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Abstract

Critical Infrastructure Systems:

Distributed Decision Processes over Network and Uncertainties

Critical infrastructure systems (CISs) provide the essential services that are vital

for a nation’s economy, security, and health, but the analysis of CISs are challenged

due to their inherent complexity. This dissertation focuses primarily on the sys-

tem analysis of critical infrastructure systems, with a particular interest to address

the modeling and computational challenges brought by uncertainties, interdepen-

dencies and distributed decision making of various components and stakeholders

involved in CISs, so that a secure, reliable, efficient and resilient system can be

further pursued. Through two examples, the first one is on electric vehicle charg-

ing infrastructure planning in a competitive market, and the second one is on

power generators planning in a restructured electricity market, we illustrate how

our general modeling framework, N-SMOPEC, can be adapted to formulate the

specific problems in transportation and energy system. Each example is solved

by decomposition based approach with convergence properties developed based

on recent theoretical advances of variational convergence. Median size numerical

experiments are implemented to study the performance of proposed method and

draw practical insights. In addition, we have shown some knowledge from differ-

ent domains, such as microeconomics, energy and transportation, can be shared

to facilitate the formulation and solution process of seemingly unrelated problems

of each other, which could possibly foster the communication between different

fields and open up new research opportunities from both theoretical and practical

perspectives.
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Chapter 1

Introduction

Critical infrastructure systems (CISs), including transportation, energy, telecom-

munication, banking and finance, water supply, etc., provide the essential services

that are vital for a nation’s economy, security, and health. Large amount of ef-

forts have been spent in the past 20 years to integrate across the cyber-physical,

engineering and social, behavioral and economic sciences [RIPS, 2016] in order

to achieve secure, reliable, efficient and resilient critical infrastructure systems.

However, due to the inherent complexities of CISs, achieving these goals is still

challenging both from modeling and computational aspects. This dissertation

aims to provide a general modeling framework, associated with computational

techniques, that can capture three main challenges during system analysis of CISs:

uncertainties, interdependences, and decentralization.

1.1 Motivations

The significance of CISs has drawn attention from governments for a long time. In

1996, U.S. President Clinton ordered the establishment of President’s Commission

on Critical Infrastructure Protection (PCCIP), with the goal of: (1) mitigating

both physical and cyber threats to CISs; and (2) fostering the cooperation between

government and private sector to develop a strategy for improving the reliability
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and security of CISs [Clinton, 1996]. Similarly, different countries and regions

have also founded their CISs organizations/programs, such as the European Pro-

gram on Critical Infrastructure Protection (EPCIP), the Critical Infrastructure

Program for Modeling and Analysis (CIPMA) in Australia, the Critical Infras-

tructure Protection Implementation Plan (CIPIP) in Germany and the Critical

Infrastructure Resilience Program (CIRP) in the UK. However, three main chal-

lenges: uncertainties, interdependences, and decentralization, hamper the further

analysis of the CISs at a system level.

Planning decisions of CISs typically need to be made for long term and can

not be easily or quickly modified in the future. These facts lead to the first CISs

modeling challenge that is how to embed various sources of future uncertainties

into decision processes. Well known uncertainties include system components fail-

ures, natural resource fluctuation, possible technology breakthrough/shutdown,

demand variation, unknown policies and regulations in the future, etc. These

uncertainties will directly affect the overall cost-effectiveness and service level of

CISs. Another type of uncertainties, commonly referred to as risk, could occur

with relatively low probability but will cause undesired outcome or significant

losses. Some catastrophic events, such as the 9/11 terrorist attack (2001) and

Hurricane Katrina (2005) in U.S. , Sichuan earthquake (2008) in China, earth-

quake and tsunami (1995, 2011) in Japan, forest fire (2016) in Canada, belong to

this category. These events can bring damage to the infrastructure systems, hu-

man lives, economic development, and eventually threat the stability and security

of the whole society.

However, the impacts of uncertainties will not only affect one part or one sin-

gle infrastructure system, due to the highly interdependency within and between

CISs. For example, on August 14, 2003 the loss of a few power stations due to high

energy load escalated into the worst blackout in history that affected 50 million
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people in the Midwest, Northeast and Ontario, Canada, with a combined load

of 61.8 gigawatts lost power for up to 4 days [Liscouski and Elliot, 2004]. This

effect is well known as a cascading power transmission failure that relatively small

number of failures of power stations can possibly lead to a massive chain of trans-

mission line and generating failures across the whole electrical grid. In addition,

CISs are becoming increasingly interdependent both physically and through cyber

connection. For example, the Californian power disruptions in 2001 affected oil

and natural gas production, refinery operations, pipeline transportation within

California and to its neighboring states, the movement of water from northern

to central and southern regions of the state for crop irrigation, and also the nor-

mal operation of telecommunication, which further impacted the productivity and

functioning of other industries [Rinaldi et al., 2001].

The problem is becoming even more challenging in a distributed decision mak-

ing environment. In many countries, some critical infrastructures are provided

through a decentralized structure [Bird, 1994] and the current situation makes that

trend likely to be more true in the future. As a result, more decision makers will

be involved in shaping an infrastructure system. For example, due to the global

trend of electricity market deregulation [Lai, 2001], investor owned vertically inte-

grated utilities (IOU) or publicly-owned municipal utilities (POU) are no longer

able to vertically control the power supply chain and pass the investment risk to

consumers by charging arbitrary electricity prices. Power suppliers are required to

decide their own investment and production, facing competition from both renew-

able and non-renewable sectors. In addition to power suppliers, electricity supply

chain typically includes several other stakeholders: such as transmitter(s), power

retailers, independent system operator (ISO), and consumers, who make decisions

in a decentralized manner. In shaping the transportation infrastructure system,

from demand side, there are (many) individual drivers deciding which routes to
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take and/or which service facilities to use; from supply side, there can be one

or several government(s)/investor(s) deciding where and how much to invest. In

these examples, each decision entity makes her own decision, but needs to simul-

taneously account for other decision entities’ behaviors given the interdependence

among them.

In summary, CISs involve multiple decision makers who are facing interde-

pendencies within/between systems and uncertainties/risks for the future. It is

critical to model these close couplings among the systems and gaining a better

understanding about these complexities, so that effective planning, maintenance

and emergency decisions can be made at a system level. This dissertation pursues

along this direction and aims to provide a holistic modeling framework and ac-

companied computation techniques to deal with the challenges brought by uncer-

tainties, interdependencies, and decentralization during system analysis of CISs.

1.2 Overview of Existing Literature

With the increasing attention from governments on CISs, researchers in critical

infrastructure community have applied both qualitative and quantitive methods

trying to gain a better understanding of these systems.

For qualitative studies, Bologna and Setola [2005] proposes specific recommen-

dations in terms of how to deal with uncertainties that exist in CISs, such as using

information/data to improve the local capability to autonomously react to anoma-

lies, preparing for the worst scenario, and identifying common failure events;

Rinaldi et al. [2001] classified infrastructure interdependencies into four types:

physical, cyber, geographic and logical. While physical, cyber and geographic

emphasize the interdependence due to the functioning of infrastructures, logi-

cal interdependence emphasizes the predominant role of human decisions. Briere

[2011] recommends a fusion center to facilitate a community stakeholder-driven

rapid restoration of CISs after extreme events. These qualitative studies echo the
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importance and challenges of dealing with uncertainties, interdependencies and

decentralization in CISs, and provide some helpful conceptual frameworks that

pave the way for better quantitative modeling and analysis.

The quantitative studies over the past decade on CISs have been emphasizing

the importance of taking a system(s) approach in disaster impact analyses and

mitigation planning.

For disaster impact analyses, several studies aim to quantify the social eco-

nomic impact of critical infrastructure failures due to extreme events. For exam-

ple, Rose et al. [1997] quantify the regional economic impacts of electricity lifeline

disruptions due to earthquake based on input-output and linear programming

models. But in this study, the physical network structure and spatial relation are

omitted, which can lead to bias of the interdependence representation between

different system(s) components. Chang and Nojima [2001] incorporate the trans-

portation network structure and develop post-disaster measures for transportation

system performance. Kerivin and Mahjoub [2005] review various network mea-

sures to quantify the survivability of a spatially distributed telecommunication

infrastructure system, based on the concept of node-disjoint and edge-disjoint.

Other important measurements for system resilience are also proposed. Concep-

tually, resilience is usually characterized as the ability to recover after a major

disturbance in the context of civil and industrial engineering system [Reed et al.,

2009]. Ip and Wang [2009] define network resilience as a function of the num-

ber of reliable paths between all node pairs, which borrow the similar concept

from system redundancies. Zhang et al. [2009] measure resilience as a function of

change in system mobility, accessibility and reliability from pre-disruption levels

in transportation system.

System-level mitigation planning have been conducted for various critical in-

frastructure systems such as transportation [Liu et al., 2009, Miller-Hooks et al.,
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2012], power [Chen et al., 2014], communication [Kerivin and Mahjoub, 2005,

Sterbenz et al., 2010], etc. Typically, the problem is formulated as a two-stage

optimization model, with the first stage consists of a central planner who can con-

trol the whole system and make the best pre-disaster decisions, and the second

stage represents the post-disaster interactions of different system components, in-

cluding possible recourse decisions being made to adjust the system to the new

operating conditions. The first stage decisions can also take into account some

forms of equilibrium conditions or different objectives/reactions from the second

stage, in which case the problem is typically referred to as bi-level. In either case,

one drawback of these studies is that they are limited to single decision maker

and single critical infrastructure system.

There are also quite significant amounts of quantitative studies that investi-

gate the interdependence between multiple CISs and between multiple decision

makers. Several national laboratories develop bottom-up agent-based simulation

models to study CISs interdependencies and identify the optimum or ranking of

asset to protect from extreme events, such as Aspen-EE [Barton et al., 2000]

and NABLE [Schoenwald et al.] by Sandia, SMART II++ [North, 2001] by Ar-

gonne, CIMS [Becker et al., 2011] by Idaho. Agent-based approach is praised for

its ability to capture detail interdependencies among CISs and provide scenario-

based what-if analysis. But the main drawbacks are the highly sensitivity to the

assumptions on agents’ interacting rules and the difficulties to calibrate parame-

ters due to data scarcity 1. On the other extreme, researchers develop top-down

methods to simplify the detailed interaction assumptions. CIP/DSS (Critical In-

frstructure Protection/Decision Support System) [Min et al., 2007], developed

jointly by Los Alamos, Sandia and Argonne National Laboratories, use system

dynamics based approach, which describe the interdependence of CISs at an ag-

1Data on CISs may be harder to obtain due to the security concerns.
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gregate level through causal-loop diagram and stock-and-flow diagram. However,

the main disadvantages of this approach are the somewhat arbitrary and over-

simplified assumptions on the causal relationships between different systems and

lack of analysis ability at component level. Other studies lie between these two

extremes, such as approaches based on input-output model [Haimes and Jiang,

2001], computable general equilibrium (CGE) [Zhang and Peeta, 2011], and net-

work topology [Buldyrev et al., 2010] and flows [Lee et al., 2007]. Although these

approaches well capture the interdependences between CISs and some of them

(e.g. CGE models) can incorporate the behaviors of different decision makers,

they are generally deterministic and based on individual scenario analysis.

1.3 Contributions

This dissertation focuses primarily on the system analysis of critical infrastruc-

ture systems, with a particular interest to address the modeling and computa-

tional challenges brought by uncertainties, interdependencies and distributed de-

cision making of various components and stakeholders involved in complex infras-

tructure systems. The general methodological contribution of my dissertation is

on establishing network-based multi-agent optimization modeling framework and

computing methods to facilitate planning and analysis of interdependent CISs

that are shaped by collective actions of multiple decision entities who share global

uncertainties but do not necessarily coordinate with each other. Note that the

dissertation is not limited to system analysis under extreme scenarios. Instead,

our general modeling framework is flexible enough to incorporate general uncer-

tainties/risks into decision making processes.

Some specific contributions are summarized as follows:

1. The main contribution of Chapter 3 is on the establishment of a theoretical

foundation, from both modeling and computational aspects, for business-
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driven EV charging infrastructure investment problem. We demonstrate

how the original multi-agent problem can be reformulated to a problem of

finding a maxinf-point of certain bifuncation, which is inspired by the solu-

tion approach for Walrasian Equilibrium, followed by convergence analysis

and algorithm design based on the recent theoretical advances of maxinf-

points convergence.

2. The main contribution of Chapter 4 is on the development of modeling

and solution methods to address challenges brought by uncertainties and

oligopolistic competition among energy producers over a complex network

structure. To overcome the computational difficulty, we have combined two

ideas. The first is using stochastic decomposition techniques to convert a

large-scale stochastic problem to many smaller scenario-dependent problems

that are more easily solvable or can be solved in parallel. The second is using

variational inequalities to prove the equivalence of our scenario dependent

multi-agent optimization problem with a single traffic equilibrium problem,

which have been formulated as a convex optimization problem. This allows

exploitation of efficient solution techniques that can typically outperform

general-purpose solvers.

1.4 Organization

The remainder of this dissertation is organized as follows:

In Chapter 2, we first summarize key methodological elements for our disser-

tation, including stochastic programming, network modeling, and multi-agent op-

timization problems with equilibrium constraints (MOPEC). And then we present

our general modeling framework: Network-based Stochastic MOPEC (N-SMOPEC)

to explicitly capture uncertainties, interdependences, and decentralization in sys-

tem analysis.
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In Chapter 3 and Chapter 4, we apply our general methodology in the context

of transportation and energy infrastructures, respectively, and design effective so-

lution approaches for each specific example. Chapter 3 establishes a theoretical

foundation for business-driven EV charging infrastructure investment planning

problem, which is then solved by a decomposition method rooted in the most

recent theoretical development of variational convergence. In Chapter 4, we for-

mulate the power generators planning problem in a restructured electricity market

and related this problem to a classic traffic assignment problem through decom-

position techniques and variational inequality reformulation.

The last chapter concludes the dissertation with discussions, and future ex-

tensions.
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Chapter 2

Methodology

The main research question of this dissertation is stated as: how will uncertain-

ties, interdependencies and distributed decision making influence the planning and

analyses of an infrastructure system? To capture the interplay of these three key

challenges during system analysis, we develop a holistic methodology, Network-

based Stochastic Multi-agent Optimization Problem with Equilibrium Constraints

(N-SMOPEC), integrating knowledge from three fields: operations research, mi-

croeconomics and network science. In this chapter, we first summarize some

fundamental building blocks, including stochastic programming [Louveaux, 1986,

Birge and Louveaux, 2011], network modeling [Bertsekas, 1998, Sheffi, 1985], and

multi-agent optimization problems with equilibrium constraints (MOPEC) [Ferris

and Wets, 2012], and then present the general modeling framework of N-SMOPEC

in the end. The engineering aspects of applying N-SMOPEC will be discussed

with applications from transportation and energy systems in Chapter 3 and 4,

respectively.

2.1 Stochastic Programming

Stochastic programming, which was first introduced by Dantzig [1955] and further

developed both in theory and computation by Wets [1966], Van Slyke and Wets

10



[1969b], Wets [1974], is an approach for modeling (single player) optimization

problems that involve uncertainty. A classic form of stochastic programming, also

known as expected value model, can be depicted as following:

minimize
x∈X

E[f(x, ξ)] (2.1)

where ξ represents an uncertain vector 1; and x is the decision variables that are

measurable for their current available information. We typically assume ξ follows

a known probability distribution, which can be either provided by domain experts

or estimated by statisticians using historical data 2. In this section, we will limit

our discussion on some variants of stochastic programming in the most widely

applied and studied setting: two-stage stochastic programming. For multi-stage

stochastic programming, which is a natural extension in terms of modeling but

with much larger computational challenges, one can refer to [Pflug and Pichler,

2014].

2.1.1 Two-stage Stochastic Programming with Recourse

The basic idea of two-stage stochastic programming (with recourse) is to dis-

tinguish two types of decisions based on whether the uncertain parameters ξ is

known or not at the time of decision making. The first-stage decisions, such as

long-term system planning decisions, are usually made before future uncertainties

ξ is revealed and are difficult to readjust once implemented; the second-stage de-

cisions, such as real-time system operational decisions, can be adjusted based on

the actual realization of ξ.

1Note that throughout the entire dissertation, we use lowercase bold font to emphasize the
vector parameters/variables.

2Recently, there are some studies trying to relax this assumption by looking into how to make
decisions taking into account the uncertainty of the distribution (also known as “uncertainty of
uncertainty”). For readers interested in this topic, one can refer to [Royset and Wets, 2016]. If
the parameters are known only within bounds, one approach to tackling the problem is called
robust optimization [Ben-Tal et al., 2009], which could be too conservative in practice.
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The classic two-stage stochastic programming, in the simplest form, may be

presented as follows:

minimize
x

f(x) + Eξ [Q(x, ξ)] (2.2a)

subject to x ∈ X (2.2b)

Q(x, ξ) = inf
y
{g(x,y, ξ)|y ∈ Y (x, ξ)} , (2.2c)

where x represents the first-stage decisions, and y is the second-stage decisions,

which depends on the choice of first-stage decisions and the actual realization of

the uncertain parameters ξ. The objective is to minimize the first-stage cost, f(x),

plus the expected value of the second-stage cost, Q(x, ξ), subject to the feasibility

constraints of x and y. Adopting expected value in the objective function can be

well justified by Law of Large Numbers. That is to say our “optimal” decisions

are optimal in the sense that we can conduct the experiment infinite number of

times and we value individual experiment linearly with respect to its quantitative

cost. However, sometimes we may not be able to repeat the experiment as many

times as we want and we may worry about the bad outcomes more than we favor

the good ones. This limitation gives rise to another popular branch of stochastic

programming, named as risk averse optimization.

2.1.2 Risk Averse Optimization

Risk averse optimization is helpful when there are some (significantly) undesirable

outcomes that we hope to avoid, even though these outcomes are associated with

low probability. Different disciplines develop different methods to capture the

risk averse behaviors observed in their own domains, such as expected utility

theory, chance-constrained optimization, and mean-risk models. Interestingly,

these methods turn out to be related with each other.
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2.1.2.1 Expected Utility Theory

In economics literature, expected utility models [Von Neumann and Morgenstern,

1944], as well as some of its alternatives/generalizations (e.g. prospect theory

[Kahneman and Tversky, 1979], rank-dependent expected utility [Quiggin, 1982]

and regret theory [Loomes and Sugden, 1982]), play an important role to deal

with risks that exist in systems. The basic idea of expected utility models is we

try to minimize the expected disutility instead of minimizing the expected cost,

see (2.3).

minimize
x∈X

E[u(f)] (2.3)

where u : IR → IR is a nondecreasing disutility function. Although the existence

of utility functions can be guaranteed by a system of axioms 3, in practice they

are difficult to elicit.

2.1.2.2 Chance Constraints

Operations researchers also propose multiple alternative approaches to capture

the impact of risk in decision making. Miller and Wagner [1965] suggests to

impose additional constraints to optimization problem (2.2) to explicitly bound

the probability of certain undesirable outcome. These constraints are named as

chance constraints, and take the following form: Pr[Zx ≤ b] ≥ 1 − α, where Zx

is the random outcome vector depends on x; b is the fixed target and α is the

probability threshold. Chance constraints is later generalized by Dentcheva and

Ruszczynski [2003] as stochastic dominance constraint, Zx �SD B, where B is

the benchmark random outcome, e.g. B(ξ) = Zx(ξ) for some x ∈ X. Some

examples of stochastic dominance constraints include Pr[Zx ≥ b] ≤ Pr[B ≥ b]

and E[(Zx − b)+] ≤ E[(B − b)+], ∀b ∈ [bmin, bmax]. Mathematically, it can be

3The axioms guaranteed the existence of utility function in expected utility models are com-
pleteness, transitivity, independence and continuity. Other alternative models may require dif-
ferent system of axioms.
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shown that the dual variable of the stochastic dominance constraints are related

to the utility function used by Von Neumann and Morgenstern [1944] [Dentcheva

and Ruszczynski, 2003]. The main drawback of optimization models with chance

constraints is that they will lead to non-convex feasible region in general.

2.1.2.3 Mean-risk Models

The third approach, which is widely used in finance and engineering, is called

mean-risk models, with the basic idea of trying to minimize the weighted sum of

the mean, E[Zx], and the risk, r[Zx]. The general formulation of mean-risk model

is shown in (2.4).

minimize
x∈X

E[Zx] + κr[Zx] (2.4)

where κ is the tradeoff parameter between mean and risk, and can be interpreted

as the dual variable of the stochastic programming with risk constraints. Notice

that r[Zx] may still possibly be non-convex in x. For example, Value at Risk

(VaR), which is a risk measure derived from chance constraints and defined as:

V aR1−α(Zx) = F−1
Zx

(1− α) = inf{t : FZx(t) ≥ 1− α}, (2.5)

where F−1
Zx

(·) is the (left-side) quantile of Zx, is not convex in x.

Later Artzner et al. [1999] define a set of properties that investors expect to

hold for a risk measure, named as coherent risk measure, including:

1. Normalized: r[0] = 0 (the risk of holding no assets is zero);

2. Monotonicity: if Z1 ≥ Z2, then r[Z1] ≥ r[Z2] (higher portfolio cost, higher

risk);

3. Convexity: if λ ∈ [0, 1], r[λZ1 + (1− λ)Z2] ≤ λr[Z1] + (1− λ)r[Z2] (diversi-

fication reduces risk);
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4. Translation invariance: if A is a deterministic portfolio with deterministic

cost a, then r[Zx + A] = r[Zx] + a.

Any coherent risk measures, with the assumption that Zx is convex in x, can

be shown to be convex in x. The conditional value-at-risk (CVaR) (sometimes

called expected shortfall or average value at risk) [Rockafellar and Uryasev, 2000]

is one of the widely applied coherent risk measure. The definition of CVaR is

shown in (2.6):

CVaR1−α(Zx) = inf
t∈IR
{t+ α−1E[Zx − t]+}, (2.6)

CVaR is constructed to be a conservative and convex approximation to VaR by

the additional amount of α−1E[Zx−V aR1−α(Zx)]+ [Shapiro and Philpott, 2007].

2.1.3 Solution Approaches

Small scale two-stage stochastic programming problems can be solved as their de-

terministic equivalent form under the assumption of finite discrete distributions of

the uncertain parameters. However, in reality, two-stage stochastic programming

problems typically have large dimension and characteristic structures. Therefore,

decomposition-based methods are typically used to solve these problems. In this

section, we discuss two widely applied decomposition techniques: cutting plane

methods and dual decomposition methods.

2.1.3.1 Cutting Plane Methods

Notice that once x is fixed in (2.2), the second stage optimization (2.2c) can be

solved (in parallel) for each ξ separately and possibly efficiently, this provides the

incentive to vertically decompose the first and second stage optimization. The idea

of cutting plane methods is to gradually approximate x∗ using some facets of the

domain of Q(x, ξ) (feasibility cuts) and the known pieces of the functions Q(·, ξ),

ξ ∈ Ξ (optimality cuts). To illustrate one of the most widely applied cutting
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plane methods in Stochastic linear programming, L-shaped method 4[Van Slyke

and Wets, 1969a], we use one specific form of two-stage stochastic programming

problems, as shown in (2.7).

minimize
x

f(x) +
∑

ξ∈Ξ

Pr(ξ)Q(x, ξ) (2.7a)

subject to x ∈ X (2.7b)

Q(x, ξ) = inf
y
{g(y, ξ)|Ay(ξ)y = b(ξ)− Ax(ξ)x} , (2.7c)

In (2.7), we assume that: 1. the uncertain parameters ξ have finite discrete

distributions; 2. f(·) and g(·) are convex and polyhedral with respect to x and y;

3. x and y are linked by a linear constraint; 4. no constraints directly relate any

second stage decisions in different scenarios. The L-shaped method is summarized

in Algorithm 1.

Notice that EQ(·, ξ) and the domain of EQ(·, ξ) are convex polyhedral, they

can be represented by a finite number of cuts. So L-shaped method can either find

an optimal solution or detect infeasibility in finite steps. However, the number

of cuts in the master problem may grow extremely large for some problems and

there is no easy way to keep it bounded [Ruszczynski, 1997], which slows down

the solving process. Another difficulty is that each generated cut may cut only a

very small piece of the region. Therefore, the performance of L-shaped algorithm

may not be impressive in practice.

2.1.3.2 Dual Decomposition Methods

Compared to cutting plane methods, several alternatives based on duality and

augmented Lagrangian were proposed. Consider the following alternative formu-

lation of two-stage stochastic programming (2.11):

4L-shaped method is a special case of Benders decomposition method [Benders, 1962].
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Algorithm 1 L-shaped method

Step 1: Initialization

τ = r = s = 0

Step 2: Master Problem

τ ← τ + 1

Solve master problem (If s = 0, qτ ← −∞ and excluded the objective (2.8a)):

minimize
x,q

f(x) + q (2.8a)

subject to x ∈ X (2.8b)

< Ek,x > −ek ≥ 0, k = 1, . . . , r, (feasibility cuts), (2.8c)

< Fk,x > +q − fk ≥ 0, k = 1, . . . , s, (optimality cuts). (2.8d)

(xτ , qτ )← optimal solutions of master problem.

Step 3: Feasibility Cuts

for each ξ ∈ Ξ do

Solve the linear program:

minimize
y,v+,v−

ω = eTv+ + eTv− (2.9a)

subject to Ay(ξ)y + Iv+ − Iv− = b(ξ)− Ax(ξ)xτ (2.9b)

v+ ≥ 0,v− ≥ 0. (2.9c)

if ω > 0 then

λ← dual variables of constraints (2.9b)

r ← r + 1 Er ← ATx (ξ)λ er ← bT (ξ)λ

Add feasibility cut < Er,x > −er ≥ 0 to the constraints (2.8c).

go to Step 2.

end if

end for

go to Step 4.
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Step 4: Optimality Cuts

for each ξ ∈ Ξ do

Solve the linear program:

minimize
y

ω = g(y, ξ) (2.10a)

subject to Ay(ξ)y = b(ξ)− Ax(ξ)xτ . (2.10b)

γ(ξ)← dual variables of constraints (2.10b).

end for

Fs+1 ←
∑
ξ∈Ξ Pr(ξ)ATx (ξ)γ(ξ) fs+1 ←

∑
ξ∈Ξ Pr(ξ)bT (ξ)γ(ξ)

if qτ < fs+1 − F T
s+1x

τ then

s← s+ 1

Add optimality cut < Fs+1,x > +q − fs+1 ≥ 0 to the constraints (2.8d).

go to Step 2.

end if

return xτ

minimize
x,y,z

∑

ξ∈Ξ

Pr(ξ)f(x(ξ),y(ξ)) (2.11a)

subject to (x(ξ),y(ξ)) ∈ G(ξ),∀ξ ∈ Ξ (2.11b)

(λ(ξ)) x(ξ)− z = 0,∀ξ ∈ Ξ, (2.11c)

where λ(ξ) is the dual variables of constraint (2.11c). The idea behind formula-

tion (2.11) is that we firstly relax the non-anticipativity of the first-stage decision

variables x and make them scenario dependent, i.e. x(ξ). However, these deci-

sions may not be admissible in reality. That is why additional constraints (2.11c),

named as non-anticipativity constraints, are imposed to the optimization problem.
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One can write out the Lagrangian of (2.11):

L (x,y, z,λ) =
∑

ξ∈Ξ

Pr(ξ)f(x(ξ),y(ξ)) +
∑

ξ∈Ξ

< λ(ξ),x(ξ)− z > (2.12)

and the associated (scenario decomposable) dual function:

Ψ(λ) = inf
x,y,z

{∑

ξ∈Ξ

Pr(ξ)f(x(ξ),y(ξ)) +
∑

ξ∈Ξ

< λ(ξ),x(ξ)− z >
}

=
∑

ξ∈Ξ

ψ(λ, ξ)

(2.13)

and solve (2.11) by its dual problem. However, because the dimension of λ grows

with the number of scenarios, a simple scheme of updating dual vectors λ is more

desired. This is one of the reasons we introduce augmented Lagrangian method.

We define the augmented Lagrangian for (2.11) as follows:

Lγ(x,y, z,λ) =
∑

ξ∈Ξ

Pr(ξ)f(x(ξ),y(ξ))+
∑

ξ∈Ξ

< λ(ξ),x(ξ)−z > +
γ

2
‖x(ξ)−z‖2

(2.14)

where γ is the penalty parameter. The solving procedures of augmented La-

grangian method can be briefly summarized as follow: for iteration k = 1, 2, . . .,

Step 1: given λk, find (xk,yk, zk) ∈ arg minx,y,z Lγ(x,y, z,λ
k);

Step 2: ∀ξ ∈ Ξ, update multipliers λk+1(ξ): λk+1(ξ) = λk(ξ) + γ(xk(ξ)− zk)

The advantage of augmented Lagrangian method is the simplicity of the mul-

tipliers update (Step 2), but the minimizing step (Step 1) may not be easy to

decompose into scenario-dependent subproblems because of the non-anticipativity

variable z. Rockafellar and Wets [1991] propose a decomposition method, named

as progressive hedging algorithm, which gradually approximates z by informa-

tion on x from each iteration. The procedure of progressive hedging algorithm is

summarized in Algorithm 2.
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Algorithm 2 Progressive Hedging Algorithm

Step 1: Initialization

for ξ ∈ Ξ do

Solve for each scenario dependent sub-problem:

minimize
x,y

f(x(ξ),y(ξ)) (2.15a)

subject to (x(ξ),y(ξ)) ∈ G(ξ) (2.15b)

(x0
ξ,y

0
ξ)← optimal solutions

end for

z0 ←∑
ξ∈Ξ Pr(ξ)x0

ξ λ0
ξ ← γ(x0

ξ − z0), ∀ξ ∈ Ξ ε←∑
ξ∈Ξ‖x0

ξ − z0‖
Step 2: PH-iteration

τ ← 0

while ε ≥ ε0 do . Check converge criteria

for ξ ∈ Ξ do

τ ← τ + 1

Find (xτξ,y
τ
ξ) such that

(xτξ,y
τ
ξ) ∈ arg minx,y Lγ(x,y, z

k,λk) over all feasible xξ and yξ

end for

zτ ←∑
ξ∈Ξ Pr(ξ)xτξ λτξ ← λτ−1

ξ + γ(xτξ − zτ ), ∀ξ ∈ Ξ

ε←∑
ξ∈Ξ‖xτξ − zτ‖+

∑
ξ∈Ξ‖xτξ − xτ−1

ξ ‖
end while

return (xτ ,yτ , zτ ,λτ )
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2.2 Network Modeling

2.2.1 Concepts

Network modeling is deeply rooted in graph theory so that network flow prob-

lems are typically mathematically modeled with graph-related notions [Bertsekas,

1998]. Given a directed graph, G = (N ,A), where N is the set of nodes (indexed

by n) and A is the set of links/arcs (indexed by aij) that connect two nodes

(ni, nj)
5. We would like to begin with an introduction of two key concepts in

graph theory, which are going to be used in later chapters: path and flow. A

path p in a directed graph can be described as a sequence of nodes n1, n2, ..., nk

with k ≥ 2 and a corresponding sequence of k − 1 arcs connecting each pair of

consecutive nodes in that node sequence. Typically n1 can be referred to as the

start node or origin, and nk as the end node or destination. A pair of origin and

destination (r, s) is referred to as an OD pair. In many applications of network

modeling, such as transportation, communication, energy, it is useful to introduce

a variable that measures the quantity passing through each arc or path. We refer

to this variable as link flow, va, or path flow, xp.

2.2.2 Modeling

The specific formulation of network flow problems can be varied case by case 6.

But different problems may share similar characteristics.

The objective function of a network flow problem typically takes either a linear

or convex form of the link flow vector, f(v), which may not necessarily be the

actual total network cost. Take traffic assignment as an example, there are two

alternative criteria suggested by Wardrop [1956]:

1. Drivers individually choose to follow their shortest time routes from their

5In a directed graph, the order of nodes matters. (ni, nj) means an arc starting from node
ni and pointing to node nj .

6see [Bertsekas, 1998] for some specific examples including the shortest path, the max-flow,
the assignment, and the transportation problems.
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origins to destinations. In equilibrium, the journey times in all routes ac-

tually used are equal and less than those that would be experienced by a

single vehicle on any unused route;

2. Drivers are centrally directed to choose routes. In equilibrium, the average

journey time is at a minimum.

Assume that the link cost function, ca(·), only depends on its own link flow,

va
7. The objective function of the second criterion, also known as System Op-

timial (SO), can be formulated as minimizing the total system cost: f(v) =
∑

a∈A vaca(va). However, the first criterion, also known as User Equilibrium (UE),

was later mathematically formulated by Beckmann et al. [1956], as minimizing a

manufactured cost function f(v) =
∑

a∈A
∫ va

0
ca(u)du, whose interpretation is less

intuitive especially in high dimension. We will go back to the traffic equilibrium

problem in Section 2.2.3.3.

In terms of constraint set for network modeling, some commonly used con-

straints are summarized in (2.16).

Av = s, (2.16a)

Bx = v, (2.16b)

Cx = d. (2.16c)

where A is node-link incidence matrix of network, with 1 at starting node and

−1 at ending node; B is link-path incidence matrix, with element equals to 1 if a

path p consists of link a, and 0 otherwise; C is OD-path incidence matrix, with

element equals to 1 if a path p connect a OD pair (o, d), and 0 otherwise; s and d

are given vectors, representing the nodal flow injection (can be negative) at each

node and the OD demand for each OD pair, respectively.

7This assumption is made just for simplification of illustration and can be relaxed.
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Constraint (2.16a) guarantees flow conservation at each node; Constraint (2.16b)

transforms path flow to link flow 8; Constraint (2.16c) requires the summation of

different paths connecting the same OD pair should equal to the OD demand.

Notice that not all of the constraints in (2.16) need to be imposed in one net-

work problem. For example, for link based problems, we typically use Constraint

(2.16a) only, while for path based problems, we use Constraint (2.16b & 2.16c).

2.2.3 Solution Approaches

Network problems are special cases of linear/integer/non-linear programming,

therefore, any algorithms for linear/integer/non-linear programming can be di-

rectly applied. However, the special structure of network problems typically can

lead to substantial simplification of the general methods. Theoretically, there

are two main categories of algorithms available for network flow problems: pri-

mal methods and dual ascent methods [Bertsimas and Tsitsiklis, 1997]. Primal

methods, e.g. primal simplex method, maintain and keep improving a primal

feasible solution; while dual ascent methods, e.g. dual simplex method, main-

tain and update a dual feasible solution and an auxiliary primal solution, which

satisfy complementary conditions, to increase the objective function and reduce

the infeasibility of primal solution. In this section, we will only present three

algorithms, with increasing complexity, that are widely used in solving network

problems: search algorithms, Dijkstra’s algorithm, and Frank-Wolf algorithm.

2.2.3.1 Search Algorithms

Search algorithms are lie at the heart of many network algorithms and aim to

find all nodes in a network that satisfy a particular property [Ahuja et al., 1988].

Assuming that we want to find (marked) all the nodes that are reachable through

directed paths from a source node, the search algorithm can be summarized in

8Sometimes, different path flows solutions can yield the same link flow pattern. So path flow
solutions may not be unique.
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Algorithm 3.

Algorithm 3 Search Algorithm

Step 1: Initialization

Unmark all nodes in N
Mark the source node s

LIST := {s}
Step 2: Search

while LIST 6= ∅ do

Select a node i from LIST . e.g. breadth-first or depth-first

for a ∈ A do

if a = (i, j) is admissible, i.e. j is unmarked then

Mark node j

pred(j) := i . record the precedent node

Add node j to LIST

end if

end for

delete node i from LIST

end while

return all the marked nodes and pred

Algorithm 3 does not specify the order for selecting and adding nodes to

the LIST. There are two main rules: the first one is that the LIST is maintained

as queue, i.e. first in first out; the second one is that the LIST is maintained

as stack, i.e. last in first out. Following these two data structures, we will have

breadth-first and depth-first search, respectively.

2.2.3.2 Dijkstra’s Algorithm

The shortest path problem is an important problem appearing in different appli-

cations, e.g. transportation, communication and optimal control. The one source

24



node, one sink node (one-to-one) shortest path problem can be formulated as

linear programming, as shown in (2.17).

minimize
v

∑

a∈A

wava (2.17a)

subject to Av = s (2.17b)

v ≥ 0, (2.17c)

where wa is the cost of traveling through link a; s is flow injection at each node,

with the source node equal to 1 and the sink node equal to -1; A is the node-link

incident matrix.

The intuition of linear programming formulation of shortest path is that v are

the indicator variables (0/1) for whether each link is part of the shortest path or

not. Note that we do not need to force variables v to be integer because every

basic optimal solution of (2.17) will always be integral.

The shortest path problem can be solved using standard linear programming

techniques (e.g. simplex method) for each OD pair. But when we interested

to know the shortest paths from one source node to multiple/all nodes, and as-

sume that all the link costs are non-negative, Dijkstra’s algorithm, as shown in

Algorithm 4, is proven to be more efficient. When link costs can be negative,

Bellman-Ford algorithm [Shimbel, 1954] is more appropriate.

2.2.3.3 Frank-Wolfe Algorithm

Equilibrium over urban transportation network is one of the more advance network

modeling examples, which consist of shortest path as a subproblem. Two notion

of traffic equilibria was mentioned in Section 2.2.2, with one denoted as user

equilibrium (UE) and the other denoted as system optimal (SO). In this section,

we use the UE problem to illustrate one of the important algorithms in network

problems: Frank-Wolf Algorithm.
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Algorithm 4 Dijkstra’s Algorithm

Step 1: Initialization

LIST := N
for n ∈ N do

if n == source then

dist[n]← 0

else

dist[n]←∞ . currently known shortest distance from source node

prev[n]← unknown . previous node achieving dist[n]

end if

end for

Step 2: Update

while LIST 6= ∅ do

u := node in LIST with smallest dist[·]
Remove u from LIST

for neighbor v of u do . neighbor is defined as directly connected by link

temp← dist[u] + w(u, v)

if temp < dist[v] then

dist[v]← temp . update currently known shortest distance

prev[v]← u . update previous node

end if

end for

end while

return dist,prev
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The traffic assignment problem associated with the notion of UE can be for-

mulated as the following mathematical program (2.18):

minimize
v

∑

a∈A

∫ va

0

ca(u)du (2.18a)

subject to
∑

k∈Krs

xr,sk = drs, ∀r ∈ R, s ∈ S (2.18b)

va =
∑

rs

∑

k∈Krs

xrsk δa,k ≥ 0, ∀a ∈ A, (2.18c)

xrsk ≥ 0, ∀r ∈ R, s ∈ S. (2.18d)

where R (/S) is the original (/destination) set, indexed by r (/s); Krs is the set

of paths connecting r and s; δa,k is the indicator if link a belongs to path k. The

Frank-Wolfe algorithm for problem (2.18) can be summarized in Algorithm 5.

2.3 Multi-agent Optimization with Equilibrium

Constraints

Single-agent optimization helps find the best feasible decisions; while multi-agent

optimization helps understand how collective best feasible decisions can influence

a system. A general MOPEC modeling framework was proposed in [Ferris and

Wets, 2012], which includes a wide variety of variational problems as special cases:

variational inequalities, complementarity problems, fixed points problems, etc.

Formulate these problems as MOPEC allows the structure of the problem to be

exploited fruitfully in a computational environment, and sometimes would lead

to a decomposition of the original problem into smaller tasks, where efficient

numerical procedures are readily available [Ferris and Wets, 2012]. MOPEC has

wide applications in equilibrium problems such as non-cooperative games (e.g.

Nash Equilibrium [Nash, 1950, 1951]) and Walras equilibrium problems [Ferris

and Wets, 2012].
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Algorithm 5 Frank-Wolfe Algorithm

Step 1: Initialization: find initial feasible solutions

τ ← 0

Find the shortest path for each OD pair (r, s) assuming ca(va) = ca(0),∀a, va
Assign drs to the shortest path using all-or-nothing (AON)

Get link flows vτ

Step 2: Update travel time

tτa = ca(v
τ
a)

Step 3: Find a moving direction, dτ , for link flow v

Find the shortest path for each OD pair (r, s) assuming ca(va) = tτa,∀a, va
Assign drs to the shortest path using all-or-nothing (AON)

Get the auxilary link flow wτ

Set link flow moving direction dτ = vτ −wτ

Step 4: Find a moving step ατ∗ for link flow v by line search

Find ατ∗ by solving: . any ατ will satisfy flow conservation

minimize
0≤ατ≤1

∑

a∈A

∫ xτa+ατdτa

0

ca(u)du (2.19)

Step 5: Update link flow

vτ+1 = vτ + ατ∗dτ

Step 6: Check convergence (optimality)

if
√∑

a(v
τ+1
a − vτa)2/

∑
a v

τ
a ≤ ε then . ε is the convergence threshold

return vτ+1

else

τ ← τ + 1

go to Step 2

end if
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2.3.1 Formulation

Consider a collection of agents A whose decisions are denoted as xA = (xa, a ∈ A).

A MOPEC model, in its simplest form, can be expressed as:

xa ∈ argmaxx∈Xp,x−a⊂IR
na fa(p,x,x−a), a ∈ A, (2.20)

where fa is their optimization functions, x−a represents the decisions of the other

agents A\a and p are the system parameters 9. Parameters p and the decisions

xA resulting from the multi-optimization problem typically need to satisfy global

equilibrium constraints, which can be formulated as a functional variational in-

equality (2.21):

D(p,xA) ∈ ∂g(p), (2.21)

where g : IRd → IR is a proper, lower semicontinuous and convex function and D

is a set-valued mapping from IRd × IR
∑
a∈A na to IRd.

As a special case of MOPEC, when function g is the indicator function ιC

of a non-empty, closed convex set C, i.e. ιC(p) ≡ 0 if p ∈ C, and ιC(p) ≡ ∞
otherwise, functional variational inequality (2.21) will become more conventional

geometric variational inequality (2.22):

D(p,xA) ∈ NC(p), (2.22)

where NC(p) is the normal cone to C at p.

Although MOPEC is developed under the context of single-level equilibrium

problem, one can extend the same framework to describe the multi-level equilib-

rium problem considering the possibly anticipation of the upper-level agents on

the reaction of the lower-level agents by moving the equilibrium constraints into

9Parameters p may be endogenously determined by the system, such as prices.
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the optimization problems. For example, consider Stackelberg game [Von Stackel-

berg, 1952], where there is one leader and multiple followers. Leader will optimize

its decisions considering the anticipated followers’ behaviors in response to its de-

cision; the behaviors of the followers can be described by either (2.21) or (2.22).

The resulting formulation is typically referred to as mathematical program with

equilibrium constraints (MPEC), or equilibrium problem with equilibrium con-

straints (EPEC) if we combined multiple Stackelberg games together.

To illustrate how this general modeling framework can be applied, we take the

Nash equilibrium in non-cooperative games as an example. A non-cooperative

game consists of a set of players A whose individual reward ra(xa,x−a) depends

both on one’s own decision xa and the others’ decisions x−a. A Nash equilibrium

point is a collection of decisions xA, where ∀a ∈ A, x∗a ∈ arg maxxa∈Ca ra(xa,x−a).

To formulate this Nash game using the general MOPEC framework, we intro-

duce a global parameters p = yA ∈ CA, which can be interpreted as the previous

decisions each player made. So,

x∗a ∈ arg max
xa∈Ca

ra(xa,y−a),∀a ∈ A (2.23)

Then we enforce the global equilibrium, which is simply yA−xA = 0 or equiv-

alently D(yA,xA) ∈ NIRn×|A|(yA), where D(yA,xA) = yA − xA. Notice that this

formulation considers an “iteration” process in obtaining the solution and provides

a structure that can facilitate the design of a decomposition solution algorithm due

to the isolation of other agents’ decision variables in one’s optimization problems.

2.3.2 Solution Approaches

For some special cases, MOPEC can be solved as a single convex optimization

problem. We leave the discussion of this approach to Chapter 4, where we prove

the Nash equilibrium of power generators planning problem can be cast as iter-

atively finding traffic UE solutions of (2.18). In the remaining of this section,
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we focus our discussion on the solution approaches for the single-level equilibrium

problem and briefly summarize the main research progress in solving bi-level equi-

librium problems in a more general setting.

2.3.2.1 Single-level Equilibrium

One possible solution approach to solve single-level MOPEC is to formulate the

problem as mixed complementarity problem (MCP) using the first order optimal-

ity conditions for the (convex) optimization problems and pass the problem to

some existing MCP solvers, e.g. PATH [Dirkse and Ferris, 1995]. Assuming the

optimization problems for all the agents are convex, the sufficient and necessary

first-order conditions for optimality can be expressed as :

0 ∈ −∂[fa(p,xa,x−a) + ιXp,x−a
(xa)] = −∂fa(p,xa,x−a) +NXp,x−a

(xa),∀a ∈ A
(2.24)

where the subgradient is taken with repect to xa only. The overall problem can

then be rewritten as an MCP (2.25):

∂fa(p,xa,x−a) ∈ NXp,x−a
(xa),∀a ∈ A (2.25a)

D(p,xA) ∈ NC(p) (2.25b)

But MOPEC has more structure than a general MCP formulation and existing

solvers can capture, and this structure can sometimes lead to decomposition of

the whole problem into smaller pieces, for which efficient computation approaches

might be readily available [Ferris and Wets, 2012]. Notice that the decomposi-

tion strategies will not be universal for all the problems. In this section, we will

use a classical equilibrium model in economics, the Walras barter model (Pure

Exchange model), to illustrate how some recent theoretical developments of vari-

ational convergence theory can help to solve a MOPEC.

31



• Walras Barter Model Description

In a pure exchange economy, there is a finite number of agents a ∈ A who

try to maximize individual utility function ua : IRL → [−∞,∞), a ∈ A

by deciding acquisitions of L goods xa ∈ IRL given their own finite initial

endowments (goods) ea ∈ IRL, a ∈ A. Trading will take place at a per-unit

market price p. So the optimization problem for each agent a ∈ A can be

formulated as (2.26):

xa(p) ∈ argmaxx∈Xa {ua(x)|〈p,x〉 ≤ 〈p, ea〉} (2.26)

where Xa ⊂ IRL
+ is non-empty, convex set representing agent a’s survival set

(i.e. ua > ∞). Notice that xa is homogeneous of degree 0 with respect to

prices, i.e. xa(p) = xa(αp), we may restrict p ∈ ∆
.
= {p ∈ IRL

+|
∑

j=1L pj =

1}. The equilibrium conditions (i.e. the market is operational) for Walras

barter model is (1) total supply exceeds total demand, i.e.

s(p)
.
=
∑

a∈A

(ea − xa(p)) ≥ 0 (2.27)

and (2) local insatiability, i.e.

〈p, s(p)〉 = 0 (2.28)

• Maxinf Point of Bifunctions

Jofré and Wets [2014] show that that the equilibrium prices p∗ can be char-

acterized as the maxinf point of a bifunction (referred to as the Walrasian)

W (p, q) : ∆×∆→ IR, where W (p, q)
.
= 〈q, s(p)〉, by Proposition 1.

Proposition 1 (Walras equilibrium prices and maxinf-points) Every maxinf-

point p of the Walrasian such that W (p, ·) ≥ 0 on ∆ is an equilibrium point.
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Moreover, under local insatiability, every equilibrium point p is a maxinf-

point of the Walrasian such that W (p, ·) ≥ 0 on ∆.

Proof. See [Jofré and Wets, 2014].

• Approximation and Decomposition

The transformation of equilibrium prices to maxinf points of Walrasian

opens up opportunity for approximation and decomposition. One can use

a sequence of bifunctions, e.g. W ν(p, q) = 〈q, sν(p)〉 on ∆ × ∆, where

sν(p) =
∑

a∈A(e − xνa(p)), to approximate W (p, q). To guarantee the

convergence of maxinf points, a new notion of bifunction convergence is

proposed by [Jofré and Wets, 2014], see Definition 1.

Definition 1 (lop-convergence of bifunction) A sequence in finite-valued bi-

function (fv-biv) fv-biv(IRn+m), {W ν : Cν ×Dν → IR}ν∈N lop-converges to

a function W : C ×D → IR, if

(a) for all y ∈ D and all (xν ∈ Cν)→ x ∈ C, there exists (yν ∈ Dν)→ y

such that lim supνW
ν(xν ,yν) ≤ W (x,y)

(b) for all x ∈ C, there exists (xν ∈ Cν) → x, such that given any

(yν ∈ Dν) → y, lim infνW
ν(xν ,yν) ≥ W (x,y) when y ∈ D, and

W ν(xν ,yν)→∞ when y /∈ D

Lop-convergence is ancillary tight when (b) is strengthened to:

(b-t) (b) holds and for any ε > 0 one can find a copact set Bε, such that for

all ν sufficiently large,

inf
Dν∩Bε

W ν(xν , ·) ≤ inf
Dν
W ν(xν , ·) + ε (2.29)
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With this ancillary tight lop-convergence property of bifunctions, one can

prove the convergence of maxinf-points, which is given in Theorem 1 [Jofré

and Wets, 2014].

Theorem 1 (convergence of maxinf points) When the bifunctions {W ν
ν∈N}

lop-converge ancillary tightly to W , all in fv-biv(IRn+m) with supinf W finite,

and εν↘ε ≥ 0, then every clcuster point x ∈ C of a sequence of εν-maxinf-

points of the bifunctions W ν is a ε-maxinf-points of the limit function W ,

where ε-maxinf-points xε of W is defined as W (xε, ·) ≥ supinf W − ε.

Proof. See [Jofré and Wets, 2014].

Based on Theorem 1, one can solve the Walras barter model by itera-

tively solving a sequence of approximated Walrasian, W nu, which can be

constructed to have nicer properties we desired (such as convexity). The

iteration procedure also enables us to decompose agent’s optimization prob-

lems by solving them individually. We will employ this approach in Chap-

ter 3 to solve a network-based MOPEC problem related to electric vehicle

charging infrastructure planning.

2.3.2.2 Bi-level Equilibrium

For general bi-level equilibrium, such as MPEC and EPEC, a global and large

scale solution algorithm is still lacking. The problem of applying standard NLP

algorithms for MPEC is problematic because the constraint qualifications (CQ),

such as the Mangasarian-Fromovitz Constraint Qualification (MFCQ) and Linear

Independence Constraint Qualification (LICQ) assumed to prove convergence of

standard algorithms typically fail to hold for MPECs [Pieper, 2001]. But there

are several ways people have been trying and yield promising results. For ex-

ample, the piecewise sequential quadratic programming (PSQP) iteratively solve

a quadratic programming to determine the moving direction and is shown to be
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local convergence under mild conditions [Luo et al., 1996]; the penalty interior-

point algorithm (PIPA) replace the complementarity conditions of lower level by

Hadamard product to allow small perturbation for each row, and gradually tighten

this relaxation [Luo et al., 1996]. The solution approaches of EPEC typically will

depend on the solution of MPEC. Diagonalization methods are widely used in

engineering literature, but the absence of convergence results is one of their main

drawbacks [Su, 2005].

2.4 N-SMOPEC Modeling Framework

To capture the interplay of uncertainties, interdependencies, and distributed de-

cision making processes in systems, we develop a holistic methodology, Network-

based Stochastic Multi-agent Optimization Problem with Equilibrium Constraints

(N-SMOPEC).

Assume that each agent a ∈ A have access to the same information at each

stage t, ξt ∈ Ξt, t ∈ T , where T is the set of stages. We further denoted the total

information revealed to agents at stage t as ξ[t], i.e. ξ[t]
.
= {ξτ , τ = 1, 2, . . . , t}.

For agent a ∈ A, a multistage mean-risk optimization will be solved to determine

its optimal decisions for each stage:

{xta(ξ[t]),∀t ∈ T} ∈ arg max
x∈Xp,x−a

(Efa + κra)[ξ[t];p
t(ξ[t]),x

t(ξ[t]),x
t
−a(ξ[t]),∀t ∈ T ]

(2.30)

In optimization problem (2.30), each agent will try to make his/her own deci-

sions at each stage t given the available information ξ[t]. Note that the xt need

to be measurable on ξ[t] and should not depend on future unknown events. Al-

ternatively, one can formulate the individual’s stochastic optimization problem

(2.30) by relaxing the decision variables xt to be ξ[T ] dependent and imposing

non-anticipativity constraints for each stage. The risk measures, (ra(·), ∀a ∈ A),
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will be the aggregation of the risks faced at each stage.

The decisions of individual agents will be connected through functional varia-

tional inequality,

D[pt(ξ[t]),x
t
A(ξ[t]),∀t ∈ T )] ∈ ∂g[pt(ξ[t]),∀t ∈ T )] (2.31)

Notice that if there is only one decision maker involved, e.g. central plan-

ner case, our modeling framework degenerate to network-based stochastic pro-

gramming. Furthermore, when κ = 0, T = 2, |A|= 1, the above formulation is

the classic two-stage stochastic programming discussed in Section 2.1.1; when

κ > 0, T = 2, |A|= 1, the N-MOPEC degenerates to the mean-risk model in Sec-

tion 2.1.2; and when κ = 0, T = 1, |A|> 1, the above formulation is equivalent

to the standard MOPEC model introduced in Section 2.3.

The network structure can underlie both the agents’ optimization problem

(2.30) and the global equilibrium constraints (2.31). In the former case, indi-

vidual agent’s optimization problem can simply be some network flow problems,

such as traffic UE equilibrium or electricity economic dispatch model; the latter

case is due to the fact that decisions of different agents are interdependent both

spatially & temporally, and sometimes can be easier linked together in a network

structure using, for example, flow conservation, link capacity, network equilibrium

constraints.
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Chapter 3

Application I: Planning of Fast

Charging Stations in a

Competitive Market

In this chapter, we focus on the modeling and computation of an application in

transportation infrastructure system, considering distributed decision making and

interdependencies between multiple decision makers and between infrastructures.

More specifically, we look at the planning of electric vehicles fast charging stations

in a competitive market and illustrate how our general modeling framework N-

SMPOEC can be adapted to formulate this problem. Uncertainty is temporarily

omitted in this chapter. But as we will demonstrate in Chapter 4, formulat-

ing and solving stochastic problems can be closely related to their deterministic

counterpart.

3.1 Introduction

The emergence of electric vehicles (EVs) has brought great opportunities to both

transportation and energy sectors. For the transportation sector, EVs are consid-

ered as a promising alternative vehicle technology for GHG emission reduction.

For the power sector, EVs provide potential in accommodating high levels of in-
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termittent renewable generation via vehicle-to-grid (V2G) technologies. However,

several obstacles impede immediate large EV adoption, one of which is scarcity

of charging infrastructure and long charging duration.

The topic of EV charging has attracted attention from both transportation and

power sectors. Different charging types (i.e., home, workplace, or public charging)

have called for different research emphases. For home and workplace charging,

since charging locations are fixed and allowable charging duration is long, most

existing studies focus on the control of electricity resource allocation on charg-

ing. For example, Huang and Zhou [2015] developed an optimization framework

for workplace charging strategies considering different charging technologies and

employees’ demographic distributions; Lopes et al. [2009] studied smart charging

strategies to enhance grid performance and maximize renewable energy resource

integration. There are also studies assessing the impacts of EV charging on exist-

ing power grid operation [Putrus et al., 2009], emissions [Jansen et al., 2010], and

both [Sohnen et al., 2015]. For public charging, since the infrastructure is yet to be

developed, most studies focus on identifying the best facility deployment strate-

gies. There are two main schools of thought: from either transportation/location

science or power system viewpoint. For example, with a focus on power side,

Sadeghi-Barzani et al. [2014] considered the impact of EV charging on grid relia-

bility and proposed a method to minimize the facility development cost as well as

charging cost. EV charging infrastructure planning studies in the transportation

literature focus more on capturing the interaction between charging and travel

(destination and route choice) behaviors. These studies can be further catego-

rized into node-based [Hakimi, 1964] and flow-based [Hodgson, 1990] approaches.

Node-based approaches, with a strong root in classic facility location models (e.g.

p-median, center, and max-coverage), consider charging demands (typically as-

sumed exogenous) happening at given nodes [Goodchild and Noronha, 1987, Frade
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et al., 2011]. Dong and Lin [2012] and Dong et al. [2014] combined node-based in-

frastructure deployment approaches with activity-based travel demand modeling

to identify charging location, quantity, and duration based on real travel activities.

He et al. [2013] developed an integrated model to capture the interaction between

power grid and traffic network. In contrast, flow-based infrastructure deployment

approaches, such as Flow Intercepting Location Model (FILM) [Hodgson, 1990,

Berman et al., 1992], allocate charging resources to support travelers’ preferred

routes (such as shortest paths). Different objectives, such as budget-constrained

maximum flow coverage [Kuby and Lim, 2005, Kuby et al., 2009] and set-covering

minimum cost problem [Wang and Lin, 2013], have been investigated. Building

upon [Berman et al., 1995], deviated paths were considered in [Kim and Kuby,

2012, Li and Huang, 2014]. All of the above studies take a central planner’s point

of view.

Our vision is that as EV demand grows, more investors from the private sec-

tor are likely to enter EV charging business. In this context, the future charging

infrastructure system will be shaped by collective investment actions of many in-

dividual decision entities, who are selfish and competitive by nature. How would

such business-driven investment decisions influence the layout of future public

charging infrastructure? A good understanding of this question is critical to sup-

port effective energy planning at a system level. However, as listed above, most

existing studies on EV charging take a central planner’s perspective, assuming that

investment decision can be fully controlled by a single decision entity. Business-

driven investment behaviors of EV charging facilities have been recognized in

Schroeder and Traber [2012], but models capturing selfish and competitive in-

vestment behaviors are lacking. To our knowledge, only two studies [Bernardo

et al., 2015, Yu et al., 2015] have addressed the market side of charging station

allocation. Bernardo et al. [2015] studied fast charging stations planning with free
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entry. Discrete-choice structural models were developed for the travelers as well

as the investors’ decision processes. Yu et al. [2015] considered the market dy-

namics of electric vehicle diffusion using a sequential game model. However, both

studies ignored the network effect of the underlying transportation and charging

infrastructure, which is a critical component that directly influences travel and

charging behaviors. For example, Bernardo et al. [2015] is built based on a simple

transportation model where origins and destinations are directly connected with

known link costs. This treatment simplifies the problem, but is inadequate to

capture the congestion effect of the underlying traffic network.

In the broader community of location science, there is a rich body of litera-

ture on competitive location problems [Smith et al., 2009, Kress and Pesch, 2012,

Hakimi, 1983]. However, consideration of congestion is typically at the facility

level. For example, [Brandeau and Chiu, 1994, Drezner and Weolowsky, 1996,

Lee and Cohen, 1985] characterized the equilibrium in disaggregate facility choice

systems subject to congestion-elastic demand at each facility. Congestion on the

transportation network, which is important for our study because it directly influ-

ences drivers’ accessibility to potential charging facilities, has not attracted much

attention. Yang and Wong [2000] proposed a mathematical model for assessing

market share among given facilities, considering network congestion and elastic

demand of the customers. Even though that paper does not address facility loca-

tion decision, it sheds light on integrating network analysis with facility location

problems.

The goal of this chapter is to establish a mathematical model to support EV

charging facility planning in a competitive market environment. To this end,

several modeling challenges need to be addressed. First of all, the system involves

multiple decision entities with different objectives: investors make infrastructure

deployment decisions to maximize their individual profits, while travelers decide
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where and how to fulfill their travel and charging needs to maximize their own

utilities. These decisions are interconnected and must be modeled simultaneously

as a whole. Secondly, the physical infrastructure of charging facilities, power

grid and urban traffic network are interdependent in terms of physical, spatial,

and functional relations, which naturally brings a complex network structure into

the problem. To address these modeling challenges, we use our network-based

multi-agent optimization model, which reflects the selfish nature of each decision

entity while simultaneously capturing the interactions among all over a complex

network structure. To overcome the computational difficulty imposed by non-

convexity of the problem, we exploit recent theoretical development on variational

convergence of bivariate functions to design a solution algorithm with analysis on

its convergence properties. To our knowledge, this study is the first in the EV

charging literature that provides a theoretical foundation, from both modeling and

computing perspectives, for analyzing business-driven EV charging infrastructure

investment planning while considering the traveler-infrastructure interactions in

a transportation network.

The remainder of this chapter is organized as follows. In Section 3.2, we

present the general modeling framework with specific problem formulation for each

decision entity involved in the fast charging infrastructure system. In Section 3.3,

we demonstrate how the original multi-agent problem may be reformulated to a

problem of finding a maxinf-point of certain bifurcation, followed by convergence

analysis and algorithm design. In Section 3.4, we present numerical results of

a widely used benchmark case study in the transportation literature and draw

planning and policy implications. The last section concludes the chapter with

insights, discussions, and future extensions.
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3.2 Mathematical Modeling

3.2.1 Modeling Assumption

We are interested in studying whether there exists a profitable and self-sustainable

fast charging network to support EV demand in the long run. Let us consider

multiple investors, each making a facility deployment decision to maximize its own

profit. Our main research question is: how to identify an equilibrium state of EV

fast charging infrastructure network in such a competitive decision environment?

Considering the potentially large number of EV charging service providers and

the easiness of entering the market, we model the market structure as perfect

competition. Based on this assumption, no participant has the market power to set

the price of a homogeneous product; locational EV charging prices are determined

by the market in an equilibrium condition1. Locational EV charging demand

is assumed to depend on traffic conditions and charging services. Locational

charging prices signal the market situation to both investors and travelers, so

that market could be cleared at equilibrium point. Note that the charging prices

may differ across locations - due to network congestion and accessibility, charging

services at different locations should no longer be considered as homogeneous

product.

3.2.2 Conceptual Framework

This problem falls into the general framework of Network-based MOPEC model,

which reflects the “selfish” nature of each decision entity while simultaneously

capturing the interactions among all over a complex network structure. The

fundamental concept of this modeling framework is illustrated in Figure 3.1.

1We acknowledge that such economic theory is a simplification of real markets. Using retail
gasoline market as an example, a few empirical studies have shown that market competition
may be influenced by vertical integration of supply chains and locational effects [Hastings,
2004, Borenstein and Bushnell, 2005, Houde, 2012]. On the other hand, there are still many
independent gasoline retailers (unbranded, and leasers or contractors of branded gasoline) in
the market, forming a more competitive market than an oligopoly.
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Network-based Multi-agent Optimization Problems with 
Equilibrium Constraints (N-MOPEC)

Network

Investor i

Traveler j

Agents

Optimization

Objective:   Maximize Profits

Location
Investment Capacity
Supply Quantity

Objective:   Maximize Utility

Market Clearing Charging Supply     =     Charging Demand

Decisions:

Charging location
Route

Decisions:

Origin r

Destination s

Motivation Methodology Transportation Power Discussion

Figure 3.1: Illustration of Network-based MOPEC

In Figure 3.1, there are two types of decision makers (agents), who are making

decisions over transportation network: investor i is deciding the location, charging

capacity and supply quantity in order to maximize his own profits; traveler j ,

departing from one node, will decide destination and route in order to maximize

his/her own utility. Their decisions are made individually but will be interdepen-

dent. In equilibrium state, market clearing conditions, i.e. charging supply equals

to charging demand for all nodes, also need to be satisfied.

3.2.3 Recap of Basic MOPEC Modeling Framework

A general MOPEC modeling framework was proposed in [Ferris and Wets, 2012],

which has wide applications in such as non-cooperative Nash-equilibrium games

and Walras equilibrium problems. Consider a collection of agents A whose deci-

sions are denoted as xA = (xa, a ∈ A). A MOPEC model, in its simplest form,
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may be expressed as:

xa ∈ argmaxx fa(p, x, x−a), a ∈ A, (3.1)

where fa is their criterion function, x−a represents the decisions of the other

agents A\a and p is a parameter such as price. The relationship between p and

the decisions xA resulting from the multi-optimization problem satisfies a global

equilibrium constraint.

3.2.4 Detailed formulation for each decision entity

3.2.4.1 Modeling the Decisions of Fast Charging Investors

A new fast charging supplier entering the system has two types of decisions to

make. During the planning stage, each new supplier decides the locations and

the capacities of fast chargers in which to invest. At the operational stage, each

supplier will choose its supply quantities based on market charging price. All

these decisions should be made while taking into account the decisions of other

competitors in the system. For each firm ∀i ∈ I:

maximize
cki ,g

k
i

∑

k∈Ki

[
ρkgki − φg(gki )

]
−
∑

k∈Ki

φc(c
k
i ) (3.2a)

subject to gki − cki ≤ 0, ∀k ∈ Ki; (3.2b)

gki ≥ 0, ∀k ∈ Ki; (3.2c)

cki ≥ 0, ∀k ∈ Ki. (3.2d)

where:

Ki : set of candidate investment locations of firm i, indexed by k;

cki : charging capacity allocated at location k by firm i;

gki : total charging supply at location k by firm i;

ρk : unit charging price at location k determined by the market;
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φc(·) : total capital cost function with respect to charging capacity;

φg(·) : total operational cost function with respect to supply quantity;

I : set of investors.

The decision variables of each investor include the investment capacity cki and

suppling amount gki at each candidate location. The objective function (3.2a)

maximizes the net benefits during operational stage minus the total investment

cost
∑

k∈Ki φc(c
k
i ), which may include costs associated with land acquisition and

equipment purchase. The net operational benefit is calculated as the total rev-

enues
∑

k∈Ki ρ
kgki minus the operating cost

∑
k∈Ki φg(g

k). Note that throughout

the entire chapter, we denote vectors in lowercase bold font. For suppliers who

have co-located business that could benefit from attracting more EV drivers, one

may include additional terms to quantify the value of attracted trips. We assume

that electricity will be sold at a uniform price at each candidate location, which

is derived from the market clearing conditions shown in Section 3.2.4.3. Con-

straint (3.2b) ensures that the peak-hour electricity supplied at each location by

each firm does not exceed its total capacity. Notice that we only consider the

deterministic case, charging supply g will always equal to charging capacity c in

equilibrium (otherwise investor can reduce their investment on charging capacity

and be strictly better off). But we still want to separate c and g so that this

formulation can be extended more naturally to the stochastic case, in which one

can consider different charging demand scenarios due to peak/off-peak hour, un-

certain traffic conditions, future EV penetration rate and battery capacity, etc.

The remaining constraints are non-negative restrictions.

To ensure that the objective function is concave, φc(·) and φg(·) must satisfy

certain properties. In this chapter, we restrict the summation of φc(·) and φg(·)
to be a quadratic function, with positive coefficients. For example, the fixed

cost may follow a linear function, and the production cost may be a quadratic

function. Besides mathematical convenience, a quadratic production cost function
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also reflects two facts: (1) as electricity demand at a location increases, it causes

more congestion in the transmission lines, which may lead to higher electricity

price at that location; (2) as demand increases, higher-cost supplies start to enter

the system as electricity is typically dispatched based on cost ranking.

3.2.4.2 Modeling the decisions of travelers in a congested transporta-

tion network

The demand for charging is typically derived from EV ownership and the travel

patterns expected for these vehicles [Nicholas et al., 2013]. In this chapter, we

treat EV ownership as exogenous variable. We allow travel behaviors (in terms

of charging facility choice and route choice) to be affected by charging facilities

in additions to the underlying transportation network. We extend the Combined

Distribution and Assignment (CDA) model [Sheffi, 1985, Lam and Huang, 1992],

named as Generalized Combined Distribution and Assignment (GCDA), to ex-

plicitly model the interaction between drivers and infrastructure, considering the

intermediate facility choice and path deviation.

A multinomial logic model is used to describe the choice of different destination

from origins r, with the deterministic component of utility function as follows:

U rsk = βk0 − β1t
rsk + β2

∑

i∈Ik

cki − β3
ρkers

incrs
(3.3)

where:

Ik : set of investors who consider k as a candidate location, indexed by i;

U rsk : utility measure of a user to go from r to s and receive service at k;

β : utility function parameters (model input);

trsk : equilibrium travel time from r to s, with detour to service location k;

ers : average charging demand from r to s (model input);

incrs : average income in zone r, who travel to zone s (model input).

The utility function of traveler from node r to node s is assumed to be the

summation of four parts: locational specific attractiveness factor, travel time, to-
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tal charging capacities, and charging cost. This type of utility function has been

adopted in other studies in the EV travel modeling literature [He et al., 2013,

Bernardo et al., 2015, Yu et al., 2015]. Note that commuting trips, which typi-

cally have fixed destinations, should be distinguished from those non-commuting

trips (such as shopping), which tend to have more flexible destination choices.

Therefore, the utility function including all the parameters involved should be

trip-type specific. The utility setting adopted here can be adjusted based on trip

types. For example, for commuting trips, β0 can be set to a relatively high value,

which means the destination attractiveness is the dominant factor; while for recre-

ational trips, several destinations may have similar attractiveness, therefore the

destination choice could be affected by travel time and charging services.

Denote the transportation network by a directed graph G = (N ,A) , where

N is the set of nodes (indexed by n) and A is the set of links (indexed by a).

In a traffic network, a node may represent a community (source/sink of travel

demand), an intersection, or a freeway interchange. A link may represent a road
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section that connects two nodes. The GCDA model is formulated as follows 2:

minimize
x̂,x̌,x,q

∑

a∈A

∫ va

0

ta(u)du

+
1

β1

∑

r∈R

∑

s∈S

∑

k∈Krs

qrsk

(
ln qrsk − 1 + β3

ρkers

incrs
− β2

∑

i∈Ik

csi − βk0

)

(3.4a)

subject to va =
∑

r∈R

∑

s∈S

∑

k∈Krs

(x̂rska + x̌rska ),∀a ∈ A (3.4b)

(γ) x̂rsk + x̌rsk =
∑

p∈P rsk
(Bp̂ +Bp̌)xp, ∀r ∈ R, s ∈ S, k ∈ Krs

(3.4c)

(λ̂) Ax̂rsk = qrskErk, ∀r ∈ R, s ∈ S, k ∈ Krs (3.4d)

(λ̌) Ax̌rsk = qrskEks, ∀r ∈ R, s ∈ S, k ∈ Krs (3.4e)

(µrs)
∑

k∈Krs

qrsk = drs,∀r ∈ R, s ∈ S (3.4f)

x̂rska , x̌rska ≥ 0, ∀a ∈ A, r ∈ R, s ∈ S, k ∈ Krs (3.4g)

xrskp ≥ 0, ∀p ∈ P rsk, r ∈ R, s ∈ S, k ∈ Krs (3.4h)

va ≥ 0, ∀a ∈ A (3.4i)

qrsk ≥ 0, ∀r ∈ R, s ∈ S, k ∈ Krs. (3.4j)

where:

va : traffic flow on link a;

ta(·) : travel time function of link a, e.g. the Bureau of Public Roads (BPR)

function;

drs : travel demand from r to s (model input);

2Note that when multiple types of trips are considered, the variables (x and q) and all the
parameters involved in the utility function should carry an additional subscript corresponding
to a specific trip type, which is omitted here for brevity.
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qrsk :traffic flow from r to s and service at k;

xrskp : traffic flow on path p that connects r, k, s;

x̂rska : traffic flow on link a that belongs to the travel from r to k associated

with Origin-Service-Destination triple rks;

x̌rska : traffic flow on link a that belongs to the travel from k to s associated

with Origin-Service-Destination triple rks;

A : node-link incidence matrix of network, with 1 at starting node and −1

at ending node;

p̂ : sub-path of path p ∈ P rsk that connect r to k;

p̌ : sub-path of path p ∈ P rsk that connect k to s;

Bp : link-path p incidence vector, with ith row equals to 1 if path p includes

link i and 0 otherwise;

Eij : O-D incidence vector of O-D pair ij with 1 at origin i, −1 at destination

j;

γ, λ̌, λ̂, µ : dual variables of corresponding constraints.

Constraint (3.4b) calculates the aggregate link flow va from the isolated link

flow associated with rsk: x̂rska and x̌rska ; Constraint (3.4c) guarantees there is

always a feasible path flow solution xp(p ∈ P ) that can yield a given link flow pat-

tern. Constraint (3.4d, 3.4e) ensures the flow conservation at each node, including

the origin, intermediate stop, and destination nodes; Constraint (3.4f) further re-

stricts the total trips originated from node r should be equal to the total travel

demand at that location. The rest of the constraints set non-negative restrictions

on path flow and O-D demand. In the objective function (3.4a), the first term

corresponds to the total user cost as modeled in a conventional static traffic equi-

librium model, the second term involving q ln q corresponds to the entropy of trip

distribution, and the remaining terms correspond to the utility measure of the

travelers. This objective function does not have a physical interpretation, but it

guarantees the first Wardrop principle [Wardrop, 1956] and the multinomial logit

facility choice assumption being satisfied. This can be seen from Lemma 1. For
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the original CDA model, one can refer to [Sheffi, 1985]. Notice that the formula-

tion proposed here include CDA as a special case. For some numerical examples

to illustrate some special cases of our model, please see Section 3.4.2.

Lemma 1 (Generalized Combined Distribution and Assignment) The optimal so-

lutions (x̂∗, x̌∗,x∗, q∗) of problem (3.4) are the equilibrium solutions for the ser-

vice location choice with logit facility demand functions and Wardrop user equi-

librium.

Proof. See Appendix B.

3.2.4.3 Market clearing conditions

To calculate the equilibrium market charging prices, we have a market clearing

condition that specifies the total demand equals the total supply at every supply

location. If only trips demanding fast charging are considered, we can simply

express the following:

(ρk)
∑

i∈Ik

gki −
∑

r∈R

∑

s∈S

ersqrsk = 0, ∀k ∈ K. (3.5)

Otherwise, when heterogeneous trip types are considered, variable q in (3.5)

should be type-specific to include only trips demanding fast charging. We shall

also point out a major limitation of trip-based assignment models as the one

adopted here: it is unable to capture tour-based charging activities, for which an

activity based network model would be more appropriate.

As stated before, the decisions of all participants in this system are interde-

pendent and should be modeled simultaneously as a whole system. Taking the

same idea as Nash equilibrium, at system equilibrium, there is no incentive for

each agent to alter their strategies, given the market clearing price ρ and the

rest of agents decisions. We state the system equilibrium more formally by the

following definition.
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Definition 2 (System Equilibrium). The equilibrium state of the system is that

all investors achieve their own optimality of problem (3.2) (defined in 3.2a-3.2d)

and traffic achieves its optimality of problem (3.4) (defined in 3.4a-4.3g) given

market clearing price ρ and the other agents’ decisions. In addition, the EV

charging market is cleared by condition (3.5).

3.3 Solution Methods

Solving the proposed MOPEC model in a complex network presents great theoret-

ical and computational challenges. One may choose to derive the first-order opti-

mality conditions for each agent’s optimization problem, and then combine them

all to form a mixed complementarity problem (MCP) [Ferris and Pang, 1997]. Re-

cently, there are more theoretical developments by Jofré and Wets [2009], rooted

in the foundation of variational analysis, on variational convergence of bivari-

ate functions. The authors showed that a broad family of equilibrium problems

can be studied under the framework of finding a maxinf-point of certain bifunc-

tion (bivariate function), and established convergence theorems for this category

of problems by relying on the notion of lopsided convergence. Their theoreti-

cal contribution opens up opportunities for in-depth analyses on stability and

convergence properties of equilibrium solutions. From an algorithmic viewpoint,

the flexibility of constructing a bifunction allows one to choose a sequence of bi-

function with desired properties (including convexity and continuity), so that the

complexity of an original problem can be reduced to a sequence of easier problems.

In this study, we formulate the problem of finding an equilibrium market

clearing electricity price, as a problem of finding a maxinf-point for an appropriate

function. Next, we will first discuss the construction of a bifunction and the

corresponding convergence theorems, which then leads to a detailed description

of the solution algorithm.
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3.3.1 Algorithm Design

The construction of a bifunction follows the scheme presented in [Deride et al.,

2015], with modifications to adapt to the problem of fast charging infrastructure

planning. For a price ρ ∈ IRK
+ , denote (cki (ρ), gki (ρ))k∈Ki the solution to the opti-

mzation problem solved by each firm i ∈ I, defined in problem (3.2a-3.2d). Addi-

tionally, define the total capacity ck(ρ) =
∑

i∈I c
k
i (ρ), k ∈ K. On the other hand,

given a total capacity vector c(ρ), and a price ρ, define (x(ρ, c(ρ)), q(ρ, c(ρ)) as

the solution for the traffic assignment problem defined in problem (3.4a-4.3g).

Defining the excess supply function as

ESk(ρ) =
∑

i∈Ik

gki −
∑

r∈R

∑

s∈S

ersqrsk, ∀k ∈ K.,

the equilibrium condition described in equation (3.5) can be re-stated as the ex-

istence for an equilibrium price ρ∗ ∈ IRK
+ such that

ES(ρ∗) = 0.

In order to get the maxinf-characterization of the equilibrium problem, let

us introduce the Walrasian function associated with this equilibrium problem,

defined as

W (ρ,ϕ) = −
∑

s∈S

ϕk(ESk(ρ))2, on IRK
+ ×∆K ,

where ∆K corresponds to the K-dimensional unit simplex. The following lemma

provides the maxinf intepretation of equilibrium prices.

Lemma 2 (Walras equilibrium prices and maxinf-points) Every maxinf-point ρ ∈
IRK

+ of the Walrasian function W such that W (ρ, ·) ≥ 0, on ∆K is an equilibrium

point.

Proof. See Appendix B.
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Additionally, for ε ≥ 0, we say that ρε is an approximating equilibrium point,

if associated excess supply function ES(ρε) is close to satisfy the equilibrium con-

dition. More precisely, in terms of the Walrasian function, this is if the following

inequality holds

|inf W (ρε, ·)− supinf W | ≤ ε.

Let us denote the sets of ε-approximating equilibrium points as ε− argmaxinf W .

Usually, the problem of maximizing the function ρ 7→ inf W (ρ, ·) lacks con-

cavity properties, which do not allow direct application of a traditional duality

scheme. One can embed this problem into a perturbed family, and apply an aug-

mented Lagrangian for this non-concave formulation; for the general description

and further details, consult [Deride et al., 2015]. Considering the self-dual aug-

menting function σ = 1
2
|·|2, and sequences of nonegative, nondecreasing scalars

{rν}, {Mν}, one can define the sequence of augmented Walrasian functions for

this problem as

W ν(ρ,ϕ) = inf
z

{
W (ρ, z) +

1

2rν
|z −ϕ|2

∣∣∣∣ z ∈ ∆S

}
, on [0,Mν ]×∆S

Using this procedure, the idea is to approximate the problem of finding maxinf-

points of the original Walrasian function W , by computation of approximate

maxinf-points given by the sequence of augmented Walrasians W ν . The appropri-

ate notion of convergence is given by Lopsided convergence, ancillary tight. The

convergence theorem of the proposed approximation scheme is provided below.

Theorem 2 (convergence of approximating maxinf-points) Suppose that supinf W

is finite. Consider non-negative sequences {rν}, {Mν}, and {εν} such that rν↗∞,

Mν↗∞, εν↘0. Let {W ν} be a family of augmented Walrasian functions associ-

ated with each parameters rν and Mν. Let ρν ∈ εν−argmaxinf W ν and ρ∗ be any

cluster point of {ρν}. Then ρ∗ ∈ argmaxinf W , i.e., ρ∗ is an equilibrium point.

Proof. See Appendix B.
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This convergence result provides the theoretic foundations for the design of an

algorithm for finding equilibrium points, based on replacing the original problem

of finding (local near) maxinf-points of W by finding (local near) approximated

maxinf-points for the approximating sequence {W ν}. Start with an initial ap-

proximated price (ρ) at the beginning of the procedure, at iteration ν + 1, given

(ρν ,ϕν), and rν+1 (≥ rν), Mν+1 (≥ Mν), the approach taken can be described in

two phases:

• Phase I: solve the minimization problem

ϕν+1 ∈ argminW ν+1(ρν , ·).

• Phase II: solve the maximization problem

ρν+1 ∈ argmaxW ν+1(·,ϕν+1).

As rν↗∞, and Mν↗∞, in virtue of theorem 2, ρν → ρ∗, a maxinf-point of W ,

i.e., an equilibrium price for the fast charging infrastructure planning problem.

3.3.2 Numerical Implementation

The proposed algorithm was implemented in Pyomo (Python Optimization Mod-

eling Objects, Hart et al. [2012.]), a mathematical programming language based

on Python. The problems that we solve come with the following features:

• For the investors’ problem, the objective function considered is strongly

concave, over a linearly constrained set. This problem is solved using Gurobi

[Gurobi Optimization, 2014], a state-of-the-art and efficient algorithm.

• For the traffic assignment problem, the objective function is convex over

a linearly constrained set determined by traffic equilibrium network con-

straints. This problem is solved using the interior point method, Ipopt,

implemented by Wächter and Biegler [2006].
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• Phase I consists of the minimization of a quadratic objective function over

the K-dimensional simplex. This is solved using Gurobi solver [Gurobi Op-

timization, 2014].

• Phase II is the critical step of the entire augmented Walrasian algorithmic

framework. We need to overcome the (typical) lack of concavity of the

objective function. Thus, the maximization is done without considering

first order information and relying on BOBYQA algorithm [Powell, 2009],

which performs a sequentially local quadratic fit of the objective functions,

over box constraints, and solves it using a trust-region method.

All the examples were run on a 3.30 GHz Intel Core i3-3220 processor with 4 GB

of RAM memory, under Ubuntu 12.04 operating system.

3.4 Numerical Examples

3.4.1 Base Case

3.4.1.1 Data Description

We use Sioux Falls network, a widely used benchmark network as shown in Figure

3.8 3, to test the numerical performance of our solution method and draw some

insights. Sioux Falls network consists of 24 nodes and 76 directed links. The

number on each node/link is the node/link index.

The green, red, yellow nodes in Figure 3.8 represent the set of origins, desti-

nations and candidate investment locations, respectively. The link travel costs,

ta, follow a 4th-order Bureau of Public Roads (BPR) function: ta = t0a[1 + 0.15 ∗
(va/ca)

4], where t0a is the free flow travel time (FFT) and ca is the link capacity

parameter 4.

3Figure credited to Hai Yang and Meng Qiang, Hong Kong University of Science and
Technology

4Note that ca is the “capacity” parameter used in BPR rather than the true link capacity
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Figure 3.2: Base Case Sioux Falls Test Network

We consider 25 o-d pairs, each has 100 travel demand. We assume that in order

to finish the trip, each vehicle needs to charge exactly once, with the same charging

demand, somewhere in the middle of the trip 5. The parameters in the travelers’

utility function are set to be β0 = 0, β1 = 1, β2 = 0, β3 = 0.06, e = 1, inc = 1. In

addition, we select quadratic form for the investors’ costs: φc(c) = 0.1c2 + 170c

and φg(g) = 0.1g2 + 130g, where c and g are in unit of kW and kWh, respectively.

The data we use for the base case is documented in Table A.1, A.2 and A.3 in

Appendix A. Notice that although the network is the same as Sioux Falls, we scale

up the link distance and scale down link capacity and origin-destination (OD)

demand accordingly, in order to reflect the long distance travel (inter-city) and

road congestion. All of the associated parameters are manufactured for illustration

5Notice that: 1) for those EVs that don’t need to charge, we can simply treat them as
conventional vehicle and model them as background traffic. 2) we will relax this assumption to
consider destination charging in Section 3.4.2. 3) One can also easily consider heterogeneous
charging demand for each o-d pair depends on their travel distance.
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purpose only.

3.4.1.2 Computational Performance

Figure 3.3 shows the convergence performance of the solution algorithm. In base

case, the total number of variables is 19216 and the number of constraints is 6111.

We can see that the prices and excess supplies at all nodes converge within 23

iterations. The total computing time that our algorithm took to solve the base

case is 12068 seconds 6.
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Figure 3.3: Base Case Convergence of Prices and Excess Supply

3.4.1.3 Impacts of Transportation Congestion

We investigate the impacts of transportation congestion on the equilibrium so-

lution of charging capacities and prices, in addition to the actual transportation

congestion. The results are presented in Figure 3.4: Case (a) corresponds to the

base case; Case (b) represents the case if we ignore transportation congestion dur-

ing modeling process, and evaluate congestion level using the equilibrium traffic

flow solutions.

The equilibrium prices in Figure 3.4 can be loosely interpreted as the “pop-

ularity” of each charging station: for example, node 22 has the highest price for

6We were not able to solve these examples directly using PATH solver or using diagonal
method
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(a) base case (b) ignoring congestion

Figure 3.4: Impacts of Modeling Network Congestion

both cases because it is located on/near the path of larger OD travel demand

7 and it has larger connectivity 8 compared to other candidate nodes. Ignoring

transportation congestion makes these two advantages of node 22 less significant

because: on one hand, people may detour to farther and cheaper charging stations

without adding too much travel cost; on the other hand, drivers will just take the

shortest path and do not value the alternative accessing options. In Figure 3.4,

ignoring transportation congestion in system modeling reduces the difference of

locational prices between “popular” (e.g. node 22) and “unpopular” (e.g. node

7This can be seen from the sparse charging locations and dense origins and destinations in
the lower half of the network (Figure 3.8).

8This can be seen from the larger node degree of node 22.
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6) charging locations. However, we would like to point out that this observation

depends on specific network setting. Conceptually, the changes from Figure 3.4a

to Figure 3.4b should related to the relative improvement of “path accessibility”

of each charging stations, e.g. how close is one charging station away from the

shortest path or how congested to access a charging station, etc. Investigation

on the rigorous definition and measurement of “path accessibility” will be left for

future work.

3.4.1.4 Impacts of drivers’ preferences on charging locations and prices

In this section, we test the impacts of travelers’ utility parameters on model so-

lution and numerical convergence of the algorithm. Figure 3.5 summarizes the

sensitivity analysis results. The converged solutions of charging prices at various

nodes tell us the locations and prices of deployed charging services (with a pos-

itive price corresponding to a service deployment). Case (a) corresponds to the

base case described in Section 3.4.1.1. Case (b) represents a situation where EV

drivers still do not consider station capacity (β2 = 0), but are highly sensitive

to charging price (β3 = 0.2). In this case, EV charging services are provided at

all potential locations with closer charging prices. Case (c) represents a situation

where EV drivers consider station capacity (β2 = 0.05). Note that while network

congestion and service accessibility are taken into consideration by drivers, the

value of station capacity leads to a more concentrated investment pattern, i.e.

node 22 attracts much more investment than the other candidate nodes.

3.4.2 Special Cases

Our model includes two special cases: the first special case, named Destination

Choice Case, is that drivers can choose their destinations and at the same time

charging at their destinations; the second special case, named Round Trip Case,

is that drivers consider round trip of facility service. Both of these two special

cases correspond to the trip type where people travel in order to get services. The
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Figure 3.5: Sensitivity Analysis on Drivers’ Preferences

only difference is whether travelers incorporate one-way or round-trip travel time

into their decision process.
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3.4.2.1 Examples

Round Trip Case can be easily incorporated in our model by specifying r = s.

We constructed an example (see Figure 3.6), which has 5 origins and 5 service

locations. The travelers need to come back to their origins after receiving some

services, e.g. shopping, recreations, etc. Each O-D pair has 500 travel demand

and all the other parameters are identical with base case. To adapt our model to

Destination Choice Case, we need to add a dummy destination node to all the

service locations in Figure 3.6, with zero link cost. The equilibrium solutions of

these two special cases are shown in Figure 3.7, from which different investment

and travel patterns are generated due to one-way and round-trip travels.
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Figure 3.6: Round Trip Case Sioux Falls Test Network

3.4.2.2 Comparison with Central Planner Case

In order to compare with existing literatures on EV charging infrastructure plan-

ning, in this section, we present non-commuting trips demanding fast charging at
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(a) Round Trip Special Case (b) Destination Choice Special Case

Figure 3.7: Equilibrium Solutions of Two Special Cases

the destinations (typically those fast charging facilities co-located with other com-

mercial/recreational activities) and explore the impact of business-driven charging

facility investment behaviors in a competitive market. The detailed computation

performance and sensitivity analyses of this special case can be found in [Guo

et al., 2016].

We adopt the same manufactured network specifications, link travel costs and

user preference data as in [He et al., 2013]. The green nodes in Figure 3.8 represent

the set of origins, destinations and candidate investment location for all the firms,

i.e. R = S = Si,∀i. The number on each link is the link index.

The case study in [He et al., 2013] is used as a benchmark, where the power

generators and the charging infrastructure investors are all controlled by a central

planner to maximize the total social welfare. While in our model, we allow the

charging infrastructure investors to make their individual decisions in a competi-
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Figure 3.8: Sioux Falls Test Network with 12 candidate investment locations
(green)

tive market. Note that the locational marginal electricity prices, which are model

output in [He et al., 2013], are taken as exogenous parameters in our model.

Table 3.1 compares the results in terms of the total allocation of charging ca-

pacity at each candidate node. There are two equilibrium cases: the first case

allows investment on all candidate nodes; the second case assumes that nodes

11-21 already have existing charging facilities and are excluded from the candi-

date location set, which is consistent with the setting in [He et al., 2013]. We

can see that the total investment, which is 126.17 MW, is identical across all

three cases. This is straightforward because the setting of this example assumes

inelastic total charging demand. However, the charging capacities allocated to

different nodes are very different: the result in [He et al., 2013] tends to concen-

trate more investment on nodes 4, 5 and 10, while our model leads to a more

diffused investment outcome in both equilibrium cases. The difference is not sur-
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prising. The objective of [He et al., 2013] is to maximize the social welfare, which

includes surplus for consumers, investors and generators, while in our model each

investor makes decision to maximize individual profits. Even though the value

of locational marginal price ρs sends signal of the market charging demand to

the investors, it cannot capture the externality of traffic and charging congestion.

Therefore, a business-driven competitive market generally cannot yield a social

optimal solution.

Table 3.1: Comparison between Central Planner Allocation and Market Equilib-
rium Outcome

Node Central Planner Equilibrium Equilibrium (fixing results at Nodes 11-21)

1 1.77 10.22 13.52

2 1.52 10.06 11.85

4 34.01 10.86 18.85

5 24.63 10.58 16.51

10 37.53 10.55 38.74

11 3.51 11.27 3.51

13 2.04 9.02 2.04

14 3.08 10.65 3.08

15 5.99 12.10 5.99

19 4.60 11.43 4.60

20 3.94 9.66 3.94

21 3.55 9.78 3.55

Total 126.17 126.18 126.18
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3.5 Discussion

In this chapter, we domonstrate how our general modeling framework can be ad-

pated to formulate the EV fast charging infrastructure planning in a competitive

market. The main contribution of this chapter is the establishment of a theoretical

foundation, from both modeling and computational aspects, for business-driven

EV charging infrastructure investment planning problem. We have gained encour-

aging numerical results from a medium-size testing network, but our work is still

at a relatively preliminary stage and further efforts are needed to fully understand

how market competition might influence the layout of future public charging in-

frastructure. From a computational perspective, there are further improvements

to be made. For example, specialized solution methods for solving the combined

destination and assignment mode developed in the transportation literature may

be adopted. From a practical perspective, an immediate next step is to implement

our model in a real-world case study, where one may investigate relevant plan-

ning and policy questions, such as how to design economic/pricing mechanism

to guide private investment towards a social-optimal outcome and how travel-

ers’ utility might influence business-driven investment strategies. Lastly, from

a modeling perspective, one may extend the proposed method to the stochastic

case, which is important for long-term planning as knowledge of future parame-

ters is often poor at the time of planning stage. In this case, one may construct

a stochastic MOPEC problem, for which the solution method provided in this

chapter may be combined with scenario decomposition methods, e.g. Progressive

Hedging method [Rockafellar and Wets, 1991]. Another extension is to have a

fully integrated power and transportation infrastructure system, which requires

explicit modeling of both power grid and transportation network. This extension

will add more decision entities to the system thus increasing the problem complex-

ity, but we expect that the general MOPEC modeling framework and variational
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convergence theories can still apply. Lastly, we shall point out that the MOPEC

model presented here is only suitable for identifying an equilibrium condition of

the system in the long term. It would not be a suitable modeling choice if the

emphasis were on learning effects and system dynamics during a transition state.

66



Chapter 4

Application II: Power Generators

Planning in a Restructured

Electricity Market

The second application we are going to present is on power system, in which

we incorporate uncertainties, interdependencies and decentralization simultane-

ously using our general modeling framework N-SMOPEC. The goal is to establish

a mathematical model and corresponding computation techniques for analyzing

long-term infrastructure investment decisions in a deregulated electricity market.

In order to keep a concrete ground for discussion, we focus on the United States

as a special case of deregulated market.

4.1 Introduction

First of all, a power supply system often involves non-cooperative behaviors of

multiple decision entities. For example, in the United States there are multiple

generation companies supplying electricity to a region’s electricity grid, which

is often operated by a separate non-profit Independent System Operator (ISO).

ISO is in charge of coordinating, controlling and monitoring the operation of

the electrical system in order to keep stability and efficiency of the network and
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instantaneously balance supply and demand [CalISO, 2013]. Capturing the in-

teractive behaviors of different system players simultaneously requires modeling

techniques beyond conventional optimization approaches based on single decision

entity. Secondly, the physical infrastructure for producing and delivering energy

are interdependent due to their spatial and functional correlations [Rinaldi et al.,

2001], which requires a network-based modeling framework to capture the spa-

tiality of supplies/demands and the transmission network connecting them. As

demonstrated by Hobbs et al. [2008], inclusion of transmission network constraints

may result in significantly different predictions on generators’ behaviors in a com-

petitive market. Coping with uncertainty is another major challenge in long term

planning, especially considering the evolvement of technologies and demand in

the future. Despite of the importance of addressing uncertainties in energy sys-

tem planning as identified in [IEA, 2006], very few stochastic models exist in the

literature of energy infrastructure planning.

The electricity market in the United States is generally considered as an

oligopoly market, even though the levels of market competitiveness vary by regions

[Bushnell et al., 2007]. Depending on the decision variables and anticipation of

rivals’ reaction [Day et al., 2002], an US electricity market is often modeled based

on one of the following: in a Cournot competition [Cournot and Fisher, 1897], each

generator submits a fixed supply quantity; and in a Supply Function Equilibrium

(SFE), each generator submits a production function (i.e. available production

quantity as a function of price). It can be shown that if firms know exactly the

market realization, SFE and Cournot models yield the same solution [Willems

et al., 2009]. The advantage of Cournot models is their simplicity and therefore

can be integrated with more complex market and system settings [Willems et al.,

2009, Hu et al., 2004]. However, Cournot model is known to be sensitive to demand

parameters. SFE models on the other hand provide more flexibility in addressing
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varying demand conditions [Day et al., 2002]. Based on one of these assumptions,

researchers have provided in-depth analyses on the impacts of market competition

[Hobbs et al., 2000, Hobbs and Pang, 2007] and transmission network constraints

[Hobbs et al., 2008] on power markets. Stochastic oligopolistic models have also

been developed to analyze the operation of power markets under demand and cost

uncertainties [Genc et al., 2007, Pineau and Murto, 2003]. All these studies focus

on the operational aspects of a power market with fixed infrastructure and do not

consider investment decisions on the physical infrastructure.

With wholesale electricity market deregulated, traditional capacity expansion

models developed for regulated firms, such as [Murphy et al., 1982], became inade-

quate, and studies dealing with both investment and operations in an oligopolistic

electricity market were critically needed [Kagiannas et al., 2004]. A series of stud-

ies have been developed based on game theoretic models and multi-agent based

simulation [Wogrin et al., 2011]. One of the main benefits of game-theoretic mod-

els is their capability to capture strategic behaviors of each player when making

long-term investment decision [Ventosa et al., 2002, Murphy and Smeers, 2005].

In a closed-loop model, investment decisions and market operation decisions are

assumed to happen in separate stages. Typically a bi-level model is used, with

upper level focusing on investment decision and the lower level on daily operation

(i.e. generation decision) under given capacities. This type of models can also be

categorized as an Equilibrium Problem with Equilibrium Constraints (EPEC) or

Mathematical Programming with Equilibrium Constraints (MPEC), for which ex-

istence and uniqueness of equilibrium solutions are not always guaranteed [Ralph

and Smeers, 2006]. In an open-loop model, investment and generation decisions

are assumed to be made simultaneously. This simplification significantly reduces

computation difficulty, and has a real implication: forward contract [Ventosa et al.,

2002, Murphy and Smeers, 2005], even though it weakens the ability to capture
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possible market power of players’ first-stage investment decisions on short-term

markets. In this chapter, we adopt an open-loop approach. Readers may refer to

[Wogrin et al., 2012] for more discussion on open vs. closed loop models.

Considering non-cooperative games on a network structure adds more com-

plexity. In the literature on power generation capacity expansion in oligopolistic

markets, only a few studies explicitly model the transmission and location effects.

In [Kazempour and Conejo, 2012], a stochastic MPEC model is developed with the

upper level focusing on a strategic player’s investment decision and the lower level

capturing the ISO’s electricity dispatch problem. In that model, the rivals do not

participate in competition on generation capacities as their investment decisions

are treated as model input instead of decision variables. In [Kazempour et al.,

2013], a deterministic EPEC model is developed for modeling capacity expansion

decisions of rival investors considering transmission network constraints. There

are also studies approaching from an energy supply chain perspective, in which a

detailed transmission network is replaced by direct links between generators and

demands. For example, Liu and Nagurney [2011] proposed an analytical model

for energy firm merging and acquisition through supply chain network integration.

In addition, there are also supply-chain-based studies focusing on the operational

issues of power systems without considering the strategic planning of infrastruc-

ture, such as integration of renewables with other fuel markets [Matsypura et al.,

2007, Nagurney and Matsypura, 2007, Liu and Nagurney, 2009].

In summary, little work has been reported in the literature for modeling gener-

ation infrastructure planning considering all three challenges: uncertainty, infras-

tructure interdependency, and oligopoly competition. In this chapter, we model

using our N-SMOPEC framework to support strategic infrastructure planning in

an oligopolistic power market. In the proposed model, uncertain parameters are

described by a discrete set of scenarios and their associated probabilities. Each in-
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vestor aims to maximize the expected total profit by choosing the best first-stage

investment decision and the second-stage scenario-dependent generation decisions.

The ISO dispatches electricity from the generators to the demands to maximize

consumer surplus while satisfying the transmission network constraints and the

market clearing conditions. A system equilibrium is achieved when all agents

solve their problems optimally.

The remaining part of this chapter is organized as follows. In Section 4.2, we

first recap the general stochastic multi-agent modeling framework, then describe

the behavior of each party involved in the power grid, and give specific assump-

tions and formulation of the proposed model. In Section 4.3, we demonstrate

how the original energy problem may be reformulated and converted to multiple

user-equilibrium traffic network assignment problems. In Section 4.4, we present

numerical results and draw planning and policy implications. The last section

concludes the chapter with insights, discussions, and future extensions.

4.2 Mathematical Model and Analyses

4.2.1 Recap of Stochastic Programming and N-SMOPEC

The research question is stated as: How should energy investors strategically

plan their production infrastructure (where and at what capacities to build their

production facilities), to ensure long-term economic benefit while integrating with

the existing power grid?

Even though our emphasis is on the strategic planning of production infras-

tructure, the cost-effectiveness of a planning decision depends on how the system

is likely to be operated afterwards. To model the planning and operational stages

in an integrated framework, one should recognize the very distinguishable natures

of the two types of decisions against uncertainty, which may be related to demand,

supply, and technology. At this point, let us use a general notation ξ to represent

the uncertain vector. We assume ξ follows a discrete probability distribution,
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described by a set of discrete scenarios and associated probabilities. Planning de-

cisions, such as infrastructure setup, are usually made before future uncertainty

is revealed and are difficult to readjust once implemented. On the other hand,

operational decisions such as electricity production and dispatching quantities can

be adjusted based on the actual realization of uncertain parameters (for example,

the actual demand or a more accurate hour-ahead demand forecast). This feature

fits well in a stochastic programming framework [Louveaux, 1986, Birge and Lou-

veaux, 2011], which recognizes the non-anticipativity of planning decisions while

allowing recourse for operational decisions.

The classic two-stage stochastic program for a single decision maker, in the

simplest form, may be presented as follows [Birge and Louveaux, 2011]:

minimize
x

f(x) + Eξ [Q(x, ξ)] (4.1a)

subject to x ∈ F (4.1b)

Q(x, ξ) = inf
y
{g(x,y, ξ)|y ∈ G(x, ξ)} , (4.1c)

where x represents the planning-stage decision, and y the operational decision,

which depends on the choice of planning decision and the actual realization of

the uncertain parameters ξ. The objective is to minimize the first-stage planning

cost, f(x), plus the expected value of the second-stage operational cost, Q(x, ξ),

subject to the feasibility constraints of x and y.

In our problem, each decision entity makes her own decision, but needs to

simultaneously account for other decision entities’ behaviors given the interde-

pendence among them. For example, too much electricity generation at a local

point may increase transmission congestion, which could affect all parties in the

power system. This problem fit in well with our general modeling framework

N-SMOPEC. Using a two-player problem as an example, the above formulation
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(4.1a ∼ 4.1c) may be extended to the following:

(x1,y1) = arg min
x1,y1

{f1(x1,x2) + Eξ [g1(x1,x2,y1,y2, ξ)]}

(x2,y2) = arg min
x2,y2

{f2(x1,x2) + Eξ [g2(x1,x2,y1,y2, ξ)]}

s.t. (x1,x2) ∈ F and (y1,y2) ∈ G(x1,x2, ξ),

where xi and yi(ξ) represent the planning decision and the operational decision

of player i (i = 1, 2), respectively; and fi and gi are the first-stage and second-

stage costs of player i, respectively. Each player aims at minimizing her own

total expected cost, i.e. the planning plus the expected operating cost. Note

that yi(ξ) is ξ-specific, but for brevity, we write it as yi. Also, for generality, we

specify the objective functions and constraints in a form relating both players de-

cisions, which may be decomposable to individual player in many cases. For those

agents only make second stage decisions, their optimization problem degenerate

to deterministic optimization problem.

4.2.2 Detailed Formulation for Each Decision Entity

The conceptual modeling framework is illustrated in Figure 4.1. ISO and indi-

vidual generators make their own decisions in order to fulfill their own objectives.

Their decisions determine the power flows of the supply and demand side, which

endogenously determines the locational electricity prices. We will explain our

modeling assumptions in more details and present the formulation for each deci-

sion entity in the following sections.

4.2.2.1 Modeling the decision of electricity generation companies

In this study, we assume the generators follow an open-loop Cournot competition.

A new energy generator that is entering the system has two types of decisions to

make. During the planning stage, it decides where and at what capacity to invest

its production facilities. At the operational stage, it chooses its best production
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Each power generator

max    E (Total revenue – Total cost)
s.t. Capacity constraint

min     (Total consumer benefits - Transmission cost – Production cost)
s.t. Balance demand and supply

Flow balance constraint
Transmission capacity constraint
Phase angle constraints

Capacity
Quantities

Independent System Operator (ISO) 

Demand Market

SupplyTransmission flow

Prices

Modeling Flow Chart
Motivation Methodology Transportation Power Discussion

Figure 4.1: Conceptual Modeling Framework for Power System

strategy. This generator makes all these decisions to maximize the expected total

profit while taking into account the decisions of other entities in the system. For

each generation Firm ∀i ∈ I:

maximize
gji (ξ),cji

−
∑

k∈K

∑

j∈Jk

φc(c
j
i ) + Eξ

{∑

k∈K

∑

j∈Jk

[
ρk(ξ)gji (ξ)− φg(gji (ξ), ξ)

]
}

(4.2a)

subject to gji (ξ) ≤ cji , ∀j ∈ Jk, k ∈ K, ξ ∈ Ξ; (4.2b)

gji (ξ) ≥ 0, ∀j ∈ Jk, k ∈ K, ξ ∈ Ξ; (4.2c)

cji ≥ 0, ∀j ∈ Jk, k ∈ K. (4.2d)

where:

Jk : set of candidate investment locations connecting to access point1 k, in-

1Any node in the power grid can be an access point as long as there is supporting transmission

74



dexed by j;

K : set of access points, indexed by k;

I : set of companies, indexed by i;

cji : added capacity at location j of firm i;

gji : production quantity by firm i at location j ;

ρk : ISO’s electricity purchasing price at each accessing point k;

φc(·) : total capital cost function with respect to facility capacity;

φg(·) : total production cost function with respect to generation quantity and

scenario;

ξ : vector of uncertain parameters, whose support is denoted by Ξ.

Note that throughout the entire chapter, we denote vectors in lowercase bold font.

The objective function (4.2a) maximizes the total profit of each firm, which is the

total revenue minus the total capital and production costs. The decision variables

include the capacity and generation amount at each potential production location.

We assume a uniform nodal price (Locational Marginal Price), thus the total

revenue is calculated by
∑

k∈K
∑

j∈Jk ρkg
j
i . Constraint (4.2b) ensures that the

total electricity generated at a production facility does not exceed its production

capacity. Note that for some renewable technologies such as solar or wind, the

right-hand-side of constraint (4.2b) may be attached with a weather-related factor

to reflect its effective capacity. The rest are non-negative restrictions. Note that

to keep consistent time scale, we treat all agents’ problems at an hourly basis.

infrastructure.
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4.2.2.2 Modeling the decision of Independent System Operator (ISO)

The ISO decides the wholesale price and transmission flow of each transmission

line to balance electricity supply and demand in the network instantaneously.

Considering the non-profit nature of ISO, we set its goal as to maximize total

social welfare. To capture congestion effect of transmission lines, we assume that

transmission cost is a monotone increasing function of the transmitted flow quan-

tity, which is a similar treatment as in [Hearn and Yildirim, 2002]. Denote the

transmission network by G = (N ,V) , where N is the set of nodes (indexed by n)

and V is the set of links (indexed by a). Electricity from a supply (origin) node

to a demand (destination) node is modeled as an O-D flow. Since ISO’s decisions

are operational, these can be adjusted based on the actual realization of future

uncertainty. This means that all decision variables of ISO are scenario dependent,

but for brevity, we do not carry ξ in the formulation below. ISO’s problem, in a

given scenario, is formulated as:

minimize
x,t

φt(v)Tv +
∑

i∈I

∑

k∈K

∑

j∈Jk

φg(g
j
i )−

∑

k∈K

∫ dk

0

wk(s)ds (4.3a)

subject to v =
∑

q∈Q

xq, (4.3b)

Axq = tqEq, ∀q ∈ Q, (4.3c)

(ρ)
∑

q∈Q

tqEq+ = g, (4.3d)

∑

q∈Q

tqEq− = d, (4.3e)

xq ≥ 0, ∀q ∈ Q, (4.3f)

tq ≥ 0, ∀q ∈ Q. (4.3g)

where:

v : aggregated link flow vector. Each element corresponds to a link;
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t : O-D flow vector. Each element corresponds to an O-D pair;

φt(·) : transmission cost function, which depends on link flow;

ρ : wholesale price vector. Each element corresponds to a node;

g : electricity supply vector. The jth element corresponds to the total energy

supplied by all companies at node j, that is gj =
∑

i∈I g
j
i ;

xq : link flow vector associated with OD pair q. Each element corresponds to

a link ;

d : electricity demand vector. Each element corresponds to a node;

dk : total electricity demand at node k;

wk (·) : inverse demand function at node k;

A : node-link incidence matrix, whose rows correspond to nodes and columns

correspond to links, with +1 indicates the starting node of a link and -1

the ending node.

Q : set of O-D pairs, indexed by q;

tq : O-D flow associate with O-D pair q;

Eq : O-D incidence vector of O-D pair q with +1 at the origin and -1 at the

destination;

Eq+ : “O” incidence vector of O-D pair q with +1 at the origin;

Eq− : “D” incidence vector of O-D pair q with +1 at the destination.

The objective function (4.3a) maximizes (minimizes the negative value of) the

total system surplus. The first term in function (4.3a) is the total transmission
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cost; the second term is the total production cost for all the electricity consumed in

the system; the third term is the willingness to pay by all consumers. Constraint

(4.3b) defines the aggregate link flow vector as the sum of all O-D flow vectors.

Constraints (4.3c ∼ 4.3e) ensure the flow conservation at each node, including

the supply and demand nodes2. The rest constraints set non-negative restrictions

on flow and demand. With an emphasis on the long-term planning decision,

we have chosen to omit the Kirchhoff’s second law, phase angle constraint. We

acknowledge that such simplification may lead to certain level of accuracy loss,

e.g. loop flows may not be accounted in our model. We shall also point out that

the market clearing conditions adopted in several studies, such as [Nagurney,

2006], are implied by the ISO formulation, which becomes clear in Section 4.2.4.

Note that this model, different from the typical DC models used for short-term

transmission network operation, incorporates elastic demand, which reflects long-

term effect of market equilibrium.

Directly solving the above stochastic multi-agent optimization model can be

numerically challenging. In Section 4.2.3, we show how the stochastic problem

can be reduced to simpler problems through scenario decomposition. In Section

4.2.4, we convert each scenario problem, by using variational inequalities, to a

traffic user equilibrium problem, for which efficient solution algorithms have been

developed in the transportation literature.

4.2.3 Scenario Decomposition

There is a rich literature on scenario decomposition for solving large-scale stochas-

tic programming problems via augmented Lagrangian method [Rockafellar, 1976].

Let us first recap an important concept, nonanticipavity [Rockafellar and Wets,

1991], which states that a reasonable policy should not require different actions

relative to different scenarios if the scenarios are not distinguishable at the time

2For a small example illustrating these flow conservation constraints, please refer to Appendix
C.
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when the actions are taken. Let S be a discrete set of possible scenarios for ξ

and s(s ∈ S) denote an individual scenario with probability ps. One may con-

sider solving each scenario-dependent problem and denote its solution as xs for

each s. However, these solutions cannot be directly implemented, because at the

time when an investment decision is made, one does not know yet which scenario

is going to happen. In order to consolidate the s-dependent solutions to an im-

plementable solution, we must impose the following nonanticipativity condition:

xs = xs
′
,∀s ∈ S, s′ ∈ S, s 6= s′ (4.4)

or equivalently

xs − z = 0, ∀s ∈ S (4.5)

where z is a vector of free variables.

Through introducing an augmented Lagrangian function that adds a penalty of

violating the nonanticipativity condition to the original objective function, Rock-

afellar and Wets [1991] developed a scenario-decomposition method, the progres-

sive hedging (PH) method, for classic two-stage stochastic programming problems

involving a single decision-maker. In this work, we extend the idea of scenario

decomposition to multiple decision-maker cases.

Let xsi and ysi be the planning decision and the operational decision of player

i(∈ I) in scenario s(∈ S), respectively. The stochastic multi-agent optimization

problem can be reformulated as:

(xsi ,y
s
i ) = arg min

xsi ,y
s
i

{
E
[
fi(x

s
i ,x

s
−i) + gi(x

s
i ,x

s
−i,y

s
i ,y

s
−i, ξ)

]}
,

s.t. (xsi ,x
s
−i) ∈ F, xsi = zi, and (ysi ,y

s
−i) ∈ G(xsi ,x

s
−i, ξ),

∀i ∈ I, s ∈ S
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For the ith player, define

L s
i (x,y, z,ω) = f si (xs) + gsi (x

s,ys) + ωsi
T (xsi − zi) + 1

2
γ‖xsi − zi‖2 (4.6)

Li(x,y, z,ω) =
∑

s∈S p
sL s

i (x,y, z,ω) (4.7)

as the augmented Lagrangian, where ωsi is the dual vector associated with the

nonanticipativity constraints (4.5) and γ > 0 is a penalty parameter. Therefore,

the augmented Lagrangian integrates the nonanticipativity constraints with the

original objective function. The stochastic problem for player i becomes

minimize Li(x,y, z,ω) over all feasible xsi and ysi . (4.8)

Due to the nonseparable penalty term 1/2γ‖xsi − zi‖2 in (4.7), the problem

cannot be decomposed directly. The PH method achieves decomposition by al-

ternatingly fixing the scenario solutions (xsi ,y
s
i ) and the implementable solution

zi in (4.8). The implementation procedure has been summarized in Algorithm

2. Recent successful applications of PH method in solving large-scale stochastic

mix-integer problems can be found in [Chen and Fan, 2012, Fan and Liu, 2010,

Waston and Woodruff, 2010]. As pointed out by Rockafellar and Wets [1991],

parameter γ plays an important role in the convergence of the PH method in

practice. In addition, several studies [Løkketangen and Woodruff, 1996, Mulvey

and Vladimirou, 1991, 1992, Chen and Fan, 2012, Waston and Woodruff, 2010] re-

ported some important factors that may influence the setting of penalty parameter

γ. For example, it was suggested that an effective value for the penalty parameter

should be close in magnitude to the coefficient of decision variable [Waston and

Woodruff, 2010].

4.2.4 Analyzing Each Scenario-dependent Problem

Once the large-scale stochastic problem is decomposed, we need to iteratively

solve many scenario-dependent deterministic problems. Each scenario-dependent
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problem itself is a multi-agent optimization problem, which is still computation-

ally challenging. Next, we will show that, through creation of a virtual network

and reformulation, we can convert the problem of interest to a traffic equilibrium

problem, which allows us to exploit efficient algorithms developed by the trans-

portation network science community. Of course, both multi-agent optimization

and traffic equilibrium problems can be expressed using variational inequalities

(VI). In some sense, it is not surprising that the two problems can be converted

to each other, even though the equivalence is not apparent at first. For numerical

implementation, one could directly rely on general purpose solvers designed for

VI problems. On the other hand, there is an advantage in exploiting special prob-

lem structure, such as many efficient algorithms specifically developed for traffic

equilibrium problems.

Let us first convert each player’s optimization to a VI. Note that all the func-

tions and variables are deterministic in each scenario dependent problem, therefore

we do not carry the notation ξ in the following discussion. Assuming objective

function (4.2) is concave and continuously differentiable, the model can be rewrit-

ten as the following VI3:

∑

k∈K

∑

j∈Jk

{
−


ρ∗k +

∑

k′∈K


 ∂ρk′

∂gji

∣∣∣∣
g=g∗

∑

j∈Jk′

gj∗i


− ∂φg

∂gji

∣∣∣∣
gji=gj∗i

− λij∗c


(gji − gj∗i

)

−
[
− ∂φc

∂cji

∣∣∣∣
cji=c

j∗
i

+ λij∗c

]
(
cji − cj∗i

)
+
(
−gj∗i + cj∗i

) (
λijc − λij∗c

)

}
≥ 0,∀ (gi, ci,λi) ∈ K 1

i

(4.9)

K 1
i ≡

{
(gi, ci,λi) ∈ IR3li

+ |(4.2b) is satisfied
}

3Note that since the wholesale prices depend on the production quantities, chain rule of
differentiation should be used while taking derivatives to arrive at the VI.
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where:

λijc : dual variable of capacity constraint of firm i on location j;

gi : vector that concatenates gji variables;

ci : vector that concatenates cji variables;

λi : vector that concatenates λijc variables;

li : number of optional locations for each conpanies i;

K 1
i : feasible set of firm i’s decision.

Similarly, the ISO’s problem can be expressed using VI as follows:

∑

q∈Q

[
φt(v

∗) +∇φt(v∗)v∗ − ATλq∗
]T

(x q − x q∗)

+
∑

q∈Q

[
EqTλq∗ + ρ ∗TEq+ − w(d∗T )Eq−] (tq − tq∗) ≥ 0,∀x q, t q ∈ K 2

(4.10)

K 2 ≡ {(x, t) |(4.3b) ∼ (4.3g) is satisfied}

where:

∇φt(·) : Jacobian matrix of link cost function;

λq : dual vector associated with constraint (4.3c) of O-D pair q. Each row

corresponds to a link;

K 2 : feasible set of ISO decision.

Note that the market clearing conditions [Nagurney, 2006] are implied by the ISO

formulation: The second term in Equation (4.10) means that if the demand of

OD pair q, tq, is zero, then the wholesale price plus the transmission cost can

be larger than the consumer willingness to pay; otherwise, the wholesale price
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plus the transmission cost must be equal to the consumer willingness to pay. In

addition, note that in constraint (4.3c), ISO is required to balance demand and

supply at all time, so the dual variable associated with this equality constraint is

a free variable.

As stated before, the decisions of all participants in this system are interde-

pendent and should be modeled simultaneously as a whole system. We state the

system equilibrium more formally by the following definition.

Definition 3 (Power System Equilibrium). The equilibrium state of a power sys-

tem is that all generators achieve their own optimality (cf. (4.9)) and ISO achieves

its optimality (cf. (4.10)).

We claim the following Lemma, which provides the equivalent condition of the

power system equilibrium conditions.

Lemma 3 (Variational Inequality Condition for the Power System Equilibrium).

The equilibrium conditions governing the power system equilibrium are equivalent

to finding solutions satisfying the following variational inequality (4.11):

∑

k∈K

∑

j∈Jk


−

∑

k′∈K


 ∂ρk′

∂gji

∣∣∣∣
g=g∗

∑

j∈Jk′

gj∗i


+

∂φg

∂gji

∣∣∣∣
gji=gj∗i

+
∂φc

∂cji

∣∣∣∣
cji=c

j∗
i


(gji − gj∗i

)

+ [φt(v
∗) +∇φt(v∗)v∗]T (v − v∗)− w(d∗T ) (d− d∗)

+
∑

k∈K

∑

j∈Jk

{
∂φc

∂cji

∣∣∣∣
cji=c

j∗
i

[(
cji − gji

)
−
(
cj∗i − gj∗i

)]

− λij∗c
[(
cji − gji

)
−
(
cj∗i − gj∗i

)]
+
(
cj∗i − gj∗i − 0

) (
λijc − λij∗c

)
}
≥ 0

∀ (gi, ci,λi) ∈ K 1
i , ∀i, ∀ (x, t) ∈ K 2

(4.11)

Proof. See Appendix B.
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Next we will show the VI problem in (4.11) is equivalent to a transportation

network user equilibrium problem. Let us use a simple case illustrated in Figure

4.2 as an example to explain the construction of a virtual network corresponding

to a traffic network equilibrium problem. In Figure 4.2, a virtual node C denotes

an investment firm; F denotes a potential investment location or an existing gen-

erator. The link flow from a node C to a node F means the capacity that firm

C invests at location F. For an existing generator, link flow of C-F is set to be

the existing generation capacity. Each node P or U corresponds to a firm. The

flows on link F-P and link F-U denote the electricity production quantity and the

unused capacity of that firm at location F, respectively. Virtual node I is created

to denote electricity that shares the same transmission infrastructure to access the

existing power grid. Physical node A denotes an access point or a demand node

in the power grid. In general, there are multiple access points and demand nodes

in a power network. The flow on link P-I denotes the total electricity production

of each firm, and the flow on link I-A or P-A denotes the transmission quantity

between the corresponding locations.

Capital investment�

Power Grid (Transmission Line)�

Actual production�

Strategic bidding�

C1�
!

C2�
!

F1� F2� F3�

U1� P1� P2� U2�

I1�

U3�

C3� F4� P3� A1�

Figure 4.2: A Network Structure of the Problem

Theorem 3 (Virtual Network Equivalence) The VI (4.11) is identical with the VI
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governing transportation user equilibrium of the virtual network shown in Figure

4.2 if link costs and demand market are defined in the following manner:

• For the links within “Capital investment” layer in Figure 4.2 (i.e. from

Node C to Node F), the link cost is set to be the marginal capacity cost, i.e.

∂φc(c
j
i )/∂c

j
i . In case of existing generators, the cost attached to this link is

set to be zero.

• For links connecting Node F and Node P, the link cost is marginal production

cost, i.e. ∂φg(g
j
i )/∂g

j
i .

• For links connecting Node F and Node U, the link cost represents the cost

of shutting off unused generation capacity. In case such cost is negligible, it

can be set to zero.

• For links connecting Node P and Node I, we interpret the link cost as

strategic escalating of electricity price of each generator, which is set to

−∑k′∈K

(
∂ρk′

∂gji
(g)
∑

j∈Jk′
gji

)
(see Appendix D). Because we assume oligopoly

competition, rather than perfect competition in the electricity supply indus-

try, each firm will try to produce electricity at a level where the wholesale

price equals to the marginal cost plus this term so that the profit is maxi-

mized.

• For links within the power grid, a marginal transmission cost is imposed by

the ISO, i.e. φt(v) +∇φt(v)v.

• The demand functions of the nodes within the power grid are assumed to

be given and depend on the retail price only, while the demand function of

Node U is assigned zero despite of the value of capacity shadow price.

Before we give the proof of Theorem 3, we introduce the following Theorem

provided in [Nagurney, 2006]:
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Theorem 4 A travel link flow pattern and associated travel demand and disutility

pattern is a traffic network equilibrium if and only if the variational inequality

holds: determine (f ∗, d∗, λ∗) ∈ K 3 satisfying:

∑

a∈L

φa (f ∗)× (fa − f ∗a )−
∑

n∈N

λ∗n × (dn − d∗n)

+
∑

n∈N

[d∗n − dn(λ∗)]× [λn − λ∗n] ≥ 0,∀(f ,d,λ) ∈ K 3
(4.12)

K 3 ≡
{

(f ,d,λ) ∈ IR|L|+2|N |
+ |there exist an χ satisfying (4.13) and (4.14)

}

fa =
∑

p∈P

χpδap,∀a ∈ L (4.13)

dn =
∑

p∈Pn

χp,∀n ∈ N (4.14)

where:

N : demand node set of virtue transportation network (indexed by n);

L : link set of virtue transportation network (indexed by a);

P : path set of virtue transportation network (indexed by p);

δap : binary indicator, δap = 1 if link a is contained in path p, and δap = 0

otherwise;

φa(·) : link cost function of link a with respect to link flow;

fa : link flow of link a;

dn : demand at demand node n;

dn(·) : demand function at demand node n with respect to travel disutility;

λn : travel disutility at demand node n;

χp : path flow of path p;
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Notice that in Theorem 4, travel disutility is restricted to non-negative value,

which is not applicable in power market, where price can become negative if

necessary (e.g. the ISO may pay consumers to use electricity if supply exceeds

demand and shutting down production facilities is too costly). So we propose the

following Corollary to account for this situation.

Corollary 5 (Unrestricted Locational Price). In a virtual transportation network

where consumer could gain time (instead of spend time) to travel, a travel link flow,

travel demand and disutility pattern (negative means utility) is a traffic network

equilibrium if and only if it satisfies the following VI: determine (f ∗, d∗, λ∗) ∈ K 4

satisfying:

∑

a∈L

φa (f ∗)× (fa − f ∗a )−
∑

n∈N

λ∗n × (dn − d∗n) ≥ 0,∀(f ,d,λ) ∈ K 4
(4.15)

K 4 ≡
{

(f ,d,λ) ∈ IR|L|+|N |+ × IR|N ||there exist an χ satisfying (4.13) and (4.14)
}

Note that since the dual vector λ does not have sign restriction, its corre-

sponding optimality condition is simply the original flow conservation constraints

associated with it, which can be equivalently expressed by (4.13) and (4.14).

Now we propose the proof for Theorem 3.

Proof. See Appendix B.

Note that in each iteration of the PH method, the objective function is up-

dated by adding a Lagrange multiplier and a penalty term, i.e. ωsi
T (xsi − zi) +

1
2
γ‖xsi − zi‖2, which is a function of the planning decision variable. Therefore,

the corresponding VI that needs to be solved during each iteration of the PH
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procedure should be modified as:

∑

k∈K

∑

j∈Jk

[
−
∑

k′∈K


 ∂ρk′

∂gji

∣∣∣∣
g=g∗

∑

j∈Jk′

gj∗i


+

∂φg

∂gji

∣∣∣∣
gji=gj∗i

+
∂φc

∂cji

∣∣∣∣
cji=c

j∗
i

+ ωs∗ij

+ γ
(
cjs
∗

i − cjs∗i
)] (

gji − gj∗i
)

+ [φt(v
∗) +∇φt(v∗)v∗]T (v − v∗)− w(d∗T ) (d− d∗)

+
∑

k∈K

∑

j∈Jk

{[
∂φc

∂cji

∣∣∣∣
cji=c

j∗
i

+ ωs∗ij + γ
(
cjs
∗

i − cjs∗i
)] [(

cji − gji
)
−
(
cj∗i − gj∗i

)]

− λij∗c
[(
cji − gji

)
−
(
cj∗i − gj∗i

)]
+
(
cj∗i − gj∗i − 0

) (
λijc − λij∗c

)
}
≥ 0

∀ (gi, ci,λi) ∈ K 1
i ,∀i,∀ (x, t) ∈ K 2

(4.16)

The additional terms involving ωs∗ij +γ
(
cjs
∗

i − cjs∗i
)

is attributed to the nonantici-

pativity condition. Therefore the link cost associated with C-F should be modified

from ∂φc(c
j
i )/∂c

j
i (see Theorem 3) to:

modified C-F link cost = ∂φc(c
j
i )/∂c

j
i + ωsij + γ

(
cjs
∗

i − cjsi
)

(4.17)

Based on the same network structure shown in Figure 4.2, we now have the PH-

transportation network solution procedure for the stochastic problem as shown in

Algorithm 6. Following this decomposition procedure, the original stochastic en-

ergy supply chain problem is converted to many scenario-dependent deterministic

traffic network equilibrium problems, which can be solved efficiently by Frank-

Wolf algorithm [LeBlanc et al., 1975], which is implemented in this study, or by

other recent methods summarized in [Bar-Gera, 2010].

We shall note that in general the VI defined in (4.16) may have multiple

solutions. For the numerical implementation reported herein, we consider only

the single-solution case. Alternatively, one may consider a min-max formulation

to seek the best investment decision in the equilibrium condition that returns the

worst-case performance.
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Algorithm 6 PH-Transportation Network Solution Algorithm

Step 1: Initialization

for each s in S do

update link cost according to Theorem 3

call Traffic Assignment Algorithm . Such as Algorithm 5. For a path-base

algorithm, see Appendix E.

(c0, g0,ρ0,λ0
c)← call Recover Decision Function . See Appendix E

end for

z0 ←∑
s∈S p

sc0
s ω0

s ← γ(c0
s − z0),∀s ∈ S ε←∑

s∈S‖c0
s − z0‖ τ ← 0

Step 2: PH-iteration

while ε ≥ 10−4 do

for each s in S do

τ ← τ + 1

update link cost according to Theorem 3 and (4.17).

call Traffic Assignment Function . Such as Algorithm 5. For a

path-base algorithm, see Appendix E.

(cτ , gτ ,ρτ ,λτc )← call Recover Decision Function . See Appendix E

end for

zτ ←∑
s∈S p

scτs

ωτs ← ω
(τ−1)
s + γ(cτs − zτ ), ∀s ∈ S

ε←∑
s∈S‖cτs − zτ‖+

∑
s∈S‖cτs − cτ−1

s ‖
end while

return (c,g,ρ,λc)
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4.3 Numerical Examples

4.3.1 A Simple Example for Illustration and Solution Val-

idation

Example 1 is constructed to illustrate how the energy problem may be decomposed

and converted to traffic network equilibrium problems. The example is intention-

ally set to be symmetric so that a benchmark solution can be easily obtained

analytically, which then is used to validate the proposed solution procedure. This

example includes two energy investment companies, one candidate investment lo-

cation, and one electricity demand market. Two scenarios with equal probability

are considered. Transmission cost is set to be zero and transmission capacity

unlimited. The specifics of cost and demand functions are given in Table 4.1.

Table 4.1: Parameter Setting in Example 1

Capital Cost Function ($) Generation Cost Function($)
Demand Function ($/MWh)

Scenario Firm 1 Firm 2 Firm 1 Firm 2

1 10× c1 10× c2 (gs11 )2 + 30× gs11 (gs12 )2 + 30× gs12 ρ = −D + 100

2 10× c1 10× c2 (gs21 )2 (gs22 )2 ρ = −D + 100

Figure 4.3 shows the corresponding virtual network, with four paths: p1 =

(C1, F1, P1, I1, A1), p2 = (C2, F1, P2, I1, A1), p3 = (C1, F1, U1), p4 = (C2, F1, U2).

The solution yielded from our solution algorithm is given in Table 4.2. Each path

in the virtual transportation network carries a physical meaning in the energy

supply chain. For example, path flow on p1 means the amount of power supplied

by firm C1 from location F1 to demand market A1; path flow on p3 represents

the unused capacity of firm C1 at location F1. In addition to path flow, link flow

also has a corresponding implication in the energy supply chain. For example,

link flow from C1 to F1 represents the total capacity investment by firm C1 at

location F1. The multiplier λA1 tells us the marginal electricity price at node

A1. The multipliers λU1 and λU2 tell us the marginal benefit of increasing one
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Figure 4.3: The Virtual Network for Example 1. (Note: the number attached to
each arc is the assigned link cost defined in Theorem 3)

unit of production capacity at node F1 by C1 and C2, respectively. Using this

correspondence, we extract the numerical solutions for the energy infrastructure

investment problem, as shown in Table 4.3. Note that in this simple example, the

consumer surplus is computed at the wholesale level. These results are consistent

with Cournot-Nash equilibrium calculated analytically. The optimal solution to

the stochastic multi-agent optimization problem suggests that each firm invest

for a generation capacity of 16 units. As a comparison, if the company could

wait until future uncertainty is revealed before making investment decision, the

deterministic solutions would be 12 units for scenario 1 and 18 units for scenario

2.

Table 4.4 summarizes the numerical implementation details, including the pa-

rameter setting, computing environment, and computing time. The convergence

pattern of the two scenario-dependent planning decisions is plotted in Figure 4.4,

in which the termination criterion is reached within less than 30 iterations.
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Table 4.2: Traffic Equilibrium Solutions for the Virtual Network

Items Scenario 1 Scenario 2 Items Scenario 1 Scenario 2

p1 (MWh) 14 16 λU1($/MW) 0 20

p2 (MWh) 14 16 λU2($/MW) 0 20

p3 (MWh) 2 0 λA1($/MWh) 72 68

p4 (MWh) 2 0

Table 4.3: Power Market Equilibrium Results

Items Firm 1 Firm 2

Capacity (MW) 16 16

Generation (MWh) s1 : 14 s2 : 16 s1 : 14 s2 : 16

Capacity Shadow Price ($/MW) s1 : 0 s2 : 20 s1 : 0 s2 : 20

Total Profit ($) s1 : 232 s2 : 672 s1 : 232 s2 : 672

Expected Profit ($) 452 452

Whole Sale Price ($/MWh) s1 : 72 s2 : 68

Consumer (at wholesale level) Surplus ($) s1 : 392 s2 : 512

Table 4.4: Numerical Implement Information

Item Value

PH method parameter γ 1

Computing time .218s

Computing tools Matlab 2012b 64 bit (Mac Version)

Computing environment Mac OSX, 2.3 GHz Intel Core i7, RAM 8GB
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Figure 4.4: Convergence of the Planning Decision

4.3.2 A Realistic Case Study Based on SMUD Power Net-

work

To draw meaningful practical implications from the theoretical results reported

here, we implement our model and algorithm on a regional power network in

Sacramento Municipal Utility District (SMUD). The transmission network con-

sists of 25 nodes, 11 of which are demand nodes (Node 1∼11), and 65 links. The

network structure is shown in Figure 4.5.

Four optional investment locations (Node 21∼24) are being considered, two

of which are in remote areas (Node 21 and 22) with lower investment costs but

also lower transmission resource; the other two locations (Node 23 and 24) are

just the opposite. The two further locations are connected to Node 20 by a single

transmission line; the two closer locations are connected to Node 2 and 3 via

separate transmission lines. We consider two firms with different technologies as

investors. Firm 2 has mature technologies whose production cost is certain, while

Firm 1 represents emerging technology, whose future production cost is uncertain.

We also assume that the investment cost of one firm is independent of the other
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Figure 4.5: Sacramento Municipal Utility District (SMUD) Network

firm’s decision4. The parameter values are given in Appendix 3. This setting is

referred as base case in the following analysis.

An optimal solution is obtained using Algorithm 6 on the same computer as

in Example 1, with a total computing time of 3312 seconds. The PH algorithm

converges in 13 iterations with an absolute gap of 0.615 (see Figure 4.6). Each

scenario-dependent problem within the PH algorithm is solved using Frank-Wolfe

algorithm. See Figure 4.7 for its convergence pattern5.

In Table 4.5, we examine the impacts of transmission network on investment

decisions by comparing results from two cases: the base case, and the case where

no transmission cost or constraint is considered (free-transmission Case). In the

base case, both firms invest less in the further locations (location 21 and 22)

4Symmetric assumption and separable investment cost are not required in our model and
algorithm.

5 For the same scenario-dependent problems, PATH, a general-purpose optimization solver
for complementarity problems, was unable to obtain solutions.
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due to transmission restrictions and costs. However if the transmission network

is ignored, the firms would increase their investment in the further locations to

take advantage of cheaper capital cost. This comparison shows that ignoring

transmission network may lead to poor investment recommendations. Therefore,

a supply chain model that captures the essence of transmission network between

supplies and demands is critical.

Table 4.5: Impacts of Transmission Network on Investment Decisions (MW)

Locations
Base Case Free-transmission Case

Firm 1 Firm 2 Firm 1 Firm 2

21 84.0 84.2 217.1 215.1

22 84.0 83.3 216.9 214.7

23 260.2 258.8 215.9 213.8

24 260.5 258.4 215.9 214.0

Total 688.6 684.7 865.8 857.5

Next, we will use the proposed model to explore the impacts of oligopolistic

competition on total investments, average electricity price (see Figure 4.8), and
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total system surplus (see Figure 4.9). The total system surplus is defined as the

total consumer willingness-to-pay subtracts the total system cost. The consumer

surplus is defined as the total consumer benefits subtracts the total electricity

bill they pay. Thus we decompose total system surplus into three components:

consumer surplus, generators profits (surplus) and transmission revenues6. We

compare the results among three market types (cases): the base case, monopoly

case (only Firm 2) and perfect-competition case. From Figure 4.8, with more

competition involved in power supply side, lower electricity price and higher total

investment can be expected. This is mainly due to the fact that electricity gener-

ally has low price elasticity of demand. Lacking competition will allow suppliers to

exert market power by strategically withholding their investment (long term) and

manipulate the market price (short term). From Figure 4.9, we can see that as

market competition level increases, the total system surplus increases, the trans-

mission revenues increases and the generator surplus decreases to zero. These

results demonstrate that an energy planning model capturing oligopoly market is

critical - simplifying an oligopolistic electricity market to either a central-planner

case or a perfect market case would compromise the long-term investment deci-

sions and thus the total system surplus.Competition_v2
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Figure 4.8: Impacts of Strategic Be-
havior on Price ($/MWh) and In-
vestment (MW)
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Figure 4.9: Impacts of Strategic Behav-
ior on Total System Surplus ($)

6In this example, ISO is allowed to make short term revenues from transmission services.
But eventually, this revenue will be used for transmission investment so that ISO keeps long
term profit neutral.
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Finally, we explore the impacts of uncertainty. In Table 4.6, we compare

results from the stochastic model (base case) and a deterministic approach. The

deterministic approach takes the expected value of Firm 1’s production cost as

model input, in which case the two firms become symmetric. The results show

that when there is no uncertainty about future technology, both firms reduce their

investment. This is somehow counter intuitive because it is generally believed that

uncertainty discourages industry from investing. In the investor’s model, since

the firms are allowed to adjust their production quantities in the operational

stage (second stage of stochastic programming), they can always maintain a non-

negative profit in each scenario. Therefore, firms are more “optimistic” when

they make the first stage investment decisions - with uncertainty about future

production cost, both firms will focus more on the good scenario for themselves.

However, if the firms take a more risk-averse attitude instead of a risk-neutral

one, we expect to have different results.

Table 4.6: Comparing Investment Decisions (MW) between Stochastic and De-
terministic Approach

Locations
Base Case Case 4 Changes

Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2

21 84.0 83.7 80.3 79.9 4.6% 4.7%

22 84.0 83.3 80.8 80.2 4.1% 3.8%

23 260.2 258.8 257.7 257.3 1.0% 0.6%

24 260.5 258.4 257.2 257.1 1.3% 0.5%

Total 688.6 684.2 675.9 674.6 1.9% 1.4%
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4.4 Discussion

In this study, we use our general modeling framework N-SMOPEC to formulate

energy infrastructure planning in a restructured electricity market. The main

contribution is on the development of modeling and solution methods to ad-

dress challenges brought by uncertainties and oligopolistic competition among

energy producers over a complex network structure. Directly solving the stochas-

tic multiple-agent model using general-purpose solvers may not be possible as we

have demonstrated in the numerical example. To overcome the computational dif-

ficulty, we have combined two ideas. The first is using stochastic decomposition

to convert a large-scale stochastic problem to many smaller scenario-dependent

problems that are more easily solvable. The second is using variational inequali-

ties to convert a multi-agent optimization problem to a single traffic equilibrium

problem, allowing exploitation of efficient solution techniques that can typically

over perform general-purpose solvers.

There are several directions for future research regarding this topic. One may

explore the roles of risk attitudes and information quality on energy infrastructure

investment strategies, which may be used to design efficient information sharing

strategy across stakeholders in the system. In addition, with the connections

established between the energy planning and traffic network equilibrium problems,

one may extend the rich knowledge generated in the transportation literature

to energy modeling. For example, knowledge about price of anarchy, congestion

pricing, and dynamic equilibrium may be extended to energy system planning and

policy related questions, such as how to influence individual energy investment

decisions from user-optimal to system-optimal through economic incentives.
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Chapter 5

Conclusions

5.1 Summary

The main contribution of this dissertation is on the establishment of a theoretical

foundation for capturing the three main challenges, uncertainties, interdependen-

cies and decentralization, during critical infrastructure systems analyses. Through

two examples, we illustrate how our general modeling framework, N-SMOPEC,

can be adapted to formulate the specific problems in transportation and energy.

Each example is solved by decomposition based approach with convergence prop-

erties developed based on recent theoretical advances of variational convergence.

We illustrate some knowledge from different domains, such as microeconomics, en-

ergy and transportation, can be shared to facilitate the formulation and solution

process of seemingly unrelated problems, which could possibly foster communica-

tion between different fields. We have gained encouraging numerical results from

medium-size testing networks.

5.2 Future Extensions

This research can be continued in several directions. In the remaining of this chap-

ter, we outline some possible future extensions from three perspectives: modeling,

computation and application. Some topics mentioned here are more direct exten-
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sion of existing work presented in this dissertation, others are more fundamental

and open.

5.2.1 Modeling

• System Dynamics

In our applications, we only focus on the analysis of the equilibrium state

of the systems in the long term. However, if the emphases are on learn-

ing effects and system dynamics during a transition state, one may want to

adopt a multi-stage dynamic models. From modeling perspective, this ex-

tension is straightforward. But we should notice that different formulation

may result in different computation burdens. Careful selection of modeling

assumptions, e.g. number of stages, based on specific needs of studies are

critical to balance the accuracy and efficiency.

• Information

In this dissertation, information is assumed to be symmetric across all the

decision makers. However, this is not necessarily valid in real applications.

How to incorporate asymmetric information into the modeling framework?

How asymmetric information is going to impact the overall system perfor-

mance? Will information sharing be a good option for both the system and

each individual player? Does there exist a information sharing mechanism

that can lead to a Pareto improvement? These questions are all important

in terms of both understanding and guiding system interactions. Answering

these questions may need to include knowledge from game theory, informa-

tion economics, mechanism design, etc.

• Big Data

The value of increasing amount of data in infrastructure systems can also

be incorporate into the system modeling. With more data, we are able to
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better estimate the system parameters, such as cost and demand. Or we

can use the historical data to infer/validate some behavioral assumptions

made in our model. For example, what is a reasonable market structure to

assume? What’s the risk attitude of each agents? Can we use the data to

infer the incentive (objective) of each agent or to make educated guess about

their information availability? In addition, how to integrate an optimization

model and statistical model to take advantage of the strengths of both is

another interesting topic.

5.2.2 Computation

• General Purpose Solver for N-SMOPEC

Through two examples, we have shown that directly solving a multi-agent

optimization problems with consideration of uncertainties and interdepen-

dencies are very challenging, because of both the large-scale and the non-

convexity of the problem. We also observed that N-SMOPEC typically will

lead to decomposition of the whole problem into small sub-task where ex-

isting efficient algorithm may be readily available. This provides hope to

develop a general purpose solver, or to seek for a more general decomposi-

tion scheme that can guarantee certain level of efficiency and accuracy for

N-SMOPEC problems.

• “Optimal” Decomposition Scheme

On the other hand, we believe that the most efficient algorithm should be

designed in a way taking the most advantage of the structure of individual

problem. In addition, there is always a tradeoff between how quickly one

subtask can be solved and how many times it needs to be solved. To identify

an “optimal” decomposition scheme for different categories of N-SMOPEC

problems is important to balance between these two tradeoffs. Providing
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some guidance or develop some prototypes for the decomposition process

for certain problem structures will be helpful.

• Efficient Algorithms for Subproblems

After decomposition, some of the sub-tasks are still computational challeng-

ing, such as traffic assignment problem. These sub-task typically need to

be solve multiple times for convergence purpose. Therefore, we also need

to incorporate the most cutting edge algorithm for the subtasks in order to

improve the overall computational performance. On the other hand, devel-

oping parallel computing scheme for the subtasks will also be valuable in

order to improve the overall computational performance.

5.2.3 Application

• Large-scale Case Study

An immediate next step following this research is to implement our model

in a real-world case study, where one may investigate relevant planning

and policy questions, such as how to design economic/pricing mechanism to

guide private investment towards a social-optimal outcome and how users’

preference might influence business investment strategies.

• Risk Attitude

Taking advantage of the capability of our general modeling framework to

capture risk in the decision making process, one may want to explicitly con-

sider the different risk attitudes of decision makers in the system. This is

especially useful in CISs modeling because for some agents in critical infras-

tructure systems, such as government, security and reliability are typically

a main consideration rather than the expected system outcomes.

• Other CISs
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Although addressing issues in other CISs requires different domain expertise,

the N-SMOPEC modeling framework captures the fundamental features

shared by these problems: resource allocation over a network structure and

non-cooperative decision entities who are interrelated and facing uncertain-

ties. Therefore, it is hopeful that one can extend the general methodologies

developed here to formulate other critical infrastructure systems, such as

water resource, rail transportation, financial, and cyber systems.

In addition, we have demonstrate through two examples that fundamental

knowledge on different CISs can be benefit the formulation or computation

of each other. For example, with the connections established between the

energy planning and traffic network equilibrium problems, one may extend

the rich knowledge generated in the transportation literature to energy mod-

eling. Knowledge about price of anarchy, congestion pricing, and dynamic

equilibrium may be extended to energy system planning and policy related

questions, such as how to influence individual energy investment decisions

from user-optimal to system-optimal through economic incentives.

• Coupling Multiple CISs

As EVs link the transportation and energy sectors more closely, it is in-

evitable that we will be facing more complex planning, engineering, and

business problems. Integrating the study of these two systems could be

potentially beneficial to both resilience and sustainable issues faced by the

society. With our general modeling framework, both of these two systems

can be described as the interactions of multiple decision makers over network

structure facing uncertainties and interdependencies. The following are sev-

eral research questions one can pursue in the short term: from a planning

perspective, how to coordinate infrastructure planning process for the two

systems to improve the resilience of both? How to couple the infrastructure
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development of alternative fuel vehicles and renewable energy to promote

the adoption of each other? How can we integrate the design of both trans-

portation and power infrastructure to support the concept of “smart city”;

from an operational perspective, how can we improve the performance (car-

bon emission, congestion, safety, etc.) of transportation and energy systems

by dynamic and locational pricing of charging? How to design an informa-

tion sensing and sharing mechanism to guide the selfish behavior of decision

makers toward a social optimal outcome. In the long term, it is valuable to

incorporate other CISs, such as telecommunications, finance, etc, into this

one modeling framework so that the intricate interactions between multiple

CISs can be explicitly and elegantly captured.

104



References

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. Report, DTIC

Document, 1988.

P. Artzner, F. Delbaen, J. Eber, and D. Heath. Coherent measures of risk. Math-

ematical finance, 9(3):203–228, 1999. ISSN 1467-9965.

H. Bar-Gera. Traffic assignment by paired alternative segments. Transportation

Research Part B, 44(8-9):1022–1046, 2010.

D. C. Barton, E. D. Eidson, D. A. Schoenwald, K. L. Stamber, and R. K.

Reinert. Aspen-ee: An agent-based model of infrastructure interdependency.

SAND2000-2925. Albuquerque, NM: Sandia National Laboratories, 2000.

T. Becker, C. Nagel, and T. H. Kolbe. Integrated 3D modeling of multi-utility

networks and their interdependencies for critical infrastructure analysis, pages

1–20. Springer, 2011. ISBN 3642126693.

M. Beckmann, C. McGuire, and C. B. Winsten. Studies in the economics of

transportation. Technical report, 1956.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton

University Press, 2009. ISBN 1400831059.

J. F. Benders. Partitioning procedures for solving mixed-variables programming

problems. Numerische mathematik, 4(1):238–252, 1962. ISSN 0029-599X.

O. Berman, R. C. Larson, and N. Fouska. Optimal location of discretionary service

facilities. Transportation Science, 26(3):201–211, 1992. ISSN 0041-1655.

O. Berman, D. Krass, and C. W. Xu. Locating flow-intercepting facilities: New

105



approaches and results. Annals of Operations research, 60(1):121–143, 1995.

ISSN 0254-5330.

V. Bernardo, J.-R. Borrell, and J. Perdiguero. Fast charging stations: Simulating

entry and location in a game of strategic interaction. working paper, available

at: http://www.ub.edu/irea/working˙papers/2015/201513.pdf, 2015.

D. P. Bertsekas. Network optimization: continuous and discrete models. Citeseer,

1998. ISBN 1886529027.

D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6.

Athena Scientific Belmont, MA, 1997.

R. Bird. Decentralizing infrastructure: for good or ill? Report, The World Bank,

1994.

J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer,

2011.

S. Bologna and R. Setola. The need to improve local self-awareness in cip/ciip.

In Critical Infrastructure Protection, First IEEE International Workshop on,

page 6 pp. IEEE, 2005. ISBN 0769524265.

S. Borenstein and J. Bushnell. Retail policies and competi-

tion in the gasoline industry. Technical report, UC Berkeley,

http://www.ucei.berkeley.edu/PDF/csemwp144.pdf, 2005.

M. L. Brandeau and S. S. Chiu. Facility location in a user-optimizing environment

with market externalities: Analysis of customer equilibria and optimal public

facility locations. Location Science, 2:129–147, 1994.

106



J. Briere. Rapid restoration of critical infrastructures: an all-hazards paradigm

for fusion centres. International journal of critical infrastructures, 7(1):21–36,

2011. ISSN 1475-3219.

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic

cascade of failures in interdependent networks. Nature, 464(7291):1025–1028,

2010. ISSN 0028-0836.

J. B. Bushnell, E. T. Mansur, and C. Saravia. Vertical arrangements, market

structure, and competition an analysis of restructured us electricity markets.

Technical report, National Bureau of Economic Research, 2007.

CalISO. About us, Jun 2013. URL http://www.caiso.com/about/Pages/

default.aspx.

S. E. Chang and N. Nojima. Measuring post-disaster transportation system

performance: the 1995 kobe earthquake in comparative perspective. Trans-

portation Research Part A: Policy and Practice, 35(6):475–494, 2001. ISSN

0965-8564. doi: http://dx.doi.org/10.1016/S0965-8564(00)00003-3. URL http:

//www.sciencedirect.com/science/article/pii/S0965856400000033.

C. Chen and Y. Fan. Bioethanol supply chain system planning under supply and

demand uncertainties. Transportation Research Part E: Logistics and Trans-

portation Review, 48(1):150–164, 2012.

R. L.-Y. Chen, A. Cohn, N. Fan, and A. Pinar. Contingency-risk informed power

system design. Power Systems, IEEE Transactions on, 29(5):2087–2096, 2014.

ISSN 0885-8950.

W. J. Clinton. Executive order 13010-critical infrastructure protection. Federal

Register, 61(138):37347–37350, 1996.

107

http://www.caiso.com/about/Pages/default.aspx
http://www.caiso.com/about/Pages/default.aspx
http://www.sciencedirect.com/science/article/pii/S0965856400000033
http://www.sciencedirect.com/science/article/pii/S0965856400000033


A. A. Cournot and I. Fisher. Researches into the Mathematical Principles of the

Theory of Wealth. Macmillan Co., 1897.

G. B. Dantzig. Linear programming under uncertainty. Management science, 1

(3-4):197–206, 1955. ISSN 0025-1909.

C. J. Day, B. F. Hobbs, and J.-S. Pang. Oligopolistic competition in power net-

works: a conjectured supply function approach. Power Systems, IEEE Trans-

actions on, 17(3):597–607, 2002.

D. Dentcheva and A. Ruszczynski. Optimization with stochastic dominance con-

straints. SIAM Journal on Optimization, 14(2):548–566, 2003. ISSN 1052-6234.
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Appendix A

Data inputs

Table A.1: Base Case Link Capacity ca (veh/h) and Free-flow Travel Time, FTT
t0a (min)

Link FFT Capacity Link FFT Capacity Link FFT Capacity Link FFT Capacity Link FFT Capacity

1 12 777 17 6 235 32 10 300 47 10 151 62 12 152

2 8 702 18 4 702 33 12 147 48 8 146 63 10 152

3 12 777 19 4 147 34 8 146 49 4 157 64 12 152

4 10 149 20 6 235 35 8 702 50 6 590 65 4 157

5 8 702 21 20 151 36 12 147 51 16 150 66 6 146

6 8 513 22 10 151 37 6 777 52 4 157 67 6 288

7 8 702 23 10 300 38 6 777 53 4 145 68 10 152

8 8 513 24 20 151 39 8 153 54 4 702 69 4 157

9 4 533 25 6 417 40 8 146 55 6 590 70 8 150

10 12 147 26 6 417 41 10 154 56 8 702 71 8 148

11 4 533 27 10 300 42 8 148 57 6 437 72 8 150

12 8 148 28 12 405 43 12 405 58 4 145 73 4 152

13 10 300 29 8 146 44 10 154 59 8 150 74 8 153

14 10 149 30 16 150 45 6 437 60 8 702 75 6 146

15 8 148 31 12 147 46 6 288 61 8 150 76 4 152

16 4 147
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Table A.2: Base Case Origin-Destination Travel Demand (veh)

O\D 1 7 14 20 24

2 100 100 100 100 100

11 100 100 100 100 100

13 100 100 100 100 100

19 100 100 100 100 100

21 100 100 100 100 100

Table A.3: Base Case Traveler’s Utility Function

Coeff. β0 β1 β2 β3 e inc

Value 0 1 0 0.06 1 1

Unit ¢ ¢/min ¢/kW ¢ kWh ¢

Table A.4: Link Capacity ca (veh/h) and Free-Flow Travel Time, FTT t0a (h)

Link FFT Capacity Link FFT Capacity Link FFT Capacity Link FFT Capacity Link FFT Capacity

1 1.8 602 17 0.9 1568 32 1.5 2000 47 1.5 1009 62 1.8 1012

2 1.2 901 18 0.6 4681 33 1.8 982 48 1.2 1027 63 1.5 1015

3 1.8 1202 19 0.6 980 34 1.2 975 49 0.6 1046 64 1.8 1012

4 1.5 1592 20 0.9 1568 35 1.2 4681 50 0.9 3936 65 0.6 1046

5 1.2 4681 21 3 1010 36 1.8 982 51 2.4 999 66 0.9 977

6 1.2 3422 22 1.5 1009 37 0.9 5180 52 0.6 1046 67 0.9 2063

7 1.2 4681 23 1.5 2000 38 0.9 5180 53 0.6 965 68 1.5 1015

8 1.2 2582 24 3 1010 39 1.2 1018 54 0.6 4681 69 0.6 1046

9 0.6 2825 25 0.9 2783 40 1.2 975 55 0.9 3936 70 1.2 1000

10 1.8 904 26 0.9 2783 41 1.5 1026 56 1.2 811 71 1.2 985

11 0.6 4685 27 1.5 2000 42 1.2 985 57 0.9 442 72 1.2 1000

12 1.2 1386 28 1.8 2702 43 1.8 2702 58 0.6 965 73 0.6 1016

13 1.5 1052 29 1.2 1027 44 1.5 1026 59 1.2 1001 74 1.2 1138

14 1.5 992 30 2.4 999 45 0.9 964 60 1.2 811 75 0.9 977

15 1.2 990 31 1.8 982 46 0.9 2063 61 1.2 605 76 0.6 1016

16 0.6 2162
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Table A.5: Travel Demand

Origin 1 2 4 5 10 11 13 14 15 19 20 21

Travel Demand 1292 1271 1218 1251 1351 1341 1146 1320 1411 1331 1170 1193

LMP 17.4 17.4 17.4 17.4 17.4 17.4 17.4 17.4 16.06 15.43 15.43 15.43

Table A.6: Traveler’s Utility Function

Coeff. β0 β1 β2 β3 e inc

Value 0 1 0.000008 0.1 8.25 1

Unit $ $/h $/kW $ kWh $

Table A.7: Capacity Cost Data

Node # Firm 1 Firm 2

21 24.3× c1 24.3× c2

22 24.3× c1 24.3× c2

23 46.1× c1 46.1× c2

24 46.1× c1 46.1× c2

Table A.8: Generation Cost Data

Scenario # Firm 1 Firm 2 Probability

1 110× g1 60× g2 0.5

2 10× g1 60× g2 0.5

Table A.9: Demand Function Parameters db and da(Demand Function is d =
−da ∗ w + db)

Node 1 2 3 4 5 6 7 8 9 10 11

Intercept (db) 202 78 318 167 180 277 293 183 148 363 333

Slope (da) -0.075 -0.196 -0.048 -0.091 -0.085 -0.055 -0.052 -0.083 -0.103 -0.042 -0.046
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Table A.10: Transmission Capacity ct(Link Transmission Cost Function is φt =
10 ∗ [1 + (v/ct)

4)]

Link # From Node End Node Capacity Link # From Node End Node Capacity

1 1 7 307 34 8 2 309

2 1 10 319 35 11 2 478

3 2 6 319 36 6 3 478

4 2 8 309 37 6 3 319

5 2 11 478 38 5 4 289

6 3 6 478 39 10 4 467

7 3 6 319 40 13 4 319

8 4 5 289 41 10 5 319

9 4 10 467 42 12 6 319

10 4 13 319 43 9 7 319

11 5 10 319 44 12 7 319

12 6 12 319 45 14 8 744

13 7 9 319 46 13 9 319

14 7 12 319 47 14 10 638

15 8 14 744 48 15 11 638

16 9 13 319 49 15 11 638

17 10 14 638 50 15 3 638

18 11 15 638 51 15 3 478

19 11 15 638 52 6 16 478

20 3 15 638 53 11 16 319

21 3 15 478 54 17 2 319

22 16 6 478 55 17 10 303

23 16 11 319 56 17 19 331

24 2 17 319 57 17 18 319

25 10 17 303 58 8 18 303

26 19 17 331 59 20 18 309

27 18 17 319 60 20 19 307

28 18 8 303 61 21 25 1000

29 18 20 309 62 22 25 1000

30 19 20 307 63 23 2 400

31 7 1 307 64 24 3 400

32 10 1 319 65 25 20 300

33 6 2 319
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Appendix B

Proofs.

Proof (Lemma 1). Firstly, the objective function (3.4a) is convex becasue it

is a linear combination of three basic convex functions: (1) f1(x) =
∫ x

0
g(u)du,

with g(u) being a positive and nondecreasing function, (2) f2(x) = x lnx and (3)

f3(x) = cx. In addition, the constraints for problem (3.4) are all linear. There-

fore, the optimization problem (3.4) is convex. Because of the differentiability

of function (3.4a), the optimality conditions of problem (3.4) is equivalent to the

following complementarity conditions in additions to constraints (3.4c ∼ 3.4f):

∀a ∈ A, r ∈ R, s ∈ S, k ∈ Krs, p ∈ P rsk

0 ≤ xp ⊥
∑

a∈Ap

ta(·)− γT (Bp̂ +Bp̌) ≥ 0 (B.1a)

0 ≤ x̂rska ⊥ γa − ATa λ̂ ≥ 0 (B.1b)

0 ≤ x̌rska ⊥ γa − ATa λ̌ ≥ 0 (B.1c)

0 ≤ qrsk ⊥ 1

β1

(ln(qrsk) + β3
ρkers

incrs
− β2

∑

i∈Ik

csi − βk0 ) + ErkT λ̂+ EksT λ̌+ µrs ≥ 0

(B.1d)

We first show that the traffic flow solutions is Wardrop user equilibrium by

proving the following two conditions.
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1. All the used paths connecting r, s, k have the same travel time. ∀r ∈
R, s ∈ S, k ∈ Krs, for those p̃ ∈ P rsk with xp̃ > 0,

∑
a∈Ap̃ ta(·) = γT (B ˆ̃p+B ˇ̃p)

(because of (B.1a)). Due to the following two conditions:

• for ã ∈ ˆ̃p, i.e. B ˆ̃p,ã = 1, x̂rskã > 0 and therefore γã = ATã λ̂ (because of

(B.1b)). So γTãB ˆ̃p,ã = λ̂
T
AãB ˆ̃p,ã

• for ã /∈ ˆ̃p, i.e. B ˆ̃p,ã = 0, γTãB ˆ̃p,ã = λ̂
T
AãB ˆ̃p,ã = 0

we have γTB ˆ̃p = λ̂
T
AB ˆ̃p. Notice that ABp̂ = Erk, so γTB ˆ̃p = λ̂

T
Erk.

Same procedure, we have γTB ˇ̃p = λ̌
T
Eks.

So
∑

a∈Ap̃ ta(·) = γT (B ˆ̃p +B ˇ̃p) = λ̂
T
Erk + λ̌

T
Eks .= τ rsk, which only depen-

dents on r, s, k.

2. All the unused paths connecting r, s, k have no smaller travel time than

that of the used paths. ∀r ∈ R, s ∈ S, k ∈ Krs, for those p̃ ∈ P rsk

with xp̃ = 0,
∑

a∈Ap̃ ta(·) ≥ γT (B ˆ̃p + B ˇ̃p) (because of (B.1a)). From (B.1b,

B.1c), γã ≥ ATã λ̂ and γa ≥ ATa λ̌,∀a. So
∑

a∈Ap̃ ta(·) ≥ γT (B ˆ̃p + B ˇ̃p) ≥
λ̂
T
AB ˆ̃p + λ̌

T
AB ˇ̃p = λ̂

T
Erk + λ̌

T
Eks = τ rsk.

Next, we show the OD-demand solutions are the service location choice with

logit facility demand functions. This can be easily seen from (B.1d): for any k

with qrsk > 0, 1
β1

(ln(qrsk)+β3
ρkers

incrs
−β2

∑
i∈Ik c

s
i −βk0 )+ErkT λ̂+EksT λ̌+µrs = 0.

After reorganization,

qrsk = eβ
k
0−β1(ErkT λ̂+EksT λ̌)+β2

∑
i∈Ik

csi−β3
ρkers

incrs
+β1µrs

= eβ
k
0−β1τrsk+β2

∑
i∈Ik

csi−β3
ρkers

incrs
+β1µrs

= eU
rsk+β1µrs
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Proof (Lemma 2). If ρ∗ is a maxinf-point of the Walrasian with W (ρ∗, ·) ≥ 0, it

follows that for all unit vectors es = (0, . . . , 1, . . .), the s-th entry is 1, W (ρ∗, es) ≥
0 which implies ESs(ρ

∗) = 0.

Proof (Theorem 2).

The convergence of the maxinf sequence of points follows directly from the

lopsided convergence ancillary tight of the augmented Walrasian sequence to the

original Walrasian bifunction. Let ϕ ∈ ∆ and (ρν ∈ [0,Mν ])→ ρ ∈ IRS
+. Consider

ϕν ≡ ϕ, ν ∈ IN . The function ρ 7→ ES(ρ) is lower semicontinuous (lsc) as {gi(·)}
and {qrs(·, c(·))} can be seen as argmin functions of strictly convex optimization

problem (considering, for example, quadratic costs functions) [Rockafellar and

Wets, 1998, Ex 1.19]. By definition of augmented Walrasian, one can get an

upper bound by

W ν(ρν , ϕν) = inf
z∈∆

{
W (ρν , z) +

1

2rν
|ϕ− z|2

}
≤ W (ρν , ϕ)

Then, using the lsc of ES(·), W (·, ϕ) is an usc functions for every ϕ ∈ ∆, and

taking lim sup in the previous inequality

lim sup
ν

W ν(ρν , ϕν) ≤ lim sup
ν

W (ρν , ϕ) ≤ W (ρ, ϕ).

For any given ρ ∈ IRS
+, eventually ρ ∈ [0,Mν ] for all ν sufficiently large, say

ν ≥ ν0, since the sequence of parameters Mν converges to ∞. Thus, considering

the sequence ρν being any point in [0,Mν ] for ν < ν0, and ρν = ρ when ν ≥ ν0,

clearly ρν → ρ. By the definition of W ν , it is the inf-projection in the z-variable

of the function F ν(ϕ, z) = W (ρ, z) + 1
2rν
|ϕ− z|2, a level bounded function in z

locally uniform in ϕ. In virtue of [Rockafellar and Wets, 1998, Thm.1.17], W ν(ρ, ·)
is lsc. Thus, whatever sequence (ϕν ∈ ∆)→ ϕ ∈ ∆,

lim inf
ν

W ν(ρν , ϕν) ≥ W (ρ, ϕ),
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since for any ϕ ∈ ∆, W ν(ρ, ϕ) → W (ρ, ϕ) as ν → ∞ and the conclusion follows

from a standard diagonal argument.

The ancillary tightness condition follows directly from the invariance of the

compact set ∆ on the definition of the augmented Walrasian functions. Thus

W ν → W when ν → ∞ ancilliary tight, and the conclusion is granted by [Jofré

and Wets, 2014 (forthcoming, Thm.3.2]: every cluster point ρ∗ of a the sequence

of approximate εν-maxinfpoints of the bifunctions W ν is a maxinf-point of the

lop-limit function W , and therefore an equilibrium price.

Proof (Lemma 3). Combining VI (2) and (4), we have the following terms

cancelled out:

1.
∑

q∈Q
[
−ATγq∗

]T
(xq − xq∗) and

∑
q∈QE

qTγq∗ (tq − tq∗)

2.
∑

k∈K
∑

j∈Jk ρ
∗
k

(
gji − gj∗i

)
and

∑
q∈Q ρ

∗TEq+ (tq − tq∗)

The first cancellation is derived by Constraint (4.3c), and the second cancel-

lation is derived by Constraint (4.3d). Then, add − ∂φc
∂cji

∣∣∣
cji=c

j∗
i

(
gji − gj∗i

)
and sub-

tract − ∂φc
∂cji

∣∣∣
cji=c

j∗
i

(
gji − gj∗i

)
, and reorganize the formulation in terms of variables

g and c − g. Finally, after the use of Constraint (4.3b) and (4.3e) to substitute

(x, t) with (v,d), VI (4.11) is derived.

Proof (Theorem 3). There are two types of demand nodes in the virtual trans-

portation network: the nodes within transmission network, denoted by “A”; and

the virtual nodes representing unused capacity, denoted by “U”. A-nodes do not

have non-negativity constraint on price, so VI (4.15) is applied for these nodes

(Corollary 5), while VI (4.12) is applied for U-nodes (Theorem 4). After algebraic

simplification, the VI governing the virtual transportation network is identical

with VI (4.11).
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Appendix C

Small Example Illustrating Flow

Conservation Constraint (4.3b) ∼
(4.3e)

Network Structure

L1

L2

L4

L3

L5

L6

L7

Number in node: node number 
Number next to link: link number

N1

N2 N6

N5

N3 N4

Figure C.1: Small Example Structure

OD and Path Information
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Table C.1: Small Example Structure

OD # OD Path # Path Path Flow Legend

Q1 N1-N5
P1 N1-N5 8

P2 N1-N3-N4-N5 2

Q2 N2-N5 P3 N2-N3-N4-N5 5

Q3 N2-N6
P4 N2-N3-N4-N6 3

P5 N2-N6 4

Network Flow

t =

2
4

10
5
7

3
5 v =

2
666666664

2
8
8
10
4
7
3

3
777777775

Q1

Q2

Q3

x =

2
666666664

2 0 0
0 5 3
8 0 0
2 5 3
0 0 4
2 5 0
0 0 3

3
777777775

Q1 Q2 Q3
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L4
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L6

L7

L1
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L3

L4

L5

L6

L7

g =

2
6666664
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0
0
0
0

3
7777775

N1

N2

N3

N4
N5

N6

d =

2
6666664

0
0
0
0
15
7

3
7777775

N1

N2

N3

N4
N5

N6

Incidence Matrix
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A =

2
6666664

�1 0 �1 0 0 0 0
0 �1 0 0 �1 0 0
1 1 0 �1 0 0 0
0 0 0 1 0 �1 �1
0 0 1 0 0 1 0
0 0 0 0 1 0 1

3
7777775

L1 L2 L3 L4 L5 L6 L7

N1
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2
6666664
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3
7777775
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Q1 Q2 Q3
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N4

N5

N6

E =

2
6666664

�1 0 0
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0 0 0
0 0 0
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3
7777775
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N6

Q1 Q2 Q3
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2
6666664
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0 0 0
0 0 0
0 0 0
0 0 0

3
7777775

Q1 Q2 Q3
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Appendix D

Calculation of ∂ρk′/∂g
j
i

∂ρk′/∂g
j
i can be computed from the ISO’s optimization problem (4.3g), where ρ is

the dual variables of constraint (4.3d) and g is parameters. ∂ρk′/∂g
j
i is essentially

the derivative of dual variables with respect to right-hand side constants. We use

the standard notations for convex optimization with linear constraints:

min
x

f(x) (D.1a)

s.t. (λ) Ax = b (D.1b)

where f(x) is a convex function and x ∈ Rn,λ, b ∈ Rm, to illustrate the calculat-

ing process and our goal is to calculate the Jacobian matrix Jλ(b).

Lagrangian of problem (D.1) is L = f(x) − λT (Ax − b). The optimality

conditions of problem (D.1) is:

∇f(x)− ATλ = 0 (D.2a)

Ax− b = 0 (D.2b)

Take implicit derivatives of equations (D.2) with respect to b :
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∇2
xf(x∗(b))Jx(b)− ATJλ(b) = 0 (D.3a)

AJx(b)− I = 0 (D.3b)

The unknown variables in equations (D.3) are two Jacobian matrices, Jx(b)

and Jλ(b). The total number of equations is equal to the total number of variables

in equations (D.3), which is nm + m2. Therefore, in most cases, Jλ(b) can be

calculated given b. Numerically, one can take an initial guess of b based on

historical data and then solve equations (D.3) and Algorithm 6 iteratively until

Jλ(b) converged.
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Appendix E

Subroutine Pseudocode

Algorithm 7 PH-Transportation Network Sub-Function

function Traffic Assignment(path cost φp(·), demand: dn(·))
τ = 0 . Initialize traffic assignment iteration index

while ε ≥ 10−4 do

τ ← τ + 1

χτ+1
p ← max

{
0, χτp + ατ (λτn − φp(xτ ))

}
. update path flow

λτ+1
n ← max

{
0, λτn + ατ

(
dn(λτ )−∑p∈Pn χ

τ
p

)}
. update disutility

ε←∑
p∈P‖χτ+1

p − χτp‖+
∑

n∈N‖λτ+1
n − λτn‖

end while

return (χ,λ)

end function

function Recover Decision(path flow χ, travel disutility λ)

fa ←
∑

p∈P xpδap, ∀a ∈ L . get link flow

c← fC−F . get investment decision

g ← fF−P . get production decision

ρ, λc ← λ . get electricity price and capacity shadow price

return (c,g,ρ,λc)

end function
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Critical Infrastructure Systems:

Distributed Decision Processes over Network and Uncertainties

Abstract

Critical infrastructure systems (CISs) provide the essential services that are vital

for a nation’s economy, security, and health, but the analysis of CISs are challenged

due to their inherent complexity. This dissertation focuses primarily on the sys-

tem analysis of critical infrastructure systems, with a particular interest to address

the modeling and computational challenges brought by uncertainties, interdepen-

dencies and distributed decision making of various components and stakeholders

involved in CISs, so that a secure, reliable, efficient and resilient system can be

further pursued. Through two examples, the first one is on electric vehicle charg-

ing infrastructure planning in a competitive market, and the second one is on

power generators planning in a restructured electricity market, we illustrate how

our general modeling framework, N-SMOPEC, can be adapted to formulate the

specific problems in transportation and energy system. Each example is solved

by decomposition based approach with convergence properties developed based

on recent theoretical advances of variational convergence. Median size numerical

experiments are implemented to study the performance of proposed method and

draw practical insights. In addition, we have shown some knowledge from differ-

ent domains, such as microeconomics, energy and transportation, can be shared

to facilitate the formulation and solution process of seemingly unrelated problems

of each other, which could possibly foster the communication between different

fields and open up new research opportunities from both theoretical and practical

perspectives.
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