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Abstr_act

Towards the Resolution of the Solar Neutrino Problem
by

Alexander Friedland

Doctor of Philosophy in Physics
University of California at Berkeley

Professor Hitoshi Murayama, Chair

A number of experiments have accumula_ted over the years a large amount of solar.
neutrino data. The data indicate that the observed solar neutrino flux is significantly
smaller than expected and, furthermore, that the electron neutrino survival proba-
bility is energy d;apendent. This “solar neutfino problem” is best solved by assuming:
that the electron neutrino oscillates info another neutrino species.

Even though one can classify the solar neutrino deficit as strong evidence for neu-. .
trino oscillations, it is not yet considered a definitive proof.' ’I‘raditiongl objections
are that the evidence for solar neutrino oscillations relies on a combina%cion of hard,
different experiménts, and that the Standard Solar Model (SSM) might not be ac-

curate enough to precisely predict the fluxes of different solar neutrino components.

Even though it seems unlikely that modifications to the SSM alone can explain the



current solar neutrino d_ata; one still cannot completely discount the possibility that
a combination of unknown systematic errors in some of the experiments and certain
modifications to the SSM could conspire to yield the observed data.

To conclusively demonstrate that there is indeed new physics in solar néutrinos,
new experiments are aiming at detecting “smoking gun” signatures of neutrino oscil-
iations, such as an anomalous seasonal variation in the observed neutrino flux or a
day-night variation due to the regeneration of electron neutrinos in the Earth. In this
dissertation we sﬁudy the sensitivity reach of two upcoming neutrino exper.iments,
Borexino and KamLAND, to both of thesé effects.

Results of neutrino oscillation experiments for the case of two-flavor oscillations
have always been presented on the (sin? 26, Am?) parameter space. We point out,
however, that this parameterizatioh misses the half of the parameter space 7 < 0 < 7,
which is physically inequivalent to the region 0 < 6 < 7 in the presence of matter
effects. Thé MSW solutions to the solar neutrino problem can extend to the § > n/4
side. Furthermore, everr the “vacuum oscillation” solutions are affected by solar

matter effects and hence are different in the two sides.

Professor Hitoshi Murayama
Dissertation Committee Chair
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Chapter 1

IntroduCtiOn |

I_n the last decade the field of neutrino physics has witnessed several reniarkable
developments. The atmospheric neutrino data collécted by the Super-Kamiokandé
experiment piovide- a very strong evidence that neutrinos are massive and the flavor
oscillations take plé,ce. Signiﬁcaﬁt a.dvéxices have been also made in theA solé,r-neutrino
physics. The data: fronf- the radiochemical and water Cherenkov detectors indicates
fhat .neutrino 0sciliétior;é -glay ﬁlso Be responsible for the .solavr neui;rir;o deﬁcit. These
neutﬁno oscilla‘tioﬁ results provide the best (only?) evidence at the moment for new
physics beyond the Standard ‘Model.

In the beginning of this dissertation we present an overviewlof the solar neutrino
physics. We then describe the original results oh the sensitivity of the two upcoming

"Be experiments Borexino and KamLAND to “smoking gun” signatures of neutrino

oscillations and an exploration of the full physical parameter space 0 < 8 < 7/2. The



overview is presented in Chapter 2. It contains a description of basic ngutrino prop-
erties and interactions and necessary background about the solar neutrino problem.
‘We also argue for the need to look for “smoking gun” signatures at present and future
experiments as a way to unequivocally prove the neutrino oscillation hypothesis.

In Chapter 3 we study the sensitivity reach of the Borexino and KamLAND ex-
- periments to the seasonal variations of the solar neutrino flux. We consider the cases
of both the “normal” 1/L? variations and the anomalous variations expected in the
vacuum oscillation case. In Chapter 4 wel determine the sensitivity of these. experi—
ments to the neutrino regeneration phenomenon in the Earth. We also point out that
is it importan{: to study the regeneration effect for 0<b<m/ 2. Part of this range
@ > 7r/4).has been traditionally neglected in the literature.

In Chapter 5 we study the solutions to the solar neutrino problem in this full
parameter space. We investigate the cases of both the “vacuum oscillation” solutions
and the MSW solution. Remarkably, it turns out that for Am? in the “vacuum
oscillation” region the solar matter effect can in fact be nonnegligible,' especially for
the low—enefgy pp neutrinos. This makes the two sides, # < 7/4 and 6 > 7 /4, not
completely equivalent. We further explore the MSW region and find that the allowed
regions there are not neces‘sarily confined to 6 < 7 /4 side.

The last chapter contains our summary and conclusions. The appendices clarify

several technical points that were used in the analysis in different chapters.



Chapter 2
Overview of Neutrino Physics

2.1 Neutrinos in the Standard Model

This section contains an elementary review of well-established neutrino properties
and interactions. Such interactions include the so-called charged and neutral current
weak interactions. Both interactions are described by the unified electroweak theory

which, along with the QCD, forms the basis of the Standard Model of particle physics. -

2.1.1 Elementary review of neutrino properties

There are two basic features that distinguish the neutrinos from all other known

elemeéntary particles:

e they are left-handed, meaning that a neutrino spin is always antiparallel to its

momentum (parallel for antineutrino); and



e they have very small interaction cross-sections with matter.

The formef fact, established in a b;eautiful experiment by Goldhaber et al. in 1958
5], blayed a crucial role in our undefstanding of the nature of the weak interactions
and in VtheA cons.trliction:of the unified electroweak theory. The la.tter is a consequence
of the fact that neutrinos do not possess either electric charge or color, and hence
couple to ‘othef.particles only through the weak interactions.

As the nanie “suggests, the weak interaction cross-sections and decay rates are
many Sfdefs of magnitude smaller then those of comparable processes mediated by
the electromagnetic or strong forces. As an example, the lifetime of the ¥~ hyperon
(dds), which decays almost exclusively via the followiﬁg weak interaction channel:
S~ = n 47, is 1.48 x 1071° seconds. By comparison, the electromagnetic decay of
¥0  the neutral partner of ¥~ with the quark composition s(ud+du)/v/2, £° = A+7,
occurs on a much shorter time sca.le',_ T = 7% 1072 seconds. As a consequence of such :
disparity in strength, although all quarks and leptons participate in weak interactions,
their effects are often swamped by strong or electromagnetic couplings. What makes
it possible to observed weak interaction effects in low energy experiments is fact that
they do not fespect certain conservation laws obeyed by sfrong and electromagnetic
interactions, such as conservation of parity, strangeness, etc. In the example given
above the‘decay of ¥~ violated strangeness. Another example is provided by atom-
ic parity violation experiments, which measure rates of certain atomic transitions

disallowed by parity conservation, but allowed once weak interactions are included.



The fact that the neutrino couples only weakly to matter and the corresponding
cross-sections are tiny has a direct implication on the design of neutrino experiments.
~ As will be described later, all neutrino detection experiments requirg very large ta,.r-

gets, and state-of-the-art shielding and background rejection. The history of neutrino
discovery itself provides a great illustration to this point. Postulated by Pauli in
1929 to explain the continuous spectrum of 8 decay 'of the proton, the neutrino
‘was not detected until 1956, when Réines and Cowan [6] first observed the reaction
V. +p — n+ e in their classic experiment, using 1 MeV reactor 'antineutrir;os and
a target of cadmium chloride (CdCly) and water. To illustrate the inherent difﬁculty
of all neutrino detection experiments, it is worth mentioning that the mean free path

of such 1 MeV antineutrinos in water is of the order of 10% cm or 100 light years.

2.1.2 Coupling of lepfons in the electroweak'theory

The theory which provided the correct description of the weak intefé,ctions and
at the same time united them with the electromagﬁetic interaction was developed
by Glashow [7], Salam [8], and Weinberg [9]. The theory fepresepts a logical and
beé,utiful construction; which was confirmed in a countless nun.rlber:;of experiments.
Together with the theory of strong intéractions, the QCD, it constitutes the Standard
Model of particle physics. In this section we review the electroweak theory and present

the results that will be used to describe neutrino coupling to matter.

The fundamental concept used to describe the electromagnetic interaction is the



coupling of the electromagnetic current to a photon. The interaction between a
photon and a charged particle is given by H;,: = A,J#. The current J* is simply
g(p+p')* for a scalar particle and qfy*i for fermions. Here i and f are the operators of
the initial and final particles, and p and p' refer to the initial and final momenta. The
electromagnetic current can also be decomposed in terms of left- aﬁd- right-handed
components. Introducing ¥ = Py = 51—'2"’—521/) and using {7%,7#} = 0, we can
trivially show that |

Tem = a(fur¥ie + fry"ir)- T (21)
The terminology “left-handed” (“right-handed”) comes from the fact that, in the limit
v — ¢, uy, (ug) describes a particle .with its spin pointing in the direction opposite to
(along): its momentum. According to Eq (2.1), the electromagnetic current receives
equal contributions from left- and right-handed components. Such a current is referred .
to as the vector current.

The theory of the weak interaction is based on an analogous construction. One
introduces weak currents and couples them to the W and Z bosons. The reason
why the same approach works in both cases is not accidental. Both weak and electro-
magnetic couplings are gauge interactions and, moreover, are two parts of the same
gauge theory, the electroweak SU(2) x U(1) model, as will be described shortly.

From experiment, it is known that weak iilteractions can convert the electron and -
the electron neutrino into each other. If an electron emits a W~ boson and becomes

a neutrino, the corresponding weak current is J%,_ = yy#er. Notice that only the



left-handed component of the electron enters Jyy -, since it couples to the neutrino and
the neutrino is left-handed. "I-‘hus, the weak current is not a vector current, unlike the
electromagnetic current given in Eq. (2.1). The coupling to the W is insteé,d known -
as a V — A interaction, because Jy can be written as vy#(1—v°)e = ny;‘e — Dyhyde =
Vector — Axial vector.

Since the states v, and e can turn into each other as a result of weak interaction, it
is important to explore whether these transitions can be described by a gauge theory. -
The first natural candidate to check is the group of SU(2) rotations. Let us group ey,

and v, in a doublet:

€L

The generators of SU(2) in the fundamental répresenta.tion are

1 {01 1|0 —i 110 |
10 i 0 0 ~1 '

In terms of these matrices the current Jy+ can be written as

) 00 _ -
Jw+ = Ly* L=ILyTOL, - (24)

10

where we introduced the matrix TH = TM — ¢T@_ Similarly, the current that -
couples to W™ can be written as Ly*TH L.

Thus the term in the Lagrangian responsible for the coupling of the lepton doublet



(2.2) to the W* bosons is given by
Ly =GW, Tk + W gy, (2.5)

This can be rewritten in terms of T(5?, if we introduce W' and W?2 such that W+ =

(W +iW?) V3, W- = (W' —iW?)/V2

L = gWLPTOL + W2LA*TOL). : 2.6
B p

14

The coupling constants g and § are related by g = v/2§. ,
~
We thus showed that the charged current interactions can indeed be o_btairfed from

the first two generators of SU(2). In order to have a full SU(2) gauge interaction we

add a term containing the third generator:
Lsue) = gWrLPTOL + W2LFTOL + WELy*T® L), (2.7)

where a new gauge boson, W3, was introduced.

The addition of the third term in Eq. (2.7) leads to very important consequences.
Notice that this term gives two new diagonal currents, é;y*er, and 7yy*vr. Can these
cqrrents be in fact the electromagnetic currents? The answer is obviously “no”, for
two reasons: i) it only involves the lei.'t-handed components and ii) it would give a
non-zero charge to the neutrino. On the other hand, how can we explain the charges
(0, -1) of the doublet L? Introducing a separate U(1)zps gauge group and assigning
different charges to the elements of the doublet would be unacéeptable, if we want to

keep the weak SU(2).



The resolution is suggested by the pattern of the charges (0,—1), which can bé
represented as Q@ = T®) 4+ Y, with Y = —1/2 and T® is the eigenvalue of the isospin
operator. Part of the electric charge can indeed be due to the interaction with the
W3 component, while the remainder can be explained if ws introduce an additional
U(1) group (called the hypercharge U(1)y) and assign a hypercharge Y = —1/2 to

the doublet L as a whole. The diagonal part of the interaction is now
ALnewtr = gWELY*TOL + 'Y B, IV L + g'YrB€érYer. (2:8)
On closer inspection of this idea, several issues arise:

e In nature, there is only one photon, while in our case we have two fields, w3

and B.

e The gauge group U(1)y will have its own coupling constant g, which we need

to relate to g and e, the electric charge.

" @ The electric charge of the right-handed electron will come purely from the U(1)y
interaction. This wil_l requiré different hypercharge assignments for e;, and eg,

R R

i. e. Y # Yg in Eq. (2.8).

The first point can be resolved if only one of the linear combinations of W3 and

B remains massless, while the other one acquires a mass. Let

B, = cosOwA, —sinbwZ,,

W2 =sinbyw A, + cosbw Z,, (2.9)
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where A will be the photon, Z will acquire a mass, and 8, is known as the weak
mixing angle.
We can now address the second point. Plugging in Eq. (2.9) into Eq. (2.8) and

- looking at the coefficient- in front of A,, we get
gT® sin Oy + ¢'Yy cos by = Qe. | (2.10)
Plugging in our proposed relationship Q@ =Y + T, we obtain
(gsin Onm — g cos 03, )T® + ¢'Q cos Opr = Qe, | . (2._11)‘
which is satisfied if |

gsinfy — g’ cosfp = 0,

g cosfy = e. (2.12)
Thus,
gsinfy = g' cosOpr = e. (2.13)

Finally, for the right-handed component’ of the electron e; the hypercharge is
Ye, = —1. Thus, the right- and left-handed components of the electron are treated
as different particles in this framework.

We can also compute the coupling strength of the Z boson to the leptons. Similarly

to the way Eq. (2.10) was obtained, we can combine Eq. (2.9) and Eq. (2.8) and collect
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the coefficients in front of Z,iy*1). We obtain

sin 0M

gT® cos Opr — ¢'Yy sin Oy = gT(a) cos Opr — 9 (Q T(3)) sinfy =

p— OM —(T® — Qsin® ) | (2.14)

To summarize, the neutrinos couple to both W* and Z bosons through what is

known as correspondingly charged and neutral current interactions:

/

ALiny = ALcc+ ALnc,

ALce = —}(W;J<+>“+W,;J<—>"),

VA[»NC = cosﬁ (T(a) Qsin® 04) Z, JO¥, (2.15)
where
1
3
TISel)xtnno = 5’
Qneutrino = 0,
JHB = gty

JOw = (g

JOB = gryter +epyrer +oy*v. o (2.16)

2.1.3 Masses through the Higgs mechanism
Next we will address two outstanding issues:

e We need to introduce the Higgs mechanism and to prove that the Z boson in

Eq. (2.9) indeed acquires a mass, while the photon A remains massless.
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e We have not discussed the quark sector.

In order to explain how the Z boson acquires a mass, we ﬁrsf need to address the
fermibn masses. A naive approach would be to add mereg to the Lagrangian. This,
however, is not allowed by the SU(2) gauge invariance. For a term in the Lagrangian
to be gauge i;lvariant, it must contain the doublet L as a whole, without splitting its
components. To obtain a gauge invariant combination, we can add another SU(2)
doubiet to the theory, H. ﬁnlii(e L, the components of H are bosons. This allows us

to write
ALass = —ALHeg, (2.17)

Wheré A 1s-a constant of intefaction, called the Yukawa coupling. To match the
hypercharges, we must assign Y = +1/2 to H. The doublet H is called a Higgs

doublet. It contains a positively charged boson and a neutral boson,

ht _
H= : . : . (2.18)
hO
So far, this is an interaction term between three fields, not a mass term. To obtain

a mass term from Eq. (2.18), we postulate that the neutral component of the Higgs

doublet acquires a non-zero vacuum ezpectation value (VEV),

{o
(H) = : (2.19)
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Notice that we did not write a nonzero VEV for the charged component ht, as that
would violate electric charge conserva.tion.' Substituting Eq. (2.19) into Eq. (2.17),
we obtain the desired mass term for the electron, —\véLeg.

We are now ready to consider the mass for the gauge bosons. Knowing the gauge
quantum numbers of the Higgs doublet, 'wg will analyze its coupling to the gauge
bosons W123 and B. This interaction is described by the following terms in the

Lagrangian:
L C (D, H)(D*H) = |(8, — igW@T® — ig'YyB)H|" * (2.20)

We now set H to its VEV, Eq. (2.19), and look for terms that correspond to mass -

terms for the gauge bosons.

2
g(wM - WP)wi2  g%?

= TW;W_# +

(6% + ¢")v?

Iz (221

(~gW + g B2

where we used the fact that (—gW.> + ¢'B,) = /4% + ¢"*Z,,, according to Eq. (2.9).
This demonstrates that W* and Z indeed become massive as a result of coupling to -

the Higgs field, while the photon remains massless. Moreover, it makes a prediction

of the ratio of the W and Z masses

- mwy/mgz = cosOy = /g% — €2/g, (2.22)

in agreement with experiment.



14

2.1.4 The Quark Sector

The discussion so far has been concentrated on the leptons. We will now briefly

present the results for the quark sector.

Just like the leptons, the left-handed quarks can also be grouped in a doublet:

3
&

U ‘
QL = . (2.23)
d
Notice that the lower component is denoted d’ and not simply d. The meaning of this
not\ation will be discussed shortly. To reproduce the electric chafges of (+2/ 3., —1/3)
with Q@ = Y +T® we will assign to Qy, the hypercharge of +1/6. The doublet Q will
thus couple to W=, Z, and the photon.

Next, we consider the right-handed quarks. Unlike the situation in the lepton
sector, there are two right-handed particles in a single generation, Ur and Dg. The
hypercharge assignments which yield the cérrect electric charges are Yy = 2/3, Yp =
—1/3. Thus, Ug and Dpg will couple to Z and the photon.

At last, we discuss the generation of masses for the quarks. The mass for the

down-type quarks can be generated in the same way as for the leptons, with the term
~ApQrHDp (2.24)

in the Lagrangian. On the other hand, the mass for the up-type quarks has no analog
in the lepton sector. The gauge invariant combination involving @ and H can be

constructed if we make use of the second possible way to make SU(2) invariants,
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" €apA®BP. This combination is invariant because SU(2) transformation matrices have
a unit determinant. (The invariants we previously used for the leptons and the down-

type quarks were of the form Af B®.) It is easy to see that the term
~ApeasQeHPUR (2.25)

is gauge invariant and will give masses to the up-type quarks.

In Egs. (2.24) and (2.25) we omitted the generation indices. In fact in turns out
the mass eigenstates and the _weak éigenstates are not aligned with each other. By
that we simply mean that §vhen, for example, the up quark emits a W+ and turns
into some state‘in the down sector, there is no reason for that state to be a mass
eigenstate. In general, it can be a linear superposition of the maés eigenstates d, s,
and b. In the case of only two generations the misalignment effect between the weak

and the mass bases is given in terms of the Cabibbo angle 6¢:

d = cosfcd+ sinfcs,

s' = —sinfcd+ cosfcs. (2.26)

Here d and s are defined to be the mass eigenstates, while d’ and s'-are the states:
that enter the weak doublets (see Eq. (2.23)). The misalignment is responsible, for
instance, for Weak decays of the strange particles.

In the case of the three generatioﬁs, the mass and weak bases are related by
a 3 x 3 matrix, known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This

matrix contains four independent parameters, three angles and one phase. The phase
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is thought to be responsible for the C'P violation observed in nature.

The;e is no analog of thel CKM matrix for the lepton sector, so long as the neu-
trinos are masslqsé. If, however, neutrinos had masses and furthermore those masses
were different, one would be required to introduce the mixing matrix for the leptons
as well. Thié would lead to the neutrino 6scillations, as will be discussed in: the next

section.

2.2 Neutrino Masses and Oscillations

As was shown in the pre\}ious section, in the Standard Model (SM) neutrinos are
massless. Thus, a detection of nonzero neutrino masses would be an indication of new
phyéics beyond the SM. In this sections we will explore the consequences of neutrino
masses. We will show that if neutrino mass eigenvalueé are different, one may observe

neutrino oscillations. We will describe neutrino oscillations in vacuum and in magtter.

2.2.1 Neutrino Oscillations in Vacuum

To introduce. the concept of neutrino mixing and oscillations, let us first discuss
one important difference between thg neutrinos and other known elementary particles.
Unlike the other particles in the Standard Model, the neutrinos are defined as weak
eigenstatés, not mass eigenstates.

Normally, when one speaks of a particle, one usually has in mind a state of a
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_certain mass. For example, an electron |e) and a muon |u) are each defined as the
states of given masses. The same applies to quarks. As was discussed in 2.1.4,
the weak currents contain superpositions of quark mass eigensta.fes, resulting in the
need for the CKM matrix. In the case of massless neutrinos, however, one cannot
speak' about mass eigenstates. Thus, thé neutrino states are defined as the weak
eigenstates!. This means that, for example, v, is defined as thé state which, upon
emitting a W boson, becomes an electron. In this sense v, is analogous to the state
d' (Eq. 2.26) in the quark sector, rather than d.

If neutrinos were massive, then it seems quite plausible that the neutrino mass
eigenstates and weak eigenstateé would not be aligned, just like in the quark sector.
In the case of only two generations the relatiohship between the two bases can be

parameterized as

|ve) = cosf|v,) + sin 8|us),

|v,) = —sinf|v1) + cosf|us), | (2.27)

where |v1) and |v,) are the mass eigenstates and 6 is the mixing angle. The misalign-
ment between the two bases leads to neutrino flavor oscillations.
To see how the oscillations arise in the simplest case, let us consider the evolution

of a neutrino state created at some point as v, and propagating in vacuum. If the

neutrino energy is much greater than its mass, its energy is given by E; = 1/p? + m? ~
1See the PDG book [10). _
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m? m? .
P+ 5 2p+ 55 At time t the state becomes

(t)) = (cosBin) + & F5 ¢ sin O|us))e™,

where we factored out the common phase e*®. The probability to detect this state as

V. is

Am2t>

— 2 _ 1 _ cin290 «in?
P = [{ve|v(t))|* = 1 — sin® 20 sin (4Eu

(2.28)

This formula shows that the flavor composition of the neutrino states depends on
time t, i. e. the neutrino oscillates with the amplitude given by sin?28. Separate

lepton numbers are not conserved unless # = 0 or w/2. In practical units

\ |
P =1 — sin? 20sin’ (1.27AEm L) , (2.29)

v
where the neutrino energy F, is in GeV, the distance traveled L is in kilometers, and
the mass-squared splitting is in eV?2.

We can also write the Hamiltonian H of the system. In the mass basis (|v1), |12))

H is simply

2 2
my _Am

im0 s, 0

H= = const + ,

2 2

m;. Am

0 25 0 4E,

while in the weak basis (|v.), |v,)) it takes the form

m2 | —cos20 sin20

iE, (2.30)

H = const +

sin20 cos 20
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2.2.2 Effect of Matter on Neutrino Oscillations

We now consider how the evolution of a neutrino state can be affected By its
interactions with matter. We will show that such interactions in some cases can
dramatically change the neutrino survival probability.

Neutrinos interact with matter through charged and neutral current weak inter- -
actions, Egs. (2.15, 2.16). As an example, we will analyze the neutrino—electron
scattering. This process will be important latef when we discﬁss the neutrino evolu-
tion inside the Sun. The Feynman diagrams for the elastic v.e scattering are’ shown

in Fig. 2.1. The amplitude corresponding to the charged current diagram is '
i —ighv

; g ig ,_ . .
iMce = E(en’mw) X P oM, X 7—'2‘(1’1'%%), (2.31)

while for the neutral current diagram it is

L. _ ig 1,_ ‘
iMyc = cos HW'Z(Vf Vi)
—ighv ig

X

p2 — M2 cos Oy (T(3) -Q sin? eM)J;SO) (e, P, n)L,R’ (2.32)
2 .

where J& (e,p,m)L,r Tefer to the neutral currents of left- and right-handed compo-
nents of electrons, protons, and neutrons.

For low energy neutrinos, such as solar neutrinos, the vector boson propagators

are dominated by the mass terms M3 and M3%. Then the amplitudes in Egs. (2.31)
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e Ve,u,r Ve,u,r

e a:) : Ve e€,p,n b) . e,pn

Figure 2.1: Feynman'diagrams for neutrino elastic scattering processes via charged
(a) and neutral (b) current interactions.

and (2.32) can be written as the four-fermion interactions:

: —ig® _
iMce = S_MTW(en”(l =P (1 = 7%)es),
__2'92

W cow? by /AT = Qsin? ) I (e pym)r e (2.33)

iMyc =

Comparing this to the traditional expression for the Fermi interactions,

. —iGF,_ . |
iMoe = el =) E (- 1)),
iMnc —iGr E (5p9,0:) (T® — Qsin? 03) I (e, p, n)L R, (2.34)

7

we see that Gr = g%/(4v/2M32,). (The second equation in (2.34) is satisfied because
of Eq. (2.22).)

We we will first analyze the most obvious consequence of neutrino interaction
with matter, the scattering phenomenon. As was already discussed in Secti'on 2.1.1,
the interaction cross section is very small. As an example we will next consider the
scattering cross section for neutrino scattering on electrons. It is possible to guess
the answer based on simple dimensional analysis. Since the scattering amplitude

is proportional to Gp, the cross section must contain G%. To obtain the correct
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dimension for the cross section, we can multiply this by the center of mass energy s.
Thus, 0 ~ G%s = G%2meE,,... For neutrino energy of 1 MeV, this yields ¢ ~ 10~

2. a tiny cross section indeed!

cm
Given the amplitudes in Eqs; (2.34), we can obtain a more accurate answer. Upon

averaging over the electron helicity states, we find

P = 128G (63 (pecku)? + 03 (pesks,)? — 919mm (k) (2:35)
where the notation
1 . 2
gL = 3 + sin® Oy,
o = sin? Ow | | (2.36)

was introduced. The corresponding differential cross section for the ev scattering is

do 2Gim, T\? meT

o (2.37)

where T denotes the energy of the oﬁtgoing electrons. Simple kinematics shows that
it is related to the scattering angles 6,1, in the lab frame and BCM‘ in the-center of ‘.

mass frame by

Eﬁe (1 — COSs Olab)

T 2.38
me + E,, (1 — cosOpap)’ (2.38)
E2
—_ Ve _ 2.
———me oL, (1 - cosfcm), | (2.39)

and hence T varies from Tpin = 0 t0 Tyax = B, /[1 + me/(2E,,)].
The first term in Eq. (2.37) comes from both charged and neutral current inter-

actions of the left-handed component of the electron ey, while the second term is due
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to the neutral current interaction of its right-handed component eg. The last term is
the cross term between the two. 1t is proportional to the electron mass m. and would
vanish if m, — 0 (or, more to the point, me < E,.). This is behavior is expected,
because in this limit e; and er behave as two totally different particles.

Eq. (2.37) confirms that our estimate for the order of magnitude of the neutrino
cross section was correct. The smallness of heutrino cross section with matter makes
it possible for neutrinos produced in the core of the Sun to travel to the surface of
the Sun undeflected. Only in the core of a supernova is the density high enough that
the mat(;rial there becomes opaque to (anti)neutrinos with energies of a few MeV.

There is, however, another effect of neutrino—matter coupling which was pointed
out in [11]. Although neutrinos freely propagate in the medium, the interaction in
question can lead to an effective index of refraction of the medium for neutrinos.

First, consider »a single neutrino flavor propagating in the the solar or earth matter.
_According to a well-known result in optics, the index of refraction of a medium n is
related to the forward scattering amplitude f(0) of the scatterers that make up the
medium by

2N

1), | (2.40)

n=1+

where k is a wave number and N is the number density of the scatterers. The
derivation of this formula can be found in A.1. Physically, it happens because the
scattering phenomenon changes the group velocity of neutrinos in the medium. But

the same effect can be achieved also by varying the mass of the neutrinos. Indeed,
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the group velocity for massive neutrinos in vacuum is

,
aE__ P q-™ : (2.41)

Vgr = — = —=m—— .
¥ dp PP+ m? 2p?
By comparing Eqs. (2.40) and (2.41) we can see that the effect of index of refraction

can be represented if m? is changed by
sm?_, = 4rNf(0). (2.42)

The value of f(0) can be found either by starting from the Feynman diagrams,
or, more quickly, by using the expression for the scattéring cross section, Eq. (2.37). *

One is cautioned, however, against a naive application of the formula

- do '
2 __
FOF = 50 | (2.43)

which leads to an incorrect result?. The reason for this subtlety is that the cross .. .

section in Eq. (2.37) is averaged over the spin states of the electron. To get the

correct answer, in Eq. (2.42) we must use the average amplitude. The answer is: -

6mx2nat = 2\/§GFN6EU - \/iGFNnEv- (2.44) a

Here N, and N,, are the electron and neutron number densities in the medium. The .
first term is due to scattering by the charged current interaction, while the second
one is the neutral current contribution. Notice that the neutral current contributions

of electrons and protons cancel each other out if the medium is electrically neutral.

2This mistake was indeed made in the original paper [11). As a result, the matter term in that
paper is off by a factor of /2. (It furthermore has a wrong sign.)
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For the muon and tau neutrinos elastic forward scattering can only occur through
the neutral current interaction. Consequently, the value of dm2,,, for them is given -

by
(6m2,)ur = —V2GFN,E,. ~ (2.45)

Using Eq. (2.44), we can estimate the order of magnitude of the index of refraction
of a typical medium for neutrinos. Taking the electron number density to be N, = 10
cm~3, for the neutrino energy of 1 MeV we obtain n—1= \/iGpNe/E,, ~ 10719,
Hence, there is no hope to measure neutrino ray bending as a result of it .passing
through the Earth.

Thus, if there was only one neutrino generation, the modiﬁéation‘ of the index
of refraction by the neutrino-matter interactions would have no observable conse-
quences. The situation, however, can be very different in the presence of two.Qr more
generations, which can mix according to Eq. (2.27). In this case, the index of re-
fraction can have a profound effect on both the mixing angle and the mass splitting
between the levels. This can be seen if we write down the Hamilfonian for neutrinos
in matter.v To simplify the presentation, we will once again limit our considération
to only two generations, for definiteness v, and v,, and also assume that the density

of the medium is uniform. Taking into account the contribution of Eq. (2.42), with
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f(0) given by Eqgs. (2.44) and (2.45), we obtain

| -
H=p, + —;ﬁ —V2GEN, /2

[ 4

—-AT;';‘IE cos 20 + v2GgN, Am? in 20

+ i . (2.46)
%";—2 sin 26 —A,h',"—: cos 20

Here m2,,, = mZ + m?. The eigenvalues of this Hamiltonian are

: mi.  V2Gp(N.—N,) , 1|[Am?\*
/\:{: = p,,-i- 4pu + 5 :!:’é- (2p,,)
T Vs
+ (\@GFNe) _Am V2GFN, cos 20] : - (2.47)

For the study of neutrino oscillations, terms common to both states are irrelevant, _
) .

and the first three terms can be dropped. One can also safely replace p, by E, in the

remainder. The eigenstates of this Hamiltonian in terms of flavor eigenstates are

|v_) = cosOp|ve) — sinfu|v), (2.48)

|vs) = sin Op|ve) + cosOur|v,). .  (249)

-

Here 0, is the matter mixing angle, given by

cos 20y =
Am? cos 20 — 2E,\/2GrN,
\/(Am?)? + (2E,V2GEN.)? — 4Am?E,\/2Gp N, cos 20

(2.50)

Thus, the presence of matter can change both the mixing angle and the mass-
squared splitting between the eigenstates. For example, if the matter term V2GrN.

is much greater than the vacuum splitting Am?/2E,, the amplitude of the flavor
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oscillations in matter will be suppressed compared to the vacuum case. This indeed
‘happens for solar neutrinos in the core of the Sun for a wide range of the parameters
(first pointed out by Wolfenstein in [11]).

" Additionally, in the case of varying matter density it is possible to obfain neutrino
sﬁrvival probability very different from those in vacuum. The two most striking -
mechanisms are the phenomenon of parametric resonance [12, 13, 14] and the so-
called MSW effect [15, 16]. The former can be relevant for neutrino regeneration in
the Earth, the phenomenon studied in Chapter 4. The latter plays a crucial role in
one of the explanations for the solar neutrino deficit. We will discuss it in detail in
Sect. 2.3.3, after providing some background on the Standard Solar.Model and solar

neutrino experiments.

2.3 The Solar Neutrino Problem

Sun gets its energy from nuclear reactions that take place in its core. rI.‘he net
result of these reaction is the conversion of hydrogen into helium nuclei. A few of these
reactions produce neutrinos, which then travel through the Sun virtually unscattered.
Several terrestrial expe;riments have been deployed to measure this sol:';r neutrino
flux, and mbre are under development. The existing experiments rely on different
techniques to measure neutrino flux and are sensitive to different energy components.
Nonetheless, all experiments réport seeing a deficit in the observed neutrino flux,

compared to the predictions of the Standard Solar Model. This discrepancy between
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the theory and experiment is known as the solar neutrino problem. Understanding
the solar neutrino problem would provide us with a unique opportunity to study
the physics of solar interior. At the same time, if the resolution involves neutrino
oscillations, it would be a major breakthrough in neutrino physics and particle physics
in general. |

Our presentation in this section is organized as follows. In 2.3.1 we review the
foundations of the Standard Solar Model and its predictions on the solar-neutrino
fluxes. In 2.3.2 we describe the solar neutrino experiments. In 2.3.3 we present a syn- -
~ opsis of the standard analysis of solar neutrino data in terms of neutrino oscillations.
Finally, in 2.3.4 we discuss some of the future experiments and argue for the need of
“smoking gun” evidence to prove that the observed solar neutrino deficit is indeed

due to neutrino oscillations.

2.3.1 The Standard Solar Model

The Sun is a typical middle-aged main seduence star. Its interior is in a-long-lived
quasistatic equilibrium, supported by the energy released as hydrogen is converted
into helium. This conversion occurs in two chains of reactioxis, t;:e proton-proton
(pp) chain and the carbon-nitrogen-ozygen (CNO) cycle, shown in Figs. 2.2 and 2.3

correspondingly. A detailed analysis shows that for a star with the mass of the Sun

the pp chain is dominant 3.

3For the CNO chain to be dominant, the core temperature in a star must be higher than about
16 million K. Such temperatures are achieved in stars with masses 2 1.1Mg



28

To compute the parameters of the interior of the Sun, it is necessary to create
a model of stellar evolution. Such a model starts with a chemically homogeneous
spherical object of total mass M and then applies the following four principles of

stellar evolution [17]:
e The Sun is assumed to bein hydrosta’gic equilibrium throughout its evolution::
e Energy is generated by nuclear reactions in the Sun’s core.
e These reactions are the sole cause of element abund;mce changes in the Sun.
. Energy is transported by photons or by convective motion.

After about 4.6 billion years of evolution (the age of the Suh) the model must
reproduce the present day solar luminosity Le and radius Rg, as well as predict
the prgsent day parameters,-Such as densitjes,’ temperature distribﬁtion and element
a.bundances in the interior, the spectrum of acoustic frequencies observed on the solar
surface, and, very importantly, the neutrino fluxes.

Modern solar b'.models built in this way are generally found to be in very good
agréement with measurements. For example, the model by Bahcall and Pinsonneault,
BP98 [4], predicts sound speeds which are in excellent agreement with the results
obtained from helioseismology, as illustrated in Fig. 1 of reférence [4]%. To date, only

the neutrino flux predictions of the model are found to be in direct contradiction with

4The largest discrepancy between the model and the data occurs at R = 0.7R, on the boundary
between the radiative and convective zones. This discrepancy is too small to account for the observed
deficit of solar neutrino flux by modifying the core temperature of the Sun. ’
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Reaction Abbr. | Max neutrino energy, Comments
, MeV
p+p—2H+et+v.| pp 0.42 continuous
p+p+e —2H+v,| pep 1.442 discrete
SHe+p— *He + v, hep 18.77 discrete
" "Be+e” = "Li+v, | "Be() 0.863 90% of time, discrete
"Be+ e~ — "Li* + v, | "Be(Il) 0.383 10% of time, discrete
8B —»8Be* +et + 1, 8B 15 continuous
BN 5 B3C et 4+, SN 1.20 continuous
150 3 BN et +u, 150 1.73 continuous
BE 3170 +et + 0, 15 1 1.74 continuous

Table 2.1: Maximum energies of the neutrinos produced in the Sun’s core.

Neutrinos are produced in both the pp and the CNO chainsv. As was already
mentioned, for the Sun the pp chain ‘is dominant. The feactiohs that make up the
_the pp chain are illustrated in Fig.__.: 2.2. The vast majority of solar neutrinos come -
»_ from the first reaction, the proton-proton fusion (see Table 2.2). These neutrinos,
hoyvever, have relatively low ener‘g__ies,. as shown in Table 2.1, dnd canhot be seen at
all solar neutrino exi)eriments. Thus, "Be(I) and ®B neutrinos are also experimentally
important, despite the fact that they occur only in 15% and 0.02% of all terminationsv
of the chain correspondingly. The other two neutrino—producing reactions in the
chain, the pep and hep neutrinos, are of lesser importance’.

The CNO cycle is depicted in Fig. 2.3. Deépite very different appearance from

5One of the explanations of the observed recoil electron spectrum at Super-Kamiokande involves
the hep neutrinos. This, however, requires that their flux would be 20 times higher than predicted
by BP98 [18].
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Figure 2.2: The pp chain in the Sun. The percentages shown represent the fraction of
terminations of the chain in which each reaction occurs, averaged over the neutrino

production region.
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Source  Flux (100 cm2s-1)  ClL (SNU) _ Ga (SNU)

PP 5.94 0.0 69.6
pep 1.39 x 10~2 . 0.2 2.8 .
hep 2.10 x 107 0.0 0.0
"Be 4.80 x 107! 1.15 34.4
8B 5.15 x 10~* 5.9 124
BN 6.05 x 102 0.1 3.7
150 5.32 x 102 04 6.0
7p 6.33 x 10~* ‘ 0.0 0.1
Total 7.7112 1298

Table 2.2: Solar neutrino flux predictions (BP98), with 1o uncertainties from all
sources. Also shown are neutrino capture rates for chlorine and gallium experiments
(see Sect. 2.3. 2)

the pp chain, the net result of the CNO cycle is also to convert hydrogen into *He.
The carbon, nitrogen, and oxygen that appear in the reaction do not get used up, and
only serve as catalysts. Two of the reactions in the primary loop produce neutrinos,

the ,B—decays of ¥N and '®0. The secondary loop, shown within the primary cycle,

k3

) connects the 15N 16O L8 O and 0. The contribution of the neutrinos produced in

this loop to the overall flux is neghglble (see Table 2.2).

The energy spectra of the pp chain reactions are shown‘iﬁ Fig. 2.4. Notice, that
the spectra of the pp, 8B and hep neutrinos are quite broad, while the "Be and pep
neutrinos, which are produced in a two-body\ final state, are virtually monochromatic.
The shape of the spectrum of each reaction is dictated by kinematics and cannot be
changed by modifying the solar model. Any such modifications only affect the overall

normalization of each component. For example, these normalizations depend on the
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central temperature in the following way: [17]:

é(pp) o T2,
¢("Be) o« T®,

¢(°B) « T (2.51)

Thus, 8B flux is the most sensitive to T', while pp is relatively insensitive.

On the other hand, the observed neutrino flux appears to exhibit not only an
overall suppression, but a pattern of suppression of individual components Which is
energy-dependent. Neutrino oscillation explanation of the solar neutrino problem
can in fact accommodate such a‘distortion of the observed neutrinq flux. This will be
discussed in Section 2.3.3. An experimental conformation of such distortions would
be one of the “smoking gun” signatures of neutrino oscillations. This and other

signatures will be discussed in Section 2.3.4.

2.3.2 The Solar Neutrino Experiments

To measure the solar neutrino flux several experiments have been built. These ex-
periments include the Homestake experiment, the SAGE and GALLEX experiments,
and the Kamiokande Super-Kamiokande experiments. All these experiments have
large targets and are located deep underground to shield the targets from cosmic
rays. This section contains a brief overview of the prihciples of operation of each of

these experiments. In the next section we will discuss how the data accumulated by
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these experiments compare with the predictions of the Standard Solar Model.
The Homestake experiment is the oldest of all solar neutrino detectors. Construct-
ed in late 1960’s, for two decades it was the only operating solar neutrino experiment.

The detection principle is based on the reaction
Ve +3Cl =5 e + ¥Ar, ; (2.52)

with a threshold of 0.814 MeV. This value of the thr_esﬁold renders the experiment
insensitive to the abundant pp neutrinos. Howéver, the "Be and 8B neutrinos (as well
as the pep and CNO neutrinos) are within its sensitivity range.

The target is a 100,000—ga116n tank of perchloroethylene C,Cly, a cleaning fluid,
located 4850 ft underground in the Homestake Gold Mine in Lead, South Dakota.
Periodically, usually once every one to three months®, the argon in the tank is removed -
by pﬁrging the tank with helium. The argon atoms are absorbed by the charcoal trap -
maintained at the temperature of liquid nitrogen'. The trap is subsequently heated
and the extracted argon ié purified and loaded in :a small proportional counter. As a. -
result of this procedure, on the order of 15 (!) 3"Ar atoms are extrécted out of the . -
total of more than 10% atoms in the tank. e

The extraction efficiency was tested by placing a small neutron source at the
center of the tank and counting the number of 3 Ar atoms in the tank produced as

a result, and also by introducing a measured number of 3"Ar atoms in the detector

and then removing them. The extraction efficiency was shown to be at least 90%.

6The half-life of 37 Ar is 35 days, so after a few months the equilibrium number of argon-37 atoms
is established.
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That one can extract 15 atoms from a 100,000-gallon tank of a cleaning fluid with
90% efficiency is simply astounding!

As can be seen from Table 2.2, the SSM predicts that the majority of the 37Ar
atoms are expected to be created by the 8B neutrinos, while the "Be neutrinos con-
tribute about 15% of the total rate.

As was already mentioned, the Homestake experiment is insensitive to the low en-
ergy pp neutrinos. Gall.ium experiments were designed to eliminate this shortcoming.

“The solar neutrinos are captured in the reaction
Ve +TGa' > e~ + " Ge, (2.53)

.. which has .z; threshold bf only 0.233 MeV. The radioactive "'Ge hés a half life of
11.43 days and deca;ys by electron captufe. As shown in Table 2.2, in the absence of
oscillations over a half of all neutrinos detected at these experiments are expected to

- come fro_m the basic pp reactipn.

The GALLEX detector is locatved in the Gran Sasso Underground Laboratory

vin Italy. The detector consists of a concentrated GaCls-HCI solution containing 30
tons of gallium. Neutrino interactions convert gallium nuclei into ' Ge nuclei, which
subsequently form the GeCly; molecules. Periodically, GeCly is removed from the
solution and, after a series of manipulations, germanium nuclei are transferred in thg
gas germane GeH,. Thé resulting gas is then introduced into a small proportional
counter, where the number of radioactive 7*Ge nuclei is measured.

The Soviet-American-Gallium-Experiment (SAGE) is located underneath a high
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mountain in the Baksan river valley in the North Caucus region of Russia. It us-
es 60 tons of gallium and, unlike the GALLEX experiment, the target is in metal
form. Gallium metal melts at about 30° C, permitting the ext;raction of the germani-
um. Although more cumbersome, after the first several extraction steps the chemical
processing and counting techniques are quite similar to those used+in: GALLEX. To
appreciate the scale of both exp:(__ariments,”it should be kept in mind that at the time
the experimental techniques weré béing deVelop_ed, the total world production of gal-
lium was only 10 tons i)ef year!

The two experimental techni<::'1;ues each have certain advantages and disadvantages, -
which are to some degree complementary. It is therefore encouraging that solar
neutrino fluxes ;eported by boﬁh experir:r;erits are consistent_within the error bars-
(the values are 79 410+ 6 SNU for GAL‘LEX':and 79 £+ 10 + 6 SNU for SAGE).

The Kamioki«;nde eXperimen;, VWhich':‘:\vivvas ié,unéhed on January 1987 and later
superseded by ité ia,rrg;r version,icalled Supér;I;amiokande, is based on a;,-completely o
_diﬁ'efent detectioh brinﬁiple,, Bofix éxperin.x;e‘x:itsA are basically very lafge tanks of wafer
(Super—Kamiokaﬁde dgfector is 4:0 meters in diameter and 40 meters tall) located at -
a depth of 2700 meters water equivalent in the Kamioka Mozumi miﬁe in Japan. The -

primary mode of interaction of neutrinos in the detector is the elastic scattering on -

electrons:
v; +e; —vi+e;. (2.54)

The recoil electrons produce Cherenkov light in the detector, which is measured by
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photomultiplier tubes'surrounding the fiducial volume of the detector. Thus, unlike
the previously considered radiochemical experiments, the Kamiokande and Super-
Kamiokande experiments are .known as the water Cherenkov detectors.

Because the recoil electrons should be energetic enough to produce Cherenkov
light, and most importantly, Because the signal from the low energy electrons is '
swamped by the background frorﬁ radon dissolved in the water, the water Cherenkov
experiments are sensitive only to the high energy ®B neutrinos. This drawback of the
teéhnique is, however, outweighed by several very important advantages. First, the
orientation of the Cherenkov cone provides a directional information on’ the incoming
neutrino. The Kamiokande was the first experiment to uﬁequivocally demonstrate
that neutrinos are indeed coming from the Sun. Second, the detectiop is carried out
is real time, making it possible to look for séasonal and day;night variations in.the :
event rate. Finally, if the detector is well calibrated, one can obtain not only the
integrated flux, but also the energy spectrum of the ®B solar néutrinos.

The Kamiokande experiment was originally built to look for proton decay. In 1984
it was decided to improve the detector to make possible the study of the relatively low-
energy events induced by solar neutrinos. The upgrades were completed just in time
to allow the observation of neutrinos from the supernové SN1987A, an incredibly
lucky coincidence, considering the fact that -a similar supernova event may occur
with a freciuency on the order of 100 years. The supernova neutrinos have energies

comparable to those of the ®B solar neutrinos.
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In addition to solar neutrinos, Kamiokande and Super-Kamiokande have the ca-
pability to study the atmospheric neutrinos. These neutrinos are produced by the
cosmic rays interacting in the upper atmosphere and include both electron and muon
neutrinos and antineutrinos. The results from the study of atmospﬁeric neutrinos
indicate that muon neutrinos may be oscillating into some other neutrino type, thus
providing the stroﬁgest evidence we have to date for new physics beyond the Standard

Model.

At present Super-Kamiokande is the state-of-the-art solar neutrino experiment. .

- Over the past several years it has accumulated a large amount of data. This data, .

combined with the results from the Homestake and gallium éxperiments provide a
strong hint for solar neutrino -oscillations. This analysis will be presented in the next

subsection.

2.3.3 Comparison of Theory and Experiments:" MSW and

Vacuum Oscillation Solutions

' _All solar neutrino experiments described in the previous section report seeing a
deﬁcif of solar neutrinos. Gallium and water Cherenkov detectors measure a flux
equal to a half of the expected. value, while the Homéstake experiment measures
only about a third of what is predicted. The experimentally measured event;, rates
and uncertainties, as well és the standard solar model predictions are summarized in

Table 2.3.
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Experiment Experimental rate Ref. Theoretical rate Units
Homestake 2.56 £ 0.16 £0.16 [19] 7.7 117 SNU
SAGE : 67.2 172 435 [20] 129 *8 - SNU
GALLEX 775+621:3  [21) 129 8 SNU
Kamiokande 2.80.40.19 +0.33. [22] 5.15 129 106 cm—2 51
Super-Kamiokande 2.45 4 0.04 £ 0.07 [23] 5.15 159 10 cm—2 5~!

Table 2.3: Solar neutrino fluxes observed by Homestake, SAGE, GALLEX, Kamio-
kande, and Super-Kamiokande (825 days, E, > 6.5 MeV), as compared with the
theoretical expectations of the BP98 standard solar model [4]. The errors are quoted
at lo.

If one aﬁccepts, ﬁﬁe results of all five experiments, it is very difficult, if not impos- -
' sible, to devise an explanation of _thevobserved deficit by only modifying the solar
model. This is because, as mentioned earlier, the shapes of neutrino spectra from in- -
dividual reactions are fixed by kinematic and, in the absence of oscillations, the only
freedom one hasis to adjust the overall normalization of each reaction. After going
through a simple exercise, one ﬁnds that to satisfy the Super-Kamiokande result the
8B flux can be suppressed by a factor '_of 1/2. Then, the remaihing half of the 8B flux
is enough to explain the rate seen by the Homestake experiment and there is no room
for the "Be neutrinos. (In fact, the best fit value for the "Be flux in this case turns
out to be negative.) |
On the other hand, neutrino oscillations provide a simple a,ﬁd logically appealing
explanation of all experimental data. The solutions traditionally ha,\-/e been classified
into two category, MSW solutions or vacuum oscillation solutions. The former relies
on the matter enhanced flavor conversion in the Sun, while the latter uses simple

long-wavelength oscillations in vacuum to achieve the observed energy dependent
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suppression of the solar neutrino flux.
We will first discuss the MSW mechanisﬁ. Using the position dependent modifi-
cation of the Hamiltonian (2.46),
m2
H(r)=p, + —4;%"1 — V2GpNy(r)/2

—%}%2 cos 26 + \/QGFNe(r) Am? 90

1 it : (2.55)
—A‘;}”"Tz sin 260 A4—;"‘,3 cos 20

for neutrinos propagating inside the Sun, it is relatively simple to estimate the survival
probability for electron neutrinos that are created in the Sun’s core and are d;etected
on the Earth, in the limit that Am?2/ éE,, is much smaller than the Earth-Sun distance,
such that oscillations in vacuum between 14 and v, stateé are “averé,ged out””. There

are four possible “propagation paths” that the solar neutrino can follow:

ve — I/+(p = sin’ ) — va(p =1- P,) = ve(p = sin®0)
or
Ve — V";(p = siné o) = vi(p ==Pc). - v(p = cos® 6)
or " (2.56)
ve — v (p=cos’fp) = 1i(p=1-F.) = ve(p = cos’0)
or ... .. .

ve — u“(p = cos> 0p) = va(p = P.) > ve(p = sin? 6),

where p is the probability that a given “step” takes place, v* and v~ are the heavy

7That this is indeed the case will be demonstrated later in Sect. 3.2.
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and light mass eigenstates at 1;he production point in the core, g = 6),(0) and P, is
the level crossing probability, i.e. the probability that during the evolution_fr‘om the
Sun’s core to vacuum the neutrino changes from one set of instantaneous Hamiltonian
eigenstates to the other.

Therefore, the probabilities of finding the mass eigenstates 14 and v, far from the

Sun are given by

P, = sin?fuP, + cos’ (1 — P.) (2.57)

P2 == 1—P1, ) (258)

where 6 is the mixing angle at the production point®, and the electron neutrino

survival probability (Pee) at the surface of the Earth is

P.. = P,cos’0+ P,sin®0
= sin20g((1 — P,)sin?6 + P, cos?f)

+ cos?0y((1 — P,) cos® @ + P,sin®9). (2.59)

All equalities hold as long as the two mass eigenstates appear as an incoherent mixture
(true for Am? 2 1078 eV? for “Be neutrinos). Note also that in dg;iviﬁg Eq. (2.59)
no assumption was made with respect to the value of cos 28, and therefore it should
be valid for the entire range of 0 < sin?@ < 1. This fact will be important in Chapter

4.

8In our numerical analyses later, we integrate over the production region using the profile given
in [24]. The interference between v, and v_ states in Eq. (2.56) vanishes upon averaging over the
production region independent of Am? or energy.
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If the two mass eigenstates are not incoherent (true for Am? < 1078 eV2 for “Be

neutrinbs), Eq. (2.59) is modified to [25, 26]

P.. = Picos®0 + Pz sin26 — V/P.(1 = P.) cos 20, sin 20 cos (2.54A22L + 6> ,
(2.60)
where L is the distance from the Sun to the surface of the Earth, in km, E,isin GeV,
Am? in ev2, and ¢ is a matter induced phase, given in [25].» Phyéical consequences of
the matter phase have been discussed in [27). Eq. (2.60) is valid for a fixed neutrino
energy. For "Be neutrinos, the integration over the width of the neutrino energy line
leads to a suppression of the oscillatory terms already at Am? ~ a few x1071° eV2.
Assuming an exponential proﬁlé for the electron number density inside the Sun
(Ne(r) = N(0) exp(—r/rg)), Schrodinger’s equation can be solved analytically [28,
29], and it is shown that, in the raﬁge of the neutrino oscillation parameter space
relevant for addressihg fhe solar néutrino puzzle, Eq. (2.59) is indeed a very good

approximation for P,, and that P, is given by [29, 30]

e—'ysinzo —e7

P.= S B (2.61)
where
Am? Am? 0.862 MeV
v = 271 T 1.22 (10_9 eV2) < B ) , (2.62)

for ry = Ry/10.54 = 6.60 x 10* km [17].
Egs. (2.62) and (2.61) show that in the limit sin? Am?2 >> (10~° eV?)(E,/1 MeV)

the value of the level crossing probability P, goes to zero. The evolution in this case
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is said to be adiabatic. Adiabatic evolution inside the Sun can lead under certain -
conditions to an almost total conversion of electron neutrinos into another flavor
type, when the mixing angle in vacuum i.s‘very small. Indeed, suppose that Am? > 0
and 6 < 1. Suppose that also v/2GrN.(0) > Am?/ (2E,) at the production point
in the core. Then in the core the electron ‘neutrino is produced almost completely
in the heavy eigenstate. Assuming the evolution is adiabatic, the neutrino leaves the
Sun also in the heavy state which, in vacuum, consists almost entirely of 'uu. This is
the essence of the MSW mechanism. The possibility of nearly total conversion was
missed in [11] and was pointed out in {15] and [16].

 The vacuum oscillation solution is based on a simpler idea. One assumes that the
solar neutrino oscillation length is of the same order of magnitude as the Earth-Sun
distance. This allows one to achieve the,-necessary selective suppression of certain
neutrino energy components (see Eq. (2.29)). While it is not clear what the parame-
ters in the neutrino mass matrix have to do with the value of one astronomical unit,
one cannot discard such coincidence as a logical possibility.

Using these results, one can determine the regions in the two-neutrino parameter
space, which are allowed by the data from all the experiments listed in Table 2.3.
The results of such fits traditionally have been shown in the (sinZ 26, Am?) space. :
Analysis shows that there are four disconnected regions in the paraineter space that
fit the data. Oné of them, the “just-so” solution, relies on vacuum neutrino oscillations

with a very long wavelength (comparable to the Earth-Sun distance) [2], while the
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Figure 2.5: The global solutions for the allowed MSW oscillation regions, known,
respectively, as the SMA, LMA, and LOW solutions (adopted from [1]).

‘other three (SMA, LMA, and LOW) [2, 3] rely on the MSW effect to producevthe’ ¢
“required energy dependence of the electron neutrino survival probability. The LOW
) _solutibn also relies on the neutrino regenération in the Earth du;ing nighttime.

Figs. 2.5 and 2.6 show the recent fit results. Fig. 2.5 covers the MSW region,
while Fig. 2.6 shows the allowed vacuum oscillation regions. Both figures have been

adopted from [1]. We present the results of our own fits in Chapter 5.

2.3.4 Need for “Smoking G.un” Evidence for Oscillations

The results presented in the last section constitute a strong hint for neutrino fla-

vor oscillations as a way to explain the observed neutrino fluxes. Nevertheless, this
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Figure 2.6: The global solution for the allowed vacuum oscillation regions (adopted
from [1]).

evidence is as yet not considered definitive. As Sect. 2.3.2 shows, the solar neutrino
experiments are notoriously difficult. Homestake data relies on being able to extract
15 atoms out of 100,000 tons of cleaning fluid with at least 90% efficiency, in the
-experiment located more than 1 km underground. Additionally, there is a possibility
that the physics of the Sun is more complex than presently thought, and the neu-
frino flux calculations in the Standard Solar Model (SSM) may have underestimated
the theoretical uncertainties. Even though it seems very unlikely that reasonable
modifications to the SSM alone can explain the current solar neutrino data (seé, for
example, [31]), oné still cannot completely discount the possibility thét a combination

of unknown systematic errors in some of the experiments and certain modifications
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to the SSM could conspire to yield the observed data.

To conclusively demonstrate that the observed solar neutrino deﬁcit is indeed due
to neutrino flavor oscillations, it would be very desirable to detect at least one of the
so-called “smoking gun” signatures of neutrino oscillations. Such signatures include
a proof of the energy spectrum distortions, an anomalous seasonal ;variation in the |
observed neutrino .ﬂux, or a day-night variation due to the regeneration of electron
neutrinos in the Earth. In the next chapter we study what can be accomplished
at two upcoming neutrino experiments, Borexino and KamLAND, by analyz.ing the
pattern of seasonal variations. In Chapter 4 we investigate the sensitivity of these
experiments to the Earth regeneration phenomenon.'

Out of all solar neutrino components, both experiments will be most sensitive
to "Be neutrinos. As mentioned already, these neutrinos are almost monochromatic,
with E, = 0.862 MeV (90% of the time) or E, = 0.383 MeV (10% of the time),
depending on the final state of the 7Li nucleus. Since the E, = 0.383 MeV neutrinos
ca;lnot be cleanly seen at Borexino or KamLAND, in our analysis we will only consider
the E, = 0.862 MeV neutrinos, which will be referred to as the "Be neutrinos from
NnOwW on.

The study of the “Be neutrino flux is particularly important, for a variety of
reasons. First, in the SSM independént aﬁalysis of the solar neutrino data [31], where
one arbitrariiy rescales the flux of neutrinos from different sources, the flux of "Be

neutrinos comes out extreinely suppressed (in fact the best fit value for the "Be flux
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is negative!), and the measurement of a reasonable flux would dramatically constrain
such attempts. Second, since the prediction of one particular MSW solution (the
small angle solution) for the survival probability of "Be neutrinos is very different
from the other two solutions, one can separate it from the other two by measuring
the “Be solar neutrino flux. Fihally, as we SilOW in the-next cha.pte'r, one can either
establish or exclude the “just-so” solution by analyzing the seasonal variation of the

"Be solar neutrino flux at Borexino or KamLAND.
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Chapter 3

Seasonal Variations at Borexino

and KamLAND

In this chapter we present a.quantitative study of what can be accomplished by ~
measuring the seasonal variations of the "Be neutrino flux at Borexino and :Kam-
LAND. Seasonal variations of the solar neutrino flux are of course expected, because
of the eccentricity of the Earth’s orbit. The number of neutrinos of all flavors reaching . -
the Earth is larger when the Earth is closer to the Sun than when it is farther away,
and should vary as 1/L2. In the case of no neutrino oscillations or of the MSW solu-
tion to the solar neutrino problem, the number of l7Be solar neutrino induced events
is supposed to vary according to the 1/L? law, following t_he variation of the total
néutrino flux. This will be referred 'to as the “normal” seasonal variation.

1If vacuum oscillations are the solution to the solar neutrino puzzle, large, anoma-
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lous seasonal variations of the number of “Be solar neutrino induced events might
be detected [32, 33]. As Eq. (2.29) shows, neutrino oscillation effects depend on the
distance to the neutrino source, and different Earth-Sun distances may yield very
different v, survival probabilities [26, 34]. The anomalous seasonal variation effect
should be more pronounced in “Be neutrinos than in ®B neutrinos (the latter was
recently studied in [35]). This is because, as discussed in Section 2.3.1, “Be neutrizios.
are produced as part of a two-body final state and hence are virtually monoenergetic!.
The d;etails will become clear when we discuss the anomalous seasonal variation effect
in Section 3.2.
Iﬁ the case of no anomalous seasonal variationé, if one has enough statistics and
a small enough background, the time variation of the data can be used to measure
the solar neutrino flux, given that _the number of background events is constant in
time.?2 We Wilvl analyze how well Borexino and KamLAND can perform this type of
me@suremenﬁ. We are particularly interested in analyzing the relevance of this tech-
nique when the number of electron neutrinos reaching the detector is very suppressed
with respect to the Standard Solar Model predictions, as might b(f, the case if there

are Ve — v, r oscillations for the small angle MSW solution.?

1Tn fact there are two distinct neutrino energies, 0.383 and 0.862 MeV, corresponding to different
final states of the "Li nucleus. Borexino and KamLAND are only sensitive to the higher energy

component.
2Actually, a time-dependent background is also acceptable, as long as it can be monitored and

understood well enough. _
31f v, oscillates into sterile neutrinos, the suppression is even more pronounced, due to the absence
of neutral current v, ;-e elastic scattering. We do not consider oscillations into sterile neutrinos in

our analysis.
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Our presentation in this chapter is organized as follows. In Sect. 3.1 we discuss how
seasonal variations might be used to determine the solar neutrino flux at Borexino and
- KamLAND, in such a way that no separate measurement of the number of background
events is required. In Sect. 3.2 we analyze the effect of the vacuum oscillation solutions
to the sélar neutrino puzzle on the apnual variation of thevnumber. of-detected events
at Borexino and KamLAND. In particular we describe th;a region of the (sin® 20, Am?)
parameter space where vacuum oscillations can be discovered by studying the seasonal
variations of the data. In Sections..3.3 and 3.4 we describe how the measurement of
the seasonal variation of the “Be solar neutrino flux may be used to either measure -
the neutrino oscillation para.m.eters, sin? 20 and Am?, or exclude a large portion of
the (sin? 20, Am?) parameter space. Section 3.5 contains a summary of our results

and conclusions.

’

3.1 Measuring the “Be Solar Neutrino Flux

As was already pointed oﬁt, measuring the ﬁux of "Be neutrinos is crucial towards
understanding the solar neutrino puzzle. Borexino [36] plans to do thi“s measurement
by using 300 tons of organic liquid scintillator to detect ‘recoil electrons from elastic
v-e scattering; Since the scintilléutor has no directional information, and the signal
is characterized only by the scintillation light produced by the recoil electron, the
background has to be kept under control. This places a very stringent constraint on

the radio-purity of the scintillator and on the activity of the material in the detector.
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Borexino anticipates 100 tons of fiducial volume for detecting solar neutrinos.

KamLAND (37], which was originally conceived as a reactor neutri;xo experiment
with an unprecedented baseline (170 km on the average), may also be able to study:
"Be solar neutrinos, if rigorous yet -attainable requirements on the radio-purity and:
_activity are met. We assume throughout this dissertation that KamLAND will use
600 tons of fiducial volume for detecting solar neutrinos (the size of the fiducial volume
will depend on the background rate, which is currently unknown). We concentrate
our aﬁalysis on Borexino, which is an approved dedicated solar neutrino experiment,
and discuss KamLAND, whose ‘uses for solar neutrino studies are at present being:
proposed [38], as a possible higher statistics improvément.

It is important to define what is meant by “measuring the “Be solar neutrino -
flux.” In reality, what the experiments are capable of measurihg is the number of-
recoﬂ electrons induced by solar neutrino interactions in a given recoil electron kinetic
energy range (kinematic range). This information can only be converted into a solar .
neutrino flux measurement if one knows the flavor comﬁosition of the solar neutrinos.’

Explicitly, assuming that the solar neutrino flux is composed of v, (with fraction P)

and v, , (with fraction Q =1 — P),
#recoil electrons/time = ® x (Poy,-. + (1 — P)oy, ,-¢)Ne, (3.1)

where ® is the neutrino flux, NN, is the number of target electrons, and

Tinex do
Oy oo = —_— , 2
O /T,., ar (dT) (3.2)
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with (g%)u,-e being the differential cross section for v;-¢ scattering for a given kinetic
energy T of the recoil elect;‘on. Tmin and Tpax define the kinematic rahge. In the case
of neutrino oscillations, P is the the survival probability for electron neutrinos, while
1 — P is the probability that v, will oscillate into v, ;.

If the flavor composition of the flux is not known, all that can“be quoted is the
-eﬁ'ectiye neﬁtrino flux, ®ex, which is calculated from the number of measured re-
coil electrons assuming that there are only electron neutrinos coming from the Sun.
Explicitly, |

. _ #recoil electrons/time
(Deff =
Oye-eNe

— &% (P+ (1-P) fa——) . (33)

Ve-e
Clearly, if P = 1, ¢ = ®. It is important to remember that o,, .-/0,,-. < 1 and
therefore <I)eg < &. The ratio of the neutrino elastic cross éectio‘ns depends on the
energy of the incoming neutrino and the kinematic range to which each particular ex-
periment is sensitive. For F, = 0.862 MeV and the Borexino (KamLAND) kinematic
range 250-800 .keV (280-800 keV), 0y, ,-e/0y,-e = 0‘.213(().214). It is this effective
electron neutrino flux, P, that is referred to, throughout this dissertation (and in
general), as the "Be solar neutrino flux.

In order to determine the number of recoil électfons induced by solar neutrino
interactions, it is crucial to determine the ﬁumber of background events. The number
of background events can be estimated by various techniques, which we do not address
in this dissertation. It is worthwhile to point out, hoWever, that this is a very difficult

process and it would be highly desirable to have an independent way to determine the
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"Be solar neutrino flux in order to make the final results more convincing. This may
be possible if one looks at the seasonal variation of the number of detected events.
In the following, we study the seasonal variation of the event rate as a means
to measure the "Be solar neutrino flux. The distance between the Earth and the
Sun varies slightly over seasons because of the eccentricity of the Earth’s orbit. The
‘perihelion (when the Earth is closest to the Sun) occurs around January first. The

-eccentricity of the Earth’s orbit is € = 0.017, and hence the distance varies as
L = Ly(1 — ecos(2nt/year)), . (3.4)

to the first order in €. Here, t is the time measured in years from the perihelion,
and Ly = 1.496 x 10® km is one astronomical unit. The neutrino flux varies as 1/L2
and hence shows a seasonal variation of about 7% from minimum to maximum. The

change in the Earth-Sun distance between the aphelion and the perihelion is given by
AL = Linax — Lnin = 2¢Lg = 5.1 x 10° km. (3.5)

By fitting the event rate to the seasonal variation expected due to the eccentricity,

B+S(%)2, | | 69

one can extract the background event rate B and the signal event rate S indepen-
dently. As long as the detector is monitored well and its performance is sufficiently
stable, this method will be only limited by statistics.

Borexino expects 53 events/day ? according to the BP95 [39] Standard Solar Model

4For simplicity, we neglect the contribution of solar neutrino sources other than "Be electron
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(SSM), together with 19 background events/day [36], after the statistical subtraction
of the known background sources. This is done by pulse shape discrimination against
the a-particle background and the measurement of Bi-Po pairs via a-f coincidence.
This in turn allows the statistical subtraction of processes in the 233U and 232Th chains
which are in equilibrium. It is also assumed that the experiment can.achieve a radio-
purity of 10~6g/g for U/Th, 10~¥g/g for 4°K, 14C/12C = 1078, and no Rn diffusion.
For KamLAND we use 466 events/kt/day for the signal and 217 events/kt/da’y [38]
- for the background under similar assumptions but with larger cosmogenic baclfgrouﬁd
(especially 1*C) and some Rn diffusion. Assuming 600 t of fiducial volume, we expect
280 signal events/day and 130 background events/day. Throughqut the chapter, we
will assume that the number of background \events is either constant in time or its
time dependence is suﬁiciently well understood ‘by monitoring. We negiéct systematic
effects and assume that there are oﬁly statistical un(;ertainties.

Under theée assumptions, Fig. 3.1 depicts a simulation of the seasonal variation of .
- the “data” for both Borexino and KamLAND, after three years of running.: The plots
are for the case of the small angle M§W solution to the solar neutrino puzzle, where -
the v,’s produced by 7Be electron capture inside the Sun have afﬁiost completely
 oscillated into v, or v,, and the event rate is reduced to 21.3% (21.4%) of the SSM

prediction at Borexino (KamLAND). In the fit to the data, both the background and

the "Be flux are allowed to float.

capture throughout this chapter. In particular we neglect the contribution of neutrinos produced in
the CNO cycle, which is about 10% of that from the 7Be neutrinos.
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Figure 3.1: The simulated seasonal variation of the "Be flux for the case of the
small angle MSW solution, for three years of Borexino (left) and KamLAND (right) -
running. The inset shows the measured flux of "Be neutrinos from the fit to the
seasonal variation of the event rate (point with error bar) and the SSM predlctlon
(shaded band).

This analysis can be repeafed for different values of the "Be flux, or, equivalently,
for different survival probabilities for v,. Fig. 3.2 depicts the expécted 1 o statistical
accuracy of the "Be flux measurement, together with the central value normalized by
the SSM prediction, as a function of the survival probability for v,. We emphasize
that this measurement techniqﬁe assumes no knowledge of the background.

The important information one should obtain from this analysis is if one can
indeed measure a nonzero "Be solar neutrino flux. For example, in the case of the
small angle MSW solution, the v, survival probability is very close to zero and,
assuming the expected number of background events, Borexino’s measured neutrino
flux is less than 1.5 o away from zero. The situation at KamLAND is much better,
and in the case of the small angle MSW solution a healthy 3 sigma-away-from-zero

measurement of the flux is obtained, if the background is as low as expected. The
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Figure 3.2: The expected 1 ¢ statistical accuracy of the "Be neutrino flux measure-
ment, together with the central value normalized by the flux predicted by the SSM,
as a function of the v, survival probability at Borexino (left) and KamLAND (right),
after three years of data taking. '

signiﬁcance of the measured flux increases for larger survival probabilities, as in the
case of the large angle and the low Am? MSW solutions.

A similar analysis can be performed in order to determine how many l;)ackground
| évenfs each experiment can tolerate in order to claim a solar neutrino flux mea--
* surement which is 3 a:'a;&véy ‘from zero. Flg 3.3 depicts the maximum number of
Ba.ckgrOund events per day aﬂowed for 3 year/s of Borexinb or KamLAND running.
It is worthwhile to comment that, in the case of Borexino and the small angle M-
SW solution (P ~ 0), a 3 sigma-away-from-zero measurement of the neutrino flux
is not attainable in three years, even in the case of no backéound (note that for
P 5 0.05 the required maximum background to achieve a three ¢ measurement of
the flux is negative, i.e., impossible to achieve). Therefore, for Borexino, this sim—

ple, background independent analysis using the seasonal variation of the data is not

particularly powerful in the case of the small angle MSW solution, due to statistical
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Figure 3.3: The maximum number of background events allowed per day at Borexino
(left) or KamLAND (right), for 3 years of running, in order to measure a solar neutrino
flux which is 3 o away from zero. The dashed lines indicate the currently anticipated

number of background events per day.

limitations.

3.2 Sensitivity to Vacuum Oscillations

In this section we study the discovery potential of the Bofexino and KamLAND
experiments in the region of Am? corresponding to the vacuum oscillation solution ,
to the solar neutrino problem. In this case, the pattern of seasdnal variations can be
very distinct from the normal pattern discussed in the previous section.

The basic idea is the following. The survival probability P for an electron neutrino
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in the case of neutrino vacuum oscillations between two flavor states® is given by

P =1 — sin? 20 sin® (1.27Am2%> , o (3.7)

where the neutrino energy E is in GeV, the distance L in km, and the difference
of masses-squared Am? in eV2. Model-independent analyses of all solar. neutrino
data show the néed for an energy-dependent suppression of the v, flux. The “just-
- 50” solution achieves this by choosing Am? such that the corresponding neutrino

oscillation length

7E g E 10710 eV?
Losc W =247 x 10° km X (10 MeV) ( Am2 (38)

Ii

is of the order of one Astronomical Unit (1 a.u. = 1.496 x 10® km); hence the name
“just-so”. More specifically, the oscillation length is assumed comparable to 1 a.u.
for ®B neutrinos (E, ~ 10 MeV); at the _sa,me'time, the oscillation length. of 7Be"'_?
neutrinos (E, = 0.862 MeV) is an order of magnitude smaller and, for sufficiently
large Am“’, can be cofnpa.rable .to the seasonal variation of the Earth-Sun distance
* due to the eccentricity of the Earth’s orbit, AL (see Eq. (3.5)). As a consequenée,
the flux of "Be neutrinos detected on the Earth may exhibit an ang;ﬁalous seasonal
vériation, beyond the normal 1/L? effect discussed in the previous section.

Such anomalous variation could serve as a unique signature of vacuum oscillations
[32, 33]. Moreover, as we will show in this section, both Borexino and KamLAND will

be able to cover a large portion of the “just-so” parameter space, even without relying

50ne can assume the more complicated case of oscillations between three neutrino flavor states.
In this chapter we limit our studies to the case of oscillations between two flavor states.
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: Ffiglire_3.4: Tlustration of the effect of vacuum oscillations on the shape of the-
‘seasonal variation of the solar neutrino data. The points with statistical error bars
-represent the number of events/month expected at Borexino after 3 years of running
“for Am? = 3 x 107! eV?, sin?20 = 1. The histogram in (a) shows the number
of events predicted by the SSM without neutrino oscillations, plus the number of
"anticipated background events. The histogram in (b) shows the same quantity after.
‘adjusting the solar neutrino flux and the background rate so as to minimize the value
of x2, as explained in the text. The difference between the case with oscillations and
the one without oscillations is still apparent.

on a particular solar model or estimate of the background rate, just by analyzing the .

shapé of their.data; In this sense th.e discovery of an anomalous seasonal variation -

at one of these experiments would Be as robust a result as the Super-Kamiokande
" measurement of the'up—down a.symmétry for the atmospheric muon neutrinos.

To illustrate the main idea, we choose a particular point (Am? = 3 x 10710 eV2,
sin?20 = 1) 'i’n the allowed region of the “just-so” parameter space ® and compute
the (.:or'resporllding seasonal distribution of the neutrino eventé at Borexino after 3
‘years of running. We use the number of background events and the expected number
of signal events (before the eﬁ'éct of neutrino oscillations) quoted in Sect. 3.1. The

results are shown in Fig. 3.4 by the set of “data” points with error bars; each point

6Based on the analysis of the total rates in the Homestake, GALLEX, SAGE, and Super-
Kamiokande experiments. See Fig. 5 in [2].



61

represents the number of events expected in a given month and the vertical error
bars show the corresponding statistical uncertainties. The histogram in Fig. 3.4(a)
shows “theoretical” event rates expected for non-oscillating neutrinos, provided the
background rate is known accufately and the SSM prediction for the neutrino flux is
trustéd. One can see that under these assumptions vacuum neutrinovoscillations with
Am? =3 x 10710 eV2, sin%220 = 1 Would be trivial to discover.

More importantly, the experiment would be able to claim the discovery even with-
out relying on an estimate of the background rate or the value of incoming neutrino
flux predicted by the SSM. It is intuitively obvious ffom the figure that the vacuum -
oscillation “dat;i” points cannqt be fit by the “theoretical” curve even if the back—.
ground and the solar neutrino flux are varied freely, unless one assumes neutrino
oscillations. This can be quantiﬁéd*as follows. For a given background rate b and

signal event rate s, we define the x2 value of the fit for an “average” experiment:

x2(s,b) = Nd.o.f_.f > Z b 2, . . (39)
where Ny is the number of _bins, Nyot. is the number of degrees of freedom, d; -
is the average expected number of neutrino events in the ith vbin, and h; is given
by h; =. fj_l(l — €¢08(2mx/ Nyins) ) 2dz . The constant term Ngof in Eq. (3.9) is
added to take into account the effect of statistical fluctuations-in the data. In 2; :
single experiment, statistical fluctuations make the number <;f neutrino events in the

ith bin slightly different from d;, and x2 is computed by an expression similar to

Eq. (3.9), with d; replaced by the number of events measured in the ith bin and
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without the constant term, Ny .. In our analysis, however, we are interested in the
sensitivity of an “average” experiment. As proven in Appendix B.l,_ averaging over
many experiments results in the definition of x? given in Eq. (3.9), with the constant
term Ngo¢. This agrees with the conventional wisdom that, if a‘function describes
data correctly, the average expected. value. of x2 should be equal to the number of
degrees of freedom. Given this definition, we can choose values of s and b that
minimize the x2;v the only restriction imp‘o.s‘ed‘d ié that both s and b be non-negative.
For the case at h;ﬁd thé minirﬁum occufs when b is zero and s is 0.95 timés the SSM
prediction (see Fig. 34(b)) As expected, even after this change the “data” points
‘and the histogram are very different. (Numerically, x? = 2935 which for 10 degrees
of freedom implies a confidence level of 1 — 9 x 1076261).7 |

We now extend this approach, and scan the entire (sin” 26, Am?) plane (for an
earlier work with a more simplified analysis which does not consider the presence
of background, see [26]). In the analysis below, we follow the same steps as before:
the “data” is simulated according to the expe'cted number of background and signal
events, plus the effect of neutrino oscillations, for each value of (sin® 24, Am?), binned
into a certaiﬁ number of bins Nyins, and then compared to the “theoretical” predic-
tions for the casé of no oscillations. The x? is computed according to Eq. (3.9) and

minimized with respect to both the signal (s) and background (b). The confidence

level (CL) corresponding to the minimal value of x% and Ngof = Npins — 2 degrees

"This number is, of course, unrealistic, and the true confidence level in this case will be dominated
by systematic effects. :
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Figure 3.5: The sensitivity region of the Borexino experiment in 3 years, if the analysis
does not assume any knowledge of the background rate or the incoming solar neutrino
flux. In the unshaded region the “data” is at least 5 o away from the best no-
oscillations fit. In the lightly shaded region the discrepancy is greater than 95% CL
~ but less than 5 o CL.

of freedom is then determined, and the region in which the CL is less than a given.
number is isolated. This case, _whén both the number of background events and the in-
coming solar neﬁtrino flux are considered unknown in the fit, is the most conservative . -
one, and yields the smallest sensitivity region. Later we also study less conservative
cases, where we assume in the “data” analysis that the incoming neutrino flux is the
one predicted by the éSM énd / orthat vth'e. background rate is kx;own.

We now apply this most conservative procedure to study the experimental reach of

Borexino after 3 years of operation. In Figure 3.5 we show the results of the scan for
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95% and 5 o CL. As one can see from the figure, even at 5 o CL a large portion of the
paramef_er space above Am? ~ 1071% eV? is covered (white region). In this region the
neutrino oscillation length L is smaller than the seasonal variation of the Earth-
Sun distance AL. On the other hand, below Am? ~ 10710 eV? one can see a series
of spikes protruding through the sensitivity region. It is important to understand the
- drigir;_j_of these spikes. Since we adjust the level of signal and background in'the fit,
we are} ﬁot ;ser.lvsit.ive tg the:lé,b;oiute e;}ent rate, only to its variation during the year.
For Am? < 1071° eV? the oscillation length is larger than AL and the amplitude
of the variation of the event rate is roughly proportional to the first derivative of
Eq. (37) with respect to L. In the regions where this derivative nearly vanishes, the
amplitude of the variations is small and the signal is indistinguishable from the case
of no oscillations. This explains why the loss of sensitivity occurs not only when the -
neutrinos undergo approximately an integer number of oscillations as they. travel to
the Earth (Am? = n x 0.143 x 1010 eV?), but also when the number of oscillations is
close to a half-integer (Am? = (n+ 1/2) x 0.143 x lo—io eV?). In the latter case the
absolute neutrino flux is maximally suppressed, but the magnitude Qf the seasonal
variation is small.®

Given this explanation, one would expect that the spikes corresponding to a half-
integer number of oscillations should become shorter if in the analysis we choose to

rely on the SSM prediction of the incoming neutrino flux and/or on the anﬁcipated

8Notice that the regions preferred from the global fits have the absolute 7Be neutrino flux sup-
pressed. See Figs. 3.9 and 3.10. ’
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background rate. It is straightforward to incorporate the knowledge of both quantities
and their uncertainties in our procedure. For example, to impdse the value of the
incoming neutrino flux predicted by the SSM, we modify the expression of x2 in

Eq. (3.9) by adding an extra term:

PRV
$(5,8) — x2(s,0) + E=5 - (3.10)
80

where.s and b are the ;values of the signal and background with respect to which we
later rﬁinimize x2, Sg ;is the SSM predictioq for the signal, and o, is the uncertainty
in 80"': The rest of the ana}ysis is cérried out unchanged, except that the Iiumber
of deg;'ees of freedom is ir;crea.sed by one fo Nyos. = Npins — 1 To usé both thé
incoming flux predicted by the SSM and the anticipated background rate, two terms
" are added to Eq. (3.9) and the number of degrees of freedom is increased by two to
ﬂN‘d.o.f. = Npins- |

The results of the calculation are shown in Fig. 3.6. The uncertainty on the
" solar model prediction of the 7:Be neutrino flux is taken to be 9% [4], while the
uncerté,inty on the background is 10% [38]. As expected, the odd-numbered spikes
" do beéome shorter. The one possibility not shown in the plot is thg;ZSituation when
one only assumes knowledge of the background rate. In this case the spikes become
significantly thinner, although their length remains virtually unchanged.

In order to extend this analysis to values of Am? > 1072 eV?, several issues
must be confronted. We will next address these issues one by ;)ne, and illustrate the

discussion in Fig. 3.7.
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Figure 3.6: The sensitivity reach of the Borexino experiment after 3 years of running
(at 95% confidence level). The three cases considered are: no knowledge of either
the background rate or the incoming solar neutrino flux (the covered region is white);
assumption that the incoming solar neutrino flux is the one predicted by the SSM,
with 9% uncertainty (the covered region is white + light gray); assumption that
the background rate is known with 10% uncertainty and the incoming neutrino flux
agrees with the SSM, with 9% uncertainty (the covered region is white + light gray
+ medium gray). '

The first and the most obvious point is that the number of bins needs to be
changed. The reason is that the frequency of the seasonal variations increases with
Am?, and above some value (Am? ~ 8 x 1071 eV?, for 12 bins)A integration over the
bin size washes out the effect. To avoid this, we change the number of bins from 12
to 365. After the change, the effect of binning kicks in at Am? ~ 2.4 x 10~% ¢V?, aé
curve 1 in Fig. 3.7 illustrates.'

Next, there are two physical effects one must take into account: one is the in-
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Figure 3.7: The relative roles of the binning effect, the linewidth effect, and the matter
effect, as explained in the text. :

feraction of the neutrinos with solar matter (the MSW effect), and the other is the
finite width of the “Be solar neutrino line. One may worry about the v&ash—o‘ut of the_
seasonal variatio_n.eﬂ'ect due to the finite sfze of Sun’s core.v However, matter effects
; make' the core 'size— éffect irrelevant because the mixing angle in the Sun’s éore is small
and the osciilations effectively start at the level-crossing poipt (see Eq. (3.12)).2 -~
When a v, is created by the electron capture process in the core of the Sun, ifs
Hamiltonian is dominated by the matter effect V2GFn, (ne is the electron .number
density) if Am? < 10~5 eV? for "Be neutrinos. We restrict ourselves to Am? <
10=7 eV? in the follo;;viﬁé”divs‘cﬁ.ssi‘ons, as the final sensitivity due to the anomalous

seasonal variation is limited by < 107 eV? as will be seen later in this section.

9We thank E. Lisi and L. Wolfenstein for pointing this out to us. For earlier papers on this
particular point, see [11], [32], and in particular, {27].
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Then the mass mixing effect can be completely ignored at the tjme of the neutrino
production, and one can safely take the produced neutrino to be in a Hamiltonian
eigenstate (the one which corresponds to the larger energy in the Sﬁn’s core). As
it propagates through the Sun, the neutrino follows the instantaneous Hamiltonian -
eigenstate (in the adiabatic approximation), and exits in the heavier mass eigenstate,
vy = Vesin® + v, cosf. It also has a finite amplitude A, for hopping to the other
Hamiltonian eigenstate. The neutrino state that exits the Sun can therefore be written -

as
Vexii.: = Ac’/l + BcV2, (311)

with the unitarity constraint |A.|? + |Bc|? = 1. Out of the Sun, the two mass eigen-
states develop different phases due to the mass difference, e~*A™*t/2E- _ Therefore the

neutrino state that arrives at the Earth is given by
Varrival = AcVI + BcV2e~iAm2L/2EV; (312)

up to an overall phase factor. The distance L is between the point of level crossing
and the Earth. Finally, the survival probability of the electron neutrino is determined
by the v, component of V,iva1, and hence
P = |A;cos6+ B.sin Qe 1AM L/2E, |2
= |Ac|*cos® 8 + | B|*sin® 6 + 2Re A% BoeA™L/%Er sin g cosd.  (3.13)

Since |B,|? is the hopping probability between two Hamiltonian eigenstates in the

Sun P,, one can rewrite the formula using P, and an additional phase factor A;B, =
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VP.(1 - P)e ™,

. 2
P = P.cos®0 + (1 — P.)sin®6 + 24/P.(1 — P.)sinf cos f cos (A;Z L + 6) . (3.14)

An approximate formula for P, was given in [29, 30] using the exponential density
profile of the Sun,

e—'ys.inzo — e

P, = .
=S (315)
with
_ Am? Am? 0.862MeV
v =279 T 1.22 (10‘9eV2> ( i ) , (3.16)

where we ;:onsider thé exponegtial—proﬁlé .approximation for the electron number den-
sity in the Sun n, o< exp(—7/ro), with 79 = R/10.54 = 6.60 x 10* km, given in [17].
Flg 3.‘8 shows the C(;ntours} of >Pc.on the (s‘in2 20, Am?) plane for the "Be neutrino
energy E, = 0.862 MeV.

o The most importé.nt consequence of the matter effect is that the vacuum oscillation
'is éuppresséd 'w.hen. P; —0 (-va;iiabatic iimit). The origin of the éuppréssion is simple.
When P, is small, the neutrino stat.e that exifs the Sun is nearly a pure v, state. Since
it is a mass eigenstate, only it-;s ph@se evolves in time and no oscillations take place.
The v, survival probability then is éimply given by the v, content of 1, which is
nothing but sin? §, without anomalous seasonal variations. Therefore, the sensitivity
to the anomalous seasonai variation is reduced in the region with small P,. When

Am? is small, on the other hand, the situation is in the extreme non-adiabatic limit,
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~ Figure 3.8: The contour plot of the hopping probability P, = 0.1, 0.2, ..., 0.9, for
the "Be neutrino energy, using the exponential-profile approximation for the electron
number density and Eq. (3.15). :

and P, — cos26. Then Eq. (3.14) reduces to Eq. (3.7). As Am? increases, P, becomes
smaller than cos? @, which enhances the vacuum oscillation effect in the small mixing
angle region. Curve 2 in Fig. 3.7 includes the matter effect and indeed indicates a
reduced senéitivity for large sin? 26 (small P,) and an enhanced sensitivity for small
sin® 20 (where P starts deviating from cos? §).1°

The second effect is the finite width of the "Be line; To give some preliminary
idea about the relative size of this effect, we first consider a simpliﬁed model. We
assume for a moment that the only source of the line brdadening is the Doppler shift
of neutrino energies arising from the thermal motion of the "Be nuclei. Since the

energy is shifted to £ — E(1 + v,/c) and the probability distribution of the velocity

10T the numerical scan, we ignored the additional phase factor 8, because its effects are negligible
(27]. '
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along the line of sight v, is proportional to exp(—muv2/2kT'), the resulting line profile
will be a Gaussian exp(—mc(E — Eo)?/(2kTE2)). Taking the temperature to be
15.6 million Kelvin (the temperature in the center of the Sun) and integrating over
the line profile, we obtain curve 3 in Fig. 3.7. The sensitivity loss now occurs at
Am? =~ 1 x 107® eV?, demonstrating that this effect is more important than the
matter effect.

This naive model is actually incomplete‘; there exists another very important
source of line broadening. Bgcéuse the incoming electron in the process "Be + e~ —

"Li+ v, has nonzero thermal kinetic energy, the center of mass energy of the reaction

is greater than the one measured in the laboratory, and so the neutrino has a greater -

energy. The phase space distr,ibutiqn of electrons is governed by the Maxwellian fac-
tpr .exp(—Ee- /kT). This dis_tributibn has to be multiplied by the energy-dependent

cross section, intégrated over ,the‘: phasé_ispacef,‘ and finally convoluted with the Gaus-

sian arising from the Dopplef effect. The resulting line shape becomes asymmetric, -

with a Gaussian profile on the left (due to the Doppler effect) and an exponential tail

on the right (due to the Maxwellian distribution of the electron energy). The issue
was studied in detail in [40], where the precise form of the profile was computed.!!

Repeating the calculation with this profile we generate curve 4 in Fig. 3.7.

One can see that for this curve the cut-off occurs at smaller Am?2. This behavior

is expected, because the linewidth is now greater than when only the Doppler effect

Ut turns out that other effects, such as collisional line broadening [41] or gravitational energy
shift {40}, are unimportant. -
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was included (curve 3 in Fig. 3.7). It is also worth notihg that the cut-off sets in more
gradually. This feature can be understood analytically by considerjng the Fourier
transform of an exponential tail vs. a Gaussian tail. The details can be found in
Appendix B.2.

Finally, we can combine both the linewidth and the matter effects. The result
is curve 5 in Fig. 3.7. As expected, the inclusioh of the matter effect on top.of
the 1inéwidth effect introduces only a s"_méll distortion to the sensitivity region. It is
important to note that for Am? < 5x 1(‘)‘.1.0 eV? none of the physical effects mentioned
above affect the sensitivity region (éur\)e-"l versus cﬁrve 5, in Fig. 3.7).

“We need to consider one lést iﬁgfedient in the analysis. We again return to
the issue of the number of bins. While _choosing more bins is necessary for larger
values of Am?, it simultaneously leads to a loss of sensitivity for smaller Am?. A
better procedure is to use an optimum number of bins N, for each Am?. It can
be shown that for our method bf analysis (minimizing x? by varying the signal and
background) and sufficiently large Am? an approximate; formula holds: Nop = 2 x
101°(Am?/1 eV?). Of course, this formula should not be used when the optimal
number of bins it predicts is too small. We choose to use 12 bins for A_m2 <6 x
107" eV? and a variable number of bins Npins = 2 x 10'°(Am?2/1 eV?) for Am? >
6 x 10710 gV2,12

12An alternative technique, which can be considered more rigorous but which would alsc; be more
computer intensive, is to Fourier transform the simulated data for every value of (sin® 26, Am?) in
the scan. One can then compare the intensities of the harmonics to those expected for the case of

no oscillations. A description of this method can be found in [42]. For our purposes varying the
number of bins is sufficient.
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In Fig. 3.9 we show the entire sensitivity reach of Borexino after three years of
running. The unshaded region will be covered at least at 95% CL, if in the analysis
one allows the background and the incoming solar neutrino flux fo_ float. The dark
shading marks the additional portioﬁ of the parameter space that will be covered
at least at 95% CL, if in the analysis one assumes both the anticipéted background
rate (10% uncertainty) and the SSM prediction of the "Be solar neutrino flux (9%
uncertainty). For Am? 2 5 x 1079 eV?, the sensitivity to the anomalous seasonal
variation gets lost because of the smearing due to the linewidth effect. However,
there is an overall suppression of vthe flux due to the MSW effect in this region. To
be sensitive.to this overall suppression, we should‘return to a smaller number of bins
to enhance the statistical accuracy. We therefore use 12 bins in this region.!3

For comparison, we also superimpoée tile “just-so” preferred regions obtained
by analyzing the total event rates in the Homestake, GALLEX, SAGE, and Super-
- Kamiokande experiments (Fig. 5 in [2]). The plot shows that Borexino will be sensitive
to almost all of the preferred region, even without relyiﬁg’- Qn’the SSM . prediction of

the incoming neutrino flux or on the knowledge of the backgfound rate.. Only two thin

spikes protrude through the lower “islands”. This overlap disappears cdmpletely when
the anticipated background rate and the SSM prediction for the incoming neutrino
flux are used in the “data” analysis, in which case the entire preferred region is

covered.

130ne can cover a slightly larger portion of the parameter space by using yet fewer bins. We chose
12 bins such that one can still verify the expected 1/L? behavior of the signal even with a reduced
flux, as we discussed in Sect. 3.1.
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Figure 3.9: The final sensitivity plot for three years of Borexino running, after the "

inclusion of all effects limiting the reach of the experiment for large Am?2. The white
region corresponds to the sensitivity at more than 95% confidence level with both
“the incoming neutrino flux and background rate assumed to be unknown, and the
~ dark region to the additional coverage when the SSM "Be flux and the background

rate estimated elsewhere are used. Also shown are the regions preferred by the anal-

ysis of the total rates in the Homestake, GALLEX, SAGE, and Super-Kamiokande

experiments [2].
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Figure 3.10: The same as Fig 39, but for three years of KamLAND running.

- Fig. 3.10 co_ﬁtain_s é, similar bplovt for thrge years of Ka;mL'AND'running. Because
KamLAND .Willl have rho_re statistics, it ‘v’v-i.ll be sénsiti\}e“ at 95% CL to thel‘entire.
preferred region withc;ﬁt relying in the analysis on the SSM prediction of thé inco:ming a
neutrino flux or on the knowledge of thé background rate. -

As mentioned earlier, the sensitivity to anomalous seasdﬁal variatidns is com-

pletely lost for Am? 2 1078 eV2. In this case the seasonal variation of the data is
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consistent with an average suppréssion of the incoming neutrino flux. In particular,
in the case of the MSW solutions (1077 eV? < Am? < 107 eV?), no anomalous
seasonal variations can be detected, as was implicitly assumed in Sect. 3.1.

At last, it is worth mentioning that the experiments will stﬂl be sensitive to a -
.signiﬁcant part of the preferred region e\'_'én if the background rate or the incoming
"Be neutrino flux (for all flavors) turns out to be significantly different. For example,
if the background 1,rate at Borexino (KamLAND) turns out to be 30 (100) times higher
than expected, the part of the preferred region with Am? > 107° eV will still be
within the reach of the experiment, after three years of running. The sensitivity will
be completely lost only if the backgfound rate turns out to be three (four) orders of
magnitude higher than anticipated at Bor_éxiho (KamLAND). The consequences of a
"Be solar neutri@o flux smaller than _predicted by the SSM can also be studied. If the
"Be neutrino flux is for some rea,son' suppfessed by a factor of 5, KamLAND is still
sensitive to the part of the preferred region with Am? > 10710 eV2, after 3 years of

running.

3.3 Measuring the Oscillation Parameters

In this section, we address the issue of how well the two-neutrino oscillation pa-
rameters, sin? 20 and Am?, can be extracted if the data collected at future solar
neutrino experiments exhibits an anomalous seasonal variation. In order to do this,

we simulate “data”, according to the procedure developed in Sect. 3.2, for two distinct
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Figure 3.11: Number of recoil electrons detected in a given month, for the low point,

-the high point (see text for description) and the case of no neutrino oscillations, after
three years of Borexino running.

poiﬁts in the parameter >spa,'ce, si’n‘2 20 = 0.7, Am? = 8 x 107! eV? (“low point”) and
_bsin'2 20 = 0.9, Am? = 4.5 x 10710 ¢V? (_“high point”). The low point is ciose to the
| best ﬁt point presented‘ in [2], while the high point is close to the point"-preferred by -
thé Super-Kamiokande analysis of the recoil electron energy spectrum [43]. The data -
is bipned into months (12 bins per years), and Fig. 3.11 depicts the almual variations
for bbth the high and the low points, assuming three years of Borexino runniﬁg. The

né—oscillation case is also shown.
In order to measure the oscillation parameters, we perform a 4 pa;ra.met_er (s, Fb,

sin?20, and Am?) fit to the “data”. The fit is performed by minimizing x? with
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respect to the incoming neutrino flux (s) and the background rate (b), as in Sec-
t. 3.2, and computing it for fixed sin?26 and Am®. Fig. 3.12 depicts the values of
(sin? 26, Am?) and the 95% CL contours (for two degrees of freedom), extracted from
the “data” consistent with the low (light) and high (dark) points. Note that this is
very different from what was done in the previous section. There, for each point in
the (sin® 20,Am?) plane there was a different “data” set, and the “data” was fitted
by a non-oscillation theéretical function.‘ Here the “data” is fixed (either the low
or the high point), and is fitted by a theoretical function which assumes neutrino
oscillations.-

One should easily note that the extracted 95% CL contour for the high point -
consists of only two “islands”, while for the low point one extracts a collection of
“islands”. The reason for this is simple. When Am? ~ few x 10710 eV?2, the oscillation
length is slightly smaller than AL (see Eq. (3.5)). This means that the seasonal
variation of the “data” has a very particular shape (as one may easily confirm by
looking at Figs. 3.4, 3.11), which cannot be easily mimicked by other values of Am?,
even when the background rate and the incoming flux are varied in the fit procedure.

When Aﬁzz ~ several x 10711 eV2, the oscillation length is larger than AL, and
the effect of seasonal variations is less pronounced. There is a collection of Am?’s
that yields the same qualitative behavior. Because our fit procedure allows for the
background rate and the neutrino ﬁu;( to float freely, a good agreement with the

“data” is met for a large portion of the parameter space. In order to make this
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Figure 3.12: Measurement of the neutrino oscillations parameters sin? 26 and Am?,
assuming no knowledge of the SSM and the number of background events. The
regions represent the 95% confidence level contours, for data consistent with the high

(dark) and low points (light). The input points are indicated in the figure by the two
crosses. See text for detalls We assume 3 years of Borexino running,.

discussion clearer, it 1s useful to describe in detail what happens to the number of:
- electfon neutrinos reaching the detector as a function of time. |

In the case of the low point: initially, when the Earth is at the perihelion, the:
Ve Surviﬁral probé,bility is small _aﬁd, .'as time progresses, monotoﬁicalls; increases until
the Earth reaches the aphelion (after six months). The process happens in reverse
order in the next six moﬁfhs, as expected. There are many other values of the os--
cillation length, i.e. Am?, such that the survival probability monotonically increases

for increasing Earth-Sun distance and therefore a similar qualitative behavior is to
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be expected. The main quantitative difference is in the ratio of the number of events
detected in the perihelion and in the aphelion, which may be accounted for by vary-
ing the background rate and the incoming neutrino flux. This explains the existence
of islands. For values of Am? in between islands, the survival probability either
increases and decreases for varying Earth-Sun distance, or monotonically decreases.
The exact location of the islands and.their widths can only be’ understood by an-
alyzing the fit procedure, in particular the minimization of x? with respect to the
- background rate and the incoming neutrino flux. Note that there are no “islands”
above Am? 2 2.5 x 1071 eV2, This is because when the oscillation length is small
enough (or Am? ldrge enough), the survival probability cannot only increase for in-
creasing Earth-Sun distanée, but necessarily reaches a maximum before the aphelidn,
and then decreases, independent of what the survival probability at the perihelion is.
This situation is qualitatively different from the low point.

In the case of the high point: initially the survival probability is close to unity,
decreases sharply as the Earth moves further from the Sun, and then grows rapidly,
reaching a maximum when the Earth is close to its aphelion, because the oscillation
length is smaller than AL. In this case, little variations in the oscillation length, i.e.
Am?, produce big qualitative changes, including the position and number of maxima
and minima. There is still a small ambiguity (i.e. two “islands”) in determining Am?
for the high point. This happens when the oscillation length is such that the minimum

of the survival probability happens in March/October and the survival probability is
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large enough at the perihelion and the aphelion. The fact that the absolute values of
the number of recoil electrons detected are different is taken care of by varying the
signal and the background.

In conclusion, if Nature chose neutrino oscillation parameters such that sin”26
is large and Am? =~ few x 107! eV?2, Borexino should be able to measure these
parameters independent of the SSM and any knowledge of the number of background
events, with good precision (especially in Am?). If Am? = several x:10~! eV?, the
determination of oscillation parameters is not as precisé. Better precision can be
achieved at KamLAND, but the ambiguity of solutions in the “low” Am? region still

remains.

3.4 Exclusion of Vacuum Oscillations

In this section, we address fche» issue of v;rhat the experiments can conclude about
vacuum osciilatioﬁs if no discfepanéy from the normal seasonal va.#iation effect is
* detected. In this case, one may be able to measure the incoming neutrino flux, as
ou’plined in Sect. 3.1. Two distinct possibilities will be considergd: (1) the measured
flux is consistent Wit.h the SSM prediption; (2) the measured flux is suppressed with
respect to the SSM prediction: |

In the first case, one would be inclined to trust the SSM prediction of the "Be
neutrino flux and use it in the analysis to exclude vacuum oscillations. This will be

discussed in Sect. 3.4.1. On the other hand, in the second case, it is not clear if the
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reduced flux is due to MSW neutrino oscillations, an incorrect SSM prediction of the

neutrino flux, etc. This will be discussed in Sect. 3.4.2.

3.4.1 If the Flux is Consistent with the SSM Prediction

We simulate “data” consistent with the SSM and the expected number of back-
. ground events. The relevant numbers are quoted in Sect. 3.1. The “data” are binned
into months (12 bins per year), and are illustrated in Fig. 3.11, assuming three years -
of Borexino running. We then fit to the “data” annual distributions that include
neutrino oscillations for a givén choice of (sin? 26, Am?), plus a constant background.
The ba,ckgrouﬁd rate and the incoming neutrino flux may be allowed to float in the
fit, constrained to a posifi&e number.

It is important to note that this is the opposite of what was done in Sect. 3.2,
where the sensitivity of Borexino and KamLLAND to vacuum oscillations was studied.
There, the simulated “data” were consistent with vacuum oscillations, and one tried
to fit a non-oscillation prediction fo the “data” by varying the inéoming flux and/or
the background. Here, the “data” are consistent with no oscillations, and one tries
to fit the “data” with a 'prediction which includes the effect of neutrino oscillations
- for fixed (sin® 26, Am?), by varying the incoming flux and/or the background. If both
the background and the incoming flux are fixed, i.e. not allowed to vary in the fit
| procedure, the exclusion and the sensitivity regions are the same. On the other hand,

if both the background rate and the incoming flux are allowed to float, the exclusion
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region is expected to be smaller than the sensitivity region presented in Sect. 3.2,
especially in the region Am? < 1070 eV2. This is due to the fact that a large number
of points in the parameter space yield an annual variation of the v, flux which is
much larger than 7%, but agrees with the shape of the normal seasonal variation. If
in the fit procedure the signal is scaled down to reduce the .amplitudé,'fof the variation
and the background scaled up to increase the number of events, a good fit to the no
oscillation case can be attained.

Fig. 3.13 shows, for three years of Borexino and KamLAND running, the region
of the (sin® 26, Amz) .parameter space excluded at 95% CL, if one allows the solar
neutrino flux and the background rate to float within the positive numbers (in white),
and if one assumes the solar neutripo flux calculated in the SSM within theoretical
- errors (in light plus white).

- A few comments are in order. First, one notices that the KamLAND exclusion
- region is larger thaﬁ v.the. one bex(v:iuded. by Borexino. This is, of course, expected
because of KamL AND'’s larger fiducial volume and therefore higher statistics. Second,
when the solar neutrino flux is allowed to vary in the fit, the excluggd region of the
paramgter space shrinks, as expected and discusted earlier. Third, one can safely
claim that, if no discrepancies are detected in the seasonal variation spectrum, the
“large” Am? (several ><1‘O‘1.°.eV2) ‘se't— o;\_rz"zcﬁﬁn.l-solutions (see Figs. 3.9 and 3.10) Will

be excluded, even at Borexino. Even when no knowledge of the incoming neutrino

flux is used, a reasonable portion of the “small” Am? (several x10~!! eV?) set of
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Figure 3.13: Region of the two neutrino oscillation parameter space excluded in the
case of no neutrino oscillations if one assumes no knowledge of the background and
no knowledge of the SSM (white) or knowledge of the SSM (light+white), after 3
years of Borexino (right) and KamLAND (left) running.

solutions is also excluded. When one assumes knowledge of the incoming neutrino
flux, the entire allowed region is excluded.

If the background rate is la.rgér than expected, the excluded region diminishes
accordingly. This is because when the constant background is enhanced With respect
to the oscillation signal it is easier to achieve a reasonable x? for the fit even when
the seasonal variations due to vacuum oscillations are significantly different from the
no-oscillation case. In particular, when 'the background rate is large enough that the
seasonal distribution of the data is statistically consistent with a flat one,.a reasonable
2 for the fit can always be achie’vgd simply by scaling the signal to zero and scaling up
the background appropriately. Explicitly, after three years of Borexino (KamLAND) |
running the exclusion region vanishes if the background rate is ~8 (40) times larger

than anticipated, when both the background rate and the incoming neutrino flux are
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allowed to float in the fit or ~500 (3000) times larger than anticipated when one

assumes the neutrino flux predicted by the SSM.

3.4.2 If There is an Overall Suppression of the Flux

If there is an overall, i.e., time-independent suppression of the flux (which is the
case for the MSW solutions), the way to proceed towards excluding part of the vacuum -
oséillation parameter space is less clear. This is because such an experimental result
neither agrees with the SSM prediction nor does it represent any “smoking gun”
signature for neutrino oscillations, as is the case of anomalous seasonal variations. K
One does nét know if the SSM prediction of the flux is simply wrong; or if there are -
neutrino oscillations consistent with one of the MSW solutions or both. Anyway, it. :
is clear that (in general) the incoming neutrino flux should be considered unknown
in the data analysis.
=+~ "The mést conservative -option is to follow the same analysis doﬁe in the.previous
subsection, and allow both_the incoming neutrino flux and the background rate to -
float in the fit. In this case, the excluded region of the two-neutrino oscillation
parameter space is reduced significantly, and may completely disappear. This is
because when the number of signal events is reduced the annual distribution is closer
to flat and a good fit is obtained even when the would-be annual variations are very
different. This is very similar to what was previously discussed at the end of the last

subsection, where we discussed what happens if the background rate turns out to be
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much larger than anticipated. Explicitly, after three years of Borexino running and
a signal rate which is 21.3% of the SSM prediction (as one would obtain in the case
of the small angle MSW solution), Borexino is unable to exclude any portion of the
vacuﬁm oscillation parameter space, while KamLAND can still exclude about one
half of the “high” and “low” Am? preferred regions. If the background rate can be
estimated by other means with 10% uncertainty, Borexino and KamLAND will be
able to exclude the entire“high” Am? region and a significant portion of the “low”
Am? region.

In order to go beyond the most conservative analysis discussed above, one would
have to look at the overall situation of the solar neutrino puzzle at the time of the
data analysis. It is likely that one will be able to do much better. For example, solar
. neutrino oscillations might have already been established by the SNO experiment [44],
and perhaps it is reasonable to assume the incoming solar neutrino flux predicted by
the SSM. Then it would be possible to exclude a region of the parameter space as
large as the one in Sect. 3.4.1 where one assumes the SSM flux. Another poésibility is
that Super-Kamiokande or SNO rules out the small angle MSW solution by studying
the distortions of the electron energy spectrum [43, 23, 44], and a large suppression
of the "Be solar neutrino flux would indicate that there is something wrong with the
SSM. In ﬁhis case, it is not clear how ;co proceed. We do not go into further discussions

on all logical possibilities.
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3.5 Conclusions

We have studied possible uses of the seasonal variation of the “Be solar neutrino
flux at Borexino and KamLAND. Our results can be summarized as follows. Once
the experiments accumulate enough data to see seasonal variatiops, the first step
will be to determine if the observed pattern is consistent with the‘ ﬂr:ormal' 1/L? flux
suppféssion. If a discrepancy is found, it will be a sign of vacuum oscillations. In
this case, the seasonal variation of the data can be used to determine the oscillation
pa,ré,meters sin? 20 and Am?2. On the other hand, if the data are consistent with the
normal pattern, the amplitude of the variation can be used to measure the "Be solar
heutrino flux and to exclude a signiﬁcant portion of the vacuum osCillatiop parameter
space.

If the observed seasonal \Ara.riations- are consistent with the nqrmal 1/L? flux sup-
preésibn, one can use the amplitude of the variation to determine what fraction of
tl;e.oiisér‘ved recoil‘élevctrons are induced by the neutrinos coming from the Sun. This
method is limited by statistiés, aﬁd the accuracy is worse when fhe "Be solar neu-
trino flux is suppressed, as in the case of the small angle MSWA solufibn. In féct, in
Sect. 3.1 we found that in the case of a large suppression only KamLAND should be
able to perform such a measurement, after 3 years of data taking. 'Itv"is important
to emphasize that we assumed the oscillation of electron neutrinos into other active
flavors. In the case of oscillations into sterile neutriﬁos, the "Be solar neutrino flux

might be almost absent, and in this case neither Borexino nor KamLAND are able
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to perform a me:asurement of the flux using this technique.

An important advantage of this‘technique is that it does not require a separate
estimate of the background rate, WhiCil may be a very difficult task. If the back-
ground rate can be reliably measured by some other means, one can obtain another
measurement (‘.of the neutrino flux. In this case, the two results can then be compared
for consistency, thus making the final result on the “Be neutrino flux much more
trustworthy.

We also studied in great detail the eifect of vacuum neutrino oscillations on season-
al variations. Our analysis shows that the outlook for discovering vacuum oscillations
at both Bore);ino and KamLAND is very favorable. A very irﬂportant finding in
Sect. 3.2 is that the experiments may detect a deviation from the normal pattern of
seésdnal variations even without relying on the SSM prediction of the incoming neu-
trino flux or estimate of the background rate. The analysis would consist of trying to
- fit the obsérved data with the normal 1/L? pattern, treating the incoming neutrino
flux and the background rate as. free paraméters. With this technique, after three
years of running Borexino should detect anomalous seasonal variations for almost
all values of ?(sinz 20, Am?) preferred by the analysis of the neutrino-flux data from
Homestake, GALLEX, SAGE, and Super-Kamiokande, as illustrated in Fig. 3.9. The
sensitivity region should be larger at KamLAND (Fig. 3.10). Results obtained in this

way would be very robust. Both experiments are sensitive to an even larger portion

of the parameter space if the background rate can be reliably estimated by auxiliary
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measurements.

If anomalous seasonal variations are discovered, the data can be used to measure
the oscillation parameters (sin? 20, Am?). This issue was studied in Sect. 3.3. It was
found that for‘ Am? Z 10710 eV? the experiments will be able to determine Am?
with good precision. At the same time, for Am? S 1071° V2 thereswould be many
“candidate islands” in the (sin® 26, Am?) :_plane, and it will nét be easy to resolve the
ambiguity.

On the other hand, the _absence of anqmalous seasonal variations of the 7Be solar
neutrino flux ciata can be used to exclude regions of the vacuum oscillation parameter
space. In Sect.v 3.4 we presented the exclusion plots for both Borexinol and KamLAND,
aft“er three years of running. An importé,nt lesson from that section is that in ordef
to exclude a large portioh of the preferred region, the experiments will need to either
:méasur"e the background "rat::e‘ or rel& on the SSM prediction for thé neutrino flux. In
th;z abéencé of both, the résults are rather weak. This is to be contrasted with the
Vsit;xati(»)n in Sect. 3.2. | . |

It ié important to keep in rhind that thé simulated “data” is most of the time based
on the SSM prediction forv. the "Be solar. neutrino flux and the anticipated number
of background events at Bdrexino and Ké,mLAND. Our numerical results, therefore,
even in the cases Whenﬂ .v.ve do nbt uéé 'the knowledge of the incoming neutrino flux -
or the background rate at the analysis stage, are not to be regarded as SSM and

background rate independent. We would like to draw attention to our comments
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at the end of Sects. 3.1 and 3.2 on how our results might change if these inputs
are changed. We also assume only statistical errors in thé data analysis, negleqting
.systematic uncertainties (iue to the lack of knowledge in the seasonal variation:of the
background rate. Thel inclusion of such effects is beyond the scope of this dissertation. -

Overall our results indicate that the fut‘ure Borexino results can lead to significant
progress to;;vards solving the solar neutrino puzzle. Furthermore, if KamLAND is also

able to study solar neutrinos, one would have access to a larger data set, and more

powerful results can be obtained.
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Chapter 4

Earth Matter Effect at Borexino

‘and KamLAND

It has been known for over a decade that the propagation of solar neutrinos
‘through the Earth can result in a measurable variation in the observed neutrino:

event rates [45]. Reference [46], in particular, contains a good, thorough analysis: of

- the expected day-night asymmetry for the Super-Kamiokande, Borexino, and:SNO' -

experiments. It states, however, that the asymmetry should vanish-for the case of
maximal neutrino mixing @ = w/4. This point was generally accepted for 2 years

until the authors of [47] pointed out that the asymmetry for § = 7 /4 is in fact nonze-

ro. In this chapter we extend the previous analyses in several important aspects.

First, we present an enlarged parameter space, where the vacuum mixing angle is
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allowed to vary over its entire physical range from 0 to 7/2!. We find that not only
does the day-night asymmetry stay nonvanishing at maximal mixing, in agreement
with [47], but that it also smoothly extends into the other part of the parameter-
space, 7/4 < 0 < w/2. Second, we display the sensitivity regions of KamLAND-
and Borexino in this enlarged parameter space, using realistic numbers for the signal
and background rates. In our analysis we use the x? method, and study the effect
of va‘riou_s.’ binning..schemesv,. f‘ina_lly, we explore the possibility of using the neutri-
no regeneration data at the two experiments in question to measurexthe-'osgillation
parameters.

This chapter' is organized as follows. In Sect. 4.1 we review the da.y-night effect a,nd
present the day-night asymmetry expected for “Be neutrinos as a function of the two
neutrino oscillation parameter space. We also introduce an enlarged parameter space,
0<6< 7r/ 2. ‘In' Sect. 4.2, we study the seriéitivity of the KamLAND and Borexino
experiments to the day-night, asymmetry and to the zenith angle dependence of the
"Be flux. In Sect. 4.3 we study the poséibility of measuring the oscillation parameters
if a significant day-night effect is observed at either Borexino or KamLAND. We
contrast the analysis of the day—night‘ asymnietry with the zenith angle distribution.

In Sect. 4.4 we present a summary of our results and conclusions.

1This enlarged parameter space has already been mentioned in the context of three-flavor oscil-
lations [48].
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4.1 Electron Neutrino Regeneration in the Earth

As explained in Chapter 2, neutrino-matter interactions can dramatically affect
the pattern of neuﬁrino éscillations. The reason for this is that neutrino-matter in-
tefactions are flavor dependent, given that the matter distributions of interest (the
Eafth, the Sun) contain only first generation particles. .One well-kﬁéwn consequence
of th1s 'is that, in the case 6f neutrinos produced in the Sun’s core, it is possible to
obtain an almost complete v, — Vyiher transformation even when the vacuum mixing .
ahéle is very small (see Sect. 2.3.3).

It has also been pointed out by several aLuthors [45, 46, 47] that matter effects might -.
alsb- be relevant for neutrinos traversing the Earth. One experimental consequence
of r.ieutrino-Earth. interaétions is; that the number of events detected during the day
(wllién there are no neﬁtriﬁo;Ear;h interacitior;s) can be statistically different from
tht:?'number of événts (ni.etzt’acted‘ﬁdu.ring fhe ‘ni.ght. The Super-Kamiokande experiment
hagifa;lreé.dy p:vresei:n;ed. éxly;erii.he;nté,l.daia whlch séem to slightly prefer a ﬁonzero day-
mght asymmetry,‘ e\}eﬁ thouéh the reéulﬁ 1s not yet statistically significant [49, 23]
(the most recent result is Apy = 0.065 r:l:.0.03v1 +0.013).

:'.In this sectioﬁ we review the electron neutrino regeneration effect in the Earth
and how it affecfs the obsérved solar neutrino flux. We also present the expected

day-night asymmetry for "Be neutrinos at the KamLAND and Borexino sites.
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4.1.1 The Day-Night Effect

If neutrinos have mass, it is very likely that, similar to what happens in the
“quark sector, neutrino mass eigenstates are different from neutrino weak eigenstates.
Assuming for simplicity that only two neutrino states mix, we can relate the mass

and flavor eigenstates as follows:

|v1) = cosb|v,) —sinf|v,),

|v2) = sin B|ve) + cos Blv,), | (4.1)

where 6 is the vacuum mixing angle, |1/1‘) and |vy) ‘are the mass eigenstates with
masses m; and mg, respectively, and v, <+ v, mixing is considered. The mass-squared
difference is defined as Am? = m2 — m2.

We are interested in the range of parameters that encompasses all physically dif-
ferent situations. First, observe that Eq. (4.1) is invariant under § — 0+, v, — —v,,
Vy = —,, t.e. 8 € [-7/2,7/2] and 0 € [r/2,37/2] are physically equivalent. Next,
note that it is also invariant under § — -6, v, — —v,, vo — —1», hence it is sufficient
to only consider 8 € [0,/ 2] Finally, it can also be made invariant under 8 — 7/2—#,
v, — —v, by relabeling the mass eigenstates 1, < l/z,bz'.e. Am? - —Am?. Thus, all -
physically different situations are obtained if 0 < sin?4 < 1 and Am? is positive, or
0 < sin?# < 1/2 and Am? can have either sign. In what follows, we will use the first

parametrization (Am? > 0), unless otherwise noted.

"Be neutrinos reach the Earth as an incoherent mixture of |v;) and |v,), as was
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explained in Section 3.2 (see also [50, 47] and references therein), with probabilities P,
and P, = 1— P, as long as Am? % 1078 eV2. P, is given in Eq. (2.57) in terms of the
jumping probability P, and its value depends on the details of the neutrino production
and propagation inside the Sun, as presented in Sect. 2.3.3. The probability P,, of

- detecting a v, on the Earth is given by
Pee=P1P1e+(1"P1)PZe’ (42)

where P, is the probability that vy (1) is detected as a v, for ¢ = 1 (2). Because
Py, + P5, = 1 (always, independent of matter effects, because of the unitarity of the

Hamiltonian), one can rewrite Eq. (4.2)

P..= P, + (1 —2P)P;. . o (4.3)

In the case of neutrinos detected during the day, Ps. = sin®# (the vacuum result), L

while for neutrinos that traverse the Earth Py, = PE must be calculated numerically, .
and depends on the density profile of fhe Earth émd the latitude of the location
where the neutrinos are to l;e detected. One.should also remember that muon or tau -
neutrinos still interact in the detector through neutral currents, although the even
rate is down by a factor of R ~ 0.2 compared to electron neutrinos. The day-night
asymmetry (Apy = (events detected during the night minus events detected during

the day)/(total)) is, therefore,

(1-2P)(PE —sin®6)(1 - R) »
(2P + (1 — 2P,)(Ps. +sin?0))(1 — R) + 2R~ (4.4)

Apn =
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It is important to note that Apy does not have to vanish, as used to be the general
lore in the past, when sin?6 = 1/2 (maximum mixing), as was clearly.shown in [47).
Apn does vanish, of course, when P, =1 /2 (a fifty-fifty mixture of mass eigenstates
reaches the Earth).

It is interesting to note that, in the past, Apy was always computed assuming that
sin®# < 1/2. However, it is perfectly acceptable to have sin?@ > 1/2, when the heavy
mass eigenstate (1) is predominantly V;. While in the case of vacuum oscillvations A
physical results depend only‘on sin? 20, in the case of neutrino-matter intefactions
sinl2 6 > 1/2 leads to physically different: results. Using sin” 26 as a parameter in the
latter case can be misleading, as 0 < sin? 20 < 1 does not cover all_physically distinct
possibilities. Similar to what was pointed out in [47] for the transition between
sin?@ < 1/2 to sin?6 = 1/2, we will show that for the entire range of 0 < sin®6 < 1
the behavior of Apy is smooth. In Appendix C.1 we explain in detail how to extend

the expression for P, to the case sin? 8 > 1/2.

4.1.2 The D’ay-Night Asymmetry at 36° and 42° North

We numerically compute the value iof PE and Apy for "Be neutrinos at KamLAND
(latitude = 36.4° north) and Borexino (latitude = 42.4° north). We assume a ré,dially
symmetric exponential profile for the electron number density inside the Sun, and
use the analytic expression for the survival pfobability of neutrinos produced in the

Sun’s core derived in [29], as presented in Appendix C.1. We appropriately integrate
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over the "Be ﬁeutrinovproduction tegion inside the Sun, using the results of the SSM
[4], conveniently tabulated in [24].
We use a radially symmetric profile for the Earth’s electron number density, given
in [51], and the zenith aﬁgle exposure function for the appropriate latitude, which
was obtained from [24]. For a plot of the electron number density profile in the Earth
-see Fig. 2 in [46] and for the zenith angle exposure function see the upper left-hand
corner of Fig. 5 in [46]. The model predicts that Vthe electron number- density in .
the Earth’s mantle varies in tile range 2.1 to 2.7 moles/cm3, while in the ou@ef core
_the electron number density is significantly greater (4.6 to 5.6 moles/cm3).. Because
of the latitude of Borexino and KamLAND, the SOlaI; neutrinos detected at these
experiments will not travel through the inner core.
Fig. 4.1 depicts the constant day-night asymmetry contours for “Be neutrinos?
- at KamLAND. and Borexino. It is important to note that, unlike coﬁventiénally L
- done in the literature, the :z—?xxis here is sin? @, not sin? 26. To facilitate comparison
. with earlier results, we alsb depict the same information in the (Am?, sin® 26) plane
in Fig. 4.2, where once again we vary the mixing angle in its entire physical range -
0<6< /2

As Fig. 4.1 demonstrates, the asymmetry contours smoothly extend into the
sin? @ > 0.5 half of the parameter space. One can see that in that region the day-night

asymmetry is non-zero and may, in fact, be quite large. This kind of behavior had

ZWe only assume v, oscillations into other active neutrino species.
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Figure 4.1: Constant day-night asymmetry contours (10%,5%, 1%,0.5%) in the
(sin? @, Am?)-plane for "Be neutrinos at the KamLAND and Borexino sites. The
vertical dashed line indicates sin?@ = 1/2, where the neutrino vacuum mixing is
maximal. '
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Figure 4.2: Constant day-night asymmetry contours (10%,5%,1%,0.5%) in the
(sin? 20, Am?)-plane for "Be neutrinos at the KamLAND and Borexino sites. The
right side of the plot, with decreasing scale, can also be thought of as Am? < 0,
8 < 45°. .
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already been seen in (48], for day;night asythetry contours at Super-Kamiokande
(see Fig. 11in [48]). This is to be contrasted with conventional analyses, which choose
axes as in Fig. 4.2, but only show the 0 < < n/4 half of the parameter space. As a
result, contours there seem to abruptly terminate at maximal mixing,.

It is also easy to see from our plots that, with the choice of variables as in Fig. 4.1,
:;theré. is nothing special about maximal mixing. This point is somewhat-obscured in
" the (Am?,sin?26) plane, where it seems that the slope of the contours abruptly
changes around sin®20 = 1. The reason for this is that the Jacobian of the tyansfor- :

mation from sin%4 to sin® 26,

d(sin20) 5 COS 20

d(sinf) ~ " cosf’ (45)

vahis_hes at maximal mixing 6 = 7/4. It can be argued, therefore, that sin® repre-
sents a more natural parametri.zation. From here on we will always use sin®@ as a
parameter.’

The day-night asymmetry for § = 7/4 is in general non-zero and, i_ncieed, can be
larger than 10%. Our analysis, thus, is in complete agréement with the findings of
[47] and extends them to the other half of the parameter space. Note that constant
day-night asymmetry contours do close as sin®#@ —-) 1. This is expected, because
in that limit, just like for sin?§ — 0, there is no neut;rino mixing, and so P, goes

trivially to 1 and Apy vanishes.

3If one wishes to keep the symmetry between 6 < w/4 and 6 > /4 for vacuum oscillations while
avoiding the singular Jacobian, the best choice for the horizontal axis would be tan 8 in log scale, as
" was done in [48] in the context of three-flavor oscillations.
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Almost all other features of the contours in Figs. 4.1 and 4.2 can also be understood
analytically. Several physical effects are involved in shaping up the contours. In the
low Am? region the oscillation length in the Earth is comparable to the size of the
Earth, independent of the vz;lue of Am?2. This can be understood very easily in the
approximation that the Earth’s electron density is uniform. In that:ease the neutrino

oscillation length is given by

Am2\? Am? s
L-osc =7 (2Ey ) + (\/§GFNC)2 -2 ( 2Eu ) \/EGFNe cos 20 ’ (46)

or numerically
Am2 2 N 2
e = 1 ) 4 k — . __.__..e_.—
L 0.7 x 10* km {(10—7 eV2) " (1 1 mole/cm3>

Am? N, ~1/2
— 2| —— 1.3—m .
(10—7 eV2) ( °T mole/cm3> co8 20] ’ (4.7)

and, for Am?/(2E,) < vV2GrN,, Losc — 8.2 - 10° km x (1 mole/cm®/N,).

Fof very small Am? the asymmetry vanishes for two reasons. First, the MSW
transition inside the Sun becomes non-adiabatic. For Am? < 107° eV?, Oy ~ /2
(Eq. (2.50)) in the Sun’s core and P, ~ P, (Eq. (2.57)). As the value of the jumping
probability P, changes from 0 to cos? 0 it passes through 1/2 (for § < m/2) where Apy
vanishes, according to Eq. (4.4). As can be deduced from Eq (2.61), the contoﬁrs
of constant jumping probability P, are approximately described by Am?sin?f =
constant, provided sin <<‘1 and Am? > 10~% eV2. Second, the mixing angle in ‘the

Earth becomes close to m/2 and no regeneration takes place in that limit (see also

Eq. (4.8) below, where 0y — /2 gives Pg? — sin® ). Below the line P, = 1/2 the
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asymmetry is negative and very small.

In the region Am? 2 3 x 107® eV? neutrinos undergo many oscillations inside
the Earth, as can be seen from Eq. (47) The relevant quantity in this case is the
average survival probability, obtained after integrating over the zenith angle. One
can understand the shapé of :the asymmetry contours in this region by, once again,
approximating the electron number density in the Earth by a constant value. In this
. model, it is easy to show that, if a state |;) enters from vacuum into the Earth, the

- average survival probability inside the Earth is

P =sin? Oy +sin®(0 — Oar) cos 20, |3 = [), (4.8)
4.8

Pf: = sin? Or + COS2(0 - 0M) cos 20, |I/,'> = lI/l).,
Here 6 is the mixing angle in vacuum and 6y, is the mixing angle inside the Earth
(see Eq. (2:50)). Obviously, P + Pg¥ = 1. Using these expressions, one can compute

the day-night asymmetry for this simplified model:

_ Py+(1-Py)R—Pp—(1— Pp)R

A= ,
Py +(1—Py)R+Pp+(1- Pp)R

(4.9)

where
~ Pp = sin’® 0(5((1 ~ P,)sin®6 + P,cos?8) + |
cos? 05 ((1 — P.) cos® § + P,sin?9),
Py = sin?0,((1 — P,)P{® + P.P¥) +

cos?0((1 — P)P¥ + P,P%).

0p denotes the mixing angle at the production region in the core of the Sun, P,
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the jumping probability (Eq.- (2.61)), and R is a contribution of v,, interacting
through the neutral current interactions in the detector. We found that for N, ~
3 — 4 moles/cm? the contours of constant A are in good agreement with the day-night
asymmetry contours in Fig. 4.1 for Am? 2 3 x 1076 eV2,

Using this simple model we can explain the behavior of the asymmetry contours
in the large Am? region. For example, according to Fig. 4.1, as sin®# decreases for
fixed Am?, the value of the asymmetry goes down. This happens because, while the
difference in the numerator of Eq. (4.9) goes to zero, the denominator approaches a
- constant value due to the non-vanishing neutral current contribution. - Notice that
in a real experiment, in addition to the néutral current contribution, there will be a
term proportional to the rate of background events, further decreasing the sensitivity.
Thus, using asymmetry contours iil this region to read off the sensitivity. can be
misleading. This would be even more obvious in the case of oscillations to a sterile
neutrino. We will return to this issue in the next section.

Even more subtle features can be understood within this model. For instance, we
found that the slight change of the slope seeﬁ for the 0.5% contour around sinZ 6 ~ 0.04
is due to the significant deviation of the value of g from 7/ 2, in that region.

Finally, in fhe region Am? ~ 1076 eV?2 the regeneration efficiency exhibits a very’
strong zenith angle dependence. Bécause the magnitudes of Am?/(2E,) and v2G kN,
in the core are almost equal, the mixing in the core is almost maximal (6p ~ 7 /4,

see Eq. (2.50)), while in the mantle it is small (fps ~ 7/2). As a result, for neutrinos
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travéling through the outer core the conversion into v, is much more efficient than for
ones going only through the mantle. The oscillations do not average out completely
in this case, resulting in the presence of several wiggles. We have explicitly checked

that these wiggles are not washed out by the effect of the finite width of the "Be line

[40]. X
. Ourresultsfor < /4 agree qualita.tiveiy with the results presented in [46] for the

Borexino site. The agreement is not complete, however. For instance; the contours

in [46] do not exhibit any wiggles in the range Am? ~ 1075 eV2.

4.2 The Earth Regeneration Effect at KamLAND

and Borexino

In this section we study the sensitivity of the KamLAND and Borexino experi-
ments to the day-night effect.

Borexino [36] is a dedicated "Be solar neutrino experiment. It is a large sphere
containing ultyapure organic liquid scintillator (300 t) and can detect the light emitted
by recoil electrons produced by elastic v-e scattering. By looking in the appropriate
recoil electron kinétic energy window, it is possible to extract a very clean sample of
events induced by “Be neutrinos, if the number of background events is sufficiently
small. Borexino expects, in the absence of neutrino oscillations, 53 neutrino induced

events/day according to the SSM, and 19 events/day induced by background (mainly
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radioactive impurities in the detector, see Chapter 3 and [36] for details).

The KamLAND experiment, located in the site of the original Kamiokande ex-
periment, was initially designed as a reactor neutrino experiment. Recently, however,
the fact that KamLAND might be used as a solar neutrino experiment has become a
plausible and exciting possibility {37].

KamLAND is also a very large sphere containing ultrapure liquid scintillator (1 k-
t), and functions exactly 'like Borexino. The outstanding issue to determine if Kam-
LAND will study solaf peutrinos is if the background rates can be appropriately
reduced. KamLAND expects, in the absence of neutrino oscillations, 466 neutri-
no induced eyénts/kt/ day according to the SSM, and 217 events/kt/day induced by -

background (mainly radioactive impurities in the detector, see Chapter 3 and [37]

for details). We will consider a fiducial volume of 600 t, so that 280 (unoscillated) =

signal events/day and 130 background events/day are expected. We assume that the "
number of b‘ackground events is constant in time.

- We generate a histogram of the number of events expected in each of the IV: ‘day'- S
and N night bins for diﬁ‘ei‘ent values of (Am?,sin?§). The }number of events per year

in the #-th bin is

events = ___days i i events .
n; ( year ) = 365 (year) (brate -+ Srate(Pee + (1 Pge)R)) ( day ) fz, (410)

where srate = 280 (53) events/day and bae = 130 (19) events/day for KamLAND

(Borexino), P!, is the electron neutrino survival probability in the i-th bin, R is
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the ratio of the v.-e to v, -e elastic cross sections® (see Chapter 3, at KamLAND
(Borexino) R = 0.214 (0.213)) and f;=(size i-th bin divided by the sum of the sizes of
all the bins), such that Z;m fi = 1. As an example, if there are 24 (12 day, 12 night)
hour-bins, f; =1/24 for all . In reqlity, we are interested in zenith angle bins, and in
order to the determine f;, the exposure function presented in [46] is used. Note that
we assume only statistical uncertainties.

x? is defined as.

2
ht d
O SN Ly
;=1( nmght) +( n:lay)

The factor N is included. in the definition of x? in order to take statistical fluctua-

s+ N. © (4.11)

tions of the data into account. A detailed explanation of the philosophy behind this
précedure can be found in B.1.

It is important to comment at this point that, in light of the deﬁnition of x?
(Eq. (4.11)), the sensitivity of the experiments to the .Earth matter effect does not
require any input from the SSM, ‘includivng the “Be solar neutrino flux, or from a
direct measurement of the Background rate. This is because we are comparing the
night data with the day data, and no other inputs are required. Our quantitative
results, however, depend ‘on the expééted number of signal and background induced
events, since these quantities are used as input for the “data” sample.

We will define the sensitivity of a given experiment to the Earth matter effecf by

the value of x?, computed according to Eq. (4.11). The sensitivity defined in this way

4In the case of Ve ¢ Ugterile Oscillations, R = 0.
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depends clearly on N, the number of day and night bins, and on f; (see Eq. (4.10)), or
on the “size of the bin”. With the real experimentgl data, one will certainly consider
many different types of analyses in order to maximize the sensitivity of the data to the
neutrino regeneration in the Earth (options include computing moments of the zenith
angle distribution, Fourier decomposing the data, maximum iikelihc;éd analysis, and
. others), but, since we analyze thousands of “data samples” (one for each value of
- (Am?,sin® 6)), this simple x? approach will suffice.

.We consider two options for the size of zenith angle bins. In one of them, each bin
has the same size, that is, the bins are equally spaced (e.g. 0°—30°, 30°—60°, 60°—90°,
etc). The other option is to choose the bin sizg such that the distribution of the day
- data is uniform. It is worthwhile t.o comment that the latter scheme may be considered
- the most natural one for KarﬁLAND and Borexino, which are real time experiments
- with no directional capability. In these experiments, it is straightforward to organize R
| the data into time bins, which then have. to be translated into zenith angle bins by -

associating the tiine of the-event with the position of the Sun in the sky:
Another issue to consider is the value of N which optimizes the sensitivity. It is
'~ clear that for N = 1 (the day-night asymmetry case) the statistical significance is
enhanced for overall changes in the number of events, but for .larger N, one sﬁould
be more sensitive to distortions in the zenith angle distribution. Different binning
schemes of the “data” for Am? = 1.12 x 10~7 eV?, sin? = 0.398 and three years of

KamLAND running are depicted in Fig. 4.3, for N = 1, N = 10 equally spaced bins,
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and N = 10 “uniform” bins.® ‘
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Figure 4.3: Different binning schemes, for Am? = 1.12 x 10”7 eV?, sin?§ = 0.398:
(a) N =1 bin (the day-night asymmetry), (b) N = 10 equally spaced zenith angle-
bins, and (c)' N = 10 “uniform” bins, where the day-time data is (roughly) uniformly
distributed. The error bars contain statistical uncertainties only. We assume three
years of KamLAND running.

_Fig. 4.4 shows a comparison of the sensitivity reéch of KamLAND after three
years of running for two different binning schemes, N = 1 vs. N = 10 “uniform”
bins. The contours are drawn at 95% C.L. One can easily see that for most of the
parameter space, the best sensitivity is reached with the N = 1 case, while for a small

region in the parameter space, when sin?4 < 0.1 and Am? ~ 1076 eV2, the N = 10

5The residual non-uniformity seen in the figure is due to the fact that we used a discrete table of
values for the exposure function.
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scheme is more succéssful. This result is consistent with the analysis of Section 4.1.2.
As explained there, for Am? ~ 107% eV? the data shows a large enhancement in the
low zenith angle bin, while little effect in other bins. At Borexino this effect will be
somewhat less pronounced because it is farther from the Equator.

One can see that the contours in Fig. 4.4 are similar in shape to the day;night
asymmetry contours of Section 4.1.2, but quantitatively different. One important .-
difference is that for Am? 2 107¢ eV?2 the x? contoufs do not extend as far in the low
sin? @ region as the asymmetry contours. While gor low Am? the 95% C.L. ¢ontour
- corresponds to the day-night asymmetry of roughly 0.5%, for Am? 2 107¢ eV? the
corresponding value of the day-night asymmetry is at least two times greater. This
phenomenon was already mentioned in Section 4.1.2. The difference oécurs because
the x? analysis includes, in addition to the neutral current interactions, the cqnstant
background rate, thus eliminating the major shortcoming of the day-night asymmetry
analysis.

In order to present the final sensitivity reach of KamLAND and Borexipo, we
combine the confidence leVe_l contour obtained in the different types "Qf analyses, with ~
different number of bins. Fig. 4.5 depict;s the “obtimal” 95%, 30, ah;l 50 confidence:
level (C.L.) contours for the sensitivity of three years of KamLAND and Borexino
data to the day-night effect. The lco.nﬁdence le§el§ afé optinﬁized by considering the
union of same C.L. contours for all values of N and both binning schemes. The day-

night asymmetry provides the best sensitivity reach for most of the parameter space,
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Figure 4.4: Comparison of the sensitivity reach of three years of KamLAND running
with 1 bin and 10 uniform bins.
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while the N = 10 uniform bins scheme at KamLAND increases the sensitivity for
particular regions of the parameter space,‘ as was discussed earlier.

Fig. 4.5 clearly demonstrates that in the case of the LOW MSW solution to the
solar neutriho puzzle, both KamLAND and Borexino should be able to see-ﬁ larger
than 50 effect, while in the case of the SMA no significant effect should be detected.b
Both experiments are sensitive to a large portion of the parameter space which extends .
into. 6 > /4 region, §vhere the heavy ne_utrino eigenstate is predominantly Ve

On the other hand, should no regeneration effect be observed, a large portion
of the parameter space, including the entire LOW region might be excluded. The
exclusion will require knowledge of the “Be neutrino flux, which can be measured, for
example, by studying the seasonal variation of the observed event rate as diécussed
in Section 3.1. If the flux measured in this way turns out large and no dé,y—night
‘asymmetry is observed, one will be able to exclude the LOW solution without relying
on the solar model. If, however, the measured flux is very small, the exclusion will -

“be solar model dependent. -

Since the sensitivity of Borexino (KamLAND) to the day-night asymmetry goes
down to the 1.5% (0.5%) level, it is important to consider systémaﬁc‘ effects in this
measurement. It is, however, difficult to anticipate systématic uncertainties in the
absence of data. We instead looked at the measurement of day-night asymmetry

at Super-Kamiokande [49, 23]. The dominant systematic uncertainty there is the

6KamLAND may also be sensitive to a very small portion of the LMA solution.
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Figure 4.5: 95% (darkest), 30 (dark), and 50 (light) sensitivity confidence level (C.L.)
contours for three years of KamLAND running. The LOW solution, which extends
from Am? ~ 3 x 1078 eV? to Am? ~ 3 x 1077 eV? and has sin?@ ~ 0.3 — 0.5 [3], is
completely covered at more than 50 C.L.
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possible asymmetry in the defector, giving +0.6%.” Because the recoil electrons from
8B neutrinos are forward peaked, the day (night) time data are detected primarily
by the lower (upper) half the detector. A small possible gain asymmetry ([49] quotes
0.5%) for different zenith angle bins can result is a somewhat amplified difference
in rates because the energy spectrum is rather steep close to the threshold energy
(6.5 MeV). The enérgy ca.librationy was done using electron LINAC, which at that
time could shoot electrons only downwards and hence could not study the asymmetry
well enough. The gain asymmetry is known to exist from the study of decay elfectrons
in the cosmic ray muon data [52] as well as in spallation events.® We assume that
thié will not be an ir;lportant systematic effect for Borexino or KamLAND because
the energy deposit is basiéally isotropic (no directional capability) and hence the.
asymmetry in the detector should not result in a systematic effect in the day-night
 asymmetry.

The next largesﬁ 'syétemafic eﬂ'ect}_ is. the subtraction of background, +0.2%. If .
'the backgréﬁnd events are not combletely isotropic, the subtraction depends .on the

direction and results in a systematic effect. Again at Borexino or KamLAND, the

.

lack of directional correlation eliminates this systematic effect.
If we naively drop these two dominant systematic effects, the size of the total sys-

tematic uncertainty would be less than 0.1%. Of course, the sources of background

"Note that the talk [23] lists the systematic uncertainties in D/N ratio, which are twice as large
as uncertainties in the asymmetry (D — N)/(D + N) ~ ((D/N) —1)/2. _
8The gain asymmetry is now accurately measured using the 6N source calibration and w111 be

reduced dramatically.
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are very different at Borexino or KamLAND. Possible differences in the temperature
or Rn level between the day and _niéht times could introduce new systematic effects,
while our analysis assumed the same ba;:kground level for day and night. This differ-
ence, however, can in prinéiple be measured using the Bi-Po coincidence. Spallation -
background (such-as ''C) should not change between day and night.

--Additionally, the experiments will need to consider other effects, such as the. con-
tribution of other neutrino sources or the uncertainty in the electron number density
profile of the :Earfh. (More on the latter in the next section.) We also did not, include
in our analysis the contribution of neutrinos produced in the CNO cycle, which is
about 10% of that from the "Be neutrinos. Although we cannot accurately predict
the total systematic uncertainty at Borexino or KamLAND, we nonetheless find it
encouraging that the dominant uncertainties at Super-Kamiokande are unlikely to

affect these experiments.

4.3 Measuring the Oscillation Parameters

In this section, we diécuss the possibility of measuring the .valu.e of Am?2,sin0 in
the advent of a lafge day—rﬁght effect. In order to do this, data was simula’ted for
Am? =1.12 x 10~7 eV?, sin? 6 = 0.398, which is close to the LOW MSW solution to
the solar neutrino puzzle [3]. For a plot of the “data” with different.binning options,

see Fig. 4.3. |

In order to deal with the SSM solar neutrino flux and the background event rate,
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we will conservatively “measure” both the background rate and the incoming solar
neutrino flux by analyzing the seasonal variation (see Chapter 3) of the day-time
data only. This measurement procedure will be incorporated in a four parameter x?2
analysis (the parameters are Am?, sin? 6, the solar neutriﬁo flux s, and the background

rate b) of the data. Explicitly,

night dn 2 day sea 2
N (da,ta,- €% — theo; ) M (da.taj — theoj )
x*(Am?,sin? 8, s,b) = E '

+ ,
5 () E (o)

where datal’®™ is the night-time “data” binned into N night bins (as described in

(]

(4.12)

Sect. 4.2), da,tag"Ly is the day-time “data” binned into M “seasonal bins” (e.g. j =
1,2,...12 months) as described in Section 3.2. theo{® is the prediction for the number

of evens in the i-th night bin,

theo™ = 365 [b + s(PuE ¢ (1- P;‘J;%‘“)R)] fis (413)

similar to Eq. (4.10). b is the background rate in events per day and s is the number -
of events per .day induced solar neutrinos according to the SSM prediction for the
solar neutrino flux. Simila,rly,.theo;*-ea is the prediction for the day-time flux in the

j-th seasonal bin (see Section 3.2),

: | ' 1 ee } (1 — I ee)-R
sea ,
theo™ = [[ 1dt <b+s(1 e cos(2nt] ))2)] 9is (4.14)

where g; is the number of days in the j-th bin and € = 0.017 is the eccentricity of the

Farth’s orbit.
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It is simple to minimize x2 with respect to s and b, given that x?(s, b) is a quadratic
function. The minimization with respect to Am? and sin®# is done numerically.
Fig. 4.6 depicts the extracted contours in the (Am?,sin?6)-plane, in the case of 1

night bin and 10 “uniform” night bins, respectively.

0.01 0.05 0.1 0.5 1
1x 10-6 1x10'6
7X 10-7 7x10-7

N; 5x 10°7 | 5x 107
<
N ) -7 -7
E 3x 10 3x10
<
2x 1077 2x 1077
1x 10”7 1x 107
95% CL
30
506 10 bins

0.01 0.05 0.1 0.5 1

sin?6
Figure 4.6: Measured values of (Am?,sin? ) at KamLAND vaftér three years of run-
ning. The data was generated for Am? = 1.12 X 1077 eV?, sin?@ = 0.398 (marked

with the “star”). The regions obtained by using one night bin and ten uniform night
bins are shown.

As Fig. 4.6 demonstrates, in the case of 1 night bin, one extracts values of Am?

and sin? @ which fall into “rings” which correspbnd roughly to Apy = ARI £ A Areal



117

where A% is the value of the day-night asymmetry for the input value of Am?, sin? 6.
In the case of more than one uniform bin, the ring degeneracy is broken, and a much
more precise determination of the oscillation parameters is possible. This is expected,
since for Am? in this range the regeneration effect in the Earth exhibits a strong zenith
angle dependence, as one can easily verified by looking at Fig. 4.3.

It is important to note that in the above analysis only statistical uncertainties were
included, while in a real experiment one:_ deﬁnife'ly will have to account for systematic
effects as well. In particular, one will f;eed té é,ddress the uncertainty in the Earth
model used in the fit. In producing Fig. 4.6 i;hé same Earth model [51] was used in
generating the “data” and in the fit procedure. To understand the effect of using
‘a “wrong” Earth model, we have repeated the above analysis using different Earth
models in the fit. We found the results very éjhcouraging. Even in the case when we
used for th.e‘Ea.rth pfoﬁle a c;_ude‘ tWo—stép mo&éi (a uniform density in the mantle and
a uniform deﬂsié}; in the c'o;e), the minimum of x? occurred at Am? = 2.5x10~7 eV?,
sin® 6 = 0.24, ﬁot far away from the trué (inpt';':ft)'.value. Mofeover, the x? value at the
minimum was much larger than the case with the “true” model (Ax2 = 183 for 18
d.o.f.). This means that in a real experiment one will be able to adjust the Earth’s
médel to achieve a better fit to the data. Because of the steep rise in x? value as
the Earth model is varied, the resulting x2 contours in the (Am?,sin® ) parameter
space should not be significantly larger than the ones presented here, where the Earth

model is not varied. As a byproduct of the measurement of the neutrino oscillation
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parameters, it might be possible to use the regeneration data to study the interior of

the Earth!

4.4 Conclusions

We have étudied the effect of the Earth matter on "Be solar neutrinos. We made
use of an eniarged parameter space 0 < § < 7/2 and presented the sensitivity reach
of the KamLAND and Borexino experiments in this space. Our results show that
both e#périments will be sensitive ‘to .the Earth regeneration effect in a large region
which extends >into fhe traditionally neglected 8 > 7 /4 part of the parametér space.
In particﬁlar, for the LOW solufion one expécts to see a greater than_ 50 effect. On
the other hénd, both experime.nts wiil see no day-night effect for the SMA solution
and virfually nb effect for the LMA soiution. |

If the éxperiments seé a largé Earth regeneration effect, it will be a powerful “smok-
ing gun” ‘signature of neutrino oscillations. Furthermore, as we havé demonstrated,
the results of the experiments can be used to measure the oscillation parameters. By
studying the full zenith angle distribution, rather than the usual day-night asymme-
try information, one might be able, in the case of the LOW solution, to perform a
spectacular measurement of the parameters. In addition, it might be possible to use
fhe zenith angle information to learn about the Earth electron density profile.

If, on the other hand, no Earth regeneration effect is detected, by combiniﬁg this

information with the flux measurement from seasonal variation of the event rate (see
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Sectiqn 3.1), a large portion of the parameter spa(;e can be excluded. If the measured
value of the “Be neutrino flux is large, the exclusion will be independent of a specific
solar model. o

Both the measurement of the oscillation parameters and the exclusion will require
a thorough understanding of the systematic uncertainties. We have commented on
some possible sources of such uncertainties in this chapter.

Overall, Borexino and KamLAND will provide crucial information about the solar
neutrinos. Not only will the experiments measure the flux of the "Be solar nel.ltrin'os,
* but they will also be able to establish or exclude, without relying on solar models,
the LOW solution based on the Earth regeneration effect and the vacuum oscillation
solution based on the observed seasonal variation of the event rate. Together With
results from Super-Kamiokande, SNO, and the KamLAND reactor neutrino experi-
ment, this information can be used to finally unravel the 30-year-old solar neutrino

puzzle.
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Chapter 5

Studying the Full Parameter Space

In the last section we arghed the importance of considering the full physical range
of ;he neutrino mixing angle, 0 < # < /2, when studying the earth regeneration
effect. One might wonder why the part of the parameter space with > n/4 has
been traditionally ignored in the literature. Possible reasons for this are that (1)
the MSW solutions were expected to be confined to the § < /4 region, and (2) the
vacuum oscillation solutions were expected to be symmetric under § — 7/2 — 6. In

this chapter we reexamine both of these assumptions. We find that neither of them

is justified.

5.1 MSW Effects in Vacuum Oscillations

In this section we point out that for solar neutrino oscillations with the mass—

squared difference of Am? ~ 1071 — 10~° eV?, traditionally known as “vacuum
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oscillations”, the solar matter effects are non-negligible, particularly for the low energy
pp neutrinos. One consequence of this is that the values of the mixing’angle f and
7/2 — @ are not equivalent, leading to the need to consider the entire physical range
of the mixing angle 0 < # < 7/2 when determining allowed values of the neutrino

e -

oscillation parameters.

5.1.1 Introduction

The field of solar neufrino physics is currently undergoing a remarkable change.
- For 30 years the goél was simply to coﬁﬁrm the deficit of solar neutrinos. The
- latest experiments, however, such as Super‘_"'-.Kamiokande, SNO, Borexino, KamLAND,
etc, aim to accomplish more than that. By collecting high statistics real—time.data
set§ on different componeht_s of the solaf 'peutrino spectrum, they hope to obtain
unequivocal proof of neutrino os"cillation.'s .jand rheasure the oscillation parameters.
Thus the physics of solar neutrinos is likely.to become a precision science in the near
future, and it is mbre important then ever to ensure that all relevant physical effects
are taken into account énd the right parameter set is used. T
It has been a long-standing tradition in sblar neutrino physics to present experi-
mental results in the Am? —sin? 20 space and to treat separately the “vacuum oscilla-
tion”' (Am? ~ 1071 —10° e¢V?) and the MSW (Am? ~ 1078 — 1073 eV?) regions. In
the vacuum oscillation region the neutrino sq_rvival probability (i.e. the probability

to be detected as v,) was always computed according to the canonical formula, Eq.
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(2.29). Eq. (2.29) makes sin? 20 seem like a natural parameter choice. As sin® 2 runs
from 0 to 1, the corresponding range of the mixing angle is 0 < § < w/4. There is no
need to treat separately the case of Am? < 0 (or equivalently 7/4 < § < 7/2), since
Eq. (2.29) is invariant with respect to Am? — —Am? (6 — 7/2 —96).

The situation is different in the MSW region, since neutrino interactions with
‘matter are manifestly flavor-dependent. It is well known that for |[Am?| 2 1078 eV?
matter effects in the Sun and Earth can be quite large. In this case, if one still chooses
to limit the raﬁéé of the mixing angle to 0 < § < m/4, one must consider both signs
of Am? to describe all physically inequivalent situations. As was argued in Chapter
4, to exhibit the continuity of physics around the maximal mixing, it is more natﬁral
to keep the same sign of Am? and to vary the mixing angle in the range 0 < 6 < 7/2.

Historically, a possible argument in favor of not considering § > 7/4 in the MSW
region might have been that this half of the parameter space is “uninteresting”, since
for § > /4 there is no level-crossing in the Sun and the neutrino survival probability is
always greater than 1/2 (see Appendix C.1). However, a detailed analysis reveals that
allowed MSW regions can extend to maximal mixing and beyond, as will be explored
in the next set.:tion. (see also [53] and [54] for a treatment of 3- and 4- neutrino mixing
schemes).

In this section we point out that for solar neutrinos with low energies, particu.larly
the pp neutrinos, solar matter effects can be relevant even for Am? ~ 10~ — 10~?°

eV2. These effects break the symmetry between 6 and m/2 — # making it necessary to
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consider the full physical range of the mixing angle 0 < 8 < = /2 even in the “vacuum

oscillation” case.

5.1.2 Theoretical Framework

For simplicity we limit our consideration to the two-neutrino case. If neutrino
masses are nonzero then, in general, the mass eigenstateé |11,2) are different from the
flavor eigenstates |v,,). The relationship between the two bases is given in terms of

the mixing angle 8:

|t1) = cos B|ve) — sin 8|v,,),

IV2)I = sinO|v,) + cosf|v,). (5.1)

In our convention |up) is alWays the heavier of the two eigenstates, ie. Amz =
mi —m? > 0. Then, as already mentioned, 0 < # < /2 encompasses all physically -
| diﬂ'erent situations. | |
.Néutrinos are created in the core of the Sun and exit the Sun in the su'perf)osition:
of the mass eigenstates. If the transition from the Sun’s core to vacuum is adiabatic,
the exit state is purely |v5) !. In the case of a nolnadiabatz'c traﬁsiti;); -there is also a

nonzero probability P, (a “level crossing” probability) to find the neutrino in the |v4)

state. In terms of P, the survival probability for neutrinos arriving at the Earth has

1 Assuming the neutrino is in the heavy Hamiltonian eigenstate at the production point in the
core. This assumption is valid as long as Am2/E, < 1075 €V2/MeV, see Chapter 4
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the form (see Eq. (3.14) of Chapter 3.2, [26, 55])
P = P.cos’0+ (1 - P,)sin®6
. Am?L
+ 24/P,(1 — P,)sinfcosfcos { 2.54 7t 6. (5.2)

Here L is the Earth-Sun distance and J is a phase acquired when neutrinos traverse

the Sun. Units are the same as in Eq. (2.29). In the adiabatic limit P, = 0 and
Eq. (52) ﬁyields P = sin?0. Neutrinos exit fhe Sun in the heavy mass eigenstate
ana do not oscillate in vacuum. From Eqs. (2.61,2.62) we can see that this happens
for v > 1, ycos?20 < 7. The first condition is satisfied for sufficiently larée mass
splitting Am? > >10“9eV2(E,, /1 MeV), while fhe second one in addition requires that
the mixing angle is not too small, sin?8 > (102 eV?/Am?)(E, /1 MeV).

- In the .opposite limit of small Am?, whe‘n the neutrino evolution in the Sun is
“extremelly' nonadiabatic”, P, — cos?#. It is trivial to verify that Eq. (5.2) in this
limit reduces to Eq. (2.29). It has been assumed that in the vacuum oscillatio;l region
this limit is reached. Remarkably, however, this may not be the case for the low energy
solar neutrinos, espeéially pp neutrinos (E, < 0.42 MeV).

The most reliable way to compute P, is by numerically solying the Schrodinger
equation in the Sun for different values of Am? and 6. We do this using the latest
available BP2000 solar profile [56]. The profile, kindly provided by John N. Bahcall,
is shown in Fig. 5.1. Fig. 5.2 shows contours of constant P, for the energy of "Be

neutrino (solid lines). Note that the variable on the horizontal axis is tan?0. With

this choice, points 6 and = /2 — 0 are located symmetrically on the logarithmic scale
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Figure 5.1: BP2000 solar electron number density profile (courtesy of John N.
Bahcall). '

about tan? @ = 1 (see [48]). Other possible choices include 6 or sin? § on a linear scale,

as was done in Chapter 4. The log scale here was chosen to unify the treatment with

Sect. 5.2.S The figure demonstrates that the contours are not symmetric with respect : -

to the tan?@ = 1 line, except in the region of Am?/E, < 10~1° eV2/MeV, where the -
extreme nonadiabatic limit is reached. This simple .observation is the crucial point of -
this section.

In the earlier chapters we used the analytical result for F,, Egs. (;61) and (2.62),
valid for the exponential solar profile n, exp(—r/ro); As Fig. 5.1 shows, however,

in the region relevant for vacuum oscillation, 0.95 S R S Rg, the profile falls off

faster than the exponential with ry = R/10.54 = 6.60 X 10* km (red line the figure).
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Figure 5.2: Contours of constant level crossing probability P, for neutrino energy of
0.863 MeV ("Be line). The solid lines are the results of numerical calculations using
the BP2000 solar profile. The dashed lines correspond to using the exponential proﬁle
formula with ry = Ry /18.4 = 3.77 x 10* km (see text).
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Nevertheless, the equation

e7cos2 9 ._ 1 ’
Pc = —'—e;t—l——, (5-3)
where
Am? L
v =2mT0 5 (5.4)

caﬁ still be used with the appropriately chosen value of ry. The dashed lines in Fig. 5.2
show the contours of F; computed using Eq. (6.3) with o = Rp/ 18.4 = 3.77x10* km.
As can be seen from the figure, the agreement between the two sets‘ of contours for
Am? $4x107° eVZI_is very good. Note that a s.imila,r result was arrived at in [30]
for § < w/4, where the value of ry = Ry x 0.065 = 6.5 x 10* km was obtained.
) Fig. 5.2 can also be used to read off the values of P, for different neutrino energies,
since P, depends on.E,, through the combination Am? /E,. It is obvious that for
‘neutrinos of lower energies Pc starts deviating from its “extreme nonadiabatic” value -
‘at’even smaller values of A?r?, and vice versa. ‘Consequently, as will be seen later;
the solar matter effects on vacuum oscillations are most important at the gallium
experiments, which are sénSitjve to the pp neutrinos, while the Super-Kamiokande ‘
exberiment is practically unaffected.
Using Eqgs. (5.3,5.2), it is possible to derive a corrected form of Eq. (2.29), by

retaining in the expansion terms linear in +:

Am2L +
E

P =1- (1 + %cos?ﬂ) sin? 26 sin? (1.27

‘o) o 59)
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Notice that the first order correction contains cos 260 and hence is manifestly not
invariant under the transformation \0 — /2 — 6. Using Eq. (54) we see that for the
pp neutrinos (E,, < 0.42 MeV) this correction is indeed non-negligible already for
Am? ~ 10710 — 107% eV2.

With matter effects being relevant already at Am? 2 1071° eV2 one might won-
_der if the separation between vacuum oscillation solutions and MSW solutions is
somewhat artificial. To fix thé terminoibgy,' we will adopt a definition of vacuum
oscillationsvas the situation when the value of neutrino survival probability depends
on the distance L from the Sun, regardless of whether mattef effects -are negligible
or not. The transition betwéen the vacuum and the MSW regions will be discussed -

shortly.

5.1.3 Fits to data

To illustrate the role of matter effects in vacuum oscillations, we present fits to
the total rates of the Homestake [19], GALLEX [21] and SAGE [20], and Super-
Kamiokande [23] experiments. We combine experimental rates and uncertainties for
the two gallitim experime-nts and use the latest available 825-day Super-Kamiokande
data set. The experimental results are tabulated in Table 2.3.

We fit the data to the theéretical predictions of the BP98 standard solar model

[4]. Predicted fluxes and uncertainties for various solar reactions were kindly made

available by J. N. Bahcall at [24]. To compute the rate suppression caused by neutrino
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Figure 5.3: Regidn allowed by total rates of GALLEX and SAGE (shaded region). .
‘The region is obviously asymmetric for Am? > 1071° eV?, as a result of solar matter -
effects. Black outlines correspond to neglecting the solar matter effects.
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Figure 5.4: Regions allowed by total rates of Homestake and Super-Kamiokande. As
expected, the regions show much less asymmetry than for the gallium case, Fig. 5.3.
Black outlines correspond to neglecting the solar matter effects.

oscillations, we numerically integrate the neutrino survival probability, Eq. (5.2), over
the energy spectra of pp, "Be, 8B, pep, 1*N, and 50 neutrinos. In addition, to account

for the fact that the Earth—Sun distance L varies throughout the year as a consequence

“of the eccentricity of the Earth’s orbit
L = Ly(1 — ecos(2nt/year)) (5.6)

we also integrate over time to find an average event rate. In Eq. (5.6) ¢ is time
measured in yearsv from the perihelion, Ly = 1.5 x 10® ki is one astronomical unit,
and € = 1.7%.

In Fig. 5.3 we present the vacuum oscillation region allowed by the total rates of
GALLEX and SAGE. In Fig. 5.4 we show the corresponding regions for Homestake

and Super-Kamiokande. For comparison in all three plots we also show the regions
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one would obtain by neglecting the neutrino intel;actions with the solar matter (dark
outlines), i.e. by setting P, = cos® @ (black contours). Fig. 5.3 demonstrates that the
matter effects are quite important for the gallium experiments, where the asymmetry
is quite large for Am? 2 1071° eV2. As expected, the matter effects are emall at
Super-Kamiokande, since it detects neutrinos with E, > 6.5 MeVixIn all cases the
allowed regions were defined as the sets of points where the theoretically predicted
and experimentally observed rates are consistent with each other at the 95% C.L. for
l1dof (x?=3.84)2

It is important to discuss the extent the vacuum oscillation region. There are two
prirnary physical reasons why the neutrino event rate becomes independent of L for

sufficiently large mass—squared splitting (and the seasonal variations disappear):
e Adiabatic evolution in the Sun. As P, — 0 the last term in Eq. (5.2) vanishes.

e Integration over neutrino energy spectrum. To compute the event rate one has
to integrate Eq. (5.2) over neutrino energies. For sufficiently large Am? the
last term will average out to zero, leading effectively to the loss of coherence

between the two mass eigenstates.

The detailed discussion of this phenomenon can be found in Section 3.2. Here
for completeness we will present a brief summary of the result obtained there. As
Am? increases, coherence is first lost for reactions with broad energy spectra, such

as pp and ®B, and persist the longest for neutrinos produced as a part of a two-

ZNotice that this is different from the conventional approach (see, for example, [53]).



134

body final state. The most important such reaction is electron capture by "Be nuclei
| ("Be+e~ —"Li +v,). Resulting "Be neutrinos have an energy spread of only a few keV,
arising from the Doppler shift due to the motion of the "Be nucleus and the thermal
kinetic energy of the electron. ‘In order to properly take these effects into account, in:
our code we numerically integrate over the exact line profile, computed in [40]. The -
calculations show that the neutrino survival pfobability becomes independent of L
for Am? 2 6 x 107% eV2. For this reason, we present our results for Am? ranging
from 107! eV? to 10~ eV2. Unfortunately, in the literature the traditional range
" is ‘froiﬂ 10711 eV? to 107° eV? [2, 1; ‘54], 5lth§ugh tﬁe allowed regioﬁs on fhe plots
preseﬁted in all thése papers seem to extend above 1079 eV2.

In‘ Fig. 5.5 we present the vacuum regions allowed by the rates of GALLEX,
-SAGEV, and Sﬁpér—KamiokAnde combined. "I‘.lv1e.>ﬂregions are drawn at 30 C.L. (2 d.o.f,,
x? = :il..83, in i;hé same convention as beforé)i The distoftions caused my the solar
maftér effeéts are clearly visible.

In Fig. 5.6 by the rafes ofA all four experiments combined (3 d.o.f., x? = 14.15).
In ordef to properly account for the correlaﬁon between the theoretical errors of
the different expeﬁr_nénts, we followed the technique developed in [57] and [53]. The

allowed region exhibits a significant asymmetry for Am? > 6 x 10710 eV2,
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5.1.4 Sensitivity of Borexino experiment for 6 > /4

‘An important question is how well future experiments will be able to cover vac-
uumn oscillation solutions with 6 > 7r/4 In Fig. 5.7 we show the sensitivity of the
Bdfexino experiment to anomalous seasonal variations for the entire physical range
of the mlxlng; angle 0 < @ < #/2. This is an extension of the analysis performed -
in 3.2, where the details of the procedure are described. The upper boundary of the
senéifivity re"‘g'i‘on'shows a clear asymmetry as a result of the solar matter effects. This

boundary can be used to approximately define the boundary between the vacuum and

the MSW oscillation regions.

5.1.5 Conclusions

‘In summary, the preceding examples cll.early illustrate the import#nce of including
the solar matter effects when studying vacuum osci}lation of solar neutrinos with
Am? 2 10719 V2, Because to deséribe such effects one has to use the full range of the
mixing angle0 <6< / 2, future fits to the data should be exténded to > w/4. This
seems'especiz}lly important in light of the latest analyses [1], [54], which in addition to
thevtotal rates also use the information on the neutrino spectrurﬁ and time variations
at Super—Kamiokandé. In this case the allowed vacuum oscillation regions are mostly
located in the Am? 2 4 x 10710 V2 part of the parameter space [54], precisely where

the matter effects are relevant. (The best fit to the Super-Kamiokande electron recoil

spectrum is achieved for Am? = 6.3 x 1071° eV?, sin?20 = 1 [1].) It would be very
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important to repeat the analyses with the solar matter effects included, ideally using

the exact electron density profile of the Sun.

Additionally, since 7Be neutrinos remain (partially) coherent for Am? > 10~° eV?,

it would be desirable to present the results of the fits in the range 10~ eV? < Am? <

1078 e€V?, as will be done in the next section.

5.2 MSW Regions

In this section we exténd thé analysis of the previous section to include the; region ;
of the MSW solut;ions. Our goai is to cover the entire range of Am? relevant to
the solar neutrino problem (107! eV? < Am? < 1072 eV?). Since matter effect
distinguish the two parts of the parameter space § < m/4 and 6 > m/4, it is clear
that MSW solutions aré ﬁét s&mrﬁeﬁric with respect to 8 — 7/2 — 6. Nevertheless,
the region @ > 7/4 has largely been ignored in the literature.

Part of the reasbn'for this neglect is that it ié impossible to obtain Ve survival

-

probabilities less than one half when the two mass eigenstates are incoherent, i.e.,

when the last term in Eq. (2.60) is absent. (This occurs in the so-called “MSW

region” 1078 S Am2 < 1073 eV?, see Sect 3.2.) Indeed, the data from the Homestake
expe?iment [19] used to be about a quarter of the SSM prediction, and this could
have been an argument for dropping the 8 > /4 side entirely in the MSW region.
However, the change from BP95 [39] to BP98 [4] calculations increased the Homestake

result to about a third of the SSM with a relatively large theoretical uncertainty.
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Therefore it is quite possible that the “MSW solutions” extend to the 8 > 7 /4 side

as well. Moreover, some people question the SSM and/or the Homestake experiment,

and perform fits by ignoring either (or both) of them [58]. We show below that

some of the MSW solutions indeed extend beyond the maximal mixing and hence

_it is necessary to explore the‘__0 > w/4 side experimentally. If we further relax the

-theoretical prediction on the 8B solar neutrino flux and/or ignore omne of the solar

neutrino experiments in the global fit, the preferred regions extend even deeper into
the 8 > /4 side.

We next present the resuits of global fits to the current solar neutrino data from
water Cherenkov detectors (Kamiokande and Super—Kamiokande) ‘[22, 23], a chlorine
target (Homestake) [19] and gallium targets (GALLEX and SAGE) [21, 20] on the
full parameter space. We do not include the spectral data from Super-Kamiokande

[43] as it appears to be still evolving with time. The fit is to the event rates mea-

sured-at these experiments only. In computing the rates we include not only the pp,

"Be, and ®B neutrinos, but also the 3N, 0, and pep neutrinos. We use Eq. (2.60)
with P, computed in the exponential approximation for the electron number density
profile in thé Sun3,land properly account for neutrino interactions in the Earth dur-
ing the night with a realistic Earth electron number density profile by numerically

solving Schrodinger equation as described in Chapter 4. Since the mixing angle at

3In our analysis in this section we use a constant value of rg = R/10.54 = 6.60 x 10* km.
As was pointed out in Sect. 5.1, in the vacuum oscillation region one should use a different value,

"1ro = Rp/18.4 = 3.77 x 10* km. Thus, the shape of the allowed vacuum oscillation regions in this

section will be slightly different.
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the production point in the Sun’s core depends on the electron number density, we
integrate over the production region numerically. We treat the cqrrelations between
the theoretical uncertainties at different experiments following Ref. [563]. To insure
a smooth transition between the MSW and the vacuum oscillation region, we inte-
grate over the energy spectrum (including the thermal broadening of‘the "Be neutrino
“line”) for Am? < 1078 eV? and average the neutrino fluxes over the seasons. For
Am? -> 1078 eV? we treat the two mass eigenstateé as incoherent. Results are com-

pletely smooth at Am? = 107° eV?, as expected. This allows us to fit the data from

- Am? = 107111073 eV? all at once, unlike previous analyses which separate out the

“vacuum oscillation region” from the rest.

As was mentioned earlier, we take the global fit to the currently available data
only as indicative of the ultimate result because we expect much better data to be -
collected inl the near fufure to eventually supersede the current data set. We would
like to keep our miﬁds open tb éurprises such as the possibility that one of the earlier
experiménts was not entirely correct or that the theoretical uncertainty in the flux
prediction was underestimated. In this spirit, we employ more conservative attitudes
in the global fit than most of the analyses in the literature in the following three
possible ways. (1) We allow higher confidence levels, such as 3 0. (2) We relax the
theoretical predicti—(;;l. ;)ﬁ fl.ie‘neﬁ;crir;;ﬂlilx'. (3) We ignore some of the experimental

data in the fit.

The global fit results are presented in Fig. 5.8 at the 2 o (95% CL) and 3 o
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(99.7% CL) levels defined by x? — x2, for two degrees of freedom. It is noteworthy
that both the LMA and LOW solutions (we use the nomenclature introduced in [2])
extend to the 0 > 7 /4 side at the 3 o level. At 99% CL, however, the LMA solution
is confined to the § < w/4 side. This resﬁlt is consistent with the two-flavor limit of
the three-flaver analysis in [53] and the four-flavor analysis in [54], where the spectral
data is included and the LOW solution ex-teﬁds beyond the maximal mixing at 99%
CL. Another interesti_ng fact is that the LOW solution is smoothly connected to the
VAC solution, where the preferred region is clearly asymmetric between the two sides
of the parameter space. Note that, at Am? ~ 1079 eV?, the allowed region is in fact
bigger in 6 > m /4 side. The region 10~ < Am? < 1078 eV? was, to i:he best of the
authors’ knowledge, ﬁever studied fully in the literature and this result ‘demonstrates
the need _?;o stpdy the entire Am? region continuously without the artificial separation
of the “MSW region” and “vacuum oscillation region,” as traditionally ddne in the
literature.

We next present a fit where the theoretical prediction of the 3B flux is relaxed.
Even though the helioseismology data constraints the sound speed down to about 5%
of the solar radius [4], the core region where 8B neutrinos are produced is still not
constrained directly. Given the sensitive dependence of the 8B flux calculation on
the core temperature ®sp ~ T'® [17], we may consider it as a free parameter in the
fit. This can be done within the formalism of Ref. [53] by formally sending the error

in Cpe to infinity. The result is presented in Fig. 5.9. The preferred region extends
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farther into the 6 > /4 side than the previous fit. Even though the LMA and
LOW solutions are connected in this plot, the lack of a large day-night asymmetry
at Super-Kamiokande would eliminé.te the range 3 x 1077 S Am? S 1075 eV? for
0.2 Stan?60 < 1 [49]. It is iméortant for Super-Kamiokande to report their exclusion
region for 4 >J7r/4

Finally, Fig. 5.10 shows a fit where the event rate measured at the Homestake
experiment is not used. This may be a sensible exercise given that the neutrino cap- -
ture efﬁciency was never calibrated in‘this experiment. Th? preferred region extends
beyond the maximal mixing even at the 95% CL. Note also the asymmetry between
the two sides of the parameter space‘ even for Am? < 10"’.’ eV2,

We expect the data of the current and next generation of solar neutrino experi-
ménts, such as Super—Kamiokande, SNO, GNO, Borexiho, KamLAND, to eventually
supersede the current data set. Therefore we regard the above global fits only as
estimates of the ultimate results. The most important point is that all experimen-
tal collaborations should report their results, both exclusion and measurements, on
both sides of the parameter space, without unnecessary theoretical bias towards the

theta < /4 side. We strongly urge the experimental collaborations to consider this

point.
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Chapter 6 L.

Summary and Conclusion

It has been three decades since the first evidence of solar neutrino deficit was
reported by the Horhestake experiment. In the last ten years the experimental situa-
tion improved dramatically, when high quality data from experiments such as SAGE, -
GALLEX, and Super-Kamiokande became available. It was conclusively -denié‘nstrat— n

ed that neﬁtrinos do come from the Sun and that the observed flux is indeed depleted

compared the the Standard Solar Model prediction. The present state of-the sol_ar-:%::*‘ S

neutrino problem has been summarized in Chapter 2.

vTo prox;e that the solar neutrino deficit is caused by neutrino oscillations, a new - -
generation of solar neutrino experiments, such as Super-Kamiokande, SNO, Borexino,
KamLAND, etc, will be seeking evidence for solar neutrino oscillations without relying
on the Standard Solar Model in well-understood experimental environments. They

aim not only at establishing oscillations but also at overdetermining the solution in
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the next few years.

One of the “smoking gun” signatures the experiments are seeking is the anomalous
seasonal variations of the observgd solar neutrino ﬂui. Such variations, if detected,
would be an unmistakable sign of the long-wavelength vacuum oscillations. "Be ex-
periments, such as Borexino and KamLAND, are particularly well sﬁited to look for

anomalous variations, because the “Be solar neutrinos are virtually monochromatic.

. In Chapter 3 we discussed how anomalous seasonal variations might be used to discov-

er vacuum neutrino oscillations at these experiments, independent of the solar model

“and the measurement of the background. In particular, we found that, after three

years of Borexino or KamLAND running, vacuum neutrino oscillations can be either
established or excluded for almost all values of (sin? 28, Am?) preferred by the Home-
stake, GALLEX, SAGE, and Super-Kamiokande data. We also investigated in Sect.

3.3 how well seasonal variations of the data can be used to measure (sin? 26, Am?) in

~ the case of vacuum oscillations.

If the experiments observe seasonal variations consistent with the 1/L? flux mod-
ulation, the data can be used to measure the "Be solar neutrino ﬁux‘ in a background
independent way. We explored the reach of this method in Section 3.1.

Another “smoking gup” signature would be the detection of the day-night vari-
ation i‘n the event rate. Such variations are predicted to occur for a large range of
parameters as a result of the electron neutrino regeneratioﬁ in the Earth. In Chapter

4 we determined the sensitivity of Borexino and KamLAND to this phenomenon.
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We pointed out that it is important to study the regeneration effect for the entire
physical range of the mixing angle 0 < ) < 7 /2, the fact previously unrecognized in
the literature. Our analysis naturally avoids the incorrect conclusions made in the
literature about the mé.ximal mixing.

We also discussed in Sect. 4.3 the poésibi]ity of using the earth regeneration data to
measure the neutrino oscillation parameters. We found that in the case of the LOW"
solution to the solar neutrino deficit, the measurement results can be surprisfngly
accurate, if one uses the full /'observed zenith angle dependeﬁce, rather than o_niy the
day—night asymmetry. Our results further indicate that it may be possible to use
the data Vto constrain models of the Earth’s interior. A comparable study has never
beforg been performed.

The part of the parameter space with § > w/4 we studied in Chapter 4 has been

- . traditionally ignored in the literature. It was commonly thought that the MSW so-

lutions are confined to the @ < /4 region, and the vacuum oscillation solutions are -

© symmetric between 6 < 7/4 and 6 > 7 /4. In Chapter 5 we reexamined these assump- -

tions and performed fits to the experimental data in the enlarged neutrino parameter

space 0 < 6 < 7/2. We found that in the case of vacuum oscillation solutions mat-

ter effects can be nonnegligible for the low energy pp neutrinos. Thus, the allowed

regions in the two sides of the parameter space are not completely symmetric. We
further found that the MSW solutions can extend beyond the maximal mixing if one

takes the conservative attitude to allow higher confidence levels, ignore some of the
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experiméntal results in the fits, or relax theoretical predictions. We presented a global.
view of the parameter space with Am? varying from 107! eV? to 1072 eV?, without
artificially splitting the MSW and the vacuum oécillation regions.

‘In the next decade SNO, Bofexino, and KamLAND will be reporting their data.
Their results,will eventually supersede data.from the past experiments. It is there-
fore important to analyze the future data without too much prejudice based on the
past data. We thérefofe believe that it is essential for the fits to the new data to
be presented in the full parameter space. Ultimately, of course, we hope ’ghat the

experimental data will shrink the allowed regions to a single point.
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Appendix A
To Chaptér 2

A.1 Derivation of the expression for the index of

refraction

In this appendix we will derive the formula

n=1+ 2;;Vf(O), | (A.1)

using the methods of classical wave optics. Eq (A.1) relates the index of refraction
of ,é, medium n to the forward scattering amplitude f(0) of the écatierers that make
up the medium. & is a wave number and N is the number density of the scatterers.
Consider first a simplified situation when there is only a single thin layer of the
scatterers (Fig. A.1). Far away from the layer at point O the amplitude of the wave

is the sum of the incoming and scattered waves, as shown in the phasor diagram on
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Ap

oz
Figure A.1: Illustation to Appendix A.1.

the right side of the figure.

The phasor diagram shows that the effect of the scatterers is to add an additional
phase shift ¢ = §A/A to the incident wave. This can effectively be represented by
assigning the scattering layer an index of refraction n. The value of n can be found

requiring that the change in the optical path results in the phase shift §¢:

So(n—1) A6 154

We now turn to computing éA. It is equal to the sum of the contributions from-
all scatterers in the layer, §vith each scatterer contributing f/r. It is very easy to see
by drawing a corresponding phasor diagram that the total a.mpiitude 0A shoﬁld be -
equal to 1/mx(the amplitude obtained if all scatterers within the first Fresnel zone

added up in phase). The size of the first Fresnel zone is

ri= (L +A2)?—L?~ VL (A-3)
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If all scatterers in that zone interfered in phase at O, their contribution to A would

be equal to AgNdézxr?f(0)/L. Thus,

§A = AJN6zr2f(0)/L = AGNSzf(0)\. (A4)
Then
164/40 . 1 o
1+ 2755 =14 2 NF(0A = 1+ 5N (0). (A.5)

Q.E.D.
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Appendix B | -

To Chapter 3

B.1 x? Analysis

In the analyses in Sec. 3.2, 3.3, and 3.4, we are interested in the capability of an

“average” experiment. It is possible to simulate “data” with statistical fluctuations - '

included, but then the value of x? would vary slightly between different repetitions
of the same simulaﬁibn. A better approach is to find an expression for x? “averaged”
over many simulations. As we show below, averaging over statisfica.l fluctuations .
simply leads to the inclusiop of a constant term in the definition of x2

Suppose we have some sc;lar neutrino data binned into. Nyins bins. Let the average -

expected value,ixi the ith bin be d,-'with corresponding random fluctuation Ad;. Sup-

pose we want to fit this data with a function f, which can depend on two parameters:
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the signal s and the background b. Then the x?2 of the fit can be defined as follows:

X2(31 b) =

N ins

N (d; + Ad; — fi(s, b))2

> (B.1)
i ad:

where 04, = v/d; + Ad;. Because, in the case of interest, the number of events per

bin is sufficiently large, we can approximately set o4, ~ /d;.!

First consider the case when s and b are fixed numbers. The average value of the

x? one would obtain after simulating the data many times is

Npins 2 Ad. — ¥F. . — £.)2
(x*) = <Z [(A(Z) +2Ad’(if fi) | dif’) ]> - (B.2)

Using (Ad;) = 0, ((Ad;)?) = d;, we find-

N, bins f ) . N bins
6 =3 [1 G At ] Noins + Z (B.3)
Therefore, in this simplest case it is enough to use the average values d; and the
number of bins to compute (X2).
Next, consider the case when f(s,b) = b+ g(s) and x? is minimized with respect

to b.

2 Nyins A —h— n.
ax (S,vb) _ Z 2(d1, + Adz b gi(s)) =0
ob - d;

?

Nbins Nbing -1
(Z (ds +Ad ())) (Zal‘) . (B.4)

2

= b

Introducing A; = (d; + Ad; — gi(s))/d; and substituting Eq. (B.4) in Eq. (B.1), we

10ne can easily estimate the resulting relative error in x? to be of O(1/+/(d;)).
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obtain

Nyins A? A Nbins A mes Nbins Ai 2 Noims . o
Nyins A? Nypins A; Nbins 1 -1 :
T 4d (Z HT) (Z dT) ' (B.5)

Now plugging back in the definition of A;, we perform the averaging using (Ad;) =

0, ((Ad;)?) = d;, and ((Ad;)(Ad;)) = 0 for i # 5

Nbins 2 mes .
A (di — fi)* fz
<Z,- :z:> = M 2T (B9

() o) -

Substituting Eq. (B.6) in Eq. (B.5), we find

mes Npins (d _ gz 2/ Noins 1 _1.
<Xmm> Noins — 1+ Z (Z ) (Z Z) .

%

(B.8)

The last two terms are exactly what one would find after minimizing va"““ (d; —
b — g:(s))%/d; with respect to b, and hence in this case random fluctuations can be
accounted for by replacing Nyiys in Eq. (B.3) by mes 1.

One can easﬂy show that, if f(s,b); = b+ s- h; and one minimizes x? Wlth respect
to s, the effect of random fluctuations is also to substitute Npjns — 1 for Ny in
Eq. (B.3). The proof is completely analogous to the case we just studied. Moreover,

it is straightforward to combine the two results and consider minimization with respect

to both b and s, in which case one should replace Ny in Eq. (B.3) by Nyjns —
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In general, one should use the number of degrees of freedom Ny, ¢, when computing
(x*):

O (= £i)? A

(x*) = N4 of+z

(B.9)

B.2 Analytic Estimate of the Sensitivity Cutoff

In Sec. 3.2 we showed that the sensitivity region for anomalous seasoﬁal variations
is limited by the finite linewidth of the "Be line. In this appendix we show l}ow one
can analytically estimate the location and the shape of the sensiti\;ity cutoff.

As was mentidned in Sec. 3.2, the true shape of the “Be line is rather complicated,
with a Gaussian profile on the low end and an exponential tail on the high end. For
the purpose of this estimate we choose to approximate the Gaussian part, by a sharp
cutoff:

0 ifE< E
f(E) = . (B.10)
e aE+b I E>Ey
To determine the fraction of neutrinos reaching the Earth we integrate the oscilla-

tion probability P(E, L) given by Eq. (3.7) over the line profile Eq. (B.10) and divide
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by the normalization constant N.

B(L) = Nl- / dEP(E, L)f(E)

1 sin? 260 o
~ _ dE —aE+b
N [(1 2 ) ¢

Er
. 9 oo 2 :
+ sin” 26 dE cos (21'17%"7’*&(&, - E)) e_aE-li?]‘
2 By 2
_ gmaButt (1 _ sin’ 20) 1 sin®20 1
|| 5 2 /a>+ (1.27Am2L]E2)?

2 2
X COS 2—1—L7A2£L—£(E0 — E;) — arctan 21'—27—A—T—L . (B.11)
E; aE§

Since the width of the line is only several keV while E, = 0.862 MeV, we can
set By — E; ~ Ep in the argument of the cosine. Substituting the value of the
normalization constant N = [°dEe *F** = (1/a)e™*"** and introducing ¢ =

arctan(2 x 1.27Am2L/ (aE})), we obtain-

ﬁ(L) i sin? 20 - COS (2 1.27}%0,,121, _ ¢) .(B 12)
= 2 V1+ (1.27TAm2L/(E2a))? | .

From this equation we can read off the shape of the cutoff. Viewed as a function
of Am?, for small values of the mixing angle the cutoff profile is approximately given.

by

Sin® 2o o< /1 -+ (1.27Am2L/(Ea))2. | (B.13)

Using the numerical value of a = 0.75 keV~!, obtained by fitting the line profile
in [40], we find that sin®2f.5(Am?) should increase by /2 with respect to the

smallest value of sin? 20,y When Am?2 ~ 2.9 x 10~ eV2. The actual number from
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curve 4 in Fig. 3.7 .is Am? ~ 1.5 x 10~° eV2. The actual value is smaller, which is
expected, because, for the purpose of this estimate, we neglected the contribution of
the Gaussian part of the line profile, effectively making the line narrower.

One can also estimate the location of the cutoff if the line profile were purely Gaus-
sian (curve 3 in Fig. 3.7). The steps are completely analogous: the new normalization

constant is N’ = [ dEe~(E-Fo)*/o* = \/ro, and P(L) is given by

— [0 ¢}
P(L) = % / dEP(E,L)e %17

1 sin® 20 ~E?/o?
=W [(1 ) [ axe

!
sin? 20 1.27TAm?L _Eo
'/ Ao ( T B g (e E)) o 2]

2
1 sm2 20 (1 _ e—(127Am?Lo/E})? o (2}__212_"1_1_’)) ) (B.14)
0

Thus, the cutoff for this model sets in faster and the profile for small values of sin? 26 is
Gaussian. Numerically, sin® 20cysof (Am?) is expected to increase by V2 with respect
to the smallest value of sin? 20,06 when Am? ~ 4.2 x 10~ eV?, which agrees with

curve 3 in Fig. 3.7.
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Appendix C |

To Chapter 4

C.1 Matter Oscillations and No Level Crossing

In this appendix we discuss the survival probability of solar electron neutrinos
outside the Sun, in particular the cése of no level crossing, i.e., when Am?cos26 < 0
in the language of the two neutrino mixing scenario.

In the literature, matter effects 1n the Sun are always considered when there is
“level crossing” inside of the Sun, i.e., when the light neutrino is predominantly of
the electron type, and, due to neutrino-electron interactions, when the instantaneous
Hamiltonian eigenstate with the largest eigenvalue is predominantly of the electron
type in the Sun’s core. The other case, when the heavy neutrino is predominantly
of the electron type, has not been studied in the literature in the context of two

neutrino oscillations. The authors of [48], however, have considered this possibility

¢
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in the context of three-flavor oscillations.

The reason for this apparent neglect.is simple, and will become clear as our results
are presented. What happens is that, in the case of no level crossing, the average
electron neutrino survival probab'ility is always bigger than 1/2, and therefore on the
surface it seems that this scenario is not relevant to the solar neutrino problem. This,
however, is not the case, as discussed in ‘detail in Chapter 5. Furthermore, in the .
region of the “just-so” solution it was believed that the no level crossing case would -
yield identical results as the level crossing case, but as Sect. 5.1 expiains th’i§ is also
not the case.

In the following analysis we will uée the notation and results introduced in Sect.
2.3.3. Given Eq. (2.59) of that section, it is easy to show that, while for 8 < 7 /4, P, |
‘canv be (much) smaller than 1/2, fqr 6 > w/4, P, is always larger than 1/2 (indeed, .
it will be shown that P,. > P2, the (averaged) vacuum survival probability).

First, note that —1 < cos26; < cos20. The équalities are saturated when
\/§GFNC(O) > Am?2/2E, or \/EGFNC(O). < Am?/2E,, respectively. More quan-

titatively

Am? Am? (0.862MeV>
, = 0.98 , C.1
2E,/2GrN,(0) (10—5eV2) E, (C1)

for an average core electron number density of 79 moles/cm?® [4]. Therefore, in the

case of "Be neutrinos and Am? < 1078 eV?,

1 Am?sin20 \?2 ' Am? 3
%o = ~1 + = +0 \ ) C.2
cos e 2 <2E,,\/§GFN,,(O)> <2Eu\/§GFNe(0)) (©2)
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and
P, ~ (1 — P.)sin?# + P.cos? 4. (C.3)

We will soon show that P, € [0,cos?6],! so that, in the limit cos 265 — —1,

et
oy

P, € [sin’ 0,sin* 6 + cos* 6] or o (C.4)

P, € [sin* 6 + cos* 4, sin? 4] (C.5) -

Eq. (C.4) (Eq. (C.5)) applies if sin? < cos? (sin?@ > cos®@). This is easy to see
because sin® 0 + cos*8 = 1 — (1/2) sin? 26 is the average vacuum survival probability

P}, and

P’ = 1-2sin’4(1 —sin?6)

€e

= 1—2sin?@ + 2sin*6, (C.6)

* which is bigger (smaller) than sin? 8 if sin? 6 < cos?6 (sin?6 > cos?6). If the oscilla-

tory terms do not average out,.

27\
P, =sin* 0 + cos*@ + 2sin® @ cos® @ cos (2.54A7£ L) S (eX9)

v
‘When v2GpN,(0) < Am?/2E, matter interactions should be irrelevant, and it is
easy to see from Eq. (2.50) that cos 26 — cos 26. In this limit P, — 0, since we are

deep into the adiabatic region (as will be shown later) and P, — PZ.

1 This is not hard to see. It is known that, if Am? is large enough, the adiabatic approximation
should hold, and therefore P, — 0 for large enough Am2. On the other hand, if Am?2 is small
enough, one should reproduce the vacuum oscillation result (as in the just-so scenario), and, from
Eq. (2.59), it is easy to see that this happens when P,-— cos? § and cos 20 — —1.
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The jumping probability P, in the exponential approximation for the Sun’s density
is given by Eq. 2.61 of Sect. 2.3.3. According to the author of [29], this equation only
holds for Am? cos 20 > 0. We will prove shortly, however, that Eq. (2.61) also applies
in the case of no level crossing, when the heavy mass eigenstate is predominantly of
the electron type, i.e. when sin?# > cos?6. Assuming that this is indeed the case, we
can finish our discussion on the behavior of the electron neutrino survival probability,
using “Be neutrinos as an example.

When Am? < 107° eV?, cos20p = —1 and P, = cos®6. In this case we argued
and one can explicitly check that P, = P2.2 For 1079 V2 <« Am? <« 1075 eV?,
cos 20, = ;1 and P, i——> 0. In this case P., ~ sin?#. This is the adiabatic region.
For Am? > 10~° eV?, matter effects become irrelevant and cos 26 = cos 26, P, = 0.
Again P,, = P},. Therefore, Eqs. (C.4,C.5) apbly for all values of interest, and one
can get a very lérge suppression of P, if sin? @ < 1. On the other hand, in the case
of no level crossing, P is always bigger than Fg, > 1/2.

Fig. C.1 depicts the behavior of Pnge) as a fuhction of Am?, for different values
of the vacuum mixing angle. The preferred values from the overall rate analysis
at the Homestake, SAGE and GALLEX, and SuperKamiokande experiments [3] are

indicated by stars. The four plots are labeled SMA, LMA, LOW to indicate that

%Indeed, this is the region of the “just-so” solution. As a matter of fact, in this region the distance
dependent vacuum oscillations do not average out when the neutrinos are detected at the Earth,
and one should use the position dependent expression, Eq. (2.60). It is trivial to check that, when
cos20g = —1 and P, = cos? § Eq. (2.60) reproduces the vacuum oscillation expression Eq.(C.7), up
to a phase (see Chapter 3). That this is also true for cos 28 < 0 was explicitly checked starting with
the exact solutions to Schrédinger’s equation [28, 29].
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they contain the best fit values of @ for the Small Mixing Angle, Large Mixing Angle
and LOW Am? solutions [3], respectively, and INT to indicate an intermediate value
of § between the SMA and LMA solutions. The dotted line indicates the value of
P?.. Similarly, Fig. C.2 depicts Pe(:Be) as a function of sin? @ for different values of
the mass squared difference. We use the same notation as the one used in Fig. C.1,
and the vertical dashed lines indicate the mixing angle for maximal vacuum mixing -
(sin? 6 = 1/2). Note that at this point PLEe =P, =1/2.

Finally, we argue that Eq. (2.61) holds for all values of cos 26. When v/2G F]}/e(O) >
- |Am?|/2E,, it is very simple to derive P, following the exact solution [28, 29] to

Schrédinger’s equation and taking the appropriate limits. According to Eq. (39) in

(29]
P - siﬁ2(20) sinh(7mroho c0s?0) _ .. 1 nzg
pe = 4 cos? @ sinh(nrohg)
sinh(rrohosin® ) . . 2, ( Am? )2
+ Troho COS + O ) 0-8
v sin” @ sinh(7roho) ¢ 2E,v/2GFN.(0) (©8)
, inh(mrohg cos?4) _ in?
P ~ 2 0 sin 0 : mroho sin® @
Ke st ( Sinh(ﬂ' To ho) €
inh(mrohg sin® 9) 2
2 0 S 0 wrohg cos? 0
+ cos sinh(x7oho) ’
N 5 e1l'7'oho cos26 _ e—""‘oho 9 eﬂ'Toho _»evrroﬁo'cos29
Pl“e ~ sin"0 ( ewroho — e—ﬂroho ) + cos 0 e'lﬂ‘oho — e—’l”'oho ) ’
P =~ sin?0(P,)+cos?0(1~ P.),

where hy = Am?/2E, and P, is given exactly by Eq. (2.61). Therefore

P,=1—- P, ~ (1 - P.)sin?0 + P,cos*6. _ - (C.9)
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Figure C.1: The electron neutrino survival probability as a function Am2, for different
values of the vacuum mixing angle, namely, cos 20 = +0.997 (SMA), cos 26 = +0.8
(INT), cos 26 = £0.58 (LMA), and cos 28 = +0.24 (LOW). The upper (lower) lines
are for the negative (positive) sign of cos20 < 0. The stars indicate the preferred
points from the overall rate analysis of the existing data [3], and the horizontal dotted
lines indicate the vacuum survival probability, P?, = 1/2 — 1/2sin?26 .
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Figure C.2: The electron neutrino survival probability as a function sin? 8, for different
values of Am?, namely, Am? = 1.3x 1077 eV2 (LOW), Am? = 5.0x 10~¢ eV? (SMA),
Am? = 1.4 x 107% eVZ(LMA), and Am? = 1 x 10~* eV2. The stars indicate the
preferred points from the overall rate analysis of the existing data [3], and the dashed
lines indicate the vacuum survival probability, P2 = 1/2 — 1/2sin”26.



172

Since, in deriving Eq. (C.8), no assumptions with respect to the sign of Am? or the
value of 8 were made, it should be applicable in all cases,® as long as v2G FINe(0) >
|Am?2|/2E,. Indeed, from Egs. (2.50, 2.59) it is easy to note that, in the limit

V2GEN,(0) > |Am?|/2E,, cos 20, — —1 and Eq. (C.9) is exactly reproduced.

3That this is indeed the case was checked explicitly starting with the exact solution to
Schrédinger’s Equation in terms of Whittaker functions [28, 29]. Furthermore, in Chapter 5 (and also
in reference[48]) the fact that Eq. (2.61) holds in the region of interested was verified numerically.
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