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Primary Resistances for Ring-Disk Electrodes-
. Joseph J. Miksis, Jr., and John Newman
Inorganic Materials Research Division,
Lawrence Berkeley Laboratory, and
Department of Chemical Engineering; -
University of California, Berkeley 94720

July, 1975

Abstract

A_system consisting of a disk electrode, a concentric'ring

.electrode, and a large counterelectrode at infinity has three

:vindgpendent resistance values describing the primary potential

difference between any two electrodes when current is passed between
any two electrodes. These resistance values are'calculated and
presented as dimensionless correlations as functions of the ratios

of radii of the disk and ring.

Key words: current distribution, potential distribution, Laplace's

._equation, interrupter techniques



Introduction
A éommod electrode geometry in eléctrdanaiytical and research
applicatﬁon; involves a disk electrode and a.concentric ring
electrode both embedded in an insulating plane and rotated about tﬁe
axis of the disk. Species produced by an electrochemical reactidn
at the disk can frequently be detected quantitatively by electrochemical

1,2,3 In some of these applications it is

reactionvat,the'ring.
desirable to assess the ohmic potential drop in the solution. For
example,'to-have a contr911ed electrode potential for the reaction

at the disk one needs to know how a current to the disk and a current
to the ring separately influence the potentiél iﬁ the solution in

4 -
>3 To ensure that a limiting current

the neighborhood of the disk.
is maintained on the ring involves a similar question.

Experimental efforts to answer these questions involve abrupt
chapges in the current to either the ring or the disk followed by a
measurement of the change in potential of both the ring and the disk

43,7 Such rapid changes in

as shortly thereafter as possible.
potehtial and current are associated with the primary distribdtions
of potential and current.8

Consequently, we can define a mathematical problem in which

the potential obeys Laplace's equation,

v =0, . &Y

the potential is zero at infinity, and has a uniform value in the

solution adjacent to each electrode. Corresponding to a zero current



. density, the normal component of the potential gradient.is zero on
the insulating annulus between the disk and the ring and on the plane
surrounding the ring. This problem excludes conSideration of the
variation of conductivity within the thin diffuéion layer adjacent
to the electrodes and effectively regards the change .in pofentia;
'drop-té_be determined by -the bulk of the solutioﬁ. Also excluded
from coﬁsideration is the effect of electrode kinmetics, it being
aSsumed'thaﬁ the double-layetr capacity is sufficiently iérge that
the ﬁotgntial difference across it does not change during the time
of the méasurement.g (The course of events'invplving the change of
the charge of the double-layer capacity has been examined by Ni§anciq§lu
and Newnan.®»10>11) |

The problem thus defined is limited in scope since it involves
6nly the geometry of the sysﬁem,‘the conductivity of the solution,'ahd
the potentiéls and currents themselves. The pfincipal result of the

. model is the expression of the disk and ring potentials in terms of

.the disk and ring currents:

Va = Rgala * Byelr > (2)

V=R I .+R I , | - (3)
‘where I, and I are the total currents to the disk and ring-
electrodes, respectively, and Vd and"Vr' are ‘the potentials, presumed

uniform, in the solution adjacent to the two electrodes. In the

absence of concentration and surface overpotentials, Vd and Vr can



be regarded to be the potentials of the electrodes themsélves, and
this is the usual manner of speaking when discussing primary-
distributioﬁ problems. Bear in mind that in the applications discussed
above these quantities ‘Id s Ir s Vd , and Vr probably represent
v ihstantaneous changes in the electrode curfents ahd the corresponding
.instantaneous changes in the electrode potentials.

Rda R R&r , R4 »and R are the primary resistances defined
by équations 2 and 3 for this ring-disk System; We can attach a
phyéical meaning to them by the following considerations. When there
is. no ring current, Ir = 0 , we see ;hat Rdd represents the
resistance between the disk electrode and a counterelectrode at
infinity. This resistance will be lower in the‘presence of the
ring than for the disk alone because current can find a path through
‘the ring electrode to the disk, bypassing some of the resistance of
the solution. * This is true even though there is no net current to
the ring. Under these circumstanées, the potehtial of the ring ﬁill
take on a définite'value to satisfy the condition of no net current
to the ring. This yalue is determined by er ‘in gquétion 3.
Thus, er is a quantity having the dimensions.of a resistance but
which yields the potential on the ring due to a current on the disk;'

In a similar manner, we see that when there is no disk current,
Rrr is ﬁhe resistance between the ring and a éounterelectrode at
infinity while Rdr ‘reproduces the potential on the disk due to a
current on ﬁhg ring. As shown below, Rdr = er .

The geometry of the ring-disk system is defined adequately by

the ratio ro/r of the disk radius to the inner radius of the ring

1



and the ratio r1/r2 of the inner and outer radii of the ring. ‘The
resistances can be made dimensionless with the conductivity x of the
solution and'a chéracteristic length, which we choose to be the outer
radius r, of the ring. Therefore, the results of this study can

be presented simply by correlating three dimensionelss resistances

D R__D R _ .
(RD Krszd , RD = RR Krszr , and RR = Krerr) as functions of

two geometric ratios (rolr1 and rl/rz) . This simplicity and
geherality is a further justification for restricting the problem
to the’primary resistances. |

In a subseéuent paper from this _laboratory,12 we shall discuss
some more complicated behavior of the ring—disk system in which
cdncentration variations and electrode kinetics are considered in order
to assess tbe current distribution on a sectioned electrode (composed
of the ring and disk at the same potential) below the limiting current,
the collection efficiency of the system when the current distribution
on the disk is nonuniform due to the ohmic pofential drop in the
solution, and the anomolous diffusion coefficient for a redox couple
measured by means of the limiting current to a ring electrode with

zero current to the disk.



Symmetry of Resistances
Let us consider two cases: case 1 where Id'= 0 and case 2
where Ir = 0 . For any fwo functions @1 and @2 , Green's theorem

13
says

2 2
| f(@lv d, - 0.V @1)va = §(¢1v<1>2_- 0,7% )-ds . (4)

The integral over the volume Vo is zero here because both @l ‘and
@2 obey Laplace's equation. The surface integral is over the
entire areé enclosing the volume Vo s, which we shall take to be the
entire half-space between the plane of the disk and the counterelectrode
at infinity. The integral over the insulating #urfaces is zero
because the normai component of the potential grédient is zero there.
The integral over a hemisphere at infinity is zero becauée‘each
potential is inversely proportional to the radius, the potengial
gradient is invefsely'proportional to the square of the radius, and
ds is proportioﬁal to the square of the radius.

This leaves ﬁs with integrals over only the'surfaces of the

electrodes:

r

| !(olwp 4>zvq> f o Ve, - ¢ v¢>l) .ds . (5)

Now, by the definition of the primary distributions, the potential
adjacent to each electrode is uniform and can be removed from the

.integral; with the result



Vi1 !VQZ-Q - defv¢1'is- = qu> *ds + V_ qu> -ds . (6)
Furthermore, thg integral of the normal component of the potential-
gradient over the surface of an electrode is proportional to the

total current to the electrode. Equation 6 becomes

Varlaz = Vazolar = “Veale2 * Veolp - 7

For the cases choéen here, Idl =0 and Ir2 = 0 , and this reduces

to

Varlaz = Vealen + ®) .
Substiﬁutibn_of equations 2 and 3 for the electrode potentiéls, with

Idl = Ir2 =v0’, yieldS'“ .

Rartrilaz = Rralazlnn )

or

_Gabrielli 35;31.7 state this result and provide supporting experimental
results. Equation lO could be éonsidere& to be an example of the

Onsager reciprocal relation.



Analysis

Newmaﬁ14 reviews methods of calculating current and potential
distributions in ring or disk geometries. At first we thought that
we could~tfeat the ring—disk.system as a composite disk of radius
r, .and use the method of separaﬁidn:of vafiables in rotational
elliptic.éoardinates. Then the current density would be zero on the
insulating annulus while the potentials would be specified on the
ring and disk, and the coefficients of fhe series would be determined
by trial and error or by matrix inversion so as'ﬁo satisfy these -
boundary conditions. However, such a series is inédequate to
represent the distributions of potential and current in this system
because the_current density approaches infinity at.the inner edge
of the ring and at the edge of the disk. (The coordinate system does
allqw treatﬁént in a natural way of the infinite current density near
the outer edge of the‘ring, just as it does for fhe primary distri-
butipn near the edge of a disk without a ring.ls) | |

As an alﬁernative, the currents due to the riné and the disk
were treated separately by different methods. First a series of teﬁ

cases:was defined with prescribed current distributions on the ring.

For cases 1 and 3, these current distributions were

1=t - o av

1 —
’ 1- xz

and
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3T VI ¥ x 12)

where

X == . : | (13)

Case 2 hés'a zero current density everywhere on the ring but will
have a current assigned to the disk as described below. Cases 4
through 10.wgre assigned the following current distributions on the

ring:
ir,k = Pk_4(x) . _ (14

where: Pk(x) is the Legendre polynomial.

It was felt that these cases would represent a complete set
whiéh could be superposed to reproduce any primary current distribution
on the ring éléctrode;\ In particular, case 1 has an. infinite current
dengity at both the inner and the outer edge of.the ring, and the
current density approaches infinity in thé-manner required when an
electrode is‘embedded in an insulating plane, namely, by being
inversely proﬁortional'to the square root of the distance from the
. edge. Case 3 involves an infinite current density only at the inner
| edge of thé ring. A superposition of caées 1 and 3 should be aBle to
match the wayvinvwhich any pfimary current distribution goes to
infinity at the inner and outer edges of the ring. The residual

current distribution should be finite over the ring and adequately
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represented by a superposition of the remaining cases 4 through 10.
For some values of  ro/rl and rl/r2 where the accuracy of the
results was questionable, the number of cases was extended from 10
to 20.

The next step in thé procedure is to evaluate thé potential
distribution on both the disk and the ring due fo the current

distribution on the ring for each of the cases described above. For

this purpose, we use .the formula for the potential in the plane of

the diskl4
' rz » )
. 2 i(x")K(m)r'dr’ : : ‘
<I>°(r) - mcf ' r+r' ’ ' (15)
r .
1
where
t
m = 4rr . . (16)
(r+1") :

and K(m) is the complete elliptic integral of the first kind.
The evaluaciqn of thi; integral for the potential distribution on the
ring reduiresicare, first of all, because the elliﬁtic integrél
app;oaches infinity when r' = r . vAdditionalldifficuities are
intfodqced for cases 1 and 3 where the current distribution'approaches
infinity at the inner or outer edge of the ring.

The poténtial distributions obtained above will be nonuniform
on both the'riﬁg and the disk. Fof each case, thé potentiai can be

made uniform on the diék by superposing the potential distribution due
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to a current distribution introduced on the disk. Here we use

rotational elliptic coordinates n and -£ based on the radius r

o
of the disk. The codrdinate transformation reads
z = roin and r = roVQl + 52)(1 - nz) , an
and the solution of Laplace's equation by separation of variables
in this coordinate system'isla’l6
¢= ] BE, (MM, (5), (18)

=0

‘where ﬁn represents arbitrary coefficients, P2n is again the
Legéndre polynomial, and Mzn(i) (called Mn(E) is reference 14)
is a Legendre function 6f imaginary argument héving properties
described earlier. .Selection of even Legendre polynomials in
~‘.equation 18. ensures that‘the corresponding current distribution is
zero in the plane outside the disk; hence, the current disﬁribution
is not modified on ﬁhe ring‘by superpbging a potential distribution
of the type in equation 18. | |

| In practice, equation 18 is truncated after a finite number of
terms, say 20. For each case,rthe B wvalues are pow chosen so that
the'potential.(including that due‘to the fing‘curreﬁt) will be zero
on the surface of the‘disk. Up to this point, case 2 has not been
defined or modified. ' We now require that the potenﬁial-'Qo be -
equal to unity on the surface of the disk,'for case 2; which is
equivalent to setting Bo = 1 . The superposition of‘the disk

potential function in equation 18 will genérate a nonzero net current
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énd a uniform potential for the disk for each case. -
Next, for each case, we shoﬁid calculate the potential distribution )
on the ring due to the current distribution on ‘the disk, and we
should add this to the potential distribution previously obtained
from the current distribution on the ring. This step involves the

use of equation 18 with values of £ greater than zero since

© : .
' 2, =\n£0 BnPZH(O)MZn(g) " (19)
Vin the plane for r greater than r, . The evaluation of Mén(g)

" has been necessary in earlier work,6 and we have introduced

' refinements here17 to permit accurate calculation for large values

of E and n .

"~ The several cases tﬁat have been treated now each have prescribed
currenf.distributions on the ring and disk, known total currenté,'aA
uniform potential on the disk, and a nonuniform but finite potential
disfribution on the riné. The final séep of the procedure is to
supérpose caseé 3 through 10 onto cases 1 and 2, 'in turn, in such
a way fhat the potential distribution on the ring is made>uniform.
More cases can be used to attain a higher degree of uniformity. -

Cases 1 and 2 now satisfy all the requirements of a primary
distribution -- they have uniférm potentials on the ring and the
disk, énd‘theyAsatisfy Laplace's équation and all the other boundary
conditiomns. .Aﬁalysis of cases 1 and 2 according to equatioﬁs 2 and 3

yilelds values of the resistances _Rdd s Rdr s er., and Rrr .
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This solution for the primary potential And current distributions
by superposition may seem involved and complicated, bqt if is
-economical and accurate,.and it avoids any trial—and—errof calcﬁlations.
. The functions chosen for superpdsition make special allowance for
the geometry of the system and can treat the infinite current

densities at the edges'of the electrodes even when the ihsulating

annulus is quite thin.

Results

In fhe computed results, Rdr and R 4 usuaily agreed to
rlwithin 0.01 percent. Certain limiting situations could also be
checked to énsure the validity §f the results.

| Figures 1, 2, and 3 show ;he values of the three indepeqdent
:esisﬁances as fﬁnctions of the geometric ratios rO/rl. ‘and rl/r2 .
For a very thin':ing,' Rrr becomeé infinite. Consequéntly, on'.
figure 3 we have added a term which‘compensatés for this and produces
a finite liﬁit as rl approaches r, ; An exceptibn is the

(unrealistic) limit of a zero gap distance. As r, approaches r s

the value of KrZRrr approaches 0.25, independent of the value of

rl/.r2 .

Discussion
The results for Rdd can be comprehended in relation to the
- value 1/4Kro for the primary resistance15 for a single disk in an

insulating plane. The values for the disk resistance, as plotted in



0.25

(rg/rp)R = kTo Ryq

10.23
0.21
0.19F

0.7

O.15

013}

0.11

0.09

1 ! | |
O 02 04 06 2O.‘8 1.0
[1- (r, /r,)]

XBL 757-6825

Figure 1. Correlation of the disk resistance.



Figure 2. Correlation of the interaétiqn resistance.
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fiéure 1, therefore approach the value 0.25 as the influence'of‘the
ring becomes negligible -- either for thin rings (rl - r2) or for
wide gaps between the ring and the disk ;(ro << rl) . The influence
of the ring is always to lqwe%tthé resistance value KroRdd below
the value 0.25 because the ring provides an:éiternative current
path which can help'thevcurrent-get from infinity té the neighborhﬁod
-of'thehdisk. Figure 1 éhOWS how this effect becomes more pronounced
for wide rings and narrow gaps. |

'Thefe are.several Qays of thinking abou; the couplinglfesistances

Rd¥.= er’. First imagine a current to the disk with no‘cdrrent to
" the ring.- Then the potential distribution will bear some_résemblance
to thét for a single disk din an insuiating plane, and the similariti
will become exact in the iimit of a thin ring; The ring, in addition
to distorting this pdténtigl’field; will acquire a'potential
correéponding to the single disk at some radial position r, which

lies betwegn r, gnd r, . Siﬁce
i)t =1482 | (20)
on tﬁe ring and since
MO(E)'= %-ctn-lkg) , .. : - .(21)

the‘poténtial in the plane at a radial position r_ due to the

primary distribution on a-single disk is
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I r
_ -1 _..d . ~-1{ o
Vr = Vd ctn () = ZWKro sin (;:) . (22)

r, -1/ % .
KrZer Z"ro sin (;;) . } (23)

&

This formula becomes rigorous for thin rings when we set r_
equal to 1, . Thus, the in;grcept on the right side of figure 2
is known with certainty. The limit for the ordinate is 0.25 for
narrow gaps (ro *-rl) ‘and 1/2m = 0.1592 for wide gaps (r0 << rl) .
For thick rings, it is convenient to think of a zero current
on the disk. Then the fing itself will look like a aisk, with a small
 imperfection at the center, and the potential distribution will be
nea:ly thaﬁ for’a disk of radius r, in an insglating plane. The
small disk of radius r, can then sense only one potential, that
approximately equal to the potential of the ring v, = Ir/lmr2 .

'This leads to the limit

KE, Ry > 0.25 as ‘r2/rl + ® (24)__

independent of the value of rO/r1 .
By an analysis of the current deflected from the insulating
region for r < I one can find a correction to equation 24 for

small disks:
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| R T |
Krszr =3 ﬂ2'r for r << r, and .ro << r, - (25) -

- This limiting slope is verified in figure 2.

For rings which are neithe; thick nor thin, we can use the
resulté.in figure 2 to calculate the value of r, according to
equation 23. Iﬁ turns.out that r, varies from the arithmetic
average of ry and r, for thin rings to a value of Zré/ﬂ for
thick rings_(in order to reproduce the limit in equation 24). This
éuggests the method of correlation of Rdr shown in figure 45 Here
a value of r, 1s calculated E_Eriori; and the ratio of the left
and right_sides of equation 23 represents a deviation function which
is close té unity. The only advantage of figure 4 over figufe 2 is
that the scale can be expanded because the minimum and maximum
values now differ by a factor of 1.05 instead of a factor of 1.57.

Let us next turn our attention to the ring resistance :Rrr . For

wide rings, it is clear that the resistance value is given by

Krerr-= 0.25, (26)

the value for a single disk of radius Ty - In the other extreme,

3
r
kr,R__ + =2 1nf1 - 1 }= 21038 - o 2312 @
2°rr 2 3 2
2 2 27 '

for thin rings ‘(rl - rz) and small disks (ro << rl) .
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Figure 4. Correlation of interaction resistance.
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Figurg 3 was plotted so that the small disk case (r0 << rl)
would show cleariy these limits. According to this figure, the
effect of a nonzero disk is always to lower the ring resistance,
because an alternative path is>provided betweeﬁ the coﬁnterelectfode
at iﬁfinity and the ring électréde. The correcfion to equation 27
for small disks is very small, —(ro/r2)5/45ﬂ2 . Thus, we see that
the curve for: ro/i:1 = 0.8 is already very close to the curve for
ro/r1 = 071 .

Gabrielli 55_31,7 have measured resistances for four ring-disk
geometries. They verified the coupling relationship between er
and Rdr . A coﬁparison between their measuremenﬁs and our calculated
values.is made in table 1. For this pufpose, 1/k was given the value
2.25 ohm-cm for a 2 N sulfuric acid solution. The comparison
cannot be regarded as satisfactory. qu experimental values of

are greater than 0.25, which should not Be possible. The

Kro-Rdd
other two values of KroRdd show good agreement. Measured values

of the coupling resistance are consistently lower than those calculated.

One value of KrZR.rr is- lower than 0.25, which should not be

possible. The other measured values of Krerr are significantly

higher than the calculated values.

Shabrang and Bruckenstein5 analyze their results in terms of

' equétions of the form

Vg Vp = Rply+ (I + IR, e

and



rj/r
X,

0.952 -

0.968
0.976

0.976

Table 1,

ry/x,

0.42
0.62
0.82

0.976

Comparison of calculated resistances with those measured by
Gabrielli 35_55.7

Kr,.R

2 rr
meas. calc.
0.244 0.252
05272 0.261 .
0.311 0.273
-1;213 0.342

KY
meas.

0.211

0.194

0.189

0.177

for four ring-disk geometries.

2Rdr

calc.

0.228

0.22

0.218

0.219

Kr

meas.

0.307

0.217

0.231

0.262

0 dd_

cale.
0.192
0.216
0.238

0.2495

_ZZ-.
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- = ] . ) . ‘ .
Ve < Vp = Rl + (1q + IDR,, | (29)

. . '-' N . v,'a .
- where RD R RR-, RC , and RC are resistances and VI is the potential

of the reference electrode and can be expressed as

= ' :
Ve = Rouxfd ¥ Rauxlr - (30)

'Comparisdn with'equations 2 and 3 shows that we can make the

associations

Ryg= Ry + R+ Ry o (31)
Ry, = gC +R s (32)
.er = RY + IAuxK , (33)
and
rr RR + Ré + R}'tux " - ‘(34)
In‘view.of eqﬁation 10, we can write
Rg - RL =Ry - Ry o (35)

C C Aux Aux

Shabrang and Bruckenstein take these differences to be zero. Indeed,

if the counterelectrode is far away and the reference electrode is

moderately far away from the ring-disk system, we can eétimatéls'

: ‘ 1 - _ ' :
RAux RAux 2mkp ? , ' (36)
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where p is the radial position of the reference electrode in
spherical coordinates. However, the currents Id‘ and Ir do not,

in generai, need to have the same influence on the potential VT
in equation 30; the difference will become accentuated the closer

the reference electrode probe is to the ring-disk system.

= 0.209 ,

From figures 1, 2, and 3, we find KroR = 0.249 , Kr

dd 2Rrd
and Krerf'= 0.3238 for the geometry of Shabrang and Bruckenstein
(rO/rl = 0.95 and r'llr2 = 8/8.4) . R.D corresponds approximaﬁely
to R&d - Rdr » and RR' corresponds approximately to Rrr'— er .
(Shabrang and Bruckenstein come to a different c6nclusion.) For the
ratio RD/(RD + RR) , they find values of 0.37, 0.35, 0.34, 0.39,
0.36, 0.34, and 0.31, whereas we calculate 0.366 for the corresponding
fratio. . (Here, we assume that the labels Vo/VD and Vo/VR are
‘ interchanged in their table III.)

‘Because of ﬁncertaintieg'in,the poéition of the reference
electréde and the conductivity of the solutionm, we refrain from further
comparisons with their data.

From the results of Miller and Bellava'nce4 we deduce an experimental

value of KrZer = 0.192 . The corresponding value from figure 2 is V

KrZR

ra = 0-206 vforv r/r; =0.909 and r,/r, = 0.812.

‘Conclusion
‘Computed values of the primary resistances for a ringédisk
system, as presented'here, should permit estimation of the uncompensated

resistances when an éttgmpt is made to control the potentials of the
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_electrédes. There are few geometries for which this information
is available.

Discrepancies between calculated and experimental values may
lead to refined experiments or to considerations beyond the scope

of the primary resistances.
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List of Symbols
YB coefficients in series 18 for potential
I, disk current, A.
I ring current, A -
K . complete elliptic integral of the first kind
m . see equation 16
M2nv Legendre function of imaéinary argument

Légéndre-bol?nomial

k
T radial position in cylindricél coBrdinatés, cm
T, .radius pf disk, cm
fl inner radius of ring, cm
T, outer radius of ring, cm
r* position on ring elecﬁrode,‘cm

Rdd?Rdr’er’Rrr resistances defined by equathn§ 2 and 3, ohm

RD’RR’RC’Ré resistances defined by equatiéns 28 and 29; ohm
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t : .
RAux RA resistances defined by equation 30, ohm
Rg RD RR RR dlmen51onless resistances

S surface area, cm

\) disk potential, V

d .
V_ ring potential, V
Vo ﬁotential at reference electrode, V
»Vo vo}ume, cm3
X see equation 13
z distance from the plane of the disk, cm
n rotational elliptic coordinate
K condugtivity of the solution, ohm-l - cm-l
£ rotational elliptic coordinate
P radialvposition in spherical coardinates; Em

@ potential in the solution, V
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