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Abstract 

Towards the Resolution of the Solar Neutrino Problem 

by 

Alexander Friedland 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Hitoshi Murayama, Chair 

A number of experiments have accumulated over the years a large amount of solar 

neutrino data. The data indicate that the observed solar neutrino flux is significantly 

smaller than expected and, furthermore, that the electron neutrino survival· proba-

bility is energy dependent. This "solar neutrino problem" is best solved by assuming 

that the electron neutrino oscillates into another neutrino species. 

Even though one can classify the solar neutrino deficit as strong evidence for neu.,. 

trino oscillations, it is not yet considered a definitive proof. Traditional objections 

{ 
are that the evidence for solar neutrino oscillations relies on a combination of hard, 

different experiments, and that the Standard Solar Model (SSM) might not be ac-

curate enough to precisely predict the fluxes of different solar neutrino components. 

Even though it seems unlikely that modifications to the SSM alone can explain the 
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current solar neutrino data, one still cannot completely discount the possibility that 

a combination of unknown systematic errors in some of the experiments and certain 

modifications to the SSM could conspire to yield the observed data. 

To conclusively demonstrate that there is indeed new physics in solar neutrinos, 

new experiments are aiming at detecting "smoking gun" signatures of neutrino oscil-

lations, such as an anomalous seasonal variation in the observed neutrino flux or a 

day-night variation due to the regeneration of electron neutrinos in the Earth. In this 

dissertation we study the sensitivity reach of two upcoming neutrino experiments, 

Borexino and KamLAND, to both of these effects. 

Results of neutrino oscillation experiments for the case of two-flavor oscillations 

have always been presented on the (sin2 20, ~m2) parameter space. We point out, 

however, that this parameterization misses the half of the parameter space~ < (} ~ ~' 

which is physically inequivalent to the region 0 < (} ~ ~ in the presence of matter 

effects. The MSW solutions to the solar neutrino problem can extend to the (} > 1r /4 

side. Furthermore, even the "vacmitn oscillation" solutions are affected by solar 

matter effects and hence are different in the two sides. 

Professor Hitoshi Murayama 
Dissertation Committee Chair 
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Chapter 1 

Introduction 

In the last decade the field of neutrino physics has witnessed several remarkable 

developments. The atmospheriC neutrino data collected by the Super-Kamiokand~ 

experiment provide a very strong evidence that neutrinos are massive and the flavor 

oscillations take' place. Significant advances have been also made in the solar neutrino 

physics. The data from' the radiochemical and water Cherenkov detectors indicates 

that neutrino oscillations ~!lay also be responsible for the solar neutrino deficit. These 

neutrino oscillation results provide the best (only?) evidence at the moment for new 

physics beyond the Standard Model. 

In the beginning of this dissertation we present an overview of the solar neutrino 

physics. We then describe the original results on the sensitivity of the two upcoming 

7Be experiments Borexino and KamLAND to "smoking gun" signatures of neutrino 

oscillations and an exploration of the full physical parameter space 0 < () < 1r /2. The 

I 
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overview is presented in Chapter 2. It contains a description of basic neutrino prop­

erties and interactions and necessary background about the solar neutrino problem. 

We also argue for the need to look for "smoking gun" signatures at present and future 

experiments as a way to unequivocally prove the neutrino oscillation hypothesis. 

In Chapter 3 we study the sensitivity reach of the Borexino and KamLAND ex­

periments to the seasonal variations of the solar neutrino flux. We consider the cases 

of both the "normal" 11£2 variations and the anomalous variations expected in the 

vacuum oscillation case. In Chapter 4 we determine the sensitivity of these experi­

ments to the neutrino regeneration phenomenon in the Earth. We also point out that 

is it important to study the regeneration effect for 0 < () < 1r 12. Part of this range 

( () > 1r I 4) has been traditionally neglected in the literature. 

In Chapter 5 we study the solutions to the solar neutrino problem in this full 

parameter space. We investigate the cases of both the "vacuum oscillation" solutions 

and the MSW solution. Remarkably, it turns out that for /::,.m2 in the "vacuum 

oscillation" region the solar matter effect can in fact be nonnegligible, especially for 

the low-energy pp neutrinos. This makes the two sides, () < 1r I 4 and (} > 1r I 4, not 

completely equivalent. We further explore the MSW region and find that the allowed 

regions there are not necessarily confined to () < 1r I 4 side. 

The last chapter contains our summary and conclusions. The appendices clarify 

several technical points that were used in the analysis in different chapters. 
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Chapter 2 

Overview of Neutrino Physics 

2.1 Neutrinos in the Standard Model 

This section contains an elementary review of well-established neutrino properties 

and interactions. Such interactions include the so-called charged and neutral current 

weak interactions. Both interactions are described by the unified electroweak theory 

which, along with the QCD, forms the basis of the Standard Model of particle physics. 

2.1.1 Elementary review of neutrino properties·· 

There are two basic features that distinguish the neutrinos from all other known 

elementary particles: 

• they are left-handed, meaning that a neutrino spin is always anti parallel to its 

momentum (parallel for antineutrino); and 
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• they have very small interaction cross-sections with matter. 

The former fact, established in a beautiful experiment by Goldhaber et al. in 1958 

[5], played a crucial role in our un~erstanding of the nature of the weak interactions 

and in the construction of the unified electroweak theory. The latter is a consequence 

of the fact that neutrinos do not possess either electric charge or color, and hence 

couple to other particles only through the weak interactions. 

As the name 'suggests, the weak interaction cross-sections and decay rates are 

many orders of magnitude smaller then those of comparable processes mediated by 

the electromagnetic or strong forces. As an example, the lifetime of the E- hyperon 

(dds), which decays almost exclusively via the following weak interaction channel: 

E- -t n + 1r-, is 1.48 x 10-10 seconds. By comparison, the electromagnetic decay of 

E0 , the neutral partner of E- with the quark composition s( ud+du) / J2, E0 -t A +'Y, 

occurs on a much shorter time scale, T = 7 x 10-20 seconds. As a consequence of such 

disparity in strength, although all quarks and leptons participate in weak interactions, 

their effects are often swamped by strong or electromagnetic couplings. What makes 

it possible to observed weak interaction effects in low energy experiments is fact that 

they do not respect certain conservation laws obeyed by strong and electromagnetic 

interactions, such as conservation of parity, strangeness, etc. In the example given 

above the decay of E- violated strangeness. Another example is provided by atom­

ic parity violation experiments, which measure rates of certain atomic transitions 

disallowed by parity conservation, but allowed once weak interactions are included. 
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The fact that the neutrino couples only weakly to matter and the corresponding 

cross-sections are tiny has a direct implication on the design of neutrino experiments. 

As will be described later, all neutrino detection experiments require very large tar-

gets, and state-of-the-art shielding and background rejection. The history of neutrino 

discovery itself provides a great illustration to this point. Postulated by Pauli in 

1929 to explain the continuous spectrum of f3 decay of the proton, the neutrino 

was not detected until 1956, when Reines and Cowan (6] first observed the reaction 

iJe + p-+ n + e+ in their classic experiment, using 1 MeV reactor antineutril}OS and 

a target of cadmium chloride (CdC12) and water. To illustrate the inherent difficulty 

of all neutrino detection experiments, it is worth mentioning that the mean free path 

of such 1 MeV antineutrinos in water is of the order of 1020 em or 100 light years. 

2.1.2 Coupling of leptons in the electroweak theory 

The theory which provided the correct description of the weak interactions and 

at the same time united them with the electromagnetic interaction was developed 

by Glashow (7], Salam (8], and Weinberg (9]. The theory represents a logical and 

beautiful construction, which was confirmed in a countless number of experiments. 

Together with the theory of strong interactions, the QCD, it constitutes the Standard 

Model of particle physics. In this section we review the electroweak theory and present 

the results that will be used to describe neutrino coupling to matter. 

The fundamental concept used to describe the electromagnetic interaction is the 

-.. 
" 
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coupling of the electromagnetic current to a photon. The interaction between a 

photon and a charged particle is given by Hint = A"'J"'. The current J~' is simply 

q(p+p')~' for a scalar particle and qf'Y"'i for fermions. Here i and f are the operators of 

the initial and final particles, and p and p' refer to the initial and final momenta. The 

electromagnetic current can also be decomposed in terms of left- and right-handed 

components. Introducing 'ifJL = PL'¢ = (1-,}
5

)'1/J and using {'Y5,'Y"'} = 0, we can 

trivially show that 

(2.1) 

The terminology "left-handed" ("right-handed") comes from the fact that, in the limit 

v -t c, U£ ( uR) describes a particle with its spin pointing in the direction opposite to 

(along) its momentum. According to Eq. (2.1), the electromagnetic current receives 

equal contributions from left- and right-handed components. Such a current is referred 

to as the vector current. 

The theory of the weak interaction is based on an analogous construction. One 

introduces weak currents and couples them to the w± and Z bosons. The reason 

why the same approach works in both cases is not accidental. Both weak and electro­

magnetic couplings are gauge interactions and, moreover, are two parts of the same 

gauge theory, the electroweak SU(2) x U(l) model, as will be described shortly. 

From experiment, it is known that weak interactions can convert the electron and 

the electron neutrino into each other. If an electron emits a w- boson and becomes 

a neutrino, the corresponding weak current is Jt;,_ = ih'YP.eL. Notice that only the 
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left-handed component of the electron enters Jw-, since it couples to the neutrino and 

the neutrino is left-handed. Thus, the weak current is not a vector current, unlike the 

electromagnetic current given in Eq. (2.1). The coupling to theW is instead known 

as a V-A interaction, because Jw can be written as ii'Y1L(l-'Y5)e = ii'YILe-ii'YIL,Se = 

Vector- Axial vector. 

Since the states Ve and e can turn into each other as a result of weak interaction, it 

is important to explore whether these transitions can be described by a gauge theory. 

The first natural candidate to check is the group of SU(2) rotations. Let us group eL 

and Ve in a doublet: 

L= ( :: )-
(2.2) 

The generators of SU(2) in the fundamental representation are 

T<•> = ~ ( : : ) , T(2) = ~ ( : ~i ). T<
3
l = ~ (: ~l ) . (2.3) 

In terms of these matrices the current lw+ can be written as 

lw+ =W (: :) L=l-y•THL, (2.4) 

where we introduced the matrix T(+) = T(I) - iT(2). Similarly, the current that 

couples tow- can be written as L,tLT(+) L. 

Thus the term in the Lagrangian responsible for the coupling of the lepton doublet 
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(2.2) to the w± bosons is given by 

(2.5) 

This can be rewritten in terms of r<1•2>, if we introduce W 1 and W 2 such that w+ = 

(2.6) 

The coupling constants g and g are related by g = J'ig. 
. 

We thus showed that th~ charged current interactions can indeed be obtained from 

the first two generators of SU(2). In order to have a full SU(2) gauge interaction we 

add a term containing the third generator: 

(2.7) 

where a new gauge boson, W 3 ' was introduced. 

The addition of the third term in Eq. (2.7) leads to very important consequences. 

Notice that this term gives two new diagonal currents, hry"'eL and ihry"'v£. Can these 

currents be in fact the electromagnetic currents? The answer is obviously "no", for 

two reasons: i) it only involves the left-handed components and ii) it would give a 

non-zero charge to the neutrino. On the other hand, how can we explain the charges 

(0, -1) of the doublet L? Introducing a separate U(l)EM gauge group and assigning 

different charges to the elements of the doublet would be unacceptable, if we want to 

keep the weak SU(2). 
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The resolution is suggested by the pattern of the charges (0, -1), which can be 

represented as Q = T<3> + Y, withY= -1/2 and r<3> is the eigenvalue of the isospin 

operator. Part of the electric charge can indeed be due to the interaction with the 

W 3 component, while the remainder can be explained if we introduce an additional 

U(1) group (called the hypercharge U(1)y) and assign a hypercharge Y = -1/2 to 

the doublet L as a whole. The diagonal part of the interaction is now 

(2.8) 

On closer inspection of this idea, several issues arise: 

• In nature, there is only one photon, while in our case we have two fields, W 3 

and B. 

• The gauge group U(1)y will have its own coupling constant g', which we need 

to relate to g and e, the electric charge. 

• The electric charge of the right-handed electron will come purely from the U(1)y 

interaction. This will require different hypercharge assignments for eL and eJi, 

i. e. YL =/= YR in Eq. (2.8). 

The first point can be resolved if only one of the linear combinations of W 3 and 

B remains massless, while the other one acquires a mass. Let 

B'"' = cosOwA'"'- sinOwZ'"', 

W! = sinOwAJL + cosOwZJL, (2.9) 
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where A will be the photon, Z will acquire a mass, and (}M is known as the weak 

mixing angle. 

We can now address the second point. Plugging in Eq. (2.9) into Eq. (2.8) and 

looking at the coefficient in front of A", we get 

gT(3} sin (}M + g'YL cos (}M = Qe. 

Plugging in our proposed relationship Q = Y + T<3>, we obtain 

(g sin (}M - g' cos (}M )T(3
) + g'Q COS (}M = Qe, 

which is satisfied if 

Thus, 

g sin (}M- g' cos ()M = 0, 

g' cos ()M =e. 

g sin ()M = g' cos (}M = e. 

(2.10) 

. (2.11) 

(2.12) 

(2.13) 

Finally, for the right-handed component' of the electron eL the hypercharge is 

YeR = -1. Thus, the right- and left-handed components of the electron are treated 

as different particles in this framework. 

We can also compute the coupling strength of the Z boson to the leptons. Similarly 

to the way Eq. (2.10) was obtained, we can combine Eq. (2.9) and Eq. (2.8) and collect 
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the coefficients in front of Zp.ifi'Y"''l/J. We obtain 

gTC3) cos (} M - g'YL sin (} M = gTC3) cos (} M - g sin (} M ( Q - T(3)) sin(} M = 
· cos(}M 

g (TC3>-Qsin2 0M) (2.14) 
cos OM 

To summarize, the neutrinos couple to both w± and Z bosons through what is 

known as correspondingly charged and neutral current interactions: 

6.£int 6..Ccc + 6.CNc, 

6.Ccc JL(w+ JC+>P. + w- JC->P.) V2 p. p. ' 

6.CNc 
g (T(3) - Q sin2 (}M )Zp.J(O}p., (2.15) 

cos(}M 

where 

(3} 1 
Tneutrino - 2' 

Qneutrino - 0, 

JC+)P. - h'Y"'v, 

J(-)p. (JC+)v)t, 

J(O}p. eL 'Y"'eL + eR'Y"'eR + iJ'Y"'v. ; ~ .... ..;:, (2.16) 

2.1.3 Masses through the Higgs mechanism 

Next we will address two outstanding issues: 

• We need to introduce the Higgs mechanism and to prove that the Z boson in 

Eq. (2.9) indeed acquires a mass, while the photon A remains massless. 
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• We have not discussed the quark sector. 

In order to explain how the Z boson acquires a mass, we first need to address the 

fermion masses. A naive approach would be to add meLeR to the Lagrangian. This, 

however, is not allowed by the SU(2) gauge invariance. For a term in the Lagrangian 

to be gauge invariant, it must contain the doublet L as a whole, without splitting its 

components. To obtain a gauge invariant combination, we can add another SU(2) 

doublet to the theory, H. Unlike L, the components of Hare bosons. This allows us 

to write 

(2.17) 

where >. is a constant of interaction, called the Yukawa coupling. To match the 

hypercharges, we must assign Y = +1/2 to H .. The doubret H is called a Higgs 

doublet. It contains a positively charged boson and a neutral boson, 

(2.18) 

So far, this is an interaction term between three fields, not a mass term. To obtain 

a mass term from Eq. (2.18), we postulate that the neutral component of the Higgs 

doublet acquires a non-zero vacuum expectation value (VEV), 

(H)= (: )- (2.19) 
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Notice that we did not write a nonzero VEV for the charged component h+, as that 

would violate electric charge conservation. Substituting Bq. (2.19) into Eq. (2.17), 

we obtain the desired mass term for the electron, -.AveLeR. 

We are now ready to consider the mass for the gauge bosons. Knowing the gauge 

quantum numbers of the Higgs doublet, w~ will analyze its coupling to the gauge 

bosons W1
•
2

•3 and B. This interaction is described by the following terms in the 

Lagrangian: 

. (2.20) 

We now set H to its VEV, Eq. (2.19), and look for terms that correspond to mass 

terms for the gauge bosons. 

(2.21) 

where we used the fact that ( -gWJ3
> + g' B~-') = ..j g2 + g'2 Z~-', according to Eq. (2.9). 

This demonstrates that w± and Z indeed become massive as a result of coupling to 

the Higgs field, while the photon remains massless. Moreover, it makes a prediction 

of the ratio of the w and z masses 

mw/mz = cosOw = Jg2 - e2 jg, (2.22) 

in agreement with experiment. 
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2.1.4 The Quark Sector 

The discussion so far has been concentrated on the leptons. We will now briefly 

present the results for the quark sector. 

Just like the leptons, the left-handed quarks can also be gr~uped in a doublet: 
' " 

(2.23) 

Notice that the lower component is denoted d' and not simply d. The meaning of this 

notation will be discussed shortly. To reproduce the electric charges of ( +2/3, -1/3) 

with Q = Y + T(3) we will assign to QL the hypercharge of+ 1/6. The doublet Q will 

thus couple tow±, Z, and the photon. 

Next, we consider the right-handed quarks. Unlike the situation in the lepton 

sector, there are two right-handed particles in a single generation, UR and DR. The 

hypercharge assignments which yield the correct electric charges are Yu = 2/3, Yv = 

-1/3. Thus, UR and DR will couple to Z and the photon. 

At last, we discuss the generation of masses for the quarks. The mass for the 

down-type quarks can be generated in the same way as for the leptons, with the term 

(2.24) 

in the Lagrangian. On the other hand, the mass for the up-type quarks has no analog 

in the lepton sector. The gauge invariant combination involving QL and H can be 

constructed if we make use of the second possible way to make SU(2) invariants, 
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EapAa B.B. This combination is invariant because SU(2) transformation matrices have 

a unit determinant. (The invariants we previously used for the leptons and the down­

type quarks were of the form AlBa.) It is easy to see that the term 

(2.25) 

is gauge invariant and will give masses to the up-type quarks. 

In Eqs. (2.24) and (2.25) we omitted the generation indices. In fact in turns out 

the mass eigenstates and the weak eigenstates are not aligned with each other. By 

that we simply mean that when, for example, the up quark emits· a w+ and turns 

into some state in the down sector, there is no reason for that state to· be a mass 

eigenstate. In general, it can be a linear superposition of the mass eigenstates d, s, 

and b. In the case of only two generations the misalignment effect between the weak 

and the mass bases is given in terms of the Cabibbo angle Oc: 

d' - cos Ocd +sin Ocs, 

s' - -sin Ocd +cos Ocs. (2.26) 

Here d and s are defined to be the mass eigenstates, while d' and ·s!.> are the states 

that enter the weak doublets (see Eq. (2.23)). The misalignment is responsible, for 

instance, for weak decays of the strange particles. . 

In the case of the three generations, the mass and weak bases are related by 

a 3 x 3 matrix, known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This 

matrix contains four independent parameters, three angles and one phase. The phase 
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is thought to be responsible for the CP violation observed in nature. 

There is no analog of the CKM matrix for the lepton sector, so long as the neu­

trinos are massless. If, however, neutrinos had masses and furthermore those masses 

were different, one would be required to introduce the mixing matrix for the leptons 

as well. This would lead to the neutrino oscillations, as will be discussed in the next 

section. 

2.2 Neutrino Masses and Oscillations 

As ~as shown in the previous section, in the Standard Model {SM) neutrinos are 

massless. Thus, a detection of nonzero neutrino masses would be an indication of new 

physics beyond the SM. In this sections we will explore the consequences of neutrino 

masses. We will show that if neutrino mass eigenvalues are different, one may observe 

neutrino oscillations. We will describe neutrino oscillations in vacuum and in matter. 

2.2.1 Neutrino Oscillations in Vacuum 

To introduce the concept of neutrino mixing and oscillations, let us first discuss 

one important difference between the neutrinos and other known elementary particles. 

Unlike the other particles in the Standard Model, the neutrinos are defined as weak 

eigenstates, not mass eigenstates. 

Normally, when one speaks of a particle, one usually has in mind a state of a 
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certain mass. For example, an electron le) and a muon IJ.L) are each defined as the 

states of given masses. The same applies to quarks. As was discussed in 2.1.4, 

the weak currents contain superpositions of quark mass eigenstates, resulting in the 

need for the CKM matrix. In the case of massless neutrinos, however, one cannot 

speak about mass eigenstates. Thus, the neutrino states are defined as the weak 

eigenstates1 . This means that, for example, Ve is defined as the state which, upon 

emitting a w+ boson, becomes an electron. In this sense Ve is analogous to the state 

d' (Eq. 2.26) in the quark sector, rather than d. 

If neutrinos were massive, then it seems quite plausible that the neutrino mass 

eigenstates and weak eigenstates would not be aligned, just like in the quark sector. 

In the case of only two generations the relationship between the two bases can be 

parameterized as 

(2.27) 

' where lv1) and lv2) are the mass eigenstates and() is the mixing angle. The misalign-

ment between the two bases leads to neutrino flavor oscillations: 

To see how the oscillations arise in the simplest case, let us consider the evolution 

of a neutrino state created at some point as Ve and propagating in vacuum. If the 

neutrino energy is much greater than its mass, its energy is given by Ei = Jp2 + mr ~ 
1See the PDG book [10]. 
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2 2 

p + ~ ~ p + ~. At time t the state becomes 

where we factored out the common phase eit/J. The probability to detect this state as 

Ve is 

(2.28) 

This formula shows that the flavor composition of the neutrino states depends on 

time t, i. e. the neutrino oscillates with the amplitude given by sin2 20. Separate 

lepton numbers are not conserved unless () = 0 or 1r /2. In practical units 

P = 1 - sin2 20 sin2 
( 1.271::!:.;:

2 

L) , (2.29) 

where the neutrino energy Ev is in GeV, the distance traveled Lis in kilometers, and 

the mass-squared splitting is in e V2
. 

We can also write the Hamiltonian H of the system. In the mass basis (lv1), lv2)) 

His simply 

0 ) ( _~m2 
4E., 

2 
= const + 

~ 0 
2E., 

6:' ) ' 
4E., 

while in the weak basis (lve), lv~t)) it takes the form 

f::im2 ( - cos 2() 
H=const+-E 

4 v 
sin 2() 

sin 2() ) . 

cos 2() 

(2.30) 
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2.2.2 Effect of Matter on Neutrino Oscillations 

We now consider how the evolution of a neutrino state can be affected by its 

interactions with matter. We will show that such interactions in some cases can 

dramatically change the neutrino survival probability. 

Neutrinos interact with matter through charged and neutral current weak inter-

actions, Eqs. (2.15, 2.16). As an example, we will analyze the neutrino-electron 

scattering. This process will be important later when we discuss the neutrino evolu-

tion inside the Sun. The Feynman diagrams for the elastic vee scattering are· shown 

in Fig. 2.1. The amplitude corresponding to the charged current diagram is 

while for the neutral current diagram it is 

ig 1 -
(} .

2
(VJ'Yp.Vi) 

cos w 

-igJ'V ig ( (3) • 2 ) (0)( ) x 2 M 2 x () T - Qsm (}M Jv e,p,n L,R, 
p.,.- z .cosw 

(2.31) 

(2.32) 

where J~o) ( e, p, n) L R refer to the neutral currents of left- and right-handed compo-, ~ 

nents of electrons, protons, and neutrons. 

' 
For low energy neutrinos, such as solar neutrinos, the vector boson propagators 

are dominated by the mass terms Ma, and Mi. Then the amplitudes in Eqs. (2.31) 
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e 

a) b) e-,p,n 

Figure 2.1: Feynman'diagrams for neutrino elastic scattering processes via charged 
(a) and neutral (b) current interactions. 

and (2.32) can be written as the four-fermion interactions: 

(2.33) 

Comparing this to the traditional expression for the Fermi interactions, 

iMcc · - -~F (err~-~(1- -l)vi)(vrr~-'(1- -l)ei), 

iMNc - -~p (i1J'Yt-~vi)(T(3) - Q sin2 OM )JS0>(e,p, n)L,R, (2.34) 

we see that Gp = g2 f(4-/2M'fv). (The second equation in (2.34) is satisfied because 

of Eq. (2.22).) 

We we w111 first analyze the most obvious consequence of neutrino interaction 

with matter, the scattering phenomenon. As was already discussed in Section 2~1.1, 

the interaction cross section is very small. As an example we will next consider the 

scattering cross section for neutrino scattering on electrons. It is possible to guess 

the answer based on simple dimensional analysis. Since the scattering amplitude 

is proportional to G p, the cross section must contain G~. To obtain the correct 
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dimension for the cross section, we can multiply this by the center of mass energy s. 

Thus, a "' G~s = G~2meEv;· For neutrino energy of 1 MeV, this yields a "' 10-44 

cm2, a tiny cross section indeed! 

Given the amplitudes in Eqs; (2.34), we can obtain a more accurate answer. Upon 

averaging over the electron helicity states, we find 

(2.35) 

where the notation 

1 . 2 (} 

2 +sm w, 

(2.36) 

was introduced. The corresponding differential cross section for the ev scattering is 

(2.37) 

where T denotes the energy of the outgoing electrons. Simple kinematics shows that 

it is related to the scattering angles 01ab in the lab frame and OcM in the center ·of 

mass frame by 

T 

T 

me+ Eve (1 -cos Olab)' 

E2 
v2E (1 - cos OcM), 

me+ Ve 

and hence T varies from Tmin = 0 to Tmax = Eve/[1 + me/(2EvJ]. 

(2.38) 

(2.39) 

The first term in Eq. (2.37) comes from both charged and neutral current inter-

actions of the left-handed component of the electron eL, while the second term is due 



• 
22 

to the neutral current interaction of its right-handed component eR. The last term is 

the cross term between the two. It is proportional to the electron mass me and would 

vanish if me -+ 0 (or, more to the point, me ~ EvJ· This is behavior is expected, 

because in this limit eL and eR behave as two totally different particles. 

Eq. (2.37) confirms that our estimate for the order of magnitude of the neutrino 

cross section was correct. The smallness of neutrino cross section with matter makes 

it possible for neutrinos produced in the core of the Sun to travel to the surface of 

the Sun undeflected. Only in the core of a supernova is the density high enoqgh that 

the material there becomes opaque to (anti)neutrinos with energies of a few MeV. 

There is, however, another effect of neutrino-matter coupling which was pointed 

out in [11]. Although neutrinos freely propagate in the medium, the interaction in 

question can lead to an effective index of refraction of the medium for neutrinos. 

First, consider a single neutrino flavor propagating in the the solar or earth matter. 

According to a well-known result in optics, the index of refraction of a medium n is 

related to the forward scattering amplitude f(O) of the scatterers that make up the 

medium by 

21rN 
n= l+~f(O), (2.40) 

where k is a wave number and N is the number density of the scatterers. The 

derivation of this formula can be found in A.l. Physically, it happens because the 

scattering phenomenon changes the group velocity of neutrinos in the medium. But 

the same effect can be achieved also by varying the mass of the neutrinos. Indeed, 



23 

the group velocity for massive neutrinos in vacuum is 

dE p m2 

Vr=-= ~1--. 
g dp J p2 + m2 2p2 

(2.41) 

By comparing Eqs. (2.40) and (2.41) we can see that the effect of index of refraction 

can be represented if m2 is changed by 

<5m~at = 47rNj(O). {2.42) 

The value of f(O) can be found either by starting from the Feynman diagrams, 

or, more quickly, by using the expression for the scattering cross section, Eq. {2.37). 

One is cautioned, however, against a naive application of the formula 

{2.43) 

which leads to an incorrect result2 • The reason for this subtlety is that the cross , ·~. 

section in Eq. {2.37) is averaged over the spin states of the electron. To get the 

correct answer, in Eq. {2.42) we must use the average amplitude. The answer is: · 

(2.44) 

Here Ne and Nn are the electron and neutron number densities in the medium. The . 

first term is due to scattering by the charged current interaction, while the second 

one is the neutral current contribution. Notice that the neutral current contributions 

of electrons and protons cancel each other out if the medium is electrically neutral. 
2This mistake was indeed made in the original paper [11). As a result, the matter term in that 

paper is off by a factor of .../2. (It furthermore has a wrong sign.) 
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For the muon and tau neutrinos elastic forward scattering can only' occur through 

the neutral current interaction. Consequently, the value of 8m~at for them is given 

by 

(2.45) 

Using Eq. (2.44), we can estimate the order of magnitude of the index of refraction 

ofa typical medium for neutrinos. Taking the electron number density to beNe= 1024 

cm-3, for the neutrino energy of 1 MeV we obtain n- 1 = v'2GFNe/Ev rv IQ-:19• 

Hence, there is no hope to measure neutrino ray bending as a result of it passing 

through the Earth. 

Thus, if there was only one neutrino generation, the modification of the index 

of refraction by the neutrino-matter interactions would have no observable conse­

quences. The situation, however, can be very different in the presence of two or more 

generations, which can mix according to Eq. (2.27). In this case, the index of re­

fraction can have a profound effect on both the mixing angle and the mass splitting 

between the levels. This can be seen if we write down the Hamiltonian for neutrinos 

in matter. To simplify the presentation, we will once again limit our consideration 

to only two generations, for definiteness Ve and vp., and also assume that the density 

of the medium is uniform. Taking into account the contribution of Eq. (2.42), with 



f(O) given by Eqs. (2.44) and (2.45), we obtain 

2 

H = Pv + m4sum - v'2G FNn/2 
Pv 

( 

-~m2 
cos2(} + V'iGFNe + Pv 

Am
2 sin 29 

4p, 

Am
2 

sin29 ) 4p., 

Am
2 cos29 

4p., 

Here m~um = m~ + mi. The eigenvalues of this Hamiltonian are 

25 

(2.46) 

. (2.47) 

For the study of neutrino oscillations, terms common to both states are irrelevant, 
1 

and the first three terms can be dropped. One can also safely replace Pv by Ev in the 

remainder. The eigenstates of this Hamiltonian in terms of flavor eigenstates are 

(2.48) 

(2.49) 

Here (} M is the matter mixing angle, given by 

cos29M = 

(2.50) 

Thus, the presence of matter can change both the mixing angle and the mass-

squared splitting between the eigenstates. For example, if the matter term V'iGFNe __ 

is much greater than the vacuum splitting /im2 /2Ev, the amplitude of the flavor 
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oscillations in matter will be suppressed compared to the vacuum case. This indeed 

. happens for solar neutrinos in the core of the Sun for a wide range of the parameters 

{first pointed out by Wolfenstein in [11]). 

Additionally, in the case of varying matter density it is possible to obtain neutrino 

survival probability very different from those in vacuum. The two most striking 

mechanisms are the phenomenon of parametric resonance [12, 13, 14] and the so­

called MSW effect [15, 16]. The former can be relevant for neutrino regeneration in 

th~ Earth, the phenomenon studied in Chapter 4. The latter plays a crucial role in 

one of the explanations for the solar neutrino deficit. We will discuss it in detail in 

Sect. 2.3.3, after providing some background on the Standard Solar Model and solar 

neutrino experiments. 

2.3 The Solar Neutrino Problem 

Sun gets its energy from nuclear reactions that take place in its core. The net 

result of these reaction is the conversion ofhydrogen into helium nuclei. A fewofthese 

reactions produce neutrinos, which then travel through the Sun virtually unscattered. 

Several terrestrial experiments have been deployed to measure this solar neutrino 

flux, and more are under development. The existing experiments rely on different 

techniques to measure neutrino flux and are sensitive to different energy components. 

Nonetheless, all experiments report seeing a deficit in the observed neutrino flux, 

compared to the predictions of the Standard Solar Model. This discrepancy between 



27 

the theory and experiment is known as the solar neutrino problem. Understanding 

the solar neutrino problem would provide us with a unique opportunity to study 

the physics of solar interior. At the same time, if the resolution involves neutrino 

oscillations, it would be a major breakthrough in neutrino physics and particle physics 

in general. 

Our presentation in this section is organized as follows. In 2.3.1 we review the 

foundations of the Standard Solar Model and its predictions on the solar.neutrino 

fluxes. In 2.3.2 we describe the solar neutrino experiments. In 2.3.3 we present a syn-

opsis of the standard analysis of solar neutrino data in terms of neutrino oscillations. 

Finally, in 2.3.4 we discuss some of the future experiments and argue for the need of 

"smoking gun" evidence to prove that the observed solar neutrino deficit is indeed 

due to neutrino oscillations. 

2.3.1 The Standard Solar Model 

The Sun is a typical middle-aged main sequence star. Its interior is in along-lived 

quasistatic equilibrium, supported by the energy released as hydrogen is converted 
....._,.' 

into helium. This conversion occurs in two chains of reactions, the proton-proton 

(pp) chain and the carbon-nitrogen-oxygen (CNO} cycle, shown in Figs. 2.2 and 2.3 

correspondingly. A detailed analysis shows that for a star with the mass of the Sun 

the pp chain is dominant 3 . 

3For the CNO chain to be dominant, the core temperature in a star must be higher than about 
16 million K. Such temperatures are achieved in stars with masses ;::: 1.1M0 
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To compute the parameters of the interior of the Sun, it is necessary to create 

a model of stellar evolution. Such a model starts with a chemically homogeneous 

spherical object of total mass M0 and then applies the following four principles of 

stellar evolution [17]: 

• The Sun is assumed to be in hydrostatic equilibrium throughout its evolution. 

• Energy is generated by nuclear reactions in the Sun's core. 

• These reactions are the sole cause of element abundance changes in th~ Sun. 

• Energy is transported by photons or by convective motion. 

After about 4.6 billion years of evolution (the age of the Sun) the model must 

reproduce the present day solar luminosity £ 0 and radius ~' as well as predict 

the present day parameters, such as densities, temperature distribution and element 

abundances in the interior, the spectrum of acoustic frequencies observed on the solar 

surface, and, very importantly, the neutrino fluxes. 

Modern solar models built in this way are generally found to be in very good 

agreement with measurements. For example, the model by Bahcall and Pinsonneault, 

BP98 [4], predicts sound speeds which are in excellent agreement with the results 

obtained from helioseismology, as illustrated in Fig. 1 of reference [4] 4 . To date, only 

the neutrino flux predictions of the model are found to be in direct contradiction with 
4The largest discrepancy between the model and the data occurs at R = 0.7~, on the boundary 

between the radiative and convective zones. This discrepancy is too small to account for the observed 
deficit of solar neutrino flux by modifying the core temperature of the Sun. · 
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the data, as will be described in Section 2.3.3. 

Reaction Abbr. Max neutrino energy, Comments 
MeV 

p + p ---+ 2 H + e+ + Ve pp 0.42 continuous 
p + p + e- ---+ 2 H + Ve pep 1.442 discrete 
3He + p---+ 4 He + Ve hep 18.77 discrete 
7 Be+ e- ---+ 7 Li + Ve 7Be(I) 0.863 90% of time, discrete 
7 Be + e- ---+ 7 Li* + Ve 7Be(II) 0.383 10% of time, discrete 
8B---+ 8Be* + e+ + ve SB 15 continuous 
I::s N ---+ lac + e+ + Ve uN 1.20 continuous 
150 ---+ 15 N + e+ + Ve 15Q 1.73 continuous 
15 F---+ 170 + e+ + Ve 1sF 1.74 continuous 

Table 2.1: Maximum energies of the neutrinos produced in the Sun's co;e. 

Neutrinos are produced in both the pp and the CNO chains. As was already 

mentioned, for the Sun the pp chain is dominant. The reactions that make up the 

. the pp chain are illustrat~d in Fig .. ·. 2.2. The vast majority of solar neutr~nos come 

from the first reaction, the proton-proton fusion (see Table 2.2). These neutrinos, 

however, have relatively low energies, as shown in Table 2.1, and cannot be seen at 

all solar neutrino experiments. Thus, 7Be(I) and 8B neutrinos are also experimentally 

important, despite the fact that they occur only in 15% and 0.02% of all terminations 

of the chain correspondingly. The other two neutrino-producing reactions in the 

chain, the pep and hep neutrinos, are of lesser importance5. 

The CNO cycle is depicted in Fig. 2.3. Despite very different appearance from 
5 0ne of the explanations of the observed recoil electron spectrum at Super-Kamiokande involves 

the hep .neutrinos. This, however, requires that their flux would be 20 times higher than predicted 
by BP98 [18]. 
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p + p -t 2 H + e+ + Ve 

100% ' 0.4% 

100% 

' 85% 15% 

15% 0.02% 

7 Be+ e- -t 7 Li + Ve 

0.02% 

8 B -t 8 Be* + e+ + Ve 

15% 0.02% 

Figure 2.2: The pp chain in the Sun. The percentages shown represent the fraction of 
terminations of the chain in which each reaction occurs, averaged over the neutrino 
production region. 
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Figure 2.3: The CNO cycle in the Sun. 
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Figure 2.4: Solar neutrino spectrum according to BP98 solar model. Only the pp 
chain reactions are shown. 
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Source Flux (1010 em 2s I) Cl (SNU) Ga (SNU) 
pp 5.94 0.0 69.6 
pep 1.39 X 10-2 " 0.2 2.8 
hep 2.10 X 10-7 0.0 0.0 
7Be 4.80 X 10-1 1.15 34.4 
SB 5.15 X 10-4 5.9 12.4 
13N 6.05 X 10-2 0.1 3.7 
150 5.32 X 10-2 0.4 6.0 
11F 6.33 X 10-4 0.0 0.1 

Total 7 7+1.2 
. -1.0 129+8 

-6 

Table 2.2: Solar neutrino flux predictions (BP98), with 1a uncertainties from all 
sources. Also shown are neutrino capture rates for chlorine and gallium experiments 
(see Sect. 2.3.2). 

the pp chain, the net result of the CNO cycle is also to convert hydrogen into 4He. 

The carbon, nitrogen, and oxygen that appear in the reaction do not get used up, and 

only serve as catalysts. Two of the reactions in the primary loop produce neutrinos, , 

the /3-decays of 13N and 150, The secondary loop, shown within the primary cycle, 

connects the 15N, 160, 17F, and 170.· The contribution of the neutrinos produced in 

this loop to the overall flux is negligible (see Table 2.2). 

The energy spectra ofthe pp chain reactions are shown in Fig. 2.4. Notice, that 

the spectra of the pp, 8B and hep neutrinos are quite broad, while the 7Be and pep 

neutrinos, which are produced in a two-body final state, are virtually monochromatic. 
' ' 

The shape of the spectrum of each reaction is dictated by kinematics and cannot be 

changed by modifying the solar model. Any such modifications only affect the overall 

normalization of each component. For example, these normalizations depend on the 
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central temperature in the following way: [17]: 

</J(pp) ex: r-1.2, 

(2.51) 

Thus, 8B flux is the most sensitive to T, while pp is relatively insensitive. 

On the other hand, the observed neutrino flux appears to exhibit not only an 

overall suppression, but a pattern of suppression of individual components which is 

energy-dependent. Neutrino oscillation explanation of the solar neutrino problem 

can in fact accommodate such a distortion of the observed neutrino flux. This will be 

discussed in Section 2.3.3. An experimental conformation of such distortions would 

be one of the "smoking gun" signatures of neutrino oscillations. This and other 

signatures will be discussed in· Section 2.3.4. 

2.3.2 The Solar Neutrino Experiments 

To measure the solar neutrino flux several experiments have been built. These ex­

periments include the Homestake experiment, the SAGE and GALLEX experiments, 

and the Kamiokande Super-Kamiokande experiments. All these experiments have 

large targets and are located deep underground to shield the targets from cosmic 

rays. This section contains a brief overview of the principles of operation of each of 

these experiments. In the next section we will discuss how the data accumulated by 
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these experiments compare with the predictions of the Standard Solar Model. 

The Homestake experiment is the oldest of all solar neutrino detectors. Construct-

ed in late 1960's, for two decades it was the only operating solar neutrino experiment. 

The detection principle is based on the reaction 

(2.52) 

with a threshold of 0.814 MeV. This value of the threshold renders the experiment 

insensitive to the abundant pp neutrinos. However, the 7Be and 8B neutrinos (as well 

as the pep and CNO neutrinos) are within its sensitivity range. 

The target is a 100,000-gallon tank of perchloroethylene C2Cl4, a cleaning fluid, 

located 4850 ft underground in the Homestake Gold Mine in Lead, South Dakota. 

Periodically, usually once every one to three months6 , the argon in the tank is removed 

. . 
by purging the tank with helium. The argon atoms are absorbed by the charcoal trap 

maintained at the temperature of liquid nitrogen. The trap is subsequently heated 

and the extracted argon is purified and loaded in a small proportional com:iter. As a · 

result of this procedure, on the order of 15 (!) 37 Ar atoms are extracted out of the · 

total of more than 1030 atoms in the tank. 

The extraction efficiency was tested by placing a small neutron source at the 

center of the tank and counting the number of 37 Ar atoms in the tank produced as 

a result, and also by introducing a measured number of 37 Ar atoms in the detector 

and then removing them. The extraction efficiency was shown to be at least 90%. 
6The half-life of 37 Ar is 35 days, so after a few months the equilibrium number of argon-37 atoms 

is established. 
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That one can extract 15 atoms from a 100,000-gallon tank of a cleaning fluid with 

90% efficiency is simply astounding! 

As can ·be seen from Table 2.2, the SSM predicts that the (majority of the 37 Ar 

atoms are expected to be created by the 8B neutrinos, while the 7Be neutrinos con­

tribute about 15% of the total rate. 

As was already mentioned, the Homestake experiment is insensitive to the low en­

ergy pp neutrinos. Gallium experiments were designed to eliminate this shortcoming. 

· The solar neutrinos are captured in the reaction 

(2.53) 

which has a threshold of only 0.233 MeV. The radioactive 71Ge has a half-life of 

11.43 days and decays by electron capture. As shown in Table 2.2, in the absence of 

oscillations over a half of all neutrinos detected at these experiments are expected to 

come from the basic pp reaction. 

The GALLEX detector is located in the Gran Sasso Underground Laboratory 

in Italy. The detector consists of a concentrated GaCl3-HCl solution containing 30 

tons of gallium. Neutrino interactions convert gallium nuclei into 71 Ge nuclei, which 

subsequently form the GeCl4 molecules. Periodically, GeCl4 is removed from the 

solution and, after a series of manipulations, germanium nuclei are transferred in the 

gas germane GeH4 • The resulting gas is then introduced into a small proportional 

counter, where the number of radioactive 71 Ge nuclei is measured. 

The Soviet-American-Gallium-Experiment (SAGE) is located underneath a high 
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mountain in the Baksan river valley in the North Caucus region of Russia. It us-

es 60 tons of gallium and, unlike the GALLEX experiment, the target is in metal 

form. Gallium metal melts at about 30° C, permitting the extraction of the germani-

urn. Although more cumbersome, after the first several extraction steps the chemical 

processing and counting techniques are quite similar to those used-tin GALLEX. To 

appreciate the scale of both experiments, it should be kept in. mind that at the time 

the experimental techniques were being developed, the total world production of gal-

lium was only 10 tons per year! ' 
"•;{ 

The two experimental technic~ues each have certain advantages and disadvantages, 

which are to some degree complementary.. It is therefore encouraging that solar 

neutrino fluxes reported by both experiments are consistent. within the error bars 

(the values are 79 ± 10 ± 6 SNU:. for GALLEX and 79 ± 10 ± 6 SNU for SAGE). ,, 

The Kamiokande experiment, which was launched on January 1987 and later 

superseded by its larger version, called Super-Kamiokande, is based on a completely 

different detection principle .. Both experiments are basically very large tanks of water 

(Super-Kamiokande detector is 40 meters in diameter and 40 meters tall) located at 

a depth of 2700 meters water equivalent in the Kamioka Mozuml mine in Japan. The .~ 

primary mode of interaction of neutrinos in the detector is the elastic scattering on 

electrons: 

(2.54) 

The recoil electrons produce Cherenkov light in the detector, which is measured by 
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photomultiplier tubes surrounding the fiducial volume of the detector. Thus, unlike 

the previously considered radiochemical experiments, the Kamiokande and Super­

Kamiokande experiments are known as the water Cherenkov detectors. 

Because the recoil electrons should be energetic enough to produce Cherenkov 

light, and most importantly, because the signal from the low energy electrons is 

swamped by the background from radon dissolved in the water, the water Cherenkov 

experiments are sensitive only to the high energy 8B neutrinos. This drawback of the 

technique is, however, outweighed by several very important advantages. Fi.rst, the 

orientation of the Cherenkov cone provides a directional information on the incoming 

neutrino. The Kamiokande was the first experiment to unequivocally demonstrate 

that neutrinos are indeed coming from the Sun. Second, the detection is carried out 

is real time, making it possible to look for seasonal and day-night variations in the 

event rate. Finally, if the detector is well calibrated, one can obtain not only the 

integrated flux, but also the energy spectrum of the 8B solar neutrinos. 

The Kamiokande experiment was originally built to look for proton decay. In 1984 

it was decided to improve the detector to make possible the study of the relatively low­

energy events induced by solar neutrinos. The upgrades were completed just in time 

to allow the observation of neutrinos from the supernova SN1987 A, an incredibly 

lucky coincidence, considering the fact that a similar supernova event may occur 

with a frequency on the order of 100 years. The supernova neutrinos have energies 

comparable to those of the 8B solar neutrinos. 
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In addition to solar neutrinos, Kamiokande and Super-Kamiokande have the ca­

pability to study the atmospheric neutrinos. These neutrinos are produced by the 

cosmic rays interacting in the upper atmosphere and include both electron and muon 

neutrinos and antineutrinos. The results from the study of atmospheric neutrinos 

indicate that muon neutrinos may be oscillating into some other neutrino type, thus 

providing the strongest evidence we have to date for new physics beyond the Standard 

Model. 

At present Super-Kamiokande is the state-of-the-art solar neutrino experiment. 

Over the past several years it has accumulated a large amount of data. This data, 

combined with the results from the Homestake and gallium experiments provide a 

strong hint for solar neutrino oscillations. This analysis will be presented in the next 

subsection. 

2.3.3 Comparison of Theory and Experiments:, -MsW and 

Vacuum Oscillation Solutions 

All solar neutrino experiments described in the previous section- report seeing a 

deficit of solar neutrinos. Gallium and water Cherenkov detectors measure a flux 

equal to a half of the expected value, while the Homestake experiment measures 

only about a third of what is predicted. The experimentally measured event rates 

and uncertainties, as well as the standard solar model predictions are summarized in 

Table 2.3. 

·,;. 



40 

Experiment Experimental rate Ref. Theoretical rate Units 
Homestake 2.56 ± 0.16 ± 0.16 (19] 7 7 +1.2 

. -1.0 SNU 
SAGE 67 2 +7.2 +3.5 

. -7.0 -3.0 (20] 129 + 8 
-6 SNU 

GALL EX 77.5 ± 6.2 ~!:~ (21] 129 + 8 
-6 SNU 

Kamiokande 2.80± 0.19 ± 0.33 (22] 5.15 ~~:~ 106 cm-2 s-1 

Super-Kamiokande 2.45 ± 0.04 ± 0.07 (23] 5.15 ~A:~ 106 cm-2 s-1 

Table 2.3: Solar neutrino fluxes observed by Homestake, SAGE, GALLEX, Kamio­
kande, and Super-Kamiokande {825 days, Ee > 6.5 MeV), as compared with the 
theoretical expectations ofthe BP98 standard solar model (4]. The errors are quoted 
at 1a. 

If one accepts the results of all five experiments, it is very difficult, if not impos-

' sible, to devise an explanation of the observed deficit by only modifying the solar 

model. This is because, as mentioned earlier, the shapes of neutrino spectra from in-

dividual reactions are fixed by kinematic and, in the absence of oscillations, the only 

freedom one. has is .to adjust the overall normalization of each reaction. After going 

through a simple exercise, one finds that to satisfy the Super-Kamiokande result the 

8B flux can be suppressed by a factor of 1/2. Then, the remaining half of the 8 B flux 

is enough to explain the rate seen by the Homestake experiment and there is no room 

for the 7Be neutrinos. (In fact, the best fit value for the 7Be flux in this case turns 

out to be negative.) 

On the other hand, neutrino oscillations provide a simple and logically appealing 

explanation of all experimental data. The solutions traditionally have been classified 

into two category, MSW solutions or vacuum oscillation solutions. The former relies 

on the matter enhanced flavor conversion in the Sun, while the latter uses simple 

long-wavelength oscillations in vacuum to achieve the observed energy dependent 
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suppression of the solar neutrino flux. 

We will first discuss the MSW mechanism. Using the position dependent modifi-

cation of the Hamiltonian (2.46), 

Am. 2 sin 29 ) c'.: 

4pv 

' 
Am

2 cos29 
4pv 

(2.55) 

for neutrinos propagating inside the Sun, it is relatively simple to estimate the survival 

probability for electron neutrinos that are created in the Sun's core and are detected 

on the Earth, in the limit that /::,.m2 f2Ev is much smaller than the Earth-Sun distance, 

such that oscillations in vacuum between v1 and v2 states are "averaged out" 7 . There 

are four possible "propagation paths" that the solar neutrino can follow: 

Ve -+ v+(p = sin2 90 ) -+ v2(P =1- Pc) -+ ve(P = sin2 9) 

or 

. Ve -+ v+(p = sin2 90 )-+ v1(p = Pc)-+ ve(p = cos2 9) 

or (2.56) 

Ve -+ v- (p = cos2 90 ) -+ v1 (p = 1 - Pc) -+ Ve (p = cos2 9) 

or 

where p is the probability that a given "step" takes place, v+ and v- are the heavy 
7That this is indeed the case will be demonstrated later in Sect. 3.2. 
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and light mass eigenstates at the production point in the core, 80 = ()M(O) and Pc is 

the level crossing probability, i.e. the probability that during the evolutionfrom the 

Sun's core to vacuum the neutrino changes from one set of instantaneous Hamiltonian 

eigenstates to the other. 

Therefore, the probabilities of finding the mass eigenstates v1 and v2 far from the 

Sun are given by 

(2.57) 

(2.58) 

where ()0 is the mixing angle at the production point8, and the electron neutrino 

survival probability (Pee) at the surface of the Earth is 

(2.59) 

All equalities hold as long as the two mass eigenstates appear as an incoherent mixture 

(true for l::l.m2 ,<: w-s eV2 for 7Be neutrinos). Note also that iil deriving Eq. (2.59) 
l 

no assumption was made with respect to the value of cos 2(), and therefore it should 

be valid for the entire range of 0 :::; sin2 
():::; 1. This fact will be important in Chapter 

4. 
8In our numerical analyses later, we integrate over the production region using the profile given 

in [24]. The interference between v+ and v_ states in Eq. (2.56) vanishes upon averaging over the 
production region independent of l:im2 or energy. 
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If the two mass eigenstates are not incoherent (true for /:::,.m2 ;S 10-s eV2 for 7Be 

neutrinos), Eq. (2.59) is modified to (25, 26] 

(2.60) 
··.';.···'. 

where Lis the distance from the Sun to the surface of the Earth, in km, Ev is in GeV, 

!::,.m2 in e V2 , and 8 is a matter induced phase, given in [25]. Physical consequences of 

the matter phase have been discussed in [27]. Eq. (2.60) is valid for a fixed neutrino 

energy. For 7Be neutrinos, the integration over the width of the neutrino energy line 

leads to a suppression of the oscillatory terms already at /:::,.m2 ~ a few x 10-10 e V2 . 

Assuming an exponential profile for the electron number density inside the Sun 

(Ne(r) = Ne(O) exp(-r/r0)), Schrodinger's equation can be solved analytically (28, 

29], and it is shown that, in the range of the neutrino oscillation parameter space 

relevant for addressing the solar neutrino puzzle, Eq. (2.59) is indeed a very good 

approximation for Pee and that Pc is given by (29, 30] 

-7sin2 8 -7 e -e 
Pc= 1 ' - e-'Y 

(2.61) 

where 

= 2 /:::,.m
2 = 122 ( /:::,.m

2 
) (0.862 MeV) 

'Y 1fTo 2Ev . 10-9 e V2 Ev ' (2.62) 

for r0 = ~/10.54 = 6.60 x 104 km [17]. 

Eqs. (2.62) and (2.61) show that in the limit sin2 ()/:::,.m2 » (10-9 eV2)(Ev/1 MeV) 

the value of the level crossing probability Pc goes to zero. The evolution in this case 
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is said to be adiabatic. Adiabatic evolution inside the Sun can lead under certain · 

conditions to an almost total conversion of electron neutrinos into another flavor 

type, when the mixing angle in vacuum is very small. Indeed, suppose that 6.m2 > 0 

and () ~ 1. Suppose that also -../2GFNe(O) > 6.m2 /(2Ev) at the production point 

in the core. Then in the core the electron neutrino is produced almost completely 

in the heavy eigenstate .. Assuming the evolution is adiabatic, the neutrino leaves the 

Sun also in the heavy state which, in vacuum, consists almost entirely of Vw This is 

the essence of the MSW mechanism. The possibility of nearly total convers_ion was 

missed in [11] and was pointed out in [15] and [16] . 

. The vacuum oscillation solution is based on a simpler idea. One assumes that the 

solar neutrino oscillation length is of the same order of magnitude as the Earth-Sun 

distance. This allows one to achieve the necessary selective suppression of certain 

neutrino energy components (see Eq. (2.29)). While it is not clear what the parame­

ters in the neutrino mass matrix have to do with the value of one astronomical unit, 

one cannot discard such coincidence as a logical possibility. 

Using these results, one can determine the regions in the two-neutrino parameter 

space, which are allowed by the data from all the experiments listed in Table 2.3. 

The results of such fits traditionally have been shown in the (sin2 20, 6.m2) space. · 

Analysis shows that there are four disconnected regions in the parameter space that 

fit the data. One of them, the "just-so" solution, relies on vacuum neutrino oscillations 

with a very long wavelength (comparable to the Earth-Sun distance) [2], while the 
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Figure 2.5: The global solutions for the allowed MSW oscillation regions, known, 
respectively, as the SMA, LMA, and LOW solutions (adopted from [1]). 

other three (SMA, LMA, and LOW) [2, 3) rely on the MSW effect to produce the 

required energy dependence of the electron neutrino survival probability. The LOW 

·. solution also relies on the neutrino regeneration in the Earth during nighttime. 

Figs. 2.5 and 2.6 show the recent fit results. Fig. 2.5 covers the MSW region, 

while Fig. 2.6 shows the allowed vacuum oscillation regions. Both figures have been 

adopted from [1]. We present the results _of our own fits in Chapter 5. 

2.3.4 Need for "Smoking Gun" Evidence for Oscillations 

The results presented in the last section constitute a strong hint for neutrino fla-

vor oscillations as a way to explain the observed neutrino fluxes. Nevertheless, this 

•·. 
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Figure 2.6: The global solution for the allowed vacuum oscillation regions (adopted 
from [1]). 

evidence is as yet not considered definitive. As Sect. 2.3.2 shows, the solar neutrino 

experiments are notoriously difficult. Homestake data relies on being able to extract 

15 atoms out of 100,000 tons of cleaning fluid with at least 90% efficiency, in the 

. experiment located more than 1 km underground. Additionally, there is a possibility 

that the physics of the Sun is more complex than presently thought, and the neu-

trino flux calculations in the Standard Solar Model (SSM) may have underestimated 

the theoretical uncertainties. Even though it seems very unlikely that reasonable 

modifications to the SSM alone can explain the current solar neutrino data (see, for 

example, (31]), one still cannot completely discount the possibility that a combination 

of unknown systematic errors in some of the experiments and certain modifications 
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to the SSM could conspire toyield the observed data. 

To conclusively demonstrate that the observed solar neutrino deficit is indeed due 

to neutrino flavor oscillations, it would be very desirable to detect at least one of the 

so-called "smoking gun" signatures of neutrino oscillations. Such signatures include 

a proof of the energy spectrum distortions, an anomalous seasonal~variation in the 

observed neutrino flux, or a day-night variation due to the regeneration of electron 

neutrinos in the Earth. In the next chapter we study what can be accomplished 

at two upcoming neutrino experiments, Borexino and KamLAND, by analyzing the 

pattern of seasonal variations. In Chapter 4 we investigate the sensitivity of these 

experiments to the Earth regeneration phenomenon. 

Out of all solar neutrino components, both experiments will be most sensitive 

to 7Be neutrinos. As mentioned already, these neutrinos are almost monochromatic, 

with Ev = 0.862 MeV {90% of the time) or Ev = 0.383 MeV {10% of the time), 

depending on the final state of the 7Li nucleus. Since the Ev = 0.383 MeV neutrinos 

cannot be cleanly seen at Borexino or KamLAND, in our analysis we will only consider 

the Ev = 0.862 MeV neutrinos, which will be referred to as the 7Be neutrinos from 

now on. 

The study of the 7Be neutrino flux is particularly important, for a variety of 

reasons. First, in the SSM independent analysis of the solar neutrino data [31], where 

one arbitrarily rescales the flux of neutrinos from different sources, the flux of 7Be 

neutrinos comes out extremely suppressed {in fact the best fit value for the 7Be flux 
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is negative!), and the measurement of a reasonable flux would dramatically constrain 

such attempts. Second, since the prediction of one particular MSW solution (the 

small angle solution) for the survival probability of 7Be neutrinos is very different 

from the other two solutions, one can separate it from the other two by measuring 

the 7Be solar neutrino flux. Finally, as we show in the next chapter, one can either 

establish or exclude the "just-so" solution by analyzing the seasonal variation of the 

7Be solar neutrino flux at Borexino or KamLAND. 
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Chapter 3 

Seasonal Variations at Borexino 

and KamLAND 

In this chapter we present a quantitative study of what can be accomplished by '~ 

measuring the seasonal variations of the 7Be neutrino flux at Borexino and ,Kam­

LAND. Seasonal variations of the solar neutrino flux are of course expected, because 

of the eccentricity of the Ec;~,rth 's orbit. The number of neutrinos of all flavors reaching . 

the Earth is larger when the Earth is closer to the Sun than when it is farther away, 

and should vary aS 1 I L2 • In the case of no neutrino oscillations or of the MSW solu­

tion to the solar ne':ltrino problem, the number of 7Be solar neutrino induced events 

is supposed to vary according to the 1/£2 law, following the variation of the total 

neutrino flux. This will be referred to as the "normal" seasonal variation. 

If vacuum oscillations are the solution to the solar neutrino puzzle, large, anoma-
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lous seasonal variations of the number of 7Be solar neutrino induced events might 

be detected [32, 33]. As Eq. (2.29) shows, neutrino oscillation effects depend on the 

distance to the neutrino source, and different Earth-Sun distances may yield very 

different Ve survival probabilities [26, 34]. The anomalous seasonal variation effect 

should be more pronounced in 7Be neutrinos than in 8B neutrinos (the latter was 

recently studied in [35]). This is because, as discussed in Section 2.3.1, 7Be neutrinos 

are produced as part of a two-body final state and hence are virtually monoenergetic1 . 

The details will become clear when we discuss the anomalous seasonal variation effect 

in Section 3.2. 

In the case of no anomalous seasonal variations, if one has enough statistics and 

a small enough background, the time variation of the data can be used to measure 

the solar neutrino flux, given that the number of background events is constant in 

time. 2 We will analyze how well Borexino and KamLAND can perform this type of 

measurement. We are particularly interested in analyzing the relevance of this tech-

nique when the number of electron neutrinos reaching the detector is very suppressed 

with respect to the Standard Solar Model predictions, as might be the case if there 

are Ve-+ v,.,.,r oscillations for the small angle MSW solution.3 

1In fact there are two distinct neutrino energies, 0.383 and 0.862 MeV, corresponding to different 
final states of the 7Li nucleus. Borexino and KamLAND are only sensitive to the higher energy 
component. 

2 Actually, a time-dependent background is also acceptable, as long as it can be monitored and 
understood well enough. 

3IT Ve oscillates into sterile neutrinos, the suppression is even more pronounced, due to the absence 
of neutral current v#J,T-e elastic scattering. We do not consider oscillations into sterile neutrinos in 
our analysis. 
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Our presentation in this chapter is organized as follows. In Sect. 3.1 we discuss how 

seasonal variations might be used to determine the solar neutrino flux at Borexino and 

KamLAND, in such a way that no separate measurement of the number of background 

events is required. In Sect. 3.2 we analyze the effect of the vacuum oscillation solutions 

to the solar neutrino puzzle on the annual variation of the number otdetected events 

at Borexino and KamLAND. In particular we describe the region of the (sin2 20, ~m2) 

parameter space where vacuum oscillations can be discovered by studying the seasonal 

variations of the data. In Sections. 3.3 and 3.4 we describe how the measurement of 

the seasonal variation of the 7Be solar neutrino flux may be used to either measure 

the neutrino oscillation parameters, sin2 20 and ~m2 , or exclude a large portion of 

the (sin2 20, ~m2) parameter space. Section 3.5 contains a summary of our results 

and conclusions. 

3.1 Measuring the 7Be Solar Neutrino Flux 

As was already pointed out, measuring the flux of 7Be neutrinos is crucial towards 

understanding the solar neutrino puzzle. Borexino [36] plans to do this measurement 

by using 300 tons of organic liquid scintillator to detect recoil electrons from elastic 

v-e scattering. Since the scintillator has no directional information, and the signal 

is characterized only by the scintillation light produced by the recoil electron, the 

background has to be kept under control. This places a very stringent constraint on 

the radio-purity of the scintillator and on the activity of the material in the detector. 
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Borexino anticipates 100 tons of fiducial volume for detecting solar neutrinos. 
I 

KamLAND (37], which was originally conceived as a reactor neutrino experiment 

with an unprecedented baseline (170 km on the average), may also be able to study• 

7Be solar neutrinos, if rigorous yet attainable requirements on the radio-purity and, 

. activity are met. We .assume throughout this dissertation that KamLAND will use 

600 tons of fiducial volume for detecting solar neutrinos (the size of the fiducial volume 

will depend on the background rate, which is currently unknown). We concentrate 

our analysis on Borexino, which is an approved dedicated solar neutrino exp~riment, 

and discuss KamLAND, whose uses for solar neutrino studies are at present being 

proposed [38], as a possible higher statistics improvement. 

It is important to define what is meant by "measuring the 7Be solar neutrino · 

flux." In reality, what the experiments are capable of measuring is the number of 

recoil electrons induced by solar neutrino interactions in a given recoil electron kinetic 

energy range (kinematic range). This information can only be converted into a solar 

neutrino flux measurement if one knows the flavor composition of the solar neutrinos. 

Explicitly, assuming that the solar nevtrino flux is composed of Ve (with fraction P) 

and 1/p,,r (with fraction Q = 1- P), 

#recoil electrons/time= <P X (Pave-e + (1 - P)av,.,T-e)Ne, (3.1) 

where <P is the neutrino flux, Ne is the number of target electrons, and 

{Tmax (da) 
av.,-e = }

7 
. dT dT , 

Tm•n v.,-e 
(3.2) 
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with (~~) v,-e being the differential cross section for Vx-e scattering for a given kinetic 

energy T of the recoil electron. Tmin and Tmax define the kinematic range. In the case 

of neutrino oscillations, P is the the survival probability for electron neutrinos, while 

1 - P is the probability that Ve will oscillate into Vp.,-r· 

If the flavor composition of the flux is not known, all that can"'he ·quoted is· the 

effective neutrino flux, <I>eff, which is calculated from the number of measured re-

coil electrons assuming that there are only electron neutrinos coming from the Sun. 

Explicitly, 

<I>eft- = #recoil electrons/time = <I> x (p + (1 _ P) a,,.,,.-e) . (3_3) 
~~~ . ~~ 

Clearly, if P = 1, <I>eff = <I>. It is important to remember that a,,.,,.-e/ave-e < 1 and 

therefore <I>eff < <I>. The ratio of the neutrino elastic cross sections depends on the 

energy of the incoming neutrino and the kinematic range to which each particular ex-

periment is sensitive. ForE,= 0.862 MeV and the Borexino (KamLAND) kinematic 

range 250-800 keY (280-800 keY), a,,.,,.-e/ave-e = 0.213(0.214). It is this effective 

electron neutrino flux, <I>eff, that is referred to, throughout this dissertation (and in 

general), as the 7Be solar neutrino flux. 

In order to determine the .number of recoil electrons induced by solar neutrino 

interactions, it is crucial to determine the number of background events. The number 

of background events can be estimated by various techniques, which we do not address 

in this dissertation. It is worthwhile to point out, however, that this is a very difficult 

process and it would be highly desirable to have an independent way to determine the 
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7Be solar neutrino flux in order to make the final results more convincing. This· may 

be possible if one looks at the seasonal variation of the number of detected events. 

In the following, we study the seasonal variation of the event rate as· a means 

to measure the 7Be solar neutrino flux. The distance between the Earth and the 

Sun varies slightly over seasons because of the.eccentricity of the Earth's orbit. The 

perihelion (when the Earth is closest to the Sun) occurs around January first. The 

. eccentricity of the Earth's orbit is € = 0.017, and hence the distance varies as 

L = L 0(1- Ecos(27rtjyear)), (3.4) 

to the first order in f. Here, t is the time measured in years from the perihelion, 

and L 0 = 1.496 x 108 km is one astronomical unit. The neutrino flux varies as 1/ L2 

and hence shows a seasonal variation of about 7% from minimum to maximum. The 

change in the Earth-Sun distance between the aphelion and the perihelion is given by 

6.L = Lmax- Lmin = 2fLo = 5.1 X 106 km. (3.5) 

By fitting the event rate to the seasonal variation expected due to the eccentricity, 

( L 0
)

2 

B+S L ' (3.6) 

one can extract the background event rate B and the signal event rate S indepen-

dently. As long as the detector is monitored well and its performance is sufficiently 

stable, this method will be only limited by statistics. 

Borexino expects 53 events/day 4 according to the BP95 [39) Standard Solar Model 
4For simplicity, we neglect the contribution of solar neutrino sources other than 7 Be electron 
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(SSM), together with 19 background events/day (36], after the statistical subtraction 

of the known background sources. This is done by pulse shape discrimination against 

the a-particle background and the measurement of Bi-Po pairs via a-{3 coincidence. 

This in turn allows the statistical subtraction of processes in the 238U and 232Th chains 

which are in equilibrium. It is also assumed that the experiment ca:q~achieve a radio-

purity of 10-16gjg for U /Th, 10-18gjg for 4°K, 14Cjl2C = 10-18 , and no Rn diffusion. 

For KamLAND we use 466 events/kt/day for the signal and 217 events/kt/day (38] 

for the background under similar assumptions but with larger cosmogenic background 

(especially 11 C) and some Rn diffusion. Assuming 600 t of fiducial volume, we expect 

280 signal events/day and 130 background events/day. Throughout the chapter, we 

~ 

will assume that the number of background events is either constant in time or its 

time dependence is sufficiently well understood by monitoring. We neglect systematic 

effects and assume that there are only statistical uncertainties. 

Under these assumptions, Fig. 3.1 depicts a simulation of the seasonal variation of 

the "data" for both Borexi!,lo and KamLAND, after three years of running._· The plots 

are for the case of the small angle MSW solution to the solar neutrino puzzle, where 

the Ve 's produced by 7Be electron capture inside the Sun have alinost completely 

oscillated into vP. or Vn and the event rate is reduced to 21.3% (21.4%) of the SSM 

prediction at Borexino (KamLAND). In the fit to the data, both the background and 

the 7Be flux are allowed to float. 

capture throughout this chapter. In particular we neglect the contribution of neutrinos produced in 
the CNO cycle, which is about 10% of that from the 7Be neutrinos. 
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Figure 3.1: The simulated seasonal variation of the 7Be flux for the case of the 
small angle MSW solution, for three years of Borexino (left) and KamLAND (right) 
running. The inset shows the measured flux of 7Be neutrinos from the fit to the 
seasonal variation of the event rate (point with error bar) and the SSM prediction 
(shaded band). · 

This analysis can be repeated for different values of the 7Be flux; or, equivalently, 

for different survival probabilities for Ve· Fig. 3.2 depicts the expected 1 a statistical 

accuracy of the 7Be flux measurement, together with the central value normalized by 

the SSM prediction, as a function of the survival probability for Ve. We emphasize 

that this measurement technique assumes no knowledge of the background. 

The important information one should obtain from this analysis is if one can 

indeed measure a nonzero 7Be solar neutrino flux.· For example, in the case of the 

small angle MSW solution, the Ve survival probability is very close to zero and, 

assuming the expected number of background events, Borexino's measured neutrino 

flux is less tli"an 1.5 a away from zero. The situation at KamLAND is much better, 

and in the case of the small angle MSW solution a healthy 3 sigma-away-from-zero 

measurement of the flux is obtained, if the background is as low as expected. The 
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Figure 3.2: The expected 1 u statistical accuracy of the 7Be neutrino flux measure­
ment, together with the central value normalized by the flux predicted by the SSM, 
as a function of the Ve survival probability at Borexino (left) and KamLAND (right), 
after three years of data taking. 

significance of the measured flux increases for larger survival probabilities, as in the 

case of the large angle and the low !:lm2 MSW solutions. 

A similar analysis can be performed in order to determine how many background 

events each experiment can tolerate in order to claim a solar neutrino flux inea-

surement which is 3 u: away . from zero. Fig. 3.3 depicts the maximum number of 

. . .· / . 

background events per day allowed for 3 years of Borexino or KamLAND running. 

It is worthwhile to comment that, in the case of Borexino and the small angle M-

SW solution (P ~ 0), a 3 sigma-away-from-zero measurement of the neutrino flux 

is not attainable in three years, even in the case of no background (note that for 

P :S 0.05 the required maximuni background to achieve a three u measurement of 

the flux is negative, i.e., impossible to achieve). Therefore, for Borexino, this sim-

ple, background independent analysis using the seasonal variation of the data is not 

particularly powerful in the case of the small angle MSW solution, due to statistical 
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Figure 3.3: The maximum number of background events allowed per day at Borexino 
(left) or KamLAND (right), for 3 years of running, in order to measure a solar neutrino 
flux which is 3 a away from zero. The dashed lines indicate the currently anticipated 
number of background events per day. 

limitations. 

3.2 Sensitivity to Vacuum Oscillations 

In this section we study the discovery potential of the Borexino and KamLAND 

experiments in the region of Am2 corresponding to the vacuum oscillation solution 

to the solar neutrino problem. In this case, the pattern of seasonal variations can be 

very distinct from the normal pattern discussed in the previous section. 

The basic idea is the following. The survival probability P for an electron neutrino 
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in the case of neutrino vacuum oscillations between two flavor states5 is given by 

P = 1- sin2 20sin2 ( 1.27~m2 ~), {3.7) 

where the neutrino energy E is in Ge V, the distance L in km, and the difference 

of masses-squared ~m2 in eV2. Model-independent analyses of ~11 solar neutrino 

data show the need for an energy-dependent suppression of the Ve flux. The "just-

so" solution achieves this by choosing ~m2 such that the corresponding neutrino 

oscillation length 

1rE ( E ) (10-
10 

eV
2

) 
Lose= 1.27~m2 = 2.47 X 108 km X 10 MeV ~m2 {3.8) 

is of the order of one Astronomical Unit (1 a.u. = 1.496 x 108 km); hence the name 

"just-so". More specifically, the oscillation length is assumed comparable to 1 a.u. 

for 8B neutrinos (E11 .~ 10 MeV); at the same time, the oscillation length of 7Be · · 

neutrinos (E11 = 0.862 MeV) is an order of magnitude smaller and, for sufficiently 

large ~m2 , can be comparable to the seasonal variation of the Earth-Sun distance 

due' to the eccentricity of the Earth's orbit, ~L (see Eq. {3.5)). As a conseq~ence, 

the flux of 7Be neutrinos detected on the Earth may exhibit an anomalous seasonal 

variation, beyond the normall/ £2 effect discussed in the previous section. 

Such anomalous variation could serve a8 a unique signature of vacuum oscillations 

[32, 33]. Moreover, as we will show in this section, both Borexino and KamLAND will 

be able to cover a large portion of the "just-so" parameter space, even without relying 
5 0ne can assume the more complicated case of oscillations between three neutrino flavor states. 

In this chapter we limit our studies to the case of oscillations between two flavor states. 
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Figure 3.4: Illustration of the effect of vacuum oscillations on the shape of the 
seasonal variation of the solar neutrino data. The points with statistical error bars, 
represent the number of events/month expected at Borexino after 3 years of running 

._for 6.m2 = 3 X lQ-lO eV'l, sin2 20 = 1. The histogram in (a) shows the number 
_of events predicted by the SSM without neutrino oscillations, plus the number of 
· anticipated background events. The histogram in {b) shows the same quantity after. 
adjusting the solar neutrino flux and the background rate so as to minimize the value 
of x2 , as explained in the text. The difference between the case with oscillations and 
the one without oscillations is still apparent. 

on a particular solar model or estimate ofthe background rate, just by analyzing the 

shape of their data.· In this sense the discovery of an anomalous seasonal variation· 

at one of these experiments would be as robust a result as the Super-Kamiokande 

measurement of the up-down asymmetry for the atmospheric muon neutrinos. 

To illustrate the main idea, we choose a particular point {6.m2 = 3 X w-lO eV2 , 

sin2 20 = 1) in the allowed region of the "just-so" parameter space 6 and compute 

the corresponding seasonal distribution of the neutrino events at Borexino after 3 

years of running. We use the number of background events and the expected· number 

of signal events {before the effect of neutrino oscillations) quoted in Sect. 3.1. The 

results are shown in Fig. 3.4 by the set of "data" points with error bars; each point 
6Based on the analysis of the total rates in the Homestake, GALLEX, SAGE, and Super­

Kamiokande experiments. See Fig. 5 in [2]. 
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represents the number of events expected in a gi-ven month and the vertical error 

bars show the corresponding statistical uncertainties. The histogram in Fig. 3.4(a) 

shows "theoretical" event rates expected for non-oscillating neutrinos, provided the 

background rate is known accurately and the SSM prediction for the neutrino flux is 

trusted. One can see that under these a.Ssumptions vacuum neutrino\iOscillations with 

!:l.m2 = 3 X w-lO eV2 ' sin2 2() = 1 would be trivial to discover. 

More importantly, the experiment would be able to claim the discovery even with-

out relying on an estimate of the background rate or the value of incoming n~utrino 

flux predicted by the SSM. It is intuitively obvious from the figure that the vacuum 

) 
oscill~tion "data" points cannot be fit by the "theoretical" curve even if the back-

ground and the solar neutrino flux are varied freely, unless one assumes neutrino 

oscillations. This can be quantified as follows. For a given background rate b and 

signal event rates, we define the x2 value of the fit for an "average" experiment: 

2 
. .· Nbins ( ~ _ b _ S • hi)2 

X (s, b)= Nd.o.f. + L d· , 
i ' 

(3.9) 

where Nhins is the number of bins, Nd.o.f. is the number of degrees of freedom, di . 

is the average expected number of neutrino events in the ith bin, and hi is given 

by hi = JL1(1- f.Cos(27rx/Nhins)) 2dx . The constant term Nd.o.f. in Eq. (3.9) is 

added to take into account the effect- of statistical fluctuations in the data. In a 

single experiment, statistical fluctuations make the number of neutrino events in the 

ith bin slightly different from di, and x2 is computed by an expression similar to 

Eq. (3.9), with di replaced by the number of events measured in the ith bin and 
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without the constant term, Nd.o.f.· In our analysis, however, we are interested in the 

sensitivity of an "average" experiment. As proven in Appendix B.1, averaging over 

many experiments results in the definition of x2 given in Eq. (3.9), with the constant 

term Nd.o.f.. This agrees with the conventional wisdom that, if a function describes 

data correctly, the average expected value of x2 should be equal to the number of 

degrees of freedom. Given this definition, we can choose values of s and b that 

minimize the x2 ; the only restriction imposed is that both s and b be non-negative. 

For the case at hand the minimum occurs when b is zero and sis 0.95 times the SSM 

prediction (see Fig. 3.4(b)). As expected, even after this change the "data" points 

and the histogram are very different. (Numerically, x2 = 2935 which for 10 degrees 

of freedom implies a confidence level of 1 - 9 x 10-626!). 7 

We now extend this approach, and scan the entire (sin2 20, .6om2) plane (for an 

earlier work with a more simplified analysis which does not consider the presence 

of background, see (26]). In the analysis below, we follow the same steps as before: 

the "data" is simulated according to the expected number of background and signal 

events, plus the effect of neutrino oscillations, for each value of (sin2 20, .6om2), binned 

into a certain number of bins Nbins, and then compared to the ·"theoretical" predic-

tions for the case of no oscillations. The x2 is computed according to Eq. (3.9) and 

minimized with respect to both the signal (s) and background (b). The confidence 

level ( CL) corresponding to the minimal value of x2 and Nd.o.f. = Nbins - 2 degrees 
7This number is, of course, unrealistic, and the true confidence level in this case will be dominated 

by systematic effects. 



-... 
~ 
-2 . 10" 10 

... 
E 
<] 

0 0.2 

-

0.4 0.6 

sin 2(29) 

5CJ 

95%CL 

not 
sens/Uve 

'·~:1·'\.·'·· 

0.8 1 . 

63 

Figure 3.5: The sensitivity region of the Borexino experiment in 3 years, if the analysis 
does not assume any knowledge of the background rate or the incoming solar neutrino 
flux. In the unshaded region the "data" is at least 5 a away from the best no­
oscillations fit. In the lightly shaded region the discrepancy is greater than 95% CL 
but less than 5 a CL. 

of freedom is then determined, and the region in which the CL is less than a given 

number is isolated. This case, wh{m both the number of background events and the in-

coming solar neutrino flux are considered unknown in the fit, is the most conservative .... 

one, and yields the smallest sensitivity region. Later we also study less conservative 

cases, where we assume in the "data" analysis that the incoming neutrino flux is the 

one predicted by the SSM and/ or that the background rate is known. 

We now apply this most conservative procedure to study the experimental reach of 

Borexino after 3 years of operation. In Figure 3.5 we show the results of the scan for 
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95% and 5 a CL. As one can see from the figure, even at 5 a CL a large portion of the 

parameter space above /'::,.m2 
rv 10-10 eV2 is covered {white region). In this region the 

neutrino oscillation length Lose is smaller than the seasonal variation of the Earth-

Sun distance /'::,.L. On the other hand, below /'::,.m2 
rv 10-10 eV2 one can see a series 

of spikes protruding through the sensitivity region. It is important to understand the 

origin of these spikes. Since weadjust the level of signal and background in the fit, 

we are not sensitive to the absolute event rate, only to its variation during the year. 

For /'::,.m2 ;S 10-10 eV2 the oscillation length is larger than !::,.L and the all!plitude 

of the variation of the event rate is roughly proportional to the first derivative of 

Eq. {3. 7) with respect to L. In the regions where this derivative nearly vanishes, the 

amplitude of the variations is small and the signal is indistinguishable from the case 

of no oscillations. This explains why the loss of sensitivity occurs not only when the 

neutrinos undergo approximately an integer number of oscillations as they travel to 

the Earth (!::,.m2 = n x 0.143 x 10-10 eV2), but also when the number of oscillations is 

close to a half-integer (!::,.m2 = (n + 1/2) x 0.143 x 10-10 eV2). In the latter case the 

absolute neutrino flux is maximally suppressed, but the magnitude of the seasonal 

variation is small. 8 

Given this explanation, one would expect that the spikes corresponding to a half-

integer number of oscillations should become shorter if in the analysis we choose to 

rely on the SSM prediction of the incoming neutrino flux and/ or on the anticipated 
8 Notice that the regions preferred from the global fits have the absolute 7 Be neutrino flux sup­

pressed. See Figs. 3.9 and 3.10. 
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background rate. It is straightforward to incorporate the knowledge of both quantities 

and their uncertainties in our procedure. For example, to impose the value of the 

incoming neutrino flux predicted by the SSM, we modify the expression of x2 in 

Eq. (3.9) by adding an extra term: 

(3.10) 

where s and b are the values of the signal and background with respect to which we 

later minimize x2 , s0 is the SSM prediction for the signal, and a80 is the uncertainty 

in s0 • The rest of the analysis is carried out unchanged, except that the number 

of degrees of freedom is increased by one to Nd.o.f. = Nbins - 1. To use both the 

incoming flux predicted by the SSM and the anticipated background rate, two terms 

are added to Eq. (3.9) and the number of degrees of freedom is increased by two to 

Tlie results of the calculation are shown in Fig. 3.6. The uncertainty on the 

solar model prediction of the 7Be neutrino flillc is taken to be 9% [4], while the 

uncertainty on the background is 10% [38]. As expected, the odd-numbered spikes 

· do become shorter. The one possibility not shown in the plot is the'situation when 

one only assumes knowledge of the background rate. In this case the spikes become 

significantly thinner, although their length remains virtually unchanged. 

In order to extend this analysis to values of l::,.m2 > 10-9 eV2 , several issues 

must be confronted. We will next address these issues one by one, and illustrate the 

discussion in Fig. 3. 7. 
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Figure 3.6: The sensitivity reach of the Borexino experiment after 3 years of running 
(at 95% confidence level). The three cases considered are: no knowledge of either 
the background rate or the incoming solar neutrino flux (the covered region is white); 
assumption that the incoming solar neutrino flux is the one predicted by the SSM, 
with 9% ·uncertainty (the covered region is white + light gray);. assumption that 
the background rate is known with 10% uncertainty and the incomingneutrino flux 
agrees with the SSM, with 9% uncertainty (the covered region is white + light gray 
+medium gray). 

The first and the most obvious point is that the number of bins needs· to be 

changed. The reason is that the frequency of the seasonal variations increases with 

Llm2 , and above some value (Llm2 ~ 8 x w-lo eV2 , for 12 bins) integration over the 

bin size washes out the effect. To avoid this, we change the number of bins from 12 
' 

to 365. After the change, the effect of binning kicks in at tlm2 ~ 2.4 x 10-8 eV2
, as 

curve 1 in Fig. 3;7 illustrates. 

Next, there are two physical effects one must take into account: one is the in-
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Figure 3. 7: The relative roles of the binning effect, the linewidth effect, and the matter 
effect, as explained in the text. 

teraction of the neutrinos with solar matter (the MSW effect), and the other is the 

finite width of the 7Be solar neutrino line. One may worry about the wash-out of the 

seasonal variation effect due to the finite size of Sun's core. However, matter effects 

make the core size effect irrelevant because the mifdng angle in the Sun's core is small 

and the oscillations effecti':ely start at the level-crossing point (see Eq. (3.12)).9, · ' · 

When a Ve is created by the electron capture process in the core of the Sun, its 

Hamiltonian is dominated by the matter effect ../2G Fne ( ne is the electron number 

density) if 6.m2 ~ w-s e V2 for 7Be neutrinos. We restrict ourselves to 6.m2 < 

w-7 eV2 in the following discussions, as the final sensitivity due to the anomalous 

seasonal variation is limited by :S 10-8 eV2 as will be seen later in this section. 
9We thank E. Lisi and L. Wolfenstein for pointing this out to us. For earlier papers on this 

particular point, see [11], [32], and in particular, [27]. 
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Then the mass mixing effect can be completely ignored at the time of the neutrino 

production, and one can safely take the produced n~utrino to be in a Hamiltonian 

eigenstate {the one which corresponds to the larger energy in the Sun's core). As 

it propagates through the Sun, the neutrino follows the instantaneous Hamiltonian 

eigenstate {in the adiabatic approximation), and exits in the heavier mass eigenstate, 

v2 = Ve sin 9 + v,_,. cos 9. It also has a finite amplitude Ac for hopping to the other 

Hamiltonian eigenstate. The neutrino state that exits the Sun can therefore be written 

as 

(3.11) 

with the unitarity constraint IAcl2 + IBcl2 = 1. Out of the Sun, the two mass eigen-

states develop different phases due to the mass difference, e-illm
2
t/2Ev. Therefore the 

neutrino state that arrives at the Earth is given by 

{3.12) 

up to an overall phase factor. The distance L is between the point oflevel crossing 

and the Earth. Finally, the survival probability of the electron neutrino is determined 

by the Ve component of Varrivai, and hence 

{3.13) 

Since IBcl2 is the hopping probability between two Hamiltonian eigenstates in the 

Sun Pc, one can rewrite the formula using Pc and an additional phase factor A~Bc = 
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An approximate formula for Pc was given in (29, 30] using the exponential density 

profile of the Sun, 

with 

-")'sin2 8 -")' e -e 
Pc=-----

1- e-"Y 

D..m
2 

( D..m
2 

) (0.862MeV) 
'Y = 27rro 2Ev = 1.22 IQ-9eV2 Ev . ' 

(3.15) 

(3.16) 

where we consider the exponential-profile approximation for the electron number den-

sity in the Sun ne ex: exp(-r/r0), with r0 = R0 /10.54 = 6.60 x 104 km, given in (17]. 

Fig. 3.8 shows the contours of Pc on the (sin2 20, D..m2) plane for the 7Be neutrino 

energy Ev = 0.862 MeV. 

The most important consequence of the matter effect is that the vacuum oscillation 

is suppressed when Pc -+ 0 (adiabatic limit). The origin of the suppression is simple. 

When Pc is small, the neutrino state that exits the Sun is nearly a pure v2 state. Since 

it is a mass eigenstate, only its phase evolves in time and no oscillations take place. 

The Ve survival probability then is simply given by the Ve content of v2, which is 

nothing but sin2 (}, without anomalous seasonal variations. Therefore, the sensitivity 

to the anomalous seasonal variation is reduced in the region with small Pc. When 

D..m2 is small, on the other hand, the situation is in the extreme non-adiabatic limit, 
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Figure 3.8: The contour plot of the hopping probability Pc = 0.1, 0.2, ... , 0.9, for 
the 7Be neutrino energy, using the exponential-profile approximation for the electron 
number density and Eq. (3.15). 

and Pc--+ cos2 B. Then Eq. (3.14) reduces to Eq. (3.7). As /j.m2 increases, Pc becomes 

smaller than cos2 B, which enhances the vacuum oscillation effect in the small mixing 

angle region. Curve 2 in Fig. 3. 7 includes the matter effect and indeed indicates a 

reduced sensitivity for large sin2 28 (small Pc) and an enhanced sensitivity for small 

sin2 28 (where Pc starts deviating from cos2 8).10 

The second effect is the finite width of the 7Be line. To give some preliminary 

idea about the relative size of this effect, we first consider a simplified model. We 

assume for a moment that the only source of the line broadening is the Doppler shift 

of neutrino energies arising from the thermal motion of the 7Be nuclei. Since the 

energy is shifted toE--+ E(1 + vzfc) and the probability distribution of the velocity 
10In the numerical scan, we ignored the additional phase factor o, because its effects are negligible 

[27]. 
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along the line of sight Vz is proportional to exp( -mv;/2kT), the resulting line profile 

will be a Gaussian exp( -mc?(E- E0) 2 /(2kTE~)). Taking the temperature to be 

15.6 million Kelvin (the temperature in the center of the Sun) and integrating over 

the line profile, we obtain curve 3 in Fig. 3.7. The sensitivity loss now occurs at 

!:1m2 ~ 1 x 10,...;8 eV2 , demonstrating that this effect is more inip~rtant than the 

matter effect. 

This naive model is actually incomplete; there exists another very important 

source of line broadening. Because the incoming electron in the process 7Be -:1- e- -+ 

7Li + Ve has nonzero thermal kinetic energy, the center of mass energy of the reaction 

is greater than the one measured in the1aboratory, and so the neutrino has a greater 

energy. The phase space distribution of electrons is governed by the Maxwellian fac-

tor exp(-Ee- / kT). This distribution has to be multiplied by the energy-dependent ~-

cross section, integrated over the phase space, and finally convoluted with the Gaus­

sian arising from the Doppler effect. The resulting line shape becomes asymmetric, 

with a Gaussian profile on the left (due to the Doppler effect) and an exponential tail 

on the right (due to the Maxwellian distribution of the electron energy). The issue 

was studied in detail in (40}, where the precise form of the profile ~as computed.11 

Repeating the calculation with this profile we generate curve 4 in Fig. 3.7. 

One can see that for this curve the cut-off occurs at smaller !:1m2 • This behavior 

is expected, because the linewidth is now greater than when only the Doppler effect 
11 It turns out that other effects, such as collisional line broadening [41] or gravitational energy 

shift [40], are unimportant. , 
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was included· (curve 3 in Fig. 3. 7). It is also worth noting that the cut-off sets in more 

gradually. This feature can be understood analytically by considering the Fourier 

transform of an exponential tail vs. a Gaussian tail. The details can be found in 

Appendix B.2. 

Finally, we can combine both the linewidth and the matter effects. The result 

is curve 5 in Fig. 3.7. As expected, the inclusion of the matter effect on top of 

the linewidth effect introduces only a small distortion to the sensitivity region. It is 

important to note that for ~m2 ;S 5 x 10-10 e V2 none of the physical effects mentioned 

above affect the sensitivity region (curve 1 versus curve 5, in Fig. 3.7). 

We need to consider one last ingredient in the analysis. We again return to 

the issue of the number of bins. While choosing more bins is necessary for larger 

values of ~m2 , it simultaneously leads to a loss of sensitivity for smaller ~m2 • A 

better procedure is to use an optimum number of bins Nopt for each ~m2 • It can 

be shown that for our method of analysis (minimizing x2 by varying the signal and 

background). and sufficiently large ~m2 an approximate formula holds: Nopt ~ 2 x 

1010(~m2 /1 eV2
). Of course, this formula should not be used when the optimal 

number of bins it predicts is too small. We choose to use 12 bins for ~m2 ~ 6 x 

10-10 eV2 and a variable number of bins Nbins = 2 x 1010(~m2 /1 eV2
) for ~m2 > 

12 An alternative technique, which can be considered more rigorous but which would also be more 
computer intensive, is to Fourier transform the simulated data for every value of (sin2 20, ~m2) in 
the scan. One can then compare the intensities of the harmonics to those expected for the case of 
no oscillations. A description of this method can be found in (42]. For our purposes varying the 
number of bins is sufficient. 
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In Fig. 3.9 we show the entire sensitivity reach of Borexino after three years of 

running. The unshaded region will be covered at least at 95% CL, if in the analysis 

one allows the background and the incoming solar neutrino flux to float. The dark 

shading marks the additional portion of the parameter space that will be covered 

at least at 95% CL, if in the analysis one assumes both the anticipated background 

rate (10% uncertainty) and the SSM prediction of the 7Be solar neutrino flux (9% 

uncertainty). For !:::..m2 ~ 5 x 10-9 eV2
, the sensitivity to the anomalous seasonal 

variation gets lost because of the smearing due to the linewidth effect. However, 

there is an overall suppression of the flux due to the MSW effect in this region. To 

be sensitive to this overall suppression, we should return to a smaller number of bins 

to enhance the statistical accuracy. We therefore use 12 bins in this region.13 

For comparison, we also superimpose the ''just-so" preferred regions obtained 

by analyzing the total event rates in the Homestake, GALLEX, SAGE, and Super-

Kamiokande experiments (Fig. 5 in [2]). The plot shows that Borexino will be sensitive 

to almost all of the preferr~d region, even without relying on the SSM prediction of 

the incoming neutrino flux or on the knowledge of the background rate .. Only two thin 

spikes protrude through the lower "islands". This overlap disappears completely when 

the anticipated background rate and the SSM prediction for ~he incoming neutrino 

flux are used in the "data" analysis, in which case the entire preferred region is 

covered. 
130ne can cover a slightly larger portion of the parameter space by using yet fewer bins. We chose 

12 bins such that one can still verify the expected 1/ L2 behavior of the signal even with a reduced 
flux, as we discussed in Sect. 3.1. 
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Figure 3.9: The final sensitivity plot for three years of Borexino running, after the 
inclusion of all effects limiting the reach of the experiment for large Am2 • The white 
region corresponds to the sensitivity at more than 95% confidence level with both 
the incoming neutrino flux and background rate. assumed to be unknown, and the 

' ' 

dark region to the additional coverage when the SSM 7Be flux and the background 
rate estimated elsewhere are used. Also shown are the regions preferred by the anal­
ysis of the total rates in the Homestake; GALLEX, SAGE, and Super-Katniokande 
experiments [2]. 
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Figure 3.10: The same as Fig 3.9, but for three years of KamLAND running. 
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Fig. 3.10 contains a similar plot for three years of KamLAND running. Because 

KamLAND will have more statistics, it W"m be sensitive· at mi% CL ·to the entire 

preferred region without relying in the analysis on the SSM prediction of the incoming 

neutrino flux or on the knowledge of the background rate. 

As mentioned earlier, the sensitivity to anomalous seasonal variations is com-

pletely lost for 'D..m2 ,:::: 10-8 e V2 . In this case the seasonal variation of the data is 
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consistent with an average suppression of the incoming neutrino flux. In particular, 

in the case of the MSW ·solutions (lo-7 eV2 ;S D..m2 ;S 10-4 eV2
), no anomalous 

seasonal variations can be detected, as was implicitly assumed in Sect. 3.1. 

At last, it is worth mentioning that the experiments will still be sensitive to a 

significant part of the preferred region even if the background rate or the incoming 

7Be neutrino flux (for all flavors) turns out- to be significantly different. For example, 

if the background rate at Borexino (KamLAND) turns out to be 30 (100) times higher 

than expected, the part of the preferred region with D..m2 > 10-10 eV2 will. still be 

within the reach of the experiment, after three years of running. The sensitivity will 

be completely lost only if the background rate turns out to be three (four) orders of 

magnitude higher than anticipated at Borexino (KamLAND). The consequences of a 

7Be solar neutrino flux smaller than predicted by the SSM can also be studied. Ifthe 

T8e neutrino flux is for some reason suppressed by a factor of 5, KamLAND is still 

sensitive to the part of the preferred region with D..m2 > 10-10 eV2 , after 3 years of 

running. 

3.3 Measuring the Oscillation Parameters 

In this section, we address the issue of how well the two-neutrino oscillation pa­

rameters, sin2 2() and D..m2 , can be extracted if the data collected at future solar 

neutrino experiments exhibits an anomalous seasonal variation. In order to do this, 

we simulate "data", according to the procedure developed in Sect. 3.2, for two distinct 
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Figure 3.11: Number of recoil electrons detected in a given month, for the low point, 
the high point {see text for description) and the case of no neutrino oscillations, after 
three years of Borexino running. 

points in the parameter space, sin2 28 = 0.7, D..m2 = 8 x 10-11 eV2 {"low point") and 

sin2 28 = 0.9, D..m2 = 4.5 x 10-10 eV2 {"high point"). The low point is close to the 

best fit point presented in [2], while the high point is close to the point preferred by 

the Super-Kamiokande analysis of the recoil electron energy spectrum [43]. The data 

is binned into months {12 bins per years), and Fig. 3.11 depicts the annual variations 

for both the high and the low points, assuming three years of Borexino running. The 

no-oscillation case is also shown. 

In order to measure the oscillation parameters, we perform a 4 parameter (s, b, 

sin2 28, and D..m2 ) fit to the "data". The fit is performed by minimizing x2 with 
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respect to the incoming neutrino flux (s) and the background rate (b), as in Sec­

t. 3.2, and computing it for fixed sin2 20 and D..m2
• Fig. 3.12 depicts the values of 

(sin2 20, D..m2) and the 95% CL contours (for two degrees of freedom), extracted from 

the "data" consistent with the low (light) and high (dark) points. Note that this is 

very different from what was done in the previous section. There, for each point in 

the (sin2 20,D..m2
) plane there was a different "data" set, and the "data" was fitted 

by a non-oscillation theoretical function. Here the "data" is fixed (either the low 

or the high point), and is fitted by a theoretical function which assumes :qeutrino 

oscillations .. 

One should easily note that the extracted 95% CL contour for the high point 

consists of only two "islands", while for the low point one extracts a collection of 

"islands". The reason for this is simple. When D..m2 
rv few x w-lo eV2 , the oscillation 

length is slightly smaller than D.L (see Eq. (3.5)). This means that the seasonal 

variation of the "data" has a very particular shape (as one may easily confirm by 

looking at Figs. 3.4, 3.11), which cannot be easily mimicked by other values of D..m2 , 

even when the background rate and the incoming flux are varied in the fit procedure. 

When D..m2 
rv several x w-n eV2 , the oscillation length is larger than D.L, and 

the effect of seasonal variations is less pronounced. There is a collection of D..m2 's 

that yields the same qualitative behavior. Because our fit procedure allows for the 

background rate and the neutrino flux t0 float freely, a good agreement with the 

"data" is met for a large portion of the parameter space. In order to make this 
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Figure 3.12: Measurement of the neutrino oscillations parameters sin2 28 and i:l.m2 , 

assuming no knowledge of the SSM and the number of background events. The 
regions represent the 95% confidence level contours, for data consistent with the high 
(dark) and low points (light). The input points are indicated in the figure by.the two. 
crosses. See text fo!-" details. We assume 3 years of Borexino running. 

discussion clearer, it i.s usef1.d to deScribe in detail what happens to the number of 

electron neutrinos reaching ,the detector as a function of time. 

In the case of the low point: initially, when the Earth is at the perihelion, the· 

Ve survival probability is small and, as time progresses, monotonically increases until 

the Earth reaches the aphelion (after six months). The process happens in reverse 

order in the next six months, as expected. There are many other values of the os-. 

cillation length, i.e. i:l.m2 , such that the survival probability monotonically increases 

for increasing Earth-Sun distance and therefore a similar qualitative behavior is to 
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be expected. The main quantitative difference is in the ratio of the number of events 

detected in the perihelion and in the aphelion, which may be accounted for by vary­

ing the background rate and the incoming neutrino flux. This explains the existence 

of islands. For values of tl.m2 in between islands, the survival probability either 

increases and ~ecreases for varying Earth-Sun distance, or monotonically decreases. 

The exact .location of the islands and their widths can only be understood by an­

alyzing the fit procedure, in particular the minimization of x2 with respect to the 

background rate and the incoming neutrino flux. Note that there are no "islands" 

above tl.m2 ~ 2.5 x 10-10 eV2 • This is because when the oscillation length is small 

enough (or tl.m2 large enough), the survival probability cannot only increase for in­

creasing Earth-Sun distance, but necessarily reaches a maximum before the aphelion, 

and then decreases, independent of what the survival probability at the perihelion is. 

This situation is qualitatively different from the low point. 

In the case of the high point: initially the survival probability is close to unity, 

decreases sharply as the Earth moves further from the Sun, and then grows rapidly, 

reaching a maximum when the Earth is close to its aphelion, because the oscillation 

length is smaller than tl.L. In this case, little variations in the oscillation length, i.e. 

tl.m2 , produce big qualitative .changes, including the position and number of maxima 

and minima. There is still a. small ambiguity (i.e. two "islands") in determining tl.m2 

for the high point. This happens when the oscillation length is such that the minimum 

of the survival probability happens in March/October and the survival probability is 
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large enough at the perihelion and the aphelion. The fact that the absolute values of 

the number of recoil electrons detected are different is taken care of by vary~ng the 

signal and the background. 

In conclusion, if Nature chose neutrino oscillation parameters such that sin2 2(} 

is large and t:l.m2 ~ few x 10-10 eV2 , Borexino should be able ,~o measure these 

parameters independent of the SSM and any knowledge of the number of background 

events, with good precision (especially in t:l.m2). If t:l.m2 ~several x 10-11 eV2 , the 

determination of oscillation parameters is not as precise. Better precision can be 

achieved at KamLAND, but the ambiguity of solutions in the "low" D..m2 region still 

remains. 

3.4 Exclusion of Vacuum Oscillations 

In this section, we address the issue of what the experiments can conclude about 

vacuum oscillations if no discrepancy from the normal seasonal variation effect is 

' detected. In this case, one may be able to measure the incoming neutrino flux, as 

outlined in Sect. 3.1. Two distinct possibilities will be considered: (1) the measured 

flux is consistent' with the SSM prediction; (2) the measured flux is suppressed with 

respect to the SSM prediction~ · 

In the first case, one would be inclined to trust the SSM prediction of the 7Be 

neutrino flux and use it in the analysis to exclude vacuum oscillations. This will be 

discussed in Sect. 3.4.1. On the other hand, in the second case, it is not clear if the 
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reduced flux is due to MSW neutrino oscillations, an incorrect SSM prediction of the 

neutrino flux, etc. This will be discussed in Sect. 3.4.2. 

3.4.1 If the Flux is Consistent with the SSM Prediction 

We simulate "data" consistent with the SSM and the expected number of back-

. ground events. The relevant numbers are quoted in Sect. 3.1. The "data" are binned 

into months (12 bins per year), and are illustrated in Fig. 3.11, assuming three years 

of Borexino running. We then fit to the "data" annual distributions that .include 

neutrino oscillations for a given choice of (sin2 20, .6.m2), plus a constant background. 

The background rate and the incoming neutrino flux may be allowed to float in the 

fit, constrained to a positive number. 

It is important to note that this is the opposite of what was done in Sect. 3.2, 

where the sensitivity of Borexino and KamLAND to vacuum oscillations was studied. 

There, the simulated "data" were consistent with vacuum oscillations, and one tried 

to fit a non-oscillation prediction to the "data" by varying the incoming flux and/or 

the background. Here, the "data" are consistent with no oscillations, and one tries 

to fit the "data" with a prediction which includes the effect of neutrino oscillations 

for fixed (sin2 20, .6.m2), by varying the incoming flux and/or the background. If both 

the background and the incoming flux are fixed, i.e. not allowed to vary in the fit 

procedure, the exclusion and the sensitivity regions are the same. On the other hand, 

if both the background rate and the incoming flux are allowed to float, the exclusion 
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region is expected to be smaller than the sensitivity region presented in Sect. 3.2, 

especially in the region /:)..m2 ;S 10-10 eV2 • This is due to the fact that a large number 

of points in the parameter space yield an annual variation of the Ve flux which is 

much larger than 7%, but agrees with the shape of the normal seasonal variation. If 

i~ the fit procedure the signal is scaled down to reduce the amplitudiiof the variation 

and the background scaled up to increase the number of events, a good fit to the no 

oscillation case can be attained. 

Fig. 3.13 shows, for three years of Borexino and KamLAND running, the region 

of the (sin2 2(), /:)..m2) parameter space excluded at 95% CL, if one allows the solar 

neutrino flux and the background rate to float within the positive numbers {in white), 

and if one assumes the solar neutrino flux calculated in the SSM within theoretical 

errors {in light plus white). 

A few comments are in order. First, one notices that the KamLAND exclusion 

region is larger than the one excluded by Borexino. This is, of course, expected 

because of KamLAND's larger fiducial volume and therefore higher statistics. Second, 

when the solar neutrino flux is allowed to vary in the fit, the excluded region of the 
·~---~~ 

parameter space shrinks, as expected and discussed earlier. Third, one can safely 

claim that, if no discrepancies are detected in the seasonal variation spectrum, the 

"large" /:)..m2 (several x 10-10 e V2) set of vacuum solutions (see Figs. 3.9 and 3.10) will 

be excluded, even at Borexino. Even when no knowledge of the incoming neutrino 

flux is used, a reasonable portion of the "small" /:)..m2 (several x 10-11 eV2 ) set of 
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Figure 3.13: Region of the two neutrino oscillation parameter space excluded in the 
case of no neutrino oscillations if one assumes no knowledge of the background and 
no knowledge of the SSM (white) or knowledge of the SSM (light+ white), after 3 
years of Borexino (right) and KamLAND {left) running. 

solutions is also excluded. When one assumes knowledge of the incoming neutrino 

flux, the entire allowed region is excluded. 

If the background rate is larger than expected, the excluded region diminishes 

accordingly. This is because when the constant background is enhanced with respect 

to the oscillation signal it is easier to achieve a reasonable x2 for the fit even· when 

the seasonal variations due to vacuum oscillations are significantly different from the 

no-oscillation· case. In particular, when the background rate is large enough that the 

seasonal distribution of the data is statistically consistent with a flat one,.a reaj)onable 

x2 for the fit can always be achieved simply by scaling the signal to zero and scaling up 
' 

the background appropriately. Explicitly, after three years of Borexino (KamLAND) 

running the exclusion region vanishes if the background rate is "'8 ( 40) times larger 

than anticipated, when both the background rate and the incoming neutrino flux are 
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allowed to float in the fit or rv500 (3000) times larger than anticipated when one 

assumes the neutrino flux predicted by the SSM. 

3.4.2 If There is an Overall Suppression of the Flux 

If there is an overall, i·.e., time-independent suppression of the flux (which is the 

case for the MSW solutions), the way to proceed towards excluding part of the vacuum · 

oscillation parameter space is less clear. This is because such an experimental result 

neither agrees with the SSM prediction nor does it represent any "smoking gun" 

signature for neutrino oscillations, as is the case of anomalous seasonal variations. · ., 

One does not know if the SSM prediction of the flux is simply wrong; or if there are 

neutrino oscillations consistent with one of the MSW solutions or both. Anyway, it 

is clear that (in general) the incoming neutrino flux should be considered unknown 

in the data analysis. 

The most conservative option is to follow the same analysis done in the previous 

subsection, and allow both_the incoming neutrino flux and the background rate to 

float in the fit. In this case, the excluded region of the two-neutrino oscillation 

parameter space is reduced significantly, and may completely disappear. This is 

because when the number of signal events is reduced the annual distribution is closer 

to flat and a good fit is obtained even when the would-be annual variations are very 

different. This is very similar to what was previously discussed at the end of the last 

subsection, where we discussed what happens if the background rate turns out to be 
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much larger than anticipated. Explicitly, after three years of Borexino running and 

a signal rate which is 21.3% of the SSM prediction (as one would obtain in the case 

of the small angle MSW solution), Borexino is unable to exclude any portion of the 

vacuum oscillation parameter space, while KamLAND can still exclude about one 

half of the "high" and "low" /::,.m2 preferred regions. If the background rate can be 

estimated by other means with 10% uncertainty, Borexino and KamLAND will be 

able to exclude the entire"high" /::,.m2 region and a significant portion of the "low" 

/::,.m2 region. 

In order to go beyond the most conservative analysis discussed above, one would 

have to look at the overall situation of the solar neutrino puzzle at the time of the 

data analysis. lt is likely that one will be able to do much better. For example, solar 

neutrino oscillations might have already been established by the SNO experiment (44], 

and perhaps it is reasonable to assume the incoming solar neutrino flux predicted by 

the SSM. Then it would be possible to exclude a region of the parameter space as 

large as the one in Sect. 3.4.1 where one assumes the SSM flux. Another possibility is 

that Super-Kamiokande or SNO rules out the small angle MSW solution by studying 

the distortions of the electron energy spectrum (43, 23, 44], and a large suppression 

of the 7Be solar neutrino flux would indicate that there is something wrong with the 

SSM. In this case, it is not clear how to proceed. We do not go into further discussions 

on all logical possibilities. 
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3.5 Conclusions 

We have studied possible uses of the seasonal variation of the 7Be solar neutrino 

flux at Borexino and KamLAND. Our results can be summarized as follows. Once 

the experiments accumulate enough data to see seasonal variations, the first step 
·;. 
~. ~ ... 

will be to determine if the observed pattern is consistent with the normall/ £ 2 flux 

suppression. If a discrepancy is found, it will be a sign of vacuum oscillations. In 

this case, the seasonal variation of the data can be used to determine the oscillation 

parameters sin2 28 and I:::J..m2 • On the other hand, if the data are consistent ~th the 

normal pattern, the amplitude of the variation can be used to measure the 7Be solar 

neutrino flux and to exclude a significant portion of the vacuum oscillation parameter 

space. 

If the observed seasonal variations are consistent with the normal 1/ L 2' flux sup-

pression, one can use the amplitude of the variation to determine what fraction of 

the observed recoil electrons are induced by the neutrinos coming from the 'Sun. This 
. . 

method is limited by statistics, and the accuracy is worse when the 7Be solar neu-

trino flux is suppressed, as in the case ~f the small angle MSW solution. In fact, in 

Sect. 3.1 we found that in the case of a large suppression only KamLAND should be 

able to perform such a measurement, after 3 years of data taking. It is important 

to emphasize that we assumed the oscillation of electron neutrinos into other active 

flavors. In the case of oscillations into sterile neutrinos, the 7Be solar neutrino flux 

might be almost absent, and in this case neither Borexino nor KamLAND are able 
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to perform a measurement of the flux using this technique. 

An important advantage of this technique is that it does not require a separate 

estimate of the background rate, which may be a very difficult task. If the back­

ground rate can be reliably measured by some other means, one can obtain another 

measurement of the neutrino flux. In this case, the two results can then be compared 

for consistency, thus making the final result on the 7Be neutrino flux. much more 

trustworthy. 

We also studied in great detail the effect of vacuum neutrino oscillations on season­

al variations. Our analysis shows that the outlook for discovering vacuum oscillations 

at both Borexino and KamLAND is very favorable. A very important finding in 

Sect. 3.2 is that the experiments may detect a deviation from the normal pattern of 

seasonal variations even without relying on the SSM prediction of the incoming neu­

trino flux or estimate of the background rate. The analysis would consist of trying to 

fit the observed data with the normal 1/£2 pattern, treating the incoming neutrino 

flux and the background rate as free parameters. With this technique, after three 

years of running Borexino should detect anomalous seasonal variations for almost 

all values of (sin2 28, ~m2) preferred by the analysis of the neutrino flux data from 

Homestake, GALLEX, SAGE, and Super-Kamiokande, as illustrated in Fig. 3.9. The 

sensitivity region should be larger at KamLAND (Fig. 3.10). Results obtained in this 

way would be very robust. Both experiments are sensitive to an even larger portion 

of the parameter space if the background rate can be reliably estimated by auxiliary 
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measurements. 

If anomalous seasonal variations are discovered, the data can be used to measure 

the oscillation parameters (sin2 20, Llm2). This issue was studied in Sect. 3.3. It was 

found that for Llm2 ~ w-lO ey2 the experiments will be able to determine Llm2 

with good precision. At the same time, for Llm2 ~ w-w e V2 there<twould be many 

"candidate islands" in the (sin2 20, Llm2) plane, and it will not be easy to resolve the 

ambiguity. 

On the other hand, the absence of anomalous seasonal variations of the 7Be solar 

neutrino flux data can be used to exclude regions of the vacuum oscillation parameter 

space. In Sect. 3.4 we presented the exclusion plots for both Borexino and KamLAND, 

after three years of running. An important lesson from that section is that in order 

to exclude a large portion of the preferred region, the experiments will need to either 

measure the background rate or rely on the SSM prediction for the neutrino flux. In 

the absence of both, the results are rather weak. This is to· be contrasted with the 

situation in Sect. 3.2. 

It is important to keep in mind that the simulated "data" is most of the time based 

on the SSM prediction fot the 7Be solar neutrino flux and the anticipated number 

of background events at Borexino and KamLAND. Our numerical results, therefore, 

even in the cases when we do not use the knowledge of the incoming neutrino flux 

or the background rate at the analysis stage, are not to be regarded as SSM and 

background rate independent. We would like to draw attention to our comments 
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at the end of Sects. 3.1 and 3.2 on how our results might change if these inputs 

are changed. We also assume only statistical errors in the data analysis, neglecting 

systematic uncertainties due to the lack of knowledge in the seasonal variation, of the 

background rate. The inclusion of such effects is beyond the scope of this dissertation. 

Overall out results indicate that the future Borexino results can lead to significant 

progress towards solving the solar neutrino puzzle. Furthermore, if KamLAND is also 

able to study solar neutrinos, one would have access to a larger data set, and more 

powerful results can be obtained. 
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Chapter 4 

Earth Matter Effect at Borexino 

and KamLAND 

It has been known for over a decade that the propagation of solar neutrinos 

through the Earth can result in a measurable variation in the observed neutrino 

event rates [45}. Reference [46], in particular, contains a good, thorough analysis of 

the expected day-night asymmetry for the Super-Kamiokande, Borexino, and·SNO 

experiments. It states, however, that the asymmetry should vanish' for the case of 

maximal neutrino mixing () = 1r /4. This point was generally accepted for 2 years 

until the authors of [47] pointed out that the asymmetry for()= 7r/4 is in fact nonze-

ro. In this chapter we extend the previous analyses in several important aspects; 

First, we present an enlarged parameter space, where the vacuum mixing angle is 
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allowed to vary over its entire physical range from 0 to 7r /21
• We find that not only 

does the day-night asymmetry stay nonvanishing at maximal mixing, in agreement 

with [47], but that it also smoothly extends into the other part of the parameter 

space, 7r /4 < (} ~ 7r /2. Second, we display the sensitivity regions of KamLAND · 

and Borexino in this enlarged parameter space, using realistic numbers for the signal 

and background rates. In our analysis we use the x2 method, and study the effect 

of various binning schemes. Finally, we explore the possibility· of using the neutri-

no regeneration data at the two experiments in question to measure, the oscillation 

parameters. 

This chapter is organized as follows. In Sect. 4.1 we review the day-night effect and 

present the day-night asymmetry expected for 7Be neutrinos as a function of the two 

neutrino oscillation parameter space. We also introduce an enlarged parameter space, 

0 ~ (} ~ 1rj2. In Sect. 4.2, we study the sensitivity of the KamLAND and Borexino 

experiments to the day-night asymmetry and to the zenith angle dependence of the 

7Be flux. In Sect. 4.3 we study the possibility of measuring the oscillation parameters 

if a significant day-night effect is observed at either Borexino or KamLAND. We 

contrast the analysis of the day-night asymmetry with the zenith angle distribution. 

In Sect. 4.4 we present a summary of our results and conclusions. 

1This enlarged parameter space has already been mentioned in the context of three-flavor oscil­
lations [48]. 
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4.1 Electron Neutrino Regeneration in the Earth 

As explained in Chapter 2, neutrino-matter interactions can dramatically affect 

the pattern of neutrino oscillations. The reason for this is that neutrino-matter in-

teractions are flavor dependent, given that the matter distributions of interest (the 

Earth, the Sun) contain only first generation particles. One well-known consequence 

of this is that, in the case of neutrinos produced in the Sun's core, it is possible to 

obtain an almost complete Ve --7 Yother transformation even when the vacuum mixing . 

angle is very small (see Sect. 2.3.3). 

It has also been pointed out by several authors (45, 46, 47] that matter effects might 

also be relevant for neutrinos traversing the Earth. One experimental consequence 

of neutrino-Earth interactions is that the number of events detected during the day 
..... 

(when there are no neutrino-Earth interactions) can be statistically different from 
.• 

the number of events detected during the night. The Super-Kamiokande experiment 

has already presented experimental data which seem to slightly prefer a nonzero day-

~ ' 
night asymmetry, even though the result is not yet statistically significant (49, 23] 

(the most recent result is AnN= 0.065 .± 0.031 ± 0.013). 

In this section we review the electron neutrino regeneration effect in the Earth 

and how it affects the observed solar neutrino flux. We also present the expected 

day-night asymmetry for 7Be neutrinos at the KamLAND and Borexino sites. 
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4.1.1 The Day-Night Effect 

If neutrinos have mass, it is very likely that, similar to what happens in the 

quark sector, neutrino mass eigenstates are different from neutrino weak eigenstates. 

Assuming for simplicity that only two neutrino states mix, we can relate the mass 

and flavor eigenstates as follows: 

lv1) =cos Olve) -sin Olvl'), 

lv2) =sin Olve) + cos Olvp.), (4.1) 

where 0 is the vacuum mixing angle, lv1) and lv2) are the mass eigenstates with 

masses m1 and m2 , respectively, and Ve f-7 v" mixing is considered. The mass-squared 

difference is defined as Am2 = m~ - m~. 

We are interested in the range of parameters that encompasses all physically dif­

ferent situations. First, observe that Eq. (4.1) is invariant under 0-+ 8+1r, Ve-+ -ve, 

vi' -+ -vi', i.e. 0 E [ -1r /2, 1r /2) and 0 E [1r /2, 37r /2] are physically equivalent. Next, 

note that it is also invariant under 0-+ -0, v" -+ -v,.,., v2 -+ -v2 , hence it is sufficient 

to only consider 0 E [0, 1r /2). Finally, it can also be made invariant under 0-+ 1r /2-0, 

v,.,. -+ -v,.,. by relabeling the mass eigenstates v1 ++ v2 , i.e. Am2 -+ -Am2 . Thus, all· 

physically different situations are obtained if 0 ~ sin2 0 ~ 1 and Am2 is positive, or 

0 ~ sin2 0 ~ 1/2 and Am2 can have either sign. In what follows, we will use the first 

parametrization (Am2 > 0), unless· otherwise noted. 

7Be neutrinos reach the Earth as an incoherent mixture of lv1) and lv2), as was 
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explained in Section 3.2 (see also (50, 47] and references therein), with probabilities Pt 

and P2 = 1- P1 as long as tl.m2 ~ 10-8 eV2. P1 is given in Eq. (2.57) in terms of the 

jumping probability Pc and its value depends on the details of the neutrino production 

and propagation inside the Sun, as presented in Sect. 2.3.3. The probability Pee of 

detecting aVe on the Earth is given by 

(4.2) 

where Pie is the probability that v1 (v2) is detected as a Ve for i = 1 (2). Because 

P1e + P2e = 1 (always, independent of matter effects, because of the unitarity of the 

Hamiltonian), one can rewrite Eq. (4.2) 

(4.3) 

In the case of neutrinos detected during the day, P2e = sin2 0 (the vacuum result), 
' 

while for neutrinos that traverse the Earth P2e = P.fe must be calculated numerically, 

and depends on the density profile of the Earth and the latitude of the location 

where the neutrinos are to be detected. One should also remember that muon or tau 

neutrinos still interact in the detector through neutral currents, although the even 

rate is down by a factor of R ~ 0.2 compared to electron neutrinos. The day-night 

asymmetry (AvN = (events detected duringtlie' night.minus events detected during 

the day)/ (total)) is, therefore, 

A 
_ (1- 2PI)(P.fe- sin2 0)(1- R) 

DN-
(2Pl + {1- 2Pl)(P2e + sin2 0))(1- R) + 2R. 

(4.4) 
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It is important to note that AvN does not have to vanish, as used to be the general 

lore in the past, when sin2 
() = 1/2 (maximum mixing), as was clearly shown in [47). 

AvN does vanish, of course, when PI = 1/2 (a fifty-fifty mixture of mass eigenstates 

reaches the Earth). 

It is interesting to note that, in the past, AvN was always computed assuming that 

sin2 
():::; 1/2. However, it is perfectly acceptable to have sin2 

() > 1/2, when the heavy 

mass eigenstate (v2) is predominantly Ve· While in the case of vacuum oscillations 

physical results depend only on sin2 20, in the case of neutrino-matter interactions 

sin~() > 1/2 leads to physically different results. Using sin2 20 as a parameter in the 

latter case can be misleading, as 0::; sin2 2() ::; 1 does not cover all physically distinct 

possibilities. Similar to what was pointed out in [47) for the transition between 

sin2 
() < 1/2 to sin2 

() = 1/2, we will show that for the entire range of 0 :::; sin2 
() :::; 1 

the behavior of AvN is smooth. In Appendix C.1 we explain in detail how to extend 

the expression for PI to the case sin2 
() > 1/2. 

4.1.2 The Day-Night Asymmetry at 36° and 42° North 

We numerically compute the value of Pfe and AvN for 7Be neutrinos at KamLAND 

(latitude= 36.4° north) and Borexino (latitude= 42.4° north). We assume a radially 

symmetric exponential profile fot the electron number density inside the Sun, and 

use the analytic expression for the survival probability of neutrinos produced in the 

Sun's core derived in [29), as presented in Appendix C.l. We appropriately integrate 
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over the 7Be neutrino production region inside the Sun, using the results of the SSM 

(4), conveniently tabulated in (24]. 

We use a radially symmetric profile for the Earth's electron number density, given 

in [51], and the zenith angle exposure function for the appropriate latitude, which 

was obtained from (24]. For a plot of the electron number density profile in the Earth 

see Fig. 2 in (46] and for the zenith angle exposure function see the upper left-hand 

corner of Fig. 5 in (46]. The model predicts that the electron number density in. 

the Earth's mantle varies in the range 2.1 to 2.7 moles/cm3 , while in the ou~er core 

the electron number density is significantly greater {4.6 to 5.6 moles/cm3). Because 

of the latitude of Borexino and· KamLAND, the solar neutrinos detected at these 

experiments will not travel through the inner core. 

Fig. 4.1 depicts the constant day-night asymmetry contours for 7Be neutrinos2 

at KamLAND and Botexino. It is important to note that, unlike conventionally , 

done in the literature, the x-axis here is sin2 8, not sin2 28. To facilitate comparison 

with earlier results, we also depict the same information in the (D.m2
, sin2 28) plane 

in Fig. 4.2, where once again we vary the mixing angle in its entire physical range ·. 

0 ~ 8 < 7r/2. 

As Fig. 4.1 demonstrates, the asymmetry contours smoothly extend into the 

sin2 8 > 0.5 half of the parameter space. One can see that in that region the day-night 

asymmetry is non-zero and may, in fact, be quite large. This kind of behavior had 
2We only assume Ve oscillations into other active neutrino species. 
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(sin2 (}, D..m2)-plane for 7Be neutrinos at the KamLAND and Borexino sites. The 
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already been seen in [48], for day-night asymmetry contours at Super-Kamiokande 

(see Fig. 11 in [48]). This is to be contrasted with conventional analyses, which choose 

.axes as in Fig. 4.2, but only show the 0 s 0 s 1r I 4 half of the parameter space. As a 

result, contours there seem to abruptly terminate at maximal mixing. 

Itis also easy to see from our plots that, with the choice of variables as in Fig. 4.1, 

:there is nothing special about maximal mixing. This point is somewhat obscured in 

the (Am2 , sin2 20) plane, where it seems that the slope of the contours abruptly 

changes around sin2 20 = 1. The reason for this is that the Jacobian of the transfor-

mation from sin20 to sin2 20, 

d(sin 20) = 
2 

cos 20 
d( sin 0) cos 0 ' 

(4.5) 

vanishes at maximal mixing 0 = 1r I 4. It can be argued, therefore, that sin2 0 repre-

sents a more natural parametrization. From here on we will always use sin2 0 as a 

parameter. 3 

The day-night asymmetry for 0 = 1r I 4 is in general non-zero and, indeed, can be 

larger than 10%. Our analysis, thus, is in complete agreement with the findings of 

[47] and extends them to the other half of the parameter space. Note that constant 

day-night asymmetry contours do close as sin2 0 --+ 1. This is expected, because 

in that limit, just like for sin2 0 --+ 0, there is no neutrino mixing, and so Pee goes 

trivially to 1 and AvN vanishes. 
3If one wishes to keep the symmetry between (J < 7r/4 and (J > 7r/4 for vacuum oscillations while 

avoiding the singular Jacobian, the best choice for the horizontal axis would be tanfJ in log scale, as 
was done in [48] in the context of three-flavor oscillations. 
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Almost all other features of the contours in Figs. 4.1 and 4.2 can also be understood 

analytically. Several physical effects are involved in shaping up the contours. In the 

low !:l.m2 region the oscillation length in the Earth is comparable to the size of the 

Earth, independent of the value of !:l.m2 • This can be understood very easily in the 

approximation that the Earth's electron density is uniform. In that/case the neutrino 

oscillation length is given by 

[ 

2 2 2 l-l/2 

L~sc = 1r ( ~;: ) + ( hG FNe) 2 
- 2 ( ~;: ) hG FNe cos 20 (4.6) 

or numerically 

Lose 

(4.7) 

For very small !:l.m2 the asymmetry vanishes for two reasons~ First, the MSW 

transition inside the Sun becomes non-adiabatic. For !:l.m2 ~. w-s eV'l, OM "' 1r /2 

(Eq. (2.50)) in the Sun's core and P1 ~ Pc (Eq. (2.57)). As the value of thejumping 

probability Pc changes from 0 to cos2 0 it passes through 1/2 (for _0 < 1r /2) where AvN 

vanishes, according to Eq. (4.4). As can be deduced from Eq. (2.61), the contours 

of constant jumping probability Pc are approximately described by D..m2 sin2 0 = 

constant, provided sin2 0 << 1 and !:l.m2 ~ 10-9 eV2
• Second, the mixing angle in the 

Earth becomes close to 1r /2 and no regeneration takes place in that limit (see also 

Eq. (4.8) below, where OM--+ 7r/2 gives P2aev--+ sin2 0}. Below the line g = 1/2 the 
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asymmetry is negative and very small. 

In the region /:!,.m2 ~ 3 x 10-6 e V2 neutrinos undergo many oscillations inside 

the Earth, as can be seen from Eq. (4.7). The relevant quantity in this case is the 

average survival probability, obtained after integrating over the zenith angle. One 

can understand the shape of the asymmetry contours in this region by, once again, 

approximating the electron number density in the Earth by a constant value. In this 

model, it is easy to show that, if a state I vi) enters from vacuum into the Earth, the 

average survival probability inside the Earth is 

(4.8) 

Here () is the mixing angle in vacuum and ()M is the mixing angle inside the Earth 

(see Eq. (2;50)). Obviously, Pf: + P!fev = L Using these expressions,. one can compute 

the day-night asymmetry for this simplified model: 

where 

A = PN + (1 - PN )R- Pv - (1 - Pv )R, 
PN + (1 - PN )R + Pv + (1 - Pv )R 

(4.9) 

00 denotes the mixing angle at the production region in the core of the Sun, Pc 
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the jumping probability (Eq. (2.61)), and R is a contribution of v,_,.,r interacting 

through the neutral current interactions in the detector. We found that for Ne rv 

3-4 molesfcm3 the contours of constant A are in good agreement with the day-night 

asymmetry contours in Fig. 4.1 for 6.m2 ~ 3 X w-6 eVl. 

Using this simple model we can explain the behavior of the asymmetry contours 

in the large 6.m2 region. For example, according to Fig. 4.1, as sin2 0 decreases for 

fixed 6.m2 , the value of the asymmetry goes down. This happens because, while the 

difference in the numerator of Eq. (4.9) goes to zero, the denominator approaches a 

constant value due to the non-vanishing neutral current contribution. Notice that 

in a real experiment, in addition to the neutral current contribution, there will be a 

term proportional to the rate of background events, further decreasing the sensitivity. 

Thus, using asymmetry contours in this region to read off the sensitivity can be 

misleading. This would be even more obvious in the case of oscillations to a sterile 

neutrino. We will· return to this issue in the next section. 

Even more subtle features can be understood within this model. For instance, we 

found that the slight change of the slope seen for the 0.5% contour around sin2 0 rv 0.04 

is due to the significant deviation of the value of 00 from 1r /2 in that region. 

Finally, in the region 6.m2 
rv m-6 e V2 the regeneration efficiency exhibits a very 

strong zenith angle dependence. Because the magnitudes of 6.m2 /(2Ev) and ..,fiGFNe 

in the core are almost equal, the mixing in the core is almost maximal (OM rv 7r/4, 

see Eq. (2.50)), while in the mantle it is small (OM rv 7r/2). As a result, for neutrinos 
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traveling through the outer core the conversion into Ve is much more efficient than for 

ones going only through the mantle. The oscillations do not average out completely 

in this case, resulting in the presence of several wiggles. We have explicitly checked 

that these wiggles are not washed out by the effect of the finite width of the 7Be line 

[40]. 

Our results for (} < 1r /4 agree qualitatively with the results presented in [46] for the 

Borexino site. The agreement is not complete, however. For instance; the contours 

in [46] do not exhibit any wiggles in the range tl.m2 ,..., w-6 eV2 • 

4.2 The Earth Regeneration Effect at KamLAND. 

and Borexino 

In this section we study the sensitivity of the KamLAND and Borexino experi­

ments to the day-night effect. 

Borexino [36] is a dedicated 7Be solar neutrino experiment. It is a large sphere 

containing ultrapure organic liquid scintillator (300 t) and can detect the ligh~ emitted 

by recoil electrons produced by elastic v-e scattering. By looking in the appropriate 

recoil electron kinetic energy window, it is possible to extract a very clean sample of 

events induced by 7Be neutrinos, if the number of background events is sufficiently 

small. Borexino expects, in the absence of neutrino oscillations, 53 neutrino induced 

events/day according to the SSM, and 19 events/day induced by background (mainly 

• 
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radioactive impurities in the detector, see Chapter 3 and [36} for details). 

The KamLAND experiment, located in the site of the original Kamiokande ex-

periment, was initially designed as a reactor neutrino experiment. Recently, however, 

the fact that KamLAND might be used as a solar neutrino experiment has become a 

plausible and exciting possibility [37]. .',·: ..... "": 

KamLAND is also a very large sphere containing ultrapure liquid scintillator (1 k-

t), and functions exactly like Borexino. The outstanding issue to determine if Kam-

LAND will study solar neutrinos is if the background rates can be appropriately 

reduced. KamLAND expects, in the absence of neutrino oscillations, 466 neutri-

no induced events/kt/day according to the SSM, and 217 events/kt/day induced by 

background (mainly radioactive impurities in the detector, see Chapter 3 and [37] 

for details). We will consider a fiducial volume of 600 t, so that 280 (unoscillated) 

signal events/day and 130 background events/day are expected. We assume that the · · 

number of background events is constant in time. 

We generate a histogram of the number of events expected in each of the N~ day 

and N night bins for different values of (~m2 , sin2 0). The number of events per year 

in the i-th bin is 

(
events) (days) i i (events) ni = 365 -- (brate + Brate(Pee + (1- pee)R)) d /i, year year · ay 

(4.10) 

where Brate = 280 (53) events/day and brate = 130 (19) events/day for KamLAND 

(Borexino), P:e is the electron neutrino survival probability in the i-th bin, R is 

I 
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the ratio of the Ve-e to vp.,r-e elastic cross sections4 (see Chapter 3, at KamLAND 

(Borexino) R = 0.214 (0.213)) and fi=(size i-th bin divided by the sum of the sizes of 

all the bins), such that E;N fi = 1. As an example, if there are 24 (12 day, 12 night) 

hour-bins, fi = 1/24 for all i. In reality, we are interested in zenith angle bins, and in 

order to the determine fi, the exposure function presented in [46] is used. Note that 

we assume only statistical uncertainties. 

x2 is defined as 

. (4.11) 

The factor N is included. in the definition of x2 in order to take statistical fluctua-

tions of the data into account. A detailed explanation of the philosophy behind this 

procedure can be found in B.l. 

It is, important to comment at this point that, in light of the definition of x2 

(Eq. (4.11)), the sensitivity of the experiments to the Earth matter effect does not 

require any input from the SSM, including the 7Be solar neutrino flux, or from 'a 

direct measurement of the background rate. This is because we are comparing the 

night data with the day data, and no other inputs are required. Our quantitative 

results, however, depend on the expected number of signal and .background induced 

events, since these quantities are used as input for the "data" sample. 

We will define the sensitivity of a given experiment to the Earth matter effect by 

the value of x2
, computed according to Eq. ( 4.11). The sensitivity defined in this way 

4In the case of Ve ++ Vsterile oscillations, R = 0. 
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depends clearly on N, the number of day and night bins, and on fi (see Eq. (4.10)), or 

on the "size of the bin". With the real experimental data, one will certainly consider 

many different types of analyses in order to maximize the sensitivity of the data to the 

neutrino regeneration irt the Earth (options in dude computing moments of the zenith 

angle distribution, Fourier decomposing the data, maximum likelihood analysis, and 

others), but, since we analyze thousands of "data samples" (one for each value of 

(~m2 , sin2 0)), this simple x2 approach will suffice. 

We consider two options for the size of zenith angle bins. In one of them, ep.ch bin 

has the same size, that is, the bins are equally spaced (e.g. 0°-30°,30°-60°,60°-90°, 

etc). The other option is to choose the bin size such that the distribution of the day 

· data is uniform. It is worthwhile to comme~t that the latter scheme may be considered 

the most natural one for KamLAND and Borexino, which are real time experiments 

with no directional capability. In these experiments, it is straightforward to organize 

the data into time bins, which then hav~ to be translated into zenith angle bins by 

associating the time of the~event with the position of the Sun in the sky; 

Another issue to consider is the value of N which optimizes the.sensitivity. It is 

clear that for N --: 1 (the day-night asymmetry case) the statistical significance is 

enhanced for overall changes in the number of events, but for larger N, one should 

be more sensitive to distortions in the zenith angle distribution. Different binning 

schemes of the "data" for ~m2 = 1.12 x 10-7 eV2 , sin2 0 = 0.398 and three years of 

KamLAND running are depicted in Fig. 4.3, for N = 1, N = 10 equally spaced bins, 
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Figure 4.3: Different binning schemes, for !:l.m2 = 1.12 X w-7 eV2 , sin2 
(} = 0.398: 

(a) N = 1 bin {the day-night asymmetry), {b) N = 10 equally spaced zenith angle 
bins, and (c) N = 10 "uniform" bins, where the day-time data is (roughly) uniformly 
distributed. The error bars contain statistical uncertainties only. We assume three 
years of KamLAND running. 

Fig. 4.4 shows a comparison of the sensitivity reach of KamLAND after three 

years of running for two different binning schemes, N = 1 vs. N = 10 "uniform" 

bins. The contours are drawn at 95% C.L. One can easily see that for most of the 

parameter space, the best sensitivity is reached with the N = 1 case, while for a small 

region in the parameter space, when sin2 0 ~ 0.1 and !:l.m2 ""' 10-6 eV2 , theN= 10 
5The residual non-uniformity seen in the figure is due to the fact that we used a discrete table of 

values for the exposure function. 
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scheme is more succ~ssful. This result is consistent with the analysis of Section 4.1.2. 

As explained there, for l::l.m2 "' 10-6 e V2 the data shows a large enhancement in the 

low zenith angle bin, while little effect in other bins. At Borexino this effect will be 

somewhat less pronounced because it is farther from the Equator. 

One can see that the contours in Fig. 4.4 are similar in shape to the day-night 

asymmetry contours of Section 4.1.2, but quantitatively different. One important 

difference is that for l::l.m2 .<: w-6 e V2 the x2 contours do not extend as far in the low 

sin2 
(} region as the asymmetry contours. While for low l::l.m2 the 95% C.L. <;ontour 

I 

corresponds to the day-night asymmetry of roughly 0.5%, for l::l.m2 ~ w-6 eV2 the 

corresponding value of the day-night asymmetry is at least two times greater. This 

phenomenon was already mentioned in Section 4.1.2. The difference occurs because 

the x2 analysis includes, in addition to the neutral current interactions, the constant 

background rate, thus eliminating the major shortcoming of the day-night asymmetry 

analysis. 

In order to present the final sensitivity reach of KamLAND and Borexino, we · 

combine the confidence level contour obtained in the different types of analyses, with 

different number of bins. Fig. 4.5 depict~ the "optimal" 95%, 3a, and 5a co~fidence 

level (C.L.) contours for the sensitivity of three years of KamLAND and Borexino 

data to the day-night effect. The confidence levels are optimized by considering the 

union of same C.L. contours for all values of N and both binning schemes. The day-

night asymmetry provides the best sensitivity reach for most of the parameter space, 
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while the N ~ 10 uniform bins scheme at KamLAND increases the sensitivity for 

particular regions of the parameter space, as was discussed earlier. 

Fig. 4.5 clearly demonstrates that in the case of the LOW MSW solution to the 

solar neutrino puzzle, both KamLAND and Borexino should be able to see a larger 

than 5a effect, while in the case of the SMA no significant effect should be detected. 6 

Both experiments are sensitive to a large portion of the parameter space which extends 

into () > 1r /4 region, where the heavy neutrino eigenstate is predominantly Ve. 

On the other hand, should no regeneration effect be observed, a large portion 

of the parameter space, including the entire LOW region might be excluded. The 

exclusion will require knowledge of the 7Be neutrino flux, which can be measured, for 

example, by studying the seasonal variation of the observed event rate as discussed 

in Section 3.1. If the flux measured in this way turns out .large and no day-night 

asymmetry is observed, one will be able to exclude the LOW solution without relying 

on the solar model. If, however, the measured flux is very small, the exclusion will 

be solar model dependent. 

Since the sensitivity of Borexino (KamLAND) to the day-night asymmetry goes 

down to the 1.5% (0.5%) level, it is important to consider systematic effects in this 

measurement. It is, however, difficult to anticipate systematic uncertainties in the 

absence of data .. We instead looked at the measurement of day-night asymmetry 

at Super-Kamiokande [49, 23]. The dominant systematic uncertainty there is the 
6KamLAND may also be sensitive to a very small portion of the LMA solution. 



-S.N 

> CD -N 

E 
<I 

-N 

~ 
N 

E 
<I 

10-6 

10-7 

10-8 

10-5 

sin 2 e 
0.001 0.01 0.1 

Borexino 
sensitivity 

KamLAND 
sensitivity 

0.01 0.1 
sin 2 e 

112 

0.5 1 

·,.·,, 

0.5 1 

Figure 4.5: 95% (darkest), 3a (dark), and 5a (light) sensitivity confidence level (C.L.) 
contours for three years of KamLAND running. The LOW solution, which extends 
from b..m2 rv 3 X w-s eV2 to b..m2 

rv 3 >< 10-7 eV2 and has sin2 
(} rv 0.3- 0.5 [3], is 

completely covered at more than 5a C.L. 
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possible asymmetry in the detector, giving ±0.6%.7 Because the recoil electrons from 

8B neutrinos are forward peaked, the day (night) time data are detected primarily 

by the lower (upper) half the detector. A small possible gain asymmetry ([49] quotes 

0.5%) for different zenith angle bins can result is a somewhat amplified difference 

in rates because the energy spectrum is rather steep close to the ~hreshold energy 

(6.5 MeV). The energy calibration was done using electron LINAC, which at that 

time could shoot electrons only downwards and hence could not study the asymmetry 

well enough. The gain asymmetry is known to exist from the study of decay electrons 

in the cosmic ray muon data [52] as well as in spallation events.8 We assume that 

this will not be an important systematic effect for Borexino or KamLAND because 

the energy deposit is basically isotropic (no directional capability) and 'hence the 

asymmetry in the detector should not result in a systematic effect in the day-night 

asymmetry . . ; 

·The next largest 13ystematic effect is. the subtraction of background, ±0.2%. If 
. ~ . . ··. . . ,: . 

the background events arer-not completely isotropic, the subtraction depends on the 

direction and results in a systematic effect. Again at Borexino or KamLAND, the 

lack of directional correlation eliminates this systematic effect. 

If we naively drop these two dominant systematic effects, the size of the total sys-

tematic uncertainty would be less than 0.1 %. Of course, the sources of background 
7Note that the talk [23] lists the systematic uncertainties in D / N ratio, which are twice as large 

as uncertainties in the asymmetry (D- N)/(D + N) f'::j ((D/N)- 1)/2. 
8The gain asymmetry is now accurately measured using the 16N source calibration and will be 

reduced dramatically. 
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are very different at Borexino or KamLAND. Possible differences in the temperature 

or Rn level between the day and night times could introduce new systematic effects, 

while our analysis assumed the same background level for day and night, This differ­

ence, however,. can in principle be measured using the Bi-Po coincidence. Spallation 

background (such· as 11C) should not change between day and night. 

::Additionally, the experiments will need to consider other effects, such as the. con­

tribution of other neutrino sources or the uncertainty in the electron number density 

profile of the Earth. (More on the latter in the next section.) We also did no\ include 

in our analysis the contribution of neutrinos produced in the CNO cycle, which is 

about 10% of that from the 7Be neutrinos. Although we cannot accurately predict 

the total systematic uncertainty at Borexino or KamLAND, we nonetheless find it 

encouraging that the dominant uncertainties at Super-Kamiokande are unlikely to 

affect these experiments. 

4;3 Measuring the Oscillation Parameters 

In this section, we discuss the possibility of measuring the value of t:l.m2 , sin2 
() in 

the advent of a large day-night effect. In order to do this, data was simulated for 

t:l.m2 = 1.12 x 10-7 e V2 , sin2 
() = 0.398, which is close to the LOW MSW solution to 

the solar neutrino puzzle [3]. For a plot of the "data" with different binning options, 

see Fig. 4.3. 

In order to deal with the SSM solar neutrino flux and the background event rate, 
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we will conservatively "measure" both the background rate and the incoming solar 

neutrino flux by analyzing the seasonal variation (see Chapter 3) of the day~time 

data only. This measurement procedure will be incorporated in a four parameter x2 

analysis (the parameters are /).m2 , sin2 (),the solar neutrino flux s, and the background 

rate b) of the data. Explicitly, 

. N (data':light- theo~n) 2 
M (data~ay- theo~a) 2 

2 2 • 2 '""' I I '""' 'J J x(!).m,smO,s,b)=L...J 2 +L...J 2 , 

i=l ( data~ight) i=l ( J dataJay) 

(4.12) 

where data:ight is the night-time "data" binned into N night bins (as described in 

Sect. 4.2), dataJay is the day-time "data" binned into M "seasonal bins" (e.g. f = 

1, 2, ... 12 months) as described in Section 3.2. theofn is the prediction for the number 

of evens in the i-th night bin, 

theo~n = 365 [b + s(Pni~ht + (1 - pni~ht)R)] f· 
' ee,t ee,t '' 

(4.13) 

similar to Eq. (4.10). b is the background rate in events per day and sis the number 

of events per day induced solar· neutrinos according to the· SSM prediction for the -

solar neutrino flux. Similarly, theojea is the prediction for the day-time flux in the 

j-th seasonal bin (see Section 3.2), 

theo~ea = [li dt (b + S. Pee + (1 - Pee)R ) ] g 
1 i-1 {1 - € cos(27rt/year))2 ;, 

(4.14) 

where 9; is the number of days in the j-th bin and € = 0.017 is the eccentricity of the 

Earth's orbit. 
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It is simple to minimize x2 with respect to sand b, given that x2 (s, b) is a quadratic 

function. The minimization with respect to l:l.m2 and sin2 0 is done numerically. 

Fig. 4.6 depicts the extracted contours in the (l:l.m2 , sin2 0)-plane, in the case of 1 

night bin and 10 "uniform" night bins, respectively . 
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Figure 4.6: Measured values of (l:l.m2 , sin2 0) at KamLAND after three years of run­
ning. The data was generated for l:l.m2 = 1.12 X w-7 eV2 ' sin2 0 = 0.398 (marked 
with the "star"). The regions obtained by using one night bin and ten uniform night 
bins are shown. 

As Fig. 4.6 demonstrates, in the case of 1 night bin, one extracts values of l:l.m2 

and sin2 0 which fall into "rings" which correspond roughly to AvN = A~IJ ± l:l.Alj!J, 
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where A~~ is the value of the day-night asymmetry for the input value of !:l.m2
, sin2 

(}. 

In the case of more than one uniform bin, the ring degeneracy is broken, and a much 

more precise determination of the oscillation parameters is possible. This is expected, 

since for D..m2 in this range the regeneration effect in the Earth exhibits a strong zenith 

angle dependence, as one can easily verified by looking at Fig. 4.3. 

It is important to note that in the above analysis only statistical uncertainties were 

included, while in a real experiment one definitely will have to account for systematic 

effects as well. In particular, one will need to address the uncertainty in the Earth 

model used in the fit. In producing Fig. 4.6 the same Earth model (51] was used in 

generating the "data" and in the fit procedure. To understand the effect of using , 

a "wrong" Earth model, we have repeated the above analysis using different Earth 

models in the fit. We found the results very encouraging. Even in the case when we 

used for the Earth profile a crude two-step model (a uniform density in the mantle and 

a uniform density in the core), the 1:n:inimum ~f x2 occurred at D..m2 = 2.5 x 10-7 eV2 , 

sin2 
(} = 0.24, not far away from the tru~ (input) value. Moreover, the x2 value at the 

minimum was much larger than the case with the "true". model (L\;x2 = 183 for 18 

d.o.f.). This means. that in a real experiment one will be able to adjust the Earth's 

model to achieve a better fit to the data. Because of the steep rise in x2 value as 

the Earth model is varied, the resulting x2 contours in the (D..m2 , sin2 (}) parameter 

space should not be significantly larger than the ones presented here, where the Earth 

model is not varied. As a byproduct of the measurement of the neutrino oscillation 
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parameters, it might be possible to use the regeneration data to study the interior of 

the Earth! 

4.4 Conclusions 

We have studied the effect of the Earth matter on 7Be solar neutrinos. We made 

use of an enlarged parameter space 0 ::; () ::; 1r /2 and presented the sensitivity reach 

of the KamLAND and Borexino experiments in this space. Our results show that 

both experiments will be sensitive to the Earth regeneration effect in a large region 

which extends into the traditionally neglected () > 1r /4 part of the parameter space. · 

In particular, for the LOW solution one expects to see a greater than 50" effect. On 

the other hand, both experiments will see no day-night effect for the SMA solution 

and virtually no effect for the LMA solution. 

If the experiments see a large Earth regeneration effect, it will be a powerful "smok­

ing gun" sig:r;tature of neutrino oscillations. Furthermore, as we have demonstrated, 

the results of the experiments can be used to measure the oscillation parameters. By 

studying the ·full zenith angle distribution, rather than the usual day-night asymme­

try information, one might be able, in the case of the LOW solution, to perform a 

spectacular measurement of the parameters. In addition, it might be possible to use 

the zenith angle information to learn about the Earth electron density profile. 

If, on the other hand, .no Earth regeneration effect is detected, by combining this 

information with the flux measurement from seasonal variation of the event rate (see 
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Section 3.1), a large portion of the parameter space can be excluded. If the measured 

value of the 7Be neutrino flux is large, the exclusion will be independent of a specific 

solar model. 

Both the measurement of the oscillation parameters and the exclusion will require 

a thorough understanding of the systematic uncertainties. We have commented on 

some possible sources of such uncertainties in this chapter. 

Overall, Borexino and KamLAND will provide crucial information about the solar 

neutrinos. Not only will the experiments measure the flux of the 7Be solar neutrinos, 

but they will also be able to establish or exclude, without relying on solar models, 

the LOW solution based on the Earth regeneration effect and the vacuum oscillation 

solution based on the observed seasonal variation of the event rate. Together with 

results from Super-Kamiokande, SNO, and the KamLAND reactor neutrino experi­

ment, this information can be used to finally unravel the 30-year-old solar neutrino ... 

puzzle. 

• 
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Chapter 5 

Studying the Full Parameter Space 

In the last section we argued the importance of considering the full physical range 

of the neutrino mixing angle, 0 :::; () :::; 1r /2, when studying the earth regeneration 

effect. One might wonder why the part of the parameter space with () > 1r /4 has 

been traditionally ignored in the literature. Possible reasons for this are that (1) 

the MSW solutions were expected to be confined to the()< 7r/4 region, and (2) the 

vacuum oscillation solutions were expected to be symmetric under ()-+ 1rj2- 0. In 

this chapter we reexamine both of these assumptions. We find that neither of them 

is justified. 

5.1 MSW Effects in Vacuum Oscillations 

In this section we point out that for solar neutrino oscillations with the mass­

squared difference of 6.m2 
rv 10-10 - 10-9 eV2 , traditionally known as "vacuum 

: . ~ 
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oscillations", the solar matter effects are non;-negligible, particularly for the low energy 

pp neutrinos. One consequence of this is that the values of the mixing angle () and 

1r /2 - () are not equivalent, leading to the need to consider the entire physical range 

of the mixing angle 0 ::; () ::; 1r /2 when determining allowed values of the neutrino 

oscillation parameters. 

5.1.1 Introduction 

The field of solar neutrino physics is currently undergoing a remarkable change. 

For 30 years the goal was simply to confirm the deficit of solar neutrinos. The 

latest experiments, however, such as Super~Kamiokande, SNO, Borexino, KamLAND, 

etc, aim to accomplish more than that. By collecting high statistics real-time data 

sets on different components of the solar neutrino spectrum, they hope to obtain 

unequivocal proof of neutrino oscillations and measure the oscillation parameters. 

Thus the physics of solar neutrinos is likelyto become a precision science In the near 

future, and it is more important then ever to ensure that all relevant physical effects 

are taken into account and the right parameter set is used. 

It has been a long-standing tradition in solar neutrino physics to present experi- ,. 

mental results in the ~m2 - sin2 20 space and to treat separately the "vacuum oscilla­

tion" (~m2 "" lo-u -10-9 eV2) and the MSW (~m2 "" 10-8 -10-3 eV2) regions. In 

the vacuum oscillation region the neutrino survival probability (i.e. the probability 

to be detected as ve) was always computed according to the canonical formula, Eq. 
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(2.29). Eq. (2.29) makes sin2 28 seem like a natural parameter choice. As ~in2 28 runs 

from 0 to 1, the corresponding range of the mixing angle is 0 ~ (} ~ 1r I 4. There is no 

need to treat separately the case of !:l.m2 < 0 (or equivalently 1r I 4 ~ B ~ 1r 12), since 

Eq. (2.29) is invariant with respect to !:l.m2 -t -!:l.m2 (B -t 1r 12- B). 

The situation is different in the MSW region, since neutrino interactions with 

matter are manifestly flavor-dependent. It is well known that for ID..m21 ,<: 10-8 eV2 

matter effects in the Sun and Earth can be quite large. In this case, if one still chooses 

to limit the range of the mixing angle to 0 ~ B ~ 1r I 4, one must consider both signs 

of !:l.m2 to describe all physically inequivalent situations. As was argued in Chapter 

4, to exhibit the continuity of physics around the maximal mixing, it is more natural 

to keep the same sign of !:l.m2 and to vary the mixing angle in the range 0 ~ (} ~ 1r 12. 

Historically, a possible argument in favor of not considering B > 1r I 4 in the MSW 

region might have been that this half of the parameter space is "uninteresting" , since 

for (} > 1r I 4 there is no level-crossing in the Sun and the neutrino survival probability is 

always greater than 112 (see Appendix C.1). However, a detailed analysis reveals that 

allowed MSW regions can extend to maximal mixing and beyond, as will be explored 

in the next section (see also [53] and [54] for a treatment of 3- and 4- neutrino mixing 

schemes). 

In this section we point out that for solar neutrinos with low energies, particularly 

the pp neutrinos, solar matter effects can be relevant even for !:l.m2 
rv 10-10 - 10-9 

e V2 . These effects break the symmetry between (} and 1r12 - (} making it necessary to 
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consider the full physical range of the mixing angle 0 ~ () ~ 1r /2 even in the "vacuum 

oscillation" case. 

5.1.2 Theoretical Framework 

For simplicity we limit our consideration to the two-neutrino case. If neutrino 

masses are nonzero then, in general, the mass eigenstates lv1,2) are different from the 

flavor eigenstates lve,11). The relationship between the two bases is given in terms of 

the mixing angle 8: 

(5.1) 

In our convention lv2) is always the heavier of the two eigenstates, i.e. /:::,.m2 = 
m~ - m~ ~ 0. Then, as already mentioned, 0 ~ () ~ 1r /2 encompasses all physically 

different situations. 

Neutrinos are created in the core of the Sun and exit the Sun in the superposition 

of the mass eigenstates. If the transition from the Sun's core to vacuum is adiabatic; 

the exit state is purely lv2) 1• In the case of a nonadiabatic transition there is also a 

nonzero probability Pc (a "level crossing" probability) to find the neutrino in the lv1) 

state. In terms of Pc, the survival probability for neutrinos arriving at the Earth has 
1 Assuming the neutrino is in the heavy Hamiltonian eigenstate at the production point in the 

core. This assumption is valid as long as D..m2 / Ev $ w-5 eV2 /MeV, see Chapter 4 
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the form (see Eq. (3.14) of Chapter 3.2, [26, 55]) 

P Pc cos2 
() + (1 - Pc) sin2 

() 

+ 2y'Pc(1 - Pc) sin() cos() cos ( 2.54 ~;: L + 8) . (5.2) 

Here L is the Earth-Sun distance and 8 is a phase acquired when neutrinos traverse 

the Sun. Units are the same as in Eq. (2.29). In the adiabatic limit Pc = 0 and 

Eq. (5.2) yields P = sin2 0. Neutrinos exit the Sun in the heavy mass eigenstate 

and do not oscillate in vacuum. From Eqs. (2.61,2.62) we can see that this happens 

.for 'Y >> 1, 'Y cos2 
() ~ 'Y· The first condition is satisfied for sufficiently large mass 

splitting ~m2 ~ 10-9eV2 (Ev/1 MeV), while the second one in addition requires that 

the mixing angle is not too small, sin2 () ~ (lo-9 eV2 / ~m2)(Ev/1 MeV). 

In the opposite limit of small ~m2 , when the neutrino evolution in the Sun is 

"extremely nonadiabatic", Pc -+ cos2 0. It is trivial to verify that Eq. (5.2) in this 

limit reduces to Eq. (2.29). It has been assumed that in the vacuum oscillation region 

this limit is reached. Remarkably, however, this may not be the case for the low energy 

solar neutrinos, especially pp neutrinos (Ev ~ 0.42 MeV). 

The most reliable way to compute Pc is by numerically solving the Schrodinger 

equation in the Sun for different values of ~m2 and (). We do this using the latest 

available BP2000 solar profile (56]. The profile, kindly provided by John 1',I. Bah call, 

is shown in Fig. 5.1. Fig. 5.2 shows contours of constant Pc for the energy of 7Be 

neutrino (solid lines). Note that the variable on the horizontal axis is tan2 0. With 

this choice, points () and 1r /2 - () are located symmetrically on the logarithmic scale 
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Figure 5.1: BP2000 solar electron number density profile (courtesy of John N. 
Bahcall). 

about tan2 (} = 1 (see [48]). Other possible choices include(} or sin2 (}on a linear scale, 

~. was done in Chapter 4. The log scale here was chosen to unify the treatment with 

S~ct. 5.2. The figure demonstrates that the contours are not symmetric with respect 
\ 

to the tan2 B = 1line, except in the region of D..m2 /Ev ,:510-10 eV2/MeV,.where the. 

extreme nonadiabatic limit_is reached. This simple observation is the crucial point of··' 

this section. 

In the earlier chapters we used the analytical result for Pc, Eqs. (2:61) and (2.62), 

valid for the exponential solar profile ne ex exp(-r/r0). As Fig. 5.1 shows, however, 

in the region relevant for vacuum oscillation, 0.90 .:5 R .:5 ~' the profile falls off 

faster than the exponential with r0 = R0 /10.54 = 6.60 x 104 km (red line the figure). 
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Figure 5.2: Contours of constant level crossing probability Pc for neutrino energy of 
0.863 MeV (1Be line). The solid lines are the results of numerical calculations using 
the BP2000 solar profile. The dashed lines correspond to using the exponential profile 
formula with r 0 = ~/18.4 = 3.77 x 104 km (see text). 
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Nevertheless, the equation 

(5.3) 

where 

(5.4) 

can still be used with the appropriately chosen value of r0 • The dashed lines in Fig. 5.2 

show the contours of Pc computed using Eq. (?.3) with r0 = R0 l18.4 = 3. 77 x 104 knL 

As can be seen from the figure, the agreement between the two sets of contours for 

!:J..m2 ;S 4 x 10-9 eV2 is very good. Note that a similar result was arrived at in [30] 

for (} :::::; 1r I 4, where the value of r0 = R0 x 0.065 = 6.5 x 104 km was obtained. 

Fig. 5.2 can also be used to read off the values of Pc for different neutrino energies, 

sillce Pc depends on Ev through the combination !:J..m2 I Ev. It is obvious that for 

; neutrinos of lower energies Pc starts deviating from its "extreme nonadiabatic" value 

at :'even smaller values of Sir?·, and vice versa. Consequently, as will be Bee~ later; 

the solar matter effects on vacuum oscillations are most important at the gallium 

experiments, which are sensitive to the pp neutrinos, while the Super-Kamiokande 

experiment is practically unaffected. 

Using Eqs. (5.3,5.2), it is possible to derive a corrected form of Eq. (2.29), by 

retaining in the expansion terms linear in 1: 

P 1~ (1+~cos28)sin2 28sin2 (1.27!:J..~
2

L) + 

+ 0(12) (5.5) 
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Notice that the first order correction contains cos 20 and hence is manifestly not 

invariant under the transformation 0 -+ 7r /2 - 0. Using Eq. (5.4) we see that for the 

pp neutrinos (Ev ~ 0.42 MeV) this correction is indeed non-negligible already for 

f:l.m 2 rv 10-10 - 10-9 e y2. 

With matter effects being relevant already at l:l.m2 ~ 10-10 eV2 one might won­

der if the separation between vacuum oscillation solutions and MSW solutions is 

somewhat artificial. To fix the terminology, we will adopt a definition of vacuum 

oscillations as the situation when the value of neutrino survival probability depends 

ori the distance L from the Sun, regardless of whether matter effects are negligible 

or not. The transition between the vacuum and the MSW regions will be discussed 

shortly. 

5.1.3 Fits to data 

To illustrate the role of matter effects in vacuum oscillations, we present fits to 

the total rates of the Homestake [19], GALLEX [21] and SAGE [20], and Super­

Kamiokande [23] experiments. We combine experimental rates and uncertainties for 

the two gallium experiments and use the latest available 825-day Super-Kamiokande 

data set. The experimental results are tabulated in Table. 2.3. 

We fit the data to the theoretical predictions of the BP98 standard solar model 

[4]. Predicted fluxes and uncertainties for various solar reactions were kindly made 

available by J. N. Bah call at [24]. To compute the rate suppression caused by neutrino 
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Figure 5.4: Regions allowed by total rates of Homestake and Super-Kamiokande. As 
expected, the regions show much less asymmetry than for the gallium case, Fig. 5.3, 
Black outlines correspond to neglecting the solar matter effects. 

oscillations, we numerically integrate the neutrino survival probability, Eq. (5.2), over 

the energy spectra of pp, 7Be, 8B, pep, 13N, and 150 neutrinos. In addition, to account 

for the fact that the Earth-Sun distance L varies throughout the year as a consequence 

·of the eccentricity of the Earth's orbit 

L = L 0(1- f cos(27rt/year)) (5.6) 

we also integrate over time to find an average event rate. In Eq. (5.6) t is time 

measured in years from the perihelion, L0 = 1.5 x 108 kin is one astronomical unit, 

and f = 1.7%. 

In Fig. 5.3 we present the vacuum oscillation region allowed by the total rates of 

GALLEX and SAGE. In Fig. 5.4 we show the corresponding regions for Homestake 

and Super-Kamiokande. For comparison in all three plots we also show the regions 
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lations based on rates of the gallium, chlorine, and water-Cherenkov experiments. 
Black outlines show the result of neglecting the solar matter effects. 
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one would obtain by neglecting the neutrino interactions with the solar matter (dark 

outlines), i.e. by setting Pc = cos2 ()(black contours). Fig. 5.3 demonstrates that the 

matter effects are quite important for the gallium experiments, where the asymmetry 

is quite large for /:).m2 ~ 10-10 eV2 • As expected, the matter effects are small at 

Super-Kamiokande, since it detects neutrinos with Ev ~ 6.5 MeV~In all cases the 

allowed regions were defined as the sets of points where the theoretically predicted 

and experimentally observed rates are consistent with each other at the 95% C.L. for 

1 d.o.f. (x2 = 3.84) 2 . 

It is important to discuss the extent the vacuum oscillation region. There are two 

primary physical reasons why the neutrino event rate becomes independent of L for 

sufficiently large mass-squared splitting (and the seasonal variations disappear): 

• Adiabatic evolution in the Sun. As Pc -t 0 the last term in Eq. (5.2) vanishes. 

• Integration over neutrino energy spectrum. To compute the event rate one has 

to integrate Eq. (5.2) over neutrino energies. For sufficiently large /:).m2 the 

last term will average out to zero, leading effectively to the loss of coherence 

between the two mass eigenstates. 

The detailed discussion of this phenomenon can be found in Section 3.2. Here 

for completeness we will present a brief summary of the result obtained there. As 

/:).m2 increases, coherence is first lost for reactions with broad energy spectra, such 

as pp and 8B, and persist the longest for neutrinos produced as a part of a two-

2Notice that this is different from the conventional approach (see, for example, [53]). 
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body final state. The most important such reaction is electron capture by 7Be nuclei 

eBe+e- -t7Li +ve). Resulting 7Be neutrinos have an energy spread of only a few ke V, 

arising from· the Doppler shift due to the motion of the 7Be nucleus and the thermal 

kinetic energy of the electron. In order to properly take these effects into account, in· 

our code we numerically integrate over the exact line profile, computed in [40]. The . 

calculations show that the neutrino survival probability becomes independent of L 

for tim2 ~ 6 x 10-9 e V2 . For this reason, we present our results for tim2 ranging 

from w-n eV2 to w-s eV2 , Unfortunately, in the literature the tradition~! range 

is from w-n eV2 to 10-9 eV2 [2, 1, 54], although the allowed regions on the plots 

presented in all these papers seem to extend above 10-9 e V2 . 

In Fig. 5.5 we present the vacuum regions allowed by the rates of GALLEX, 

SAGE, and Super-Kamiokande combined. The regions are drawn at 3o- C.L. (2 d.o.f., 

x2 = 11.83, in the same convention as before). The distortions caused my the solar 

"· matter effects are clearly visible. 

In Fig. 5.6 by the rates of all four experiments combined (3 d.o.f., x2 = 14.15). 

In order to properly account for the correlation between the theoretical errors of 

the different experiments, we followed the technique developed in [57] and [53]. The 

allowed region exhibits a significant asymmetry for tim2 > 6 x w-10 eV2 • 
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Figure 5. 7: The sensitivity region of the Borexino experiment to anomalous seasonal 
variations for the full range of the mixing angle (95% CL). Notice the asymmetry for 
large fj.m2 • 
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5.1.4 Sensitivity of Borexino experiment for () > n/4 

An important question is how well future experiments will be able to cover vac-

uuin oscillation solutions with (} > 1r /4. In Fig. 5.7 we show the sensitivity of the 

Borexino experiment to anomalous seasonal variations for the entire physical range 

of the mixin~' angle 0 ~ (} ~ 1r /2. This is an extension of the analysis performed 

in 3.2, where the details of the procedure are described. The upper boundary of the 

sensitivity region shows a clear asymmetry as a result of the solar matter effects. This 

boundary cari be used to approximately define the boundary between the vacuum and 

the MSW oscillation regions. 

5.1.5 Conclusions 

In summary, the preceding examples clearly illustrate the importance of including 

the solar matter effects when studying vacuum oscillation of solar neutrinos with 
\ 

D..m2 ~ 10-10 e V2 • Because to describe such effects one has to use the full range of the 

mixing angle 0 ~ (} ~ 1r /2, future fits to the data should be extended to (} > 1r /4. This 

seems especially important in light of the latest analyses [1], [54], which in addition to 

the total rates also use the information on the neutrino spectrum and time variations 

at Super-Kamiokande. In this case the allowed vacuum oscillation regions are mostly 

located in the D..m2 ~ 4 x 10-10 e V2 part of the parameter space [54], precisely where 

the matter effects are relevant. (The best fit to the Super-Kamiokande electron recoil 

spectrum is achieved for D..m2 = 6.3 x 10-10 eV2 , sin2 20 = 1 [1].) It would be very 
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important to repeat the analyses with the solar matter effects included, ideally using 

the exact electron density profile of the Sun. 

Additionally, since 7Be neutrinos remain (partially) coherent for D..m2 > 10-9 eV2
, 

it would be desirable to present the results of the fits in the range 10-11 eV2 < D..m2 < 

10-8 e V2
, as will be done in the next section. 

5.2 MSW Regions 

In this section we extend the analysis of the previous section to inclu_de the region 

of the MSW solutions. Our goal is to cover the entire range of D..m2 relevant to 

the solar neutrino problem (lo-u eV2 < 6.m2 < 10-3 eV2
). Since matter effect 

distinguish the two parts of the parameter space 0 < 1r I 4 and 0 > 1r I 4, it is clear 

that MSW solutions are not symmetric with respect to 0 -+ 1r 12 - 0. Nevertheless, 

the region 0 > 1r I 4 has largely been ignored in the literature. 

Part of the reason for this neglect is that it is impossible to obtain Ve survival 

probabilities less than one half when the two mass eigenstates are incoherent, i.e., 

when the last term in Eq. (2.60) is absent. (This occurs in the so-called "MSW 

region" 10-8 ;S D..m2 ;S 10-3 eV2
, see Sect 3.2.) Indeed, the data from the Homestake 

experiment [19] used to be about a quarter of the SSM prediction, and this could 

have been an argument for dropping the 0 > 1r I 4 side entirely in the MSW region. 

However, the change from BP95 [39] to BP98 [4] calculations increased the Homestake 

result to about a third of the SSM with a relatively large theoretical uncertainty. 

, 
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Therefore it is quite possible that the "MSW solutions" extend to the (} > 1r /4 side 

as well. ,Moreover, some people question the SSM and/or the Homestake experiment, 

and perform fits by ignoring either (or both) of them [58]. We show below that 

some of the MSW solutions indeed extend beyond the maximal mixing and hence 

it is necessary to explore the (} > 1r /4 side experimentally. If we further .relax the 

theoretical prediction on the 8B solar neutrino flux and/or ignore one of the solar 

neutrino experiments in the global fit, the preferred regions extend even deeper into 

the (} > 1r /4 side. 

We next present the results of global fits to the current solar neutrino data from 

water Cherenkov detectors (Kamiokande and Super-Kamiokande) [22, 23], a chlorine 

target (Homestake) [19] and gallium targets (GALLEX and SAGE) [21, 20] on the 

full parameter space. We do not include the spectral data from Super-Kamiokande 

[43] as it appears to be still evolving with time. The fit is to the event rates mea-

sured ·at these experiments only. In computing the rates we include not only the pp, 

7Be, and 8B neutrinos, but also the 13N, 150, and pep neutrinos. We use Eq. (2.60) 

with Pc computed in the exponential approximation for the electron number density 

profile in the Sun3 , and properly account for neutrino interactions in the Earth dur-

ing the night with a realistic Earth electron number density profile by numerically 

solving Schrodinger equation as described in Chapter 4. Since the mixing angle at 
3In our analysis in this section we use a constant value of r0 = R0 /10.54 = 6.60 x 104 km. 

As was pointed out in Sect. 5.1, in the vacuum oscillation region one should use a different value, 
· ro = ~/18.4 = 3. 77 x 104 km. Thus, the shape of the allowed vacuum oscillation regions in this 

section will be slightly different. 
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the production point in the Sun's core depends on the electron number density, we 

integrate over the production region numerically. We treat the correlations between 

the theoretical uncertainties at different experiments following Ref. [53]. To insure 

a smooth transition between the MSW and the vacuum oscillation region, we inte­

grate over the energy spectrum (including the thermal broadening oft'he 7Be neutrino 

"line") for 6.m2 < lo-s e'/2 and average the neutrino fluxes over the seasons. For 

6.m2 > 10-8 eV2 we treat the two mass eigenstates as incoherent. Results are com­

pletely smooth at 6.m2 = 10-8 e V2 , as expected. This allows us to fit the data from 

6.m2 = 10-11-10-3 e'/2 all at once, unlike previous analyses which separate out the 

"vacuum oscillation region" from the rest. 

As was mentioned earlier, we take the global fit to the currently available data 

only as indicative of the ultimate result because we expect much better data to be 

collected in the near future to eventually supersede the current data set. We would 

like to keep our minds open to surprises such as the possibility that one ofthe earlier 

experiments was not entirely correct or that the theoretical uncertainty in. the flux ,. 

prediction was underestimated. In this spirit, we employ more conservative attitudes· 

in the global fit than most of the analyses in the literature in the' following three 

possible ways. (1) We allow higher confidence levels, such as 3 a. (2) We relax the 

theoretical prediction on the neutrino flux. (3) We ignore some of the experimental 

data in the fit. 

The global fit results are presented in Fig. 5.8 at the 2 a (95% CL) and 3 a 
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(99.7% CL) levels defined by x2 - X~in for two degrees of freedom. It is noteworthy 

that both theLMA and LOW solutions (we use the nomenclature introduced in [2]) 

extend to the()> 1r 14 side at the 3 a level. At 99% CL, however, theLMA solution 

is confined to the () < 1r I 4 side. This result is consistent with the two,. flavor limit of 

the three-flav~r analysis in [53] and the four-flavor analysis in [54], where the spectral 

data is included and the LOW solution extends beyond the maximal mixing at 99% 

CL. Another interesting fact is that the LOW solution is smoothly connected to the 

VAC solution, where the preferred region is clearly asymmetric between the t~o sides 

of the parameter space. Note that, at f:l.m2 
rv 10-9 eV2

, the allowed region is in fact 

bigger in () > 7r I 4 side. The region w-9 < f:l.m2 < w-s e V2 was, to the best of the 

authors' knowledge, never studied fully in the literature and this result demonstrates 

the :q.eed to study the entire f:l.m2 region continuously without the artificial separation 

of the "MSW region" and "vacuum oscillation region," a8 traditionally done in the 

literature. 

We next present a fit where the theoretical prediction of the 8B flux is relaxed. 

Even though the helioseismology data constraints the sound speed down toabout 5% 

of the solar radius [4], the core region where 8B neutrinos are produced is still not 

constrained directly. Given the sensiti~e dependence of the 8B flux calculation on 

the core temperature <I>s 8 rv T 18 (17], we may consider it as a free parameter in the 

fit. This can be done within the formalism of Ref. [53] by formally sending the error 

in CBe to infinity. The result is presented in Fig. 5.9. The preferred region extends 



;;;' 1 o- 6 

> Q) _. 
C\J 

E 10-7 

<l 

1 o-1o 

0.001 

141 

VAC 
--==---

0.01 0.1 -1 10 
tan2 e 

Figure 5.8:- A global fit to the solar neutrino event rates at chlorine, gallium and 
water Cherenkov experiments. The regions are shown at 2 a (light shade) and 3 a 
(dark shade) levels. The region tan2 {} > 1 corresponds to(}> Jr/4. 
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farther into the (} > 1r I 4 side than the previous fit. Even though the LMA and 

LOW solutions are connected in this plot, the lack of a large day-night asymmetry 

at Super-Kamiokande would eliminate the range 3 x 10-7 ;S !:1m2 ;S 10-5 eV2 for 

0.2 ;S tan2 (} < 1 [49]. It is important for Super-Kamiokande to report their exclusion 

i 
region for 0 ~ 1r I 4. 

Finally, Fig. 5.10 shows a fit where the event rate measured at the Homestake 

experiment is not used. This may be a sensible exercise given that the neutrino cap-

ture efficiency was never calibrated in~this experiment. The preferred'region extends 
" . 

beyond the maximal mixing even at the 95% CL. Note also the asymmetry between 

the two sides of the parameter space even for D.m2 < 10-9 e V2
. 

We expect the data of the current and next generation of solar neutrino experi-

ments, such as Super-Kamiokande, SNO, GNO, Borexino, KamLAND, to eventually 

supersede the current data set. Therefore we regard the above global fits only as 

estimates of the ultimate results~ The most important point is that all experimen-

tal collaborations should report their results, both exclusion and measurements, on 

both sides of the parameter space, without unnecessary theoretical bl.as towards the 

theta < 1r I 4 side. We strongly urge the experimental collaborations to consider this 

point. 
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Figure 5.9: A global fit to the solar neutrino event rates at chlorine, gallium and water 
Cherenkov experiments, where the 8B flux is treated as a free parameter. Contours 
are shown at 2 u (light shade) and 3 u (dark shade). 
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Figure 5.10: A global fit to the solar neutrino event rates at the gallium and water 
Cherenkov experiments but not at the chlorine experiment. Contours are shown at 
2 a (light shade) and 3 a (dark shade). 
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Chapter 6 

Summary and Conclusion 

It has been three decades since the first evidence of solar neutrino deficit was 

reported by the Homestake experiment. In the last ten years the experimental situa­

tion improved dramatically, when high quality data from experiments such as SAGE, ~ 

GALLEX, and Super-Kamiokande became available. It was conclusively demonstrat-

ed that neutrinos do come from the Sun and that the observed flux is indeed depleted 

compared the the Standard Solar Model prediction. The present state of the solar ; 

neutrino problem has been summarized in Chapter 2. 

To prove that the solar neutrino deficit is caused by neutrino oscillations, a new 

generation of solar neutrino experiments, such as Super-Kamiokande, SNO, Borexino, 

KamLAND, etc, will be seeking evidence for solar neutrino oscillations without relying 

on the Standard Solar Model in well-understood experimental environments. They 

aim not only at establishing oscillations but also at overdetermining the solution in 
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the next few years. 

One of the "smoking gun" signatures the experiments are seeking is the anomalous 

seasonal variations of the observ~d solar neutrino flux. Such variations, if detected, 

would be an unmistakable sign of the long-wavelength vacuum oscillations. 7Be ex­

periments, such as Borexino and KamLAND, are particularly well suited to look for 

anomalous variations, because the 7Be solar neutrinos are virtually monochromatic. 

In Chapter 3 we discussed how anomalous seasonal variations might be used to discov­

er vacuum neutrino oscillations at these experiments, independent of the solar model 

· and the measurement of the background. In particular, we found that, after three 

years of Borexino or KamLAND running, vacuum neutrino oscillations can be either 

established or excluded for almost all values of (sin2 20, ~m2) preferred by the Home­

stake, GALLEX, SAGE, and Super-Kamiokande data. We also investigated in Sect. 

3.3 how well seasonal variations of the data can be used to measure (sin2 20, ~m2) in 

the case of vacuum oscillations. 

If the experiments observe seasonal variations consistent with the 1/£2 flux mod­

ulation, the data can be used to measure the 7Be solar neutrino flux in a background 

independent way. We explored the reach of this method in Section 3.1. 

Another "smoking gun" signature would be the detection of the day-night vari­

ation in the event rate. Such variations are predicted to occur for a large range of 

parameters as a result of the electron neutrino regeneration in the Earth. In Chapter 

4 we determined the sensitivity of Borexino and KamLAND to this phenomenon. 
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We pointed out that it is important to study the regeneration effect for the entire 

physical range of the mixing angle 0 ~ (} ~ 1r 12, the fact previously unrecognized in 

the literature. Our analysis naturally avoids the incorrect conclusions made in the 

literature about the maximal mixing. 

We also discussed in Sect. 4.3 the possibility of using the earth regeneration data to 

measure the neutrino oscillation parameters. We found that in the case of the LOW · 

solution to the solar neutrino deficit, the measurement results can be surprisingly 

accurate, if one uses the full observed zenith angle dependence, rather tpan oply the 

day-night asymmetry. Our results further indicate that it may be possible to use 

the data to constrain models of the Earth's interior. A comparable study has never 

before been performed. 

The part of the parameter space with (} > 1r I 4 we studied in Chapter 4 has been 

. traditionally ignored in the literature~ It was commonly thought that the MSW so­

lutions are confined to the (} < 1r I 4 region, and the vacuum oscillation solutions are 

symmetric between (} < 1r I 4 and (} > 1r I 4. In Chapter 5 we reexamined these assump­

tion~ and performed fits to the experimental data in the enlarged neutrino parameter 

space 0 < (} < 1r 12. We found that in the case of vacuum oscillation solutions mat­

ter effects can be nonnegligible for the low energy pp neutrinos. Thus, the allowed 

regions in the two sides of the parameter space are not completely symmetric. We 

further found that the MSW solutions can extend beyond the maximal mixing if one 

takes the conservative attitude to allow higher confidence levels, ignore some of the 

-I 
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experimental results in the fits, or relax theoretical predictions. We presented a global 

view of the parameter space with !:1m2 varying from 10-11 e V2 to 10-3 e V2 , without 

artificially splitting the MSW and the vacuum oscillation regions. 

In the next decade SNO, Borexino, and KamLAND will be reporting their data. 

Their results1will eventually supersede datafrom the past experiments. It is there­

fore important to analyze the future data without too much prejudice based on the 

past data. We therefore believe that it is essential for the fits to the new data to 

be presented in the full parameter space. Ultimately, of course, we hope that the 

experimental data will shrink the allowed regions to a single point. 
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Appendix A 

To Chapter 2 

A.l Derivation of the expression for the index of 

refraction 

In this appendix we will derive the formula 

21rN 
n = 1 + k2f(O), (A.1) 

using the methods of classical wave optics. Eq. (A.1) relates the index of refraction 

ofa medium n to the forward scattering amplitude f(O) of the scatterers that make 

up the medium. k is a wave number and N is the number density of the scatterers. 

Consider first a simplified situation when there is only a single thin layer of the 

scatterers (Fig. A.1). Far away from the layer at point 0 the amplitude of the wave 

is the sum of the incoming and scattered waves, as shown in the phasor diagram on 
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8x 

Figure A.1: Illustation to Appendix A.l. 

the right side of the figure. 

The phasor diagram shows that the effect of the scatterers is to add an additional 

phase shift 8¢> = 8A/A0 to the incident wave. This can effectively be represented by 

assigning the scattering layer an index of refraction n. The value of n can be found 

requiring that the change in the optical path results in the phase shift 8¢>: 

.--------~ -~- ---~~~ -.,_ 21r8x(n -1) = 8</> ===> n = 1 + ~ 8<P = 1 + .!_8<P_ 
,\ 21r 8x k 8x 

(A.2) 

We now turn to computing 8A. It is equal to the sum of the contributions from 

all scatterers in the layer, with each scatterer contributing f /r. It is very easy to see 

by drawing a corresponding phasor diagram that the total amplitude 8A should be 

equal to lj1rx(the amplitude obtained if all scatterers within the first Fresnel zone 

added up in phase). The size of the first Fresnel zone is 

(A.3) 
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If all scatterers in that zone interfered in phase at 0, their contribution to 8A would 

be equal to AoN8x7rr~f(O)/ L. Thus, 

8A = AoN8xrif(O)/L = AoN8xf(O)>.. (A.4) 

Then 

18A/A0 1 21r 
1 + k <5x = 1 + kNf(O)>. = 1+ k2 Nj(O). (A.5) 

Q.E.D. 
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Appendix B 

To Chapter 3 

B.l x2 Analysis 

In the analyses. in Sec. 3.2, 3.3, and 3.4, we are interested in the capability of an 

"average" experiment. It is possible to simulate "data" with statistical fluctuations 

included, but then the value of x2 would vary slightly between different repetitions 

of the same simulation. A better approach is to find an expression for x2 "averaged" 

over many simulations. As we show below, averaging over statistical fluctuations 

simply leads to the inclusion of a constant term in the definition ofx2 • 

Suppose we have some solar neutrino data binned into Nbins bins. Let the average 

expected valuejn the ith bin be di with corresponding random fluctuation f:ldi. Sup­

pose we want to fit this data with a function f, which can depend on two parameters: 



--

160 

the signal s and the background b. Then the x2 of the fit can be defined as follows: 

(B.1) 

where ad; = ..jdi + t::..di. Because, in the case of interest, the number of events per 

bin is sufficiently large, we can approximately set ad; ~ ..,fdi.1 

First consider the case when s and b are fixed numbers. The average value of the 

x2 one would obtain after simulating the data many times is 

· (B.2) 

Using (t:idi) = 0, ((.6..di) 2) = di, we find· 

2 _ Nbins [ (di _ Ji)2] _ Nbins (di _ Ji? 
{x)- L 1+ d· -Nbins+ L d· · 

i t i t 

(B.3) 

Therefore, in this simplest case it is enough to use the average values di and the 

number of bins to compute (x2). 

Next, consider the case when f(s, b)= b + g(s) and x2 is minimized with respect 

to b. 

(B.4) 

Introducing Ai = (~ + t:idi- 9i(s))/di and substituting Eq. (B.4) in Eq. (B.1), we 
10ne can easily estimate the resulting relative error in x2 to be of 0(1/ v'fdJ). 
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obtain 

x~.. ~ [~ - 2~ (~ ~)(~ ~f + ~ (~ 1')' (~ ~r] 
~ ~ -(~ ~ )' (~ ~ f (B.5) 

Now plugging back in the definition of Ai, we perform the averaging using (jj.di) = 

(~~) 
((~~)) 

Substituting Eq. (B.6) in Eq. (B.5), we find 

(B.6) 

(B.7) 

(B.8) 

The last two terms are exactly what one would find after minimizing E~bins ( di -

b- 9i(s)) 2/di with respect to b, and hence in this case random fluctuations can be 

accounted for by replacing Nbins in Eq. (B.3) by Nbins- 1. 

One can easily show that, if f ( s, b )i = b + s · hi and one minimizes x2 with respect 

to s, the effect of random fluctuations is also to substitute Nbins - 1 for Nbins in 

Eq. (B.3). The proof is completely analogous to the case we just studied. Moreover, 

it is straightforward to combine the two results and consider minimization with respect 

to both ·band s, in which case one should replace Nbins in Eq. (B.3) by Nbins- 2. 
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In general, one should use the number <:Jf degrees of freedom Nd.o.f. when computing 

( 2) = N. + ~ (di- fi)
2. 

X d.o.f. L...J d. 
i l 

(B.9) 

B.2 Analytic Estimate of the Sensitivity Cutoff 

In Sec. 3.2 we showed that the sensitivity region for anomalous seasonal variations 

is limited by the finite linewidth of the 7Be line. In this appendix we show how one 

can analytically estimate the location and the shape of the sensitivity cutoff. 

As was mentioned in Sec. 3.2, the true shape of the 7Be line is rather complicated, 

with a Gaussian profile on the low end and an exponential tail on the high end. For 

the purpose of this estimate we choose to approximate the Gaussian part. by a sharp 

cutoff: 

f(E) = { 
0 

e-aE+b 

if E < E1 
(B.lO) 

if E > E1 

To determine the fraction of neutrinos reaching the Earth we integrate the oscilla-

tion probability P(E, L) given by Eq. (3.7) over the line profile Eq. (B.lO) and divide 
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by the normalization constant N. 

P(L) = ~ J dEP(E, L)f(E) 

~ ~ [ ( 1 _ sin; 20) L~ dEe-aE+b 

+ sin; 20 L~ dE cos ( 21.27 ~5m2 L (Eo - E)) e-aE+.~] 

e-aEt+b [( sin2 20) 1 sin2 20 1 
= N · 

1
- 2 · ;; + 2 ..ja2 + (1.27D.m2L/E6)2 

( 
1.27D.m

2
L ( 1.27D.m

2
L))] x cos 2 E'6 (Eo- E 1)- arctan 2 aE5 . (B.ll) 

Since the width of the line is only several keV while E0 = 0.862 MeV, we can 

set Eo - E1 ~ Eo in the argument of the cosine. Substituting the value of the 

normalization constant N = J;: dEe-aE+b = (1/a)e-aEt+b and introducing ¢ = 
arctan(2 x 1.27 D.m2 L/(aE6)), we obtain, 

p L ,...., 
1 

_ sm 20 
1 

_ Eo . · 2 ( COS (21.27~m2L- ¢) ) 
( )- 2 ..j1+(1.27D.m2L/(E6a))2 · 

(B.12) 

From this equation we can read off the shape of the cutoff. Viewed as a function 

of D.m2, for small values of the mixing angle the cutoff profile is approximately given 

by 

(B.13) 

Using the numerical value of a = 0.75 key-1 , obtained by fitting the line profile 

in [40], we find that sin2 20cutoff(D.m2) should increase by .J2 with respect to the 

smallest value of sin2 20cutoff when D.m2 ~ 2.9 x 10-9 eV2. The actual number from 
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curve 4 in Fig. 3.7 is ~m2 ~ 1.5 x 10-9 eV2 • The actual value is smaller, which is 

expected, because, for the purpose of this estimate, we neglected the contribution of 

the Gaussian part of the line profile, effectively making the line narrower. 

One can also estimate the location of the cutoff if the line profile were purely Gaus-

sian (curve 3 in Fig. 3. 7). The steps are completely analogous: the new normalization 

constant is N' = f~oo dEe-<E-Eo)2/u2 = V'ffa, and P(L) is given by 

P(L) = ~'I: dEP(E, L)e-E
2
/u

2 

~ ~' [ ( 1 - sin; 20) I:dEe-E2/u2 

+ sin; 20 I: dE cos ( 21.27 ~6m2 L (Eo - E)) e-E2fu2] 

= 1- sin; 20 (1- e-(1.27b..m2LufE3)2 cos ( 21.27 ~om2 L)) . (B.14) 

Thus, the cutoff for this model sets in faster and the profile for small values of sin2 20 is 

Gaussian .. Numerically, sin2 20cutoff(~m2 ) is expected to increase by v'2 with respect 

to the smallest value of sin2 20cutoff when ~m2 ~ 4.2 x 10-9 eV2, which agrees with 

curve 3 in Fig. 3. 7. 
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Appendix C 

To Chapter 4 

C.l Matter Oscillations and No Level Crossing 

In this appendix we discuss the survival probability of solar electron neutrinos 1 

outside the Sun, in particular the case of no level crossing, i.e., when !:::..m2 cos 20 < 0 

in the language of the two neutrino mixing scenario. 

In the literature, matter effects in the Sun are always considered when there is 

"level crossing" inside of the Sun, i.e., when the light neutrino is predominantly of 

the electron type, and, due to neutrino-electron interactions, when tl~e instantaneous 

Hamiltonian eigenstate with the largest eigenvalue is predominantly of the electron 

type in the Sun's core. The other case, when the heavy neutrino is predominantly 

of the electron type, has not been studied in the literature in the context of two 

neutrino oscillations. The authors of [48], however, have considered this possibility 
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in the context of three-flavor oscillations. 

The reason for this apparent neglectis simple, and will become clear as our results 

are presented. What happens is that, in the case of no level crossing, the average 

electron neutrino survival probability is always bigger than 1/2, and therefore on the 

surface it seems that this scenario is not relevant to the solar neutrino problem. This, 

however, is not the case, as discussed in detail in Chapter 5. Furthermore, in the 

region of the ''just-so" solution it was believed that the no level crossing case would 

yield identical results as the level crossing· case, but as Sect. 5.1 explains this is also 

not the case. 

In the following analysis we will use the notation and results introduced in Sect. 

2.3.3. Given Eq. (2.59) of that section, it is easy to show that, while for () < 1r /4, Pee 

can be (much) smaller than 1/2, for()> n/4, Pee is always larger than 1/2 (indeed, 

it will be shown that Pee 2:: P:e, the (averaged) vacuum survival probability). 

First, note that -1 :::; cos 200 :::; cos 20. The equalities are saturated when 

titatively 

. D.m _ 
0 98 

D.m 0.862Me V 2 ( 2) ( ') 
2Ev.J2GFNe(O) - . 10-5eV2 Ev ' 

(C.1) 

for an average core electron number density of 79 molesjcm3 [4]. Therefore, in the 

case of 7Be neutrinos and D.m2 << 10-5 e V2, 

2() _ 
1 

m sm /'/'\ um 1 
( 

D. 2 ' 2(} ) 2 ( A 2 ) 3 
COS 0--+- +v , , 

2 2Ev.J2GFNe(O) 2Ev.J2GFNe(O) 
(C.2) 
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and 

(C.3) 

We will soon show that Pc E [0, cos2 8],1 so that, in the limit cos 280 --+ -1, 

(C.4) 

(C.5) . 

Eq~ (C.4) (Eq. (C.5)) applies if sin2 8 < cos2 8 (sin2 8 > cos2 8). This is easy to see 

because sin4 8 + cos4 8 = 1 - (1/2) sin2 28 is the average vacuum survival probability ., 

(C.6) 

which is bigger (smaller) than sin2 8 if sin2 8 < cos2 8 (sin2 8 > cos2 8). If the oscilla-

tory terms do not average out,. 
. ~ 

(C.7) 

When V2G FNe(O) ~ l:!J.m2 /2Ev matter interactions should be irrelevant, and 1t is 

easy to see from Eq. (2.50) that cos 280 --+cos 28. In this limit Pc--+ 0, since we are 

deep into the adiabatic region (as will be shown later) and Pee--+ P~e· 
1This is not hard to see. It is known that, if D..m2 is large enough, the adiabatic approximation 

should hold, and therefore Pc -+ 0 for large enough D..m2 • On the other hand, if D..m2 is small 
enough, one should reproduce the vacuum oscillation result {as in the just-so scenario), and, from 
Eq. {2.59), it is easy to see that this happens when Pc -+ cos2 () and cos 200 -+ -1. 
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The jumping probability Pc in the exponential approximation for the Sun's density 

is given by Eq. 2.61 of Sect. 2.3.3. According to the author of [29], this equation only 

holds for D..m2 cos 2() > 0. We will prove shortly, however, that Eq. (2.61) also applies 

in the case of no level crossing, when the heavy mass eigenstate is predominantly of 

the electron type, i.e. when sin2 
() > cos2 0. Assuming that this is indeed the case, we 

can finish our discussion on the behavior of the electron neutrino survival probability, 

using 7Be neutrinos as an example. 

When D..m2 «: w-9 eV2 , cos 200 = -1 and Pc = cos2 0. In this case we argued 

and one can explicitly check that Pee = P:e.2 For 10-9 eV2 «: D..m2 «: 10-5 eV2 , 

cos 200 = -1 and Pc -t 0. In this case Pee ~ sin2 0. This is the adiabatic region. 

For D..m2 >> w-5 e V2 , matter effects become irrelevant and cos 200 = cos 20, Pc = 0. 

Again Pee = Pe~· Therefore, Eqs. (C.4,C.5) apply for all values of interest, and one 

can get a very large suppression of Pee if sin2 
() << 1. On the other hand, in the case 

of no level crossing, Pee is always bigger than P:e ~ 1/2. 

Fig. C.1 depicts the behavior of pj:Se) as a function of D..m2 , for different values 

of the vacuum mixing angle. The preferred values from the overall rate analysis 

at the Homestake, SAGE and GALLEX, and SuperKamiokande experiments [3] are 

indicated by stars. The four plots are labeled SMA, LMA, LOW to indicate that 
2Indeed, this is the region of the "just-so" solution. As a matter of fact, in this region the distance 

dependent vacuum oscillations do not average out when the neutrinos are detected at the Earth, 
and one should use the position dependent expression, Eq. (2.60). It is trivial to check that, when 
cos200 = -1 and Pc = cos2 0 Eq. (2.60) reproduces the vacuum oscillation expression Eq.(C.7), up 
to a phase (see Chapter 3). That this is also true for cos20 < 0 was explicitly checked starting with 
the exact solutions to Schrodinger's equation [28, 29]. 
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they contain the best fit values of () for the Small Mixing Angle, Large Mixing Angle 

and LOW D.m2 solutions (3), respectively, and INT to indicate an intermediate value 

of() between the SMA and LMA solutions. The dotted line indicates the value of 

P:e.· Similarly, Fig. C.2 depicts P1:Se) as a function of sin2 () for different values of 

the mass squared difference. We use the same notation as the one used in Fig. C.1, 

and the vertical dashed lines indicate the mixing angle for maximal vacuum mixing · 

(sin2 
() = 1/2). Note that at this point P1;Be) = P:e = 1/2. 

Finally, we argue that Eq. (2.61) holds for all values of cos 20. When v'2GFJ'!e(O) ~ 

ID.m2 I/2Ev, it is very simple to derive Pee' following the exact solution (28, 29) to 

Schrodinger's equation and taking the appropriate limits. According to Eq. (39) in 

(29) 

Pp.e 

+ (C.8) 

Pp.e 

+ 

Pp.e 

where h0 = D.m2 /2Ev and Pc is given exactly by Eq. (2.61). Therefore 

(C.9) 
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Figure C.1: The electron neutrino survival probability as a function ~m2 , for different 
values <?f the vacuum mixing angle, namely, cos 20 = ±0.997 {SMA), cos 20. = ±0.8 
(INT), cos20 = ±0.58 (LMA), and cos20 = ±0.24 (LOW). The upper {lower) lines 
are for the negative (positive) sign of cos20 < 0. The stars indicate the preferred 
points from the overall rate analysis of the existing data [3], and the horizontal dotted 
lines indicate the vacuum survival probability, P:e = 1/2- 1/2 sin2 20 . 
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Figure C.2: The electron neutrino survival probability as a function sin2 (},for different 
values of b.m2 , namely, Am2 = 1.3 x 10-7 eV2 (LOW), b.m2 = 5.0 x 10-6 eV2 (SMA), 
b.m2 = 1.4 x 10-5 eV2(LMA), and b.m2 = 1 x 10-4 eV2 • The stars indicate the 
preferred points from the overall rate analysis of the existing data [3], and the dashed 
lines indicate the vacuum survival probability, P:e = 1/2- 1/2 sin2 20. 
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Since, in deriving Eq. (C.8), no assumptions with respect to the sign of /::,.m2 or the 

value of(} were made, it should be applicable in all cases,3 as long as ,fiG FNe(O) >> 

l!::,.m2 I/2Ev. Indeed, from Eqs. (2.50, 2.59) it is easy to note that, in the limit 

,fiGFNe(O) ~ l!::,.m2 I/2Ev, cos 280 ---+ -1 and Eq. (C.9) is exactly reproduced. 

3That this is indeed the case was checked explicitly starting with the exact solution to 
Schrodinger's Equation in terms of Whittaker functions [28, 29]. Furthermore, in Chapter 5 (and also 
in reference[48]) the fact that Eq. (2.61) holds in the region of interested was verified numerically. 
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