level elements. Again, the maximal 

random effects structure for word surprisal was used (across 

both items and subjects), and all continuous predictors were 

standardized. 

 

Results We found that word surprisal significantly 

accounted for variance in N400 amplitudes (β = -2.30, t = -

2.11, p = 0.036) above and beyond Frequency, FAS, and 

Relatedness. This indicates that the particular way items-

level features were combined into the our model is an 

important source of explanatory power, and that the 

increased fit is not simply due to the fact that our model 

included additional information about items-level features. 

Finding the Optimal Prior 

Our model assumed that the rational adapter should 

approach λ = 0.1 (the actual block 1 proportion) as they go 

through the first 400 trials of block 1, regardless of what 

their expectations were coming into the experiment. Given 

that our model is explicitly a rational one, we kept constant 

this 1:9 related:unrelated ratio for the prior for block 2. 

However, that still leaves the prior strength (i.e. number of 

pseudocounts) as an assumption that can be explored. For 

hypothesis testing above, we assumed that participants 

entered block 2 with a Beta(4, 45) prior, i.e. that participants 

believed it would have the same 10% relatedness proportion 

as block 1 with a weight of 50 pseudotrials. This 50 

pseudocount prior weighting, however, was essentially 

guesswork (we didn’t want to bias our hypothesis tests by 

interrogating many models and selecting the best one). 

Here, we sought to ensure that our results were not 

idiosyncratically dependent on having made a “lucky” 

guess.  

286



Figure 2: Deriving the optimal prior strength. 

 

A low pseudocount prior like (1, 9) would cause rational 

adaptation to proceed very quickly, while a high prior 

pseudocount like (40, 360) would cause rational adaptation 

to proceed much more slowly, as participants enter block 2 

with much more certainty about the environmental statistics. 

The pseudocount (and thus speed of adaptation) that best 

explains variance in N400 amplitudes is thus an empirical 

question: what is the optimal prior strength? 

To find the optimal prior, we calculated the word surprisal 

(for all trials for all participants, as above) for every integer 

“prior strength” from 1 to 800 pseudocounts. We then ran a 

separate linear mixed-effects regression model for each 

prior strength with word surprisal and Relatedness as 

predictors and a maximal random effects structure. After 

fitting these 800 regression models, we extracted the log-

likelihood of each. 

 

Results These data are shown in Figure 2. The single 

maximum log-likelihood was obtained with a Beta(7.7, 

69.3) prior, a “prior strength” of 77 pseudocounts. However, 

all pseudocounts between 70 and 85 yielded similar model 

fits, and performance degrades smoothly on either side. 

This indicates that, on average, participants began giving 

more weight to the new block’s data than the previous 

block’s data 70-85 trials into block 2. A rational adapter 

with a very weak prior (below ~50 pseudocounts) does not 

account for N400 data well because it adapts too quickly. 

Similarly, a rational adapter entering block 2 with a very 

strong prior (above ~200 pseudocounts) also does not 

account for the N400 data well because it adapts too slowly.  

We note that some models had poor fit because they did 

not converge. None were within the 70-85 range capturing 

the maximum. 

Discussion 

Previously, Lau and colleagues (2013) found that the N400 

semantic priming effect shows evidence that adaptation 

occurred when the predictive validity of the local context 

changed. In the present investigation, we explored the 

nature of the adaptation process as it unfolded. Figure 1 

shows the trial-by-trial nature of this adaptation over ordinal 

position in block 2. Our Rational Adapter model provides a 

theoretically-grounded quantitative account of how that 

adaptation may have occurred on an incremental trial-by-

trial basis. It was built using three foundational 

considerations: that contexts can probabilistically inform 

lexico-semantic expectations for upcoming stimuli, that 

these expectations adapt rationally (in an optimal Bayesian 

manner), and that the N400 component is sensitive to units 

of information rather than units of probability (after the 

present analyses, we tested this assumption and found that 

word surprisal significantly accounted for variance in N400 

amplitudes [t = -2.57, p = 0.011] above and beyond word 

probability and the categorical Relatedness effect.). 

In a re-analysis of the original study, we provide 

empirical evidence that this model is consistent with how 

brain activity evoked by target words changed over the 

course of block 2. We showed that it accounted for variance 

in N400 amplitudes above and beyond the stationary effect 

of related versus unrelated trials, suggesting that it was 

capturing trial-by-trial differences within block 2. Further, 

we showed that this particular formulation of the rational 

adapter model accounted for significant variance in N400 

amplitudes above and beyond even its own constituent 

elements, suggesting that the additional explanatory power 

was not simply due to the inclusion of items-level 

information (our single trial approach to ERP analysis).  

These findings extend previous work on rational adaptation 

to demonstrate that it can account for changes in predictions 

during lexico-semantic processing. 

In addition, we used the rational adapter model to derive 

the rate  of adaptation that best accounted  for the ERP data. 

Even though participants saw 400 trials in Block 1, we 

estimate that participants adapted as if they had only seen 

70-85 trials of bock 1 by the time they entered block 2. 

Although participants were not informed of the changing 

environmental statistics (and the manipulation was not 

overtly task-relevant), we speculate that the conspicuous 

block boundary may have prompted participants to adapt at 

a faster rate.  Additionally, there may be a decay or filtering 

that occurs for distant exposures, which dynamical models 

of prediction and adaptation may be able to account for. 

While the present study included data from a semantic 

priming paradigm, we suggest that a similar pattern may 

hold in comparable experiments with more expansive 

contexts, like sentences or discourses, as the theoretical 

underpinnings are functionally the same. For example, in 

experimental contexts with a high proportion of highly 

constraining sentences, we might expect participants to 

learn to predict more strongly. Finally, these data have 

implications for the functional significance of the N400 

component. The N400 is often discussed as being sensitive 

to probabilities. We suggest that its sensitivity to 

probabilistic measures like cloze probability, forward 

association, and even frequency may be best conceptualized 

it as reflecting units of information rather than probability 

alone (see also Frank et al., 2015; Rabovsky & McRae, 

2014; Smith & Levy, 2013).  
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